
Learning embeddings: e�cient algorithms and
applications

Thèse n. 8348
présentée le 20 Décembre 2017
à la Faculté des Sciences et Techniques de l'Ingénieur
Programme Doctoral en Génie Électrique (EDEE)
Laboratoire LIDIAP (Idiap Research Institute)
École Polytechnique Fédérale de Lausanne

pour l'obtention du grade de Docteur ès Sciences
par

Cijo Jose

acceptée sur proposition du jury:

Prof Pascal Frossard, président du jury

Dr François Fleuret, directeur de thèse

Dr Olivier Bousquet, rapporteur

Dr Moustapha Cissé, rapporteur

Dr Mathieu Salzmann, rapporteur

Lausanne, EPFL, 2017

Abstract

Learning to embed data into a space where similar points are together and dissimilar points are

far apart is a challenging machine learning problem. In this dissertation we study two learning

scenarios that arise in the context of learning embeddings and one scenario in efficiently

estimating an empirical expectation. We present novel algorithmic solutions and demonstrate

their applications on a wide range of data-sets.

The first scenario deals with learning from small data with large number of classes. This

setting is common in computer vision problems such as person re-identification and face

verification. To address this problem we present a new algorithm called Weighted Approximate

Rank Component Analysis (WARCA), which is scalable, robust, non-linear and is independent

of the number of classes. We empirically demonstrate the performance of our algorithm on 9

standard person re-identification data-sets where we obtain state of the art performance in

terms of accuracy as well as computational speed.

The second scenario we consider is learning embeddings from sequences. When it comes to

learning from sequences, recurrent neural networks have proved to be an effective algorithm.

However there are many problems with existing recurrent neural networks which makes them

data hungry (high sample complexity) and difficult to train. We present a new recurrent neural

network called Kronecker Recurrent Units (KRU), which addresses the issues of existing recur-

rent neural networks through Kronecker matrices. We show its performance on 7 applications,

ranging from problems in computer vision, language modeling, music modeling and speech

recognition.

Most of the machine learning algorithms are formulated as minimizing an empirical expec-

tation over a finite collection of samples. In this thesis we also investigate the problem of

efficiently estimating a weighted average over large data-sets. We present a new data-structure

called Importance Sampling Tree (IST), which permits fast estimation of weighted average

without looking at all the samples. We show successfully the evaluation of our data-structure

in the training of neural networks in order to efficiently find informative samples.

Keywords: Learning embedding, Metric learning, Orthonormal, Unitary regularizer, Person

re-identification, Recurrent neural networks, Kronecker product, Importance sampling.

i

Résumé

Apprendre à représenter des données dans un espace où les points similaires sont proches

les un des autres et les points dissimilaires sont éloignés les uns des autres est un problème

d’apprentissage machine difficile. Cette thèse s’attèle à deux scénarios d’apprentissage que

l’on retrouve dans le contexte des transformations d’apprentissage, ainsi quà un scénario

concernant l’estimation d’une espérance empirique de façon efficace. Nous présentons de

nouvelles solutions algorithmiques et démontrons leurs applications sur un large éventail

d’ensembles de données.

Le premier scénario s’articule autour de l’apprentissage á partir de faibles ressources sur un

grand nombre de classes. Ce [setting] est courant dans les problèmes de vision par ordinateur

comme par exemple la réidentification de personnes ou encore la reconnaissance faciale. Nous

proposons un algorithme pour résoudre ce problème : WARCA (pour Weighted Approximate

Rank Component Analysis, i.e. analyse pondérée des composantes de rang approximatif).

Cette méthode est robuste, non linéaire, indépendante du nombre de classes et évolutive. Nous

démontrons empiriquement les performances de notre algorithme sur 9 bases de données

standard de réidentification de personnes : nous obtenons des performances de pointe en

termes de précision et de vitesse de calcul.

Le deuxième scénario que nous étudions est l’apprentissage de représentations à partir de

séquences. Les réseaux de neurones récurrents ont démontré leur capacité à apprendre à

partir de séquences. Toutefois, un grand nombre de problèmes se présentent dans l’utilisation

des réseaux de neurones récurrents existants. Ils nécessitent alors de larges volumes de don-

nées (haute complexité des échantillons) et sont difficiles à entraîner. Nous introduisons un

nouveau type de réseau de neurones récurrent que nous appelons KRU (Kronecker Recurrent

Units, en français unités récurrentes Kronecker). Ce réseau utilise des matrices de Kronecker

pour résoudre les problèmes rencontrés dans l’utilisation des réseaux récurrents existants.

Les performances de notre méthode sont démontrées sur 7 applications allant de problèmes

en vision par ordinateur à la reconnaissance vocale en passant par la modélisation de langue

ou encore la modélisation musicale.

La plupart des algorithmes d’apprentissage machine sont formulés comme la minimisation

de l’espérance empirique sur une collection finie d’échantillons. Dans cette thèse nous

étudions également le problème de l’estimation efficace d’une moyenne pondérée sur de

iii

larges volumes de données. Nous proposons une nouvelle structure de données appelée IST

(Importance Sampling Tree, en français arbre d’importance d’échantillonage), laquelle permet

d’estimer rapidement cette moyenne pondérée sans avoir à regarder tous les échantillons.

Nous démontrons l’évaluation de notre structure de données dans la formation de réseaux

neuronaux afin de trouver efficacement des échantillons informatifs.

Mots-clés: Inférer un plongement, apprentissage métrique, régularisateur orthonormé, régu-

larisateur unitaire, ré-identification de personne, réseaux de neurones récurrents, produit de

Kronecker, échantillonnage d’importance.

iv

Acknowledgements
Firstly, I would like to express my gratitude to my enthusiastic adviser and mentor, François

Fleuret. He gave me complete freedom of research topics, and was always willing and patient to

hear any of my ideas. It was because of this academic freedom and encouragement that I was

able work across diverse topics in machine learning. François taught me how good machine

learning research is being done and never stops to amuse me by his ability to transform my

vague intuitions into sound research ideas. I could not have asked for a better adviser for my

Ph.D research.

I would like to thank my thesis jury members: Pascal Frossard, Olivier Bousquet, Moustapha

Cissé, and Mathieu Salzmann for their insightful comments and encouragement.

I sincerely thank Swiss National Science Foundation (SNSF) for supporting my research

through the grant, CRSII2-147693 – WILDTRACK. My gratitude also goes to Facebook AI

Research (FAIR) and my mentor at FAIR, Moustapha Cissé, for giving me an internship oppor-

tunity. Internship at FAIR and the discussions with researchers there with diverse background

enabled me to widen my research perspective.

Before coming to Idiap, I already had some research experience in machine learning as a

masters student at IIT Delhi and as an intern at Microsoft. I am thankful to Manik Varma and

SVN Vishwanathan for introducing me to the world of machine learning research.

The colleagues I have had at Idiap have been exceptional. James Newling, who showed how

to really be focused on good research and stay out of distractions. Olivier Canévet, whose

insights and engineering skills resulted in a research collaboration. I would like to thank all the

system and the administrative team at Idiap for their support. I thank all the wonderful people

that I met during my time at Idiap for their friendship and all the fun times. I cherish those

coffee breaks, Friday beers and dinners. Switzerland is a playground for the people who like

outdoor sports and the nature. I started skiing, mountain biking and climbing after coming

here and the weekends were always fun with those activities. I thank all the people who were

partners in it.

Finally, I thank my family, especially my parents for their patience, encouragement and

freedom to pursue whatever interests me.

Martigny, January 2018 C. J.

v

Contents
Abstract (English/Français) i

Acknowledgements v

List of figures xi

List of tables xiii

List of algorithms xv

1

1 Introduction 1

1.1 Motivations . 1

1.1.1 Learning from small data with large number of classes 1

1.1.2 Learning to embed sequences . 2

1.1.3 Efficient estimation of an empirical expectation 3

1.2 Summary of contributions . 3

1.3 Thesis outline . 4

1.4 Notation . 4

2 Background on Machine Learning 5

2.1 Introduction . 6

2.2 Empirical Risk Minimization (ERM) principle . 7

2.2.1 Bias-variance trade-off . 8

2.3 Perceptron learning algorithm . 9

2.3.1 Remarks . 11

2.4 Stochastic gradient descent (SGD) . 11

2.5 Representer theorem and non-linear learning algorithms 12

2.6 Kernel learning and neural networks . 15

2.6.1 Random feature map for Gaussian RBF kernel 16

2.6.2 Neural networks . 17

2.7 Discussion . 19

3 Weighted Approximate Rank Component Analysis 21

vii

Contents

3.1 Introduction . 22

3.2 Related work . 23

3.3 Weighted Approximate Rank Component Analysis (WARCA) 26

3.3.1 Problem formulation . 26

3.3.2 Approximate OrthoNormal (AON) regularizer 28

3.3.3 Max-margin reformulation . 28

3.3.4 WARCA in kernel space . 30

3.4 Experiments . 32

3.4.1 Data-sets and baselines . 32

3.4.2 Technical details . 33

3.4.3 Comparison against state-of-the-art . 37

3.4.4 Analysis of the AON regularizer . 37

3.4.5 Analysis of the training time . 39

3.5 Discussion . 39

4 Kronecker Recurrent Units 41

4.1 Introduction . 42

4.2 Recurrent neural network formalism . 44

4.2.1 Over parametrization and computational efficiency 45

4.2.2 Poor conditioning implies gradients explode or vanish 45

4.2.3 Why complex field? . 45

4.3 Kronecker recurrent units (KRU) . 46

4.3.1 Soft unitary constraint . 47

4.4 Experiments . 47

4.4.1 Copy memory problem . 47

4.4.2 Adding problem . 49

4.4.3 Pixel by pixel MNIST . 51

4.4.4 Character level language modelling on Penn TreeBank (PTB) 52

4.4.5 Polyphonic music modeling . 53

4.4.6 Framewise phoneme classification on TIMIT 54

4.4.7 Influence of soft unitary constraints . 55

4.5 Discussion . 56

5 Importance Sampling Tree 59

5.1 Introduction . 60

5.2 Related work . 61

5.3 Weighted averages in machine learning . 63

5.3.1 Importance sampling for Monte-carlo simulations 64

5.4 Importance Sampling Tree (IST) . 64

5.4.1 Adaptive sampling . 65

5.5 Experiments and results . 66

5.5.1 Multi-layer Neural Network on a 2D synthetic data-sets 66

5.5.2 Deep Convolution Network on CIFAR10 68

viii

Contents

5.6 Discussion . 70

6 Conclusions 73

6.1 Summary . 73

6.2 Future directions . 74

A Chapter 2 Appendix 77

A.1 Perceptron convergence proof . 77

B Chapter 3 Appendix 79

B.1 Metric learning . 79

B.1.1 Principal component analysis . 80

B.1.2 Fisher discriminant analysis . 80

B.1.3 Information-theoretic metric learning (Davis et al., 2007) 81

B.1.4 KISS metric learning (Köstinger et al., 2012) 82

B.1.5 Siamese neural network (Chopra et al., 2005) 82

B.1.6 Chopping (Fleuret and Blanchard, 2005) 83

B.2 Person re-identification . 83

B.2.1 Performance measures for person re-identification 84

B.3 Feature space visualization for WARCA . 84

B.4 Maximizing AUC with a Mahalanobis metric . 87

B.4.1 Kernelization . 88

B.4.2 Optimization . 89

B.4.3 Experiments . 91

C Chapter 4 Appendix 95

C.1 Analysis of vanishing and exploding gradients in RNN 95

C.2 Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) 96

C.3 Unitary evolution RNN (Arjovsky et al., 2016) . 97

C.4 Full capacity unitary RNN (Wisdom et al., 2016) 97

C.5 Orthogonal RNN (Mhammedi et al., 2016) . 98

C.6 Properties of Kronecker matrix (Van Loan, 2000) 98

C.7 Product between a dense matrix and a Kronecker matrix 99

C.8 Gradient computation in a Kronecker layer . 102

Bibliography 105

Curriculum Vitae 116

ix

List of Figures
2.1 Bias and variance illustration in a dart throwing game. 8

2.2 Illustration of bias and variance in machine learning algorithms. 9

2.3 Illustration of a linear classifier passing through the origin in R2. 10

2.4 Illustration of kernel trick. 14

2.5 A diagrammatic illustration of a non-linear learning algorithm viewed through

the lens of kernel approximation. 17

2.6 A neural network learns a hierarchy of features together with the linear function

to capture regularities in data. 18

3.1 Illustration of rank weighting function: L
(
r anki , j (FW)

)
. 27

3.2 CMC curves comparing WARCA against state-of-the-art methods on nine re-

identification data-sets. 34

3.3 Comparison of the Approximate OrthoNormal (AON) regularizer we use in our

algorithm to the standard Frobenius norm (L2) regularizer. 38

3.4 WARCA performs significantly better than the state-of-the-art rPCCA on large

data-sets for a given training time budget . 39

4.1 A slice of a recurrent neural network unrolled along the time. 44

4.2 An illustration of the copy memory problem. 48

4.3 Learning curves on copy memory problem for T =1000 and T =2000. 48

4.4 Adding problem of sequence length T = 6. 49

4.5 Results on adding problem for T =100, T =200, T =400 and T =750. KRU consis-

tently outperforms the baselines on all the settings with fewer parameters. . . . 50

4.6 Validation accuracy on pixel by pixel MNIST and permuted MNIST class predic-

tion as the learning progresses. 51

4.7 Wall clock training time on JSB Chorales and Piano-midi data-set. 53

4.8 Performance comparison of KRU against baseline models on TIMIT data-set. . 54

4.9 Analysis of soft unitary constraints on three data-sets. First, second and the third

column presents JSB Chorales, Piano-midi and TIMIT data-sets respectively. . 55

5.1 Cumulative gradient norms of the training points on CIFAR10 dataset using

convolutional neural networks. 60

5.2 Two synthetic data-sets (Sinusoidal and batman) used to evaluate the training of

multi-layer perceptron using importance sampling Tree. 66

xi

List of Figures

5.3 A multi-layer neural network on two synthetic 2D problems. 67

5.4 Structure of the sample tree we use to train a CNN on the CIFAR10 data-set. . . 68

5.5 CNN experiment on CIFAR10. 69

5.6 Gradient norms of the sampled training points on three different epochs. . . . 70

5.7 Graph showing the correlation coefficient between the sampling weights pre-

dicted by IST between two randomized runs along the epochs. 71

B.1 A schematic illustration of metric learning. 79

B.2 Person re-identification to improve multi object tracking. 83

B.3 Feature space visualization on iLIDS data-set using tSNE (Maaten and Hinton,

2008). 85

B.4 Feature space visualization on CUHK01 data-set using tSNE (Maaten and Hinton,

2008). 86

B.5 CMC curves comparing MAMM against other methods on six re-identification

datasets. 92

B.6 CMC curves comparing MAMM against FDA variants under low capacity setting. 92

C.1 Graph illustrating the time complexity of dense vector product with Kronecker

factored square matrices as a function of the vector dimension. 99

C.2 of matrix matrix product. 102

xii

List of Tables
1.1 Notation . 4

2.1 Convex approximations of 0-1 loss function (1y(wT x)≤0). 11

3.1 Chapter 3 notation . 25

3.2 Table showing the rank 1, rank 5 and AUC performance measure of our method

WARCA against other state-of-the-art methods. 35

3.3 Comparison of WARCA against state-of-the-art results for person re-identification

. 37

4.1 Notation . 44

4.2 KRU achieves state of the art performance on pixel by pixel permuted MNIST

while having up to four orders of magnitude less parameters than other models. 51

4.3 Performance in BPC of KRU variants and other models for character level lan-

guage modeling on Penn TreeBank data-set. 52

4.4 Average negative log-likelihood of KRU and KRU-LSTM compared to the baseline

models. 53

5.1 Notation . 62

5.2 Classification error of different sampling strategies on the synthetic Sinusoidal

and Batman data-sets. 68

B.1 Rank 1 performance of different methods on different data-sets. We indicated

the ranking of the top-3 methods for each data-set. 91

B.2 Rank 5 performance of different methods on different data-sets. We indicated

the ranking of the top-3 methods for each data-set. 91

B.3 AUC of different methods on different data-sets. We indicated the ranking of the

top-3 methods for each data-set. 92

xiii

List of Algorithms
1 Perceptron algorithm . 11

2 Stochastic gradient descent for ERM . 12

3 Stochastic gradient descent for KRLM . 15

4 Stochastic gradient descent algorithm for WARCA 30

5 Preconditioned gradient descent algorithm for MAMM 90

6 Dense matrix product with a Kronecker matrix, Y = (. . . (XWT
0)⊗·· ·⊗WT

F−1) . . . 101

7 Gradient computation in a Kronecker layer. 103

xv

1 Introduction

Machine learning is the science of automatically discovering meaningful patterns from data

and using this information for prediction. In contrast to the traditional view of computing, in

machine learning a human programmer does not write an exact specification of how patterns

should be detected from data. Instead machine learning algorithms take inspiration from

intelligent beings by learning a set of parameters to discover meaningful patterns based

on a set of heuristic specifications and use these learned parameters for prediction. The

core motivation behind such a paradigm for computing is that designing exact specification

for many interesting pattern discovery problems is enormously difficult. Examples of such

problems include image classification, automatic speech recognition, weather prediction,

spam classification and analysis of genome data.

In this thesis we are interested in exploring a class of machine learning algorithms which learn

a compact space where similar points in the data are nearby and dissimilar points are far apart.

Thus this thesis fits in the paradigm of learning embeddings. Many of the machine learning

algorithms are formulated as minimizing an empirical expectation over the data, including

the models for learning embeddings. In this thesis, we also study the problem of efficiently

estimating an empirical expectation over a large collection of data-samples. Before we delve

into details let us discuss the core motivations for this dissertation.

1.1 Motivations

This thesis is inspired from three core motivating scenarios that arise in machine learning:

1.1.1 Learning from small data with large number of classes

Many state of the art machine learning algorithms such as neural networks or support vector

machines require huge amounts of data to achieve good performance. With the availability

of large scale data-sets such as Imagenet (Deng et al., 2009) performance of these methods

has increased dramatically over the past decade (Krizhevsky et al., 2012b). However it is

1

Chapter 1. Introduction

unknown how this dramatic progress paves the way for learning from few examples or few-

shot learning and reasoning about unseen categories using the regularities learned from the

known categories (zero-shot learning). The reason for this is that the standard algorithms

require all the categories to be known in advance during training and also require a large

amount of examples per class to learn the category without over-fitting. Moreover, for these

algorithms, the training and prediction time complexity as well as space complexity(model

size) grows linearly (some times quadratically eg: 1vs1 classifiers) with the number of classes

and thus they are limited to fairly small number of categories (on the order of 1000). Hence,

these algorithms are ill-suited for the small sample learning problems where the number of

examples per category is very small and the number of classes is unknown during training and

is very large. This problem is prevalent in many important computer vision scenarios such as

person re-identification for video surveillance and face verification for security applications.

A promising direction to pursue in order to address this scenario is to learn an embedding

where the points from the same classes are together and dissimilar classes are far-apart and

use this embedding to reason about unknown categories. In Chapter 3 we are interested in

computationally efficient learning of an embedding under Mahalanobis distances. As an

application we focus on person re-identification. We present a metric learning model called

Weighted Approximate Rank Component Analysis (WARCA). WARCA optimizes the precision

at top ranks by combining the Weighted Approximate Rank Pairwise(WARP) loss (Usunier et al.,

2009; Weston et al., 2011; Lim and Lanckriet, 2014) with a regularizer that favors orthonormal

linear mappings and avoids rank-deficient embeddings. Using this new regularizer allows

us to efficiently exploit stochastic gradient descent, which results in an algorithm that scales

gracefully to data-sets with large number of classes and training points. Also, we derive

a kernel space WARCA which allows to take advantage of state-of-the-art features for re-

identification when data-set size permits kernel computation. Benchmarks on recent and

standard re-identification data-sets show that our method out-performs existing state-of-the-

art techniques both in terms of accuracy and speed. We also provide experimental analysis to

shed light on the properties of the regularizer we use, and how it improves performance.

1.1.2 Learning to embed sequences

Many natural signals like speech, language, video appear as sequences. Recently, Recurrent

Neural Networks (RNNs) have emerged to be effective algorithms in learning embeddings from

sequences. However there are several challenges in learning with recurrent neural networks.

In Chapter 4 we addresses two of these challenges with recurrent neural networks: (1) they

are over-parametrized, and (2) the recurrence matrix is ill-conditioned. The former increases

the sample complexity of learning and the training time. The latter causes the vanishing and

exploding gradient problem. We present a flexible RNN model called Kronecker Recurrent

Units (KRU). KRU achieves parameter efficiency in RNNs through a Kronecker factored recur-

rent matrix. It overcomes the ill-conditioning of the recurrent matrix by enforcing soft unitary

2

1.2. Summary of contributions

constraints on the factors. Thanks to the small dimensionality of these factors, maintaining

these constraints is computationally efficient. Our experimental results on five standard

data-sets reveal that KRU can reduce the number of parameters by three orders of magnitude

in the recurrent weight matrix compared to the existing recurrent models, without trading the

statistical performance. These results in particular show that while there are advantages in

having a high dimensional recurrent space, the capacity of the recurrent part of the model can

be dramatically reduced.

1.1.3 Efficient estimation of an empirical expectation

Efficiently estimating an empirical risk is a very important problem in machine learning as

most of the machine learning methods are formulated as the minimization of an empirical

expectation.

In Chapter 5 we present a tree-based data-structure called Importance Sampling Tree (IST)

inspired by the Monte-Carlo Tree Search (Browne et al., 2012) that dynamically modulates

an importance-based sampling to prioritize computation, while getting unbiased estimates

of weighted sums. We apply this generic method to perform learning on very large training

sets. The core idea is to reformulate the estimation of a score – whether a loss or a prediction

estimate – as an empirical expectation, and to use a tree whose leaves carry the samples to

focus efforts over the problematic “heavy weight” samples. We illustrate the potential of this

approach on two problems: 1) To improve a multi-layer perceptron on 2D synthetic tasks with

several million points and 2) To train a large-scale convolutional network on several millions

deformations of the CIFAR data-set. In each case, we show how IST allows us to get better loss

estimates.

1.2 Summary of contributions

The main contributions of this thesis are summarised as follows:

• We present a new scalable metric learning algorithm called WARCA to learn a Maha-

lanobis distance according to a weighted sum of the precisions at different ranks. This

criterion in particular encompasses the Area Under the Curve (AUC) (uniform weighting)

and the precisions at individual ranks (The Dirac weighting).

• We also present a non-linear WARCA by using kernel trick.

• We present a simple regularizer for preventing matrix rank degeneration in low rank

matrix optimization by approximately enforcing the orthonormality constraint on the

matrix being learned and demonstrate its effectiveness in learning algorithms.

• We present a new recurrent neural network model called KRU. KRU allows fine grained

control over the number of parameters. Hence it permits a fine grained control over

3

Chapter 1. Introduction

Table 1.1: Notation

R The set of real numbers
C The set of complex numbers
Non bold capital letters indicate size or functions
M Number of training points
D Dimension of training samples
Q Number of classes
RD The set of D dimensional vectors over R
RD×N The set of D ×N dimensional matrices over R
Non-bold small letters indicate scalars or functions
Bold capital letters indicate matrices
Bold small letters indicate column vectors
x1, . . . ,xM A sequence of M vectors
x1, . . . , xM A sequence of M scalars
1condition is equal to 1 if the condition is true, 0 otherwise

the computation and statistical performance of RNN. It is also robust to vanishing and

exploding gradients.

• We introduce a new data-structure called IST which can efficiently sample points from

a large collection of points according to a weight distribution over the collection and at

the same time efficiently modulate the sampling weights for future sampling.

1.3 Thesis outline

This thesis is organized as follows. In Chapter 2 we review some basic concepts in machine

learning. We describe our WARCA metric learning algorithm in Chapter 3 . In Chapter 4 we

present Kronecker Recurrent Units (KRU). Chapter 5 presents IST data-structure and Chapter 6

concludes our work.

1.4 Notation

Table 1.1 summarizes the general notation that we use in this thesis. This notation is consistent

across chapters and when needed a chapter specific notation is provided.

4

2 Background on Machine Learning

Contents

2.1 Introduction . 6

2.2 Empirical Risk Minimization (ERM) principle 7

2.2.1 Bias-variance trade-off . 8

2.3 Perceptron learning algorithm . 9

2.3.1 Remarks . 11

2.4 Stochastic gradient descent (SGD) . 11

2.5 Representer theorem and non-linear learning algorithms 12

2.6 Kernel learning and neural networks . 15

2.6.1 Random feature map for Gaussian RBF kernel 16

2.6.2 Neural networks . 17

2.7 Discussion . 19

5

Chapter 2. Background on Machine Learning

2.1 Introduction

This chapter aims at giving a concise introduction to machine learning. Most of the concepts

discussed here are presented more thoroughly in the text book by Shalev-Shwartz and Ben-

David (2014).

Let’s imagine we want to design an algorithm to automatically label digital images with 1 or -1

depending upon whether the images contain a cat or not. If there is a cat our algorithm tag

the image with 1 and -1 otherwise. One way to tackle this problem is to come up with an exact

formal algorithmic specification of how a cat looks like in a digital photo and use this algorithm

for labeling. However designing such an exact specification would be an enormously difficult

task because of the variations among different cats and the photographic nuisances such as

illumination, view-point changes and occlusion. Another way to tackle this problem is to

first get a set of images with cat (1) or not cat (-1) labels and design an algorithm to learn

what distinguishes an image with cats from the rest. Once we have learned this information

we can then use it for image label prediction. Machine learning takes this approach to solve

problems for which a formal specification is difficult to derive. Let’s formalize a simple model

for machine learning problems using our photo tagger as an example. We define the following

notation.

• X The domain set. All natural images in the photo tagging problem.

• Y The label set (1 or -1 in the example)

• D Data generating distribution. That is, the probability distribution over X . This distri-

bution is assumed to be unknown. In the example, it is the probability distribution of all

natural images in the set of all images.

• S = {(x1, y1), .., (xM , yM)} A set of M training data-label pairs in X ×Y (A set of M image

label pairs in the example).

• f : X → Y The correct labeling function which is unknown. (Function which maps

the photo to the label). The generalization error (which we define later) of the optimal

classifier is assumed to be 0 for simplicity.

• h : X →Y The prediction function or the hypothesis that is used to predict the label

of data-points from the domain set. During learning, the machine learning algorithm

evaluates the performance of many different hypothesis from a set of hypotheses and

outputs the best hypothesis it possibly could from the set according to some perfor-

mance measure. The performance measure quantifies how well the hypothesis is doing

at predicting the label.

• H= {h :X →Y} Hypothesis class or the domain of all functions that the learning algo-

rithm considers for choosing a hypothesis.

6

2.2. Empirical Risk Minimization (ERM) principle

2.2 Empirical Risk Minimization (ERM) principle

In order to select a hypothesis from the hypothesis class H we need to define a performance

measure quantifying how well the chosen hypothesis is doing in terms of correctly predicting

the label. This performance measure is often called as loss function in machine learning. In

our photo labeling example it is the probability that a randomly sampled image from the data

generating distribution D is incorrectly labeled by the current hypothesis h. This defines the

generalization error or the expected risk R(h) under a hypothesis h:

R(h) = P
x∼D

(f (x) 6= h(x)) = E
x∼D

[1h(x) 6= f (x)] =
∫

x∼D
1h(x) 6= f (x)dx. (2.1)

Given a set of training data-label pairs S , where the training data is sampled from an unknown

probability distribution D and labeled by an unknown labeling function f , the goal of a

machine learning algorithm is to output a prediction function from the hypothesis class H,

such that it minimizes the generalization error defined in 2.1. That is, ideally, the algorithm

would like to minimize the expected risk by choosing the best hypothesis it possibly could

from the hypothesis class H.

However since the distribution D and the labeling function f is unknown, directly minimizing

the expected risk is impossible. Instead what an algorithm can do is to minimize the training

error or the empirical risk R̂(h) which is defined as follows:

R̂(h) = 1

M

M∑
m=1

1h(xm) 6= f (xm). (2.2)

Machine learning algorithms minimize the empirical risk as a tractable proxy for the expected

risk. This learning principle of finding a hypothesis by minimizing the empirical risk is called

Empirical Risk Minimization (ERM). That is, given a training set S , a learning algorithm using

the ERM principle does the following:

hS = argmin
h∈H

1

M

M∑
m=1

1h(xm)6= f (xm). (2.3)

There are two errors that come up when we design learning algorithms using the ERM prin-

ciple: 1) approximation error and 2) estimation error.The approximation error (εapp) is the

minimum generalization error achievable by a hypothesis from the considered hypothesis

class:

εapp = min
h∈H

R(h). (2.4)

The approximation error occurs because the hypothesis class may not contain the true labeling

7

Chapter 2. Background on Machine Learning

function f .

The estimation error (εest) is the difference between the generalization error achieved by the

hypothesis selected by the learning algorithm over the training set S and the approximation

error:

εest = R(hS)−εapp . (2.5)

Estimation error happens because the empirical risk is just a proxy for the expected risk and

so the algorithm minimizing the empirical risk is just a proxy for the algorithm minimizing the

expected risk.

2.2.1 Bias-variance trade-off

In order to generalize well,the learning algorithm should have low approximation error and

low estimation error. When the approximation error is high, we say that the algorithm is

under-fitting or has a high bias towards a particular hypothesis across different training sets.

High bias arises when the considered hypothesis class is not flexible enough to capture the

relevant information in the data. This can be avoided by considering a rich hypothesis class.

Figure 2.1 illustrates bias and variance in a dart throwing game.

(a) Low bias, low variance (b) High bias, low variance (c) Low bias, high variance (d) High bias, high variance

Figure 2.1: Bias and variance illustration in a dart throwing game.

However when we increase the complexity of the hypothesis class it may lead to high estima-

tion error or high variance in the hypothesis selected by the algorithm on different training

sets. High variance arises because the considered hypothesis class is too flexible and it fits to

the noise in the data but not to the correct information. In this case the algorithm will fit very

well the training data but fails to generalize to the data outside of the training set. This problem

of over-fitting on the training set can be avoided by controlling the search space of hypotheses

within the hypothesis class by exploiting some prior knowledge about the data. This strategy is

often called ERM with inductive bias. However high inductive bias will lead to under-fitting. So

the goal of any learning algorithm using ERM principle is to obtain the right trade-off between

the approximation error and the estimation error or the right trade-off between the bias and

8

2.3. Perceptron learning algorithm

Pr
ed

ic
tio

n
er

ro
r

Complexity of hypothesis class

Optimal bias-variance trade-off

Training error
Generalization error

Figure 2.2: Illustration of bias and variance in machine learning algorithms. As the complexity
of the hypothesis class gets high, the approximation error decreases but the estimation error
increases. That is, the algorithm starts fitting to the noise in the training data which causes
the training error to go down. And since the algorithm is explaining the noise in the training
data its error outside the training data (generalization error) goes up. The goal of any machine
learning algorithm is to obtain the optimal trade-off between the approximation error and the
estimation error or the bias and variance.

variance. This trade-off is achieved in practice by using cross-validation (Shalev-Shwartz and

Ben-David, 2014). Figure 2.2 illustrates bias and variance in machine learning algorithms.

2.3 Perceptron learning algorithm

Let’s consider our photo labeling example and imagine each image being represented as a D

dimensional vector. Now consider a training set S of image / label pairs:

S = (xm , ym) ∈RD × {−1,1}, m = 1, . . . , M . (2.6)

Let’s consider the hypothesis class H to be the set of all linear classifiers in RD passing through

the origin. Linear classifiers are sign thresholded linear functions. An illustration of a linear

classifier in R2 is shown in Figure 2.3. The prediction function of a linear classifier is of the

form:

h(x;w) = sign(wT x) (2.7)

where w ∈RD is the parameter of the linear classifier and h(x;w) ∈ {−1,1} is the response of the

linear classifier on the input x. Different settings of w give different functions in the hypothesis

class. Given S , our goal is to find a setting of the parameter w such that it minimizes the

9

Chapter 2. Background on Machine Learning

y

x

w
T x=

0

wT x > 0

wT x < 0w

Figure 2.3: Illustration of a linear classifier passing through the origin in R2, separating the
red dots from the blue dots. The red dots are labeled 1 and the blue dots are labeled -1. The
line separating the two classes (wT x = 0) is called as the decision boundary and w which is the
normal to the line wT x = 0 is the parameter of the linear classifier.

empirical risk. The corresponding ERM problem can be written as:

min
w

1

M

M∑
m=1

1ymsign(wT xm)≤0. (2.8)

Unfortunately the optimization problem in Equation 2.8 is difficult to solve using standard

numerical methods because the discrete 0-1 step loss function used as the performance

measure is not differentiable and non-convex. In order to make ERM practical the Perceptron

algorithm approximates the step function with a convex rectified linear function:

min
w

1

M

M∑
m=1

max(0,−ym(wT xm)). (2.9)

This loss function is differentiable everywhere except at 0. The Perceptron learning algorithm

is shown in Algorithm 1. It minimizes the empirical risk 2.9 by stochastic sampling of the

training points one at a time. If the data is linearly separable by a margin and have bounded

l2-norm then it can be shown that the Perceptron converges to 0 empirical risk in a finite

number of iterations.

Theorem 1. If the data is linearly separable with a margin γ > 0, that is, there exists w∗ :

ym(w∗T x∗m) ≥ γ and ‖xm‖ ≤ R for all m ∈ {1, . . . , M } then the Perceptron converges to 0 empirical

risk in t ≤ R2‖w∗‖2

γ2 steps (Novikoff, 1962).

10

2.4. Stochastic gradient descent (SGD)

Algorithm 1 Perceptron algorithm

Input: Training set S = (xm , ym) ∈RD × {−1,1}, m = 1, . . . , M , Number of iterations T .
1: w0 = {0}D ,b = 0
2: t = 0
3: while t < T do
4: Sample (xr , yr) uniformly at random from S
5: if yt (wT

t xr) ≤ 0 then
6: wt+1 = wt + yr xr

7: end if
8: t = t + 1
9: end while

Output: wt

Table 2.1: Convex approximations of 0-1 loss function (1y(wT x)≤0).

max(0,1− y(wT x)) Hinge loss

log(1+e−y(wT x)) Logistic loss

e−y(wT x) Exponential loss
(y −wT x)2 Least squares loss

Proof. The proof is presented in Appendix A.1.

2.3.1 Remarks

There are many convex approximations to the 0-1 loss function. A few of them are listed in

Table 2.1. Depending upon the loss function we choose, we get a class of learning algorithms

which is known under different names. Let us denote all these loss functions by a general

function: L(wT x, y).

2.4 Stochastic gradient descent (SGD)

The Perceptron learning algorithm that we saw in the previous section can be generalized to

arbitrary loss functions. Consider the ERM problem under the loss function L(wT x, y).

min
w,b

1

M

M∑
m=1

L(wT xm , ym). (2.10)

If the loss function is convex and differentiable then we can use gradient descent to minimize

the above empirical risk. In gradient descent we start from an initial value and at each step t

we move along the negative direction of the gradient with a learning rate η> 0 :

wt+1 = wt − η

M

M∑
m=1

∇wL(wT
t xm , ym)

∣∣
w=wt

xm . (2.11)

11

Chapter 2. Background on Machine Learning

It can be proved that a sequence of gradient descent steps will converge to the minima for

convex-Lipschitz functions (Shalev-Shwartz and Ben-David, 2014). When the loss function is

convex but not differentiable we can use a sub-gradient from the sub-differential set at the

non-differentiable points.

However when the size of the training data M is very large, gradient descent updates are

expensive Θ(M). So in order to save the computation we can sample a point or a subset of

points uniformly at random from the training data and compute the gradient on this set and do

an update. Since the gradient is a linear function, by the linearity of expectation, the gradient

on the uniformly sampled data points in expectation will be equal to the gradient of the ERM

problem. This algorithm where we use a point or a subset of points for the parameter update

is called stochastic gradient descent (SGD) and it can be shown that SGD converges to the

minima in expectation (Shalev-Shwartz and Ben-David, 2014). SGD has become the de-facto

algorithm for ERM problems. It enjoys many nice properties suitable for ERM problems at

scale (Bousquet and Bottou, 2008) and it is simple, fast and easy to implement. The SGD

algorithm for ERM is illustrated in Algorithm 2.

Algorithm 2 Stochastic gradient descent for ERM

Input: Training set S = (xm , ym) ∈RD × {−1,1}, m = 1, . . . , M , Loss function L(., .), Learning
rate η> 0, Number of iterations T .

1: w0 = {0}D

2: t = 0
3: while t < T do
4: Sample (xr , yr) uniformly at random from S
5: wt+1 = wt −η∇wL(wT xr , yr)

∣∣
w=wt

6: t = t + 1
7: end while

Output: wt

2.5 Representer theorem and non-linear learning algorithms

When the data is linearly separable but noisy the linear classifiers using the ERM rule, such

as the Perceptron algorithm over-fits. As we discussed earlier over-fitting can be avoided by

controlling the complexity of the hypothesis class by introducing some inductive bias about

the data. This achieved by a learning paradigm called Regularized Loss Minimization (RLM)

which jointly minimizes the empirical risk R̂(hw) and a regularization functionΩ(w):

min
w

Ω(w)+ 1

M

M∑
m=1

L(wT xm , ym). (2.12)

A simple regularizer for the linear classifiers is the squared l2 norm of w :

Ω(w) =λ‖w‖2 , (2.13)

12

2.5. Representer theorem and non-linear learning algorithms

where λ ≥ 0 is a scalar that controls the strength of the regularization. This gives us the

following RLM problem:

min
w

λ‖w‖2 + 1

M

M∑
m=1

L(wT xm , ym). (2.14)

When the data is not linearly separable, the linear classifiers under-fits. In order to tackle

this problem, we can map the data to a high-dimensional feature space using a non-linear

transform. In the high-dimensional space the data might be linearly separable and there we

can learn a linear classifier. Often, this high-dimensional feature space is very large or infinite

and an explicit access to that space is computationally prohibitive. If we can access that space

through the dot products between the points in that space and the loss function L(z, y)) is

convex in z, then the Representer theorem enables us to derive powerful non-linear learning

algorithms:

Theorem 2. The optimization problem in 2.14 has a minimizer of the form:

w∗ =
M∑

m=1
am xm . (2.15)

Proof. This is an intuitive proof. Please refer to Schölkopf and Smola (2002) for a general

statement of the theorem and a rigorous proof.

Gλ(w) =λ‖w‖2 + 1

M

M∑
m=1

L(wT xm , ym). (2.16)

Taking the gradient of Gλ(w) with respect to w :

∇wGλ(w) = 2λw+ 1

M

M∑
m=1

∇wL(wT xm , ym)xm . (2.17)

The gradient is 0 at all stationary points, which implies:

w =− 1

2λM

M∑
m=1

∇wL(wT xm , ym)xm , (2.18)

=
M∑

m=1
amxm , (2.19)

where

am =− 1

2λM
∇wL(wT xm , ym). (2.20)

13

Chapter 2. Background on Machine Learning

φ(.)

Figure 2.4: Illustration of kernel trick. The data-set is not linearly separable in the input space
and it is mapped to a high-dimensional feature space through mapping function φ(.) where
the data-set is linearly separable. The Representer theorem allows us to learn linear classifiers
in this high dimensional space without accessing it explicitly.

Now we can write the prediction function as:

h(x;a) =
M∑

m=1
am〈xi ,x〉,

where a = [a1, ..., aM]T is the parameter vector in this new representation. Substituting the

expression 2.19 in 2.21 gives a regularized risk in a:

Gλ(a) =λ
M∑

i=1

M∑
j=1

ai 〈xi ,x j 〉a j + 1

M

M∑
i=1

L(
M∑

j=1
a j 〈xi ,x j 〉, yi). (2.21)

That is, we can write the entire RLM problem in terms of dot products between data points.

This is a powerful paradigm because we can replace the dot product 〈xi ,x j 〉 by 〈φ(xi),φ(x j)〉.
Where φ(.) is a non-linear mapping function to a high dimensional space, where the data is

linearly separable. If we could compute 〈φ(xi),φ(x j)〉 through a simple kernel function k(xi ,x j)

we do not need an explicit access to φ(xi) and φ(x j). This technique is often called the "kernel

trick". An illustration of the kernel trick is shown in Figure 2.4. For example the Gaussian

RBF kernel whose feature expansion is infinite dimensional can be computed efficiently as

k(xi ,x j) = e
‖xi −x j‖2

2τ2 . The Gaussian RBF kernel is one of the most popular kernel functions and

works well on practical problems. It has been shown to be an universal approximator, that

is, a kernel regularized risk minimizer using a Gaussian RBF kernel can learn any complex

functions given a sufficient number of training points.

Now we can write the regularized risk in terms of the kernel matrix: K = [k(xi ,x j)]M
i , j=1 ∈RM×M .

14

2.6. Kernel learning and neural networks

Gλ(a) =λaT K a+ 1

M

M∑
m=1

L(aT km , ym). (2.22)

where km is the mth column in the kernel matrix K and thus the RLM problem becomes:

min
a

(λaT Ka+ 1

M

M∑
m=1

L(aT km , ym)). (2.23)

In Algorithm 3 we give a simple stochastic gradient descent algorithm for solving the Kernel

RLM (KRLM) problem in Equation 2.23.

Algorithm 3 Stochastic gradient descent for KRLM

Input: Training set S = (xm , ym) ∈ RD × {−1,1}, m = 1, . . . , M , Kernel function k(., .), Loss

function L(., .), Learning rate η> 0, Number of iterations T .

1: a0 = {0}M

2: K = [k(xi ,x j)]M
i , j=1 ∈RM×M

3: t = 0

4: while t < T do

5: Sample a column kr and it’s label yr uniformly at random.

6: at+1 = at −η(2λatr kr +∇aL(aT kr , yr)
∣∣

a=at
)

7: t = t + 1

8: end while

Output: at

2.6 Kernel learning and neural networks

In the previous section we have seen that the Representer theorem allows us to derive powerful

non-linear learning algorithms. But there are a few practical issues in applying KRLM when

the number of data-points M is very large relative to its dimension D , that is M À D . This type

of problems are very common in machine learning and examples include image classification

(photo tagger), speech recognition and natural language processing. The computational

complexity of KRLM grows as O
(
M 2+ε) where 0 ≤ ε ≤ 1. Also the computational complex-

ity of prediction is O(M) and moreover, we have to keep the training-points for prediction

which increases the memory footprint. On the other hand we have computationally efficient

linear algorithms, where the training computational complexity is O(M) and the prediction

complexity is O(1) but they are not as powerful as KRLM.

At this point we can ask a question: Can we have the best out of both worlds for the problems

where M À D? That is, can we have a learning algorithm which is powerful like a kernel

15

Chapter 2. Background on Machine Learning

method and at the same time computationally efficient? A way to approach this question is to

start with a kernel function that works well on real world problems, approximate this kernel

function by an easy to compute explicit feature map, and then train a linear classifier in that

approximate explicit feature map. That is consider a kernel function:

k(x,y) = 〈φ(xi),φ(x j)〉. (2.24)

We approximate it by a finite dimensional approximate feature map φ̂(.):

k̂(x,y) = φ̂(x)T φ̂(y). (2.25)

And learn a linear classifier in φ̂(.):

h(x) = wT φ̂(x). (2.26)

Where w, φ̂(x) ∈RN : D < N << M .

2.6.1 Random feature map for Gaussian RBF kernel

We have discussed that KRLM problems with Gaussian RBF kernels can learn complex non-

linear functions. If we could efficiently get a reasonable approximation of a Gaussian RBF

kernel in low dimensional space, then we can learn complex non-linear functions with a linear

function in that space. Let’s derive an explicit feature map for the Gaussian RBF kernel. Let

x,y ∈RD be two vectors. Then the Gaussian RBF kernel between x and y is given by:

k(x,y) = e
‖x−y‖2

2τ2 . (2.27)

Let’s write this kernel function in the Fourier basis:

k(x,y) = k(x−y) =
∫
RD

p(u)e i uT (x−y)du, (2.28)

where p(u) is the inverse Fourier transform of k(x− y). Since k(x,y) ∈ [0,1] by Bochner’s

theorem p is a probability density. In the case of the Gaussian RBF kernel, p is a Gaussian

density. This implies that we can do Monte-carlo sampling from p to approximate the kernel:

k(x−y) =
∫
RD

p(u)e i uT (x−y)du= E
u∼p

[e i uT (x−y)] ≈ 1

N

N∑
n=1

e i uT
n (x−y) : ui ∼ p. (2.29)

That is:

k(x−y) ≈ 1

N

N∑
n=1

e i uT
n (x−y) : ui ∼ p = φ̂(UT x)H φ̂(UT y). (2.30)

where U ∈RD×N is a random matrix whose entries are sampled i.i.d from p, and φ̂(z) is the

16

2.6. Kernel learning and neural networks

point-wise projection on to the unit circle in the complex plane normalized by the square-root

of the length of the vector. That is:

φ̂(z) = [e i z1 , ...,e i zN]H

p
N

. (2.31)

So we have an N dimensional approximation of the Gaussian RBF kernel and now we can learn

a linear classifier in this N dimensional space to get non-linear functions. As N →∞we recover

the exact Gaussian RBF kernel. Usually many problems of practical interest require only a few

feature expansions which make the algorithm computationally efficient. This simple paradigm

of approximating kernels works with any translation invariant kernel (k(x,y) = k(x−y)) as long

as we can sample efficiently from its spectral density. This technique of approximating shift

invariant kernels using random features was shown by Rahimi and Recht (2008).

wT z
w

...
...

x1

x2

x3

xD

u1

z1 =
σ(u T

1 x)
u2

z2 =σ(u T
2 x)

u3 z3 =σ(uT
3 x)

u4
z 4

=σ(u
T
4

x)

uN

z N
=σ

(u
T

N
x)

Figure 2.5: A diagrammatic illustration of non-linear learning algorithm viewed through the
lens of kernel approximation. The input point whose component is represented as a blue node
is connected to each of the N grey nodes where each grey node represents a D dimensional
vector sampled i.i.d from the spectral density of the kernel we want to approximate. Each of
these grey nodes receives the input point x, computes its projection and passes it through a
non-linear function σ(.) to get an N dimensional approximate random feature map under the
kernel. Further, each of these N gray nodes is connected to a red node representing a linear
function in RN .

2.6.2 Neural networks

We have seen a simple paradigm for approximating translation invariant kernels with random

features. The steps involved in this paradigm are illustrated in Figure 2.5. However, when

we are just using random projections to approximate kernels, we are wasting the modeling

power because these random features are sampled independently of the data. Instead of just

17

Chapter 2. Background on Machine Learning

using random feature maps to approximate the kernels we can consider these as parameters

and learn them together with the linear function from the data. This has the advantage

that, since we are adapting the random parameters to the data, we might just need fewer

dimension expansion to learn a good non-linear function, thereby improving the prediction

time. This also comes with several disadvantages: 1) the optimization problem is now non-

convex and requires some hyper-parameter tuning to make it work and 2) It increases the

sample complexity of the learning algorithm as we have more parameters.

Now we can take these ideas further. Instead of learning just one layer of features we learn a

hierarchy of features using function composition as illustrated in Figure 2.6. The reasoning

behind this strategy is that certain functions can be represented compactly if we have a

hierarchical architecture. This class of learning algorithms which learn a hierarchy of non-

linear feature maps are called Neural Networks. Each layer of these feature hierarchies is called

hidden layer and each node is called a Neuron. The input nodes are called input layer and

the output nodes output layer. These algorithms aim at learning the kernel along with the

linear classifier from the data. Historically, neural networks were developed before kernel

methods. The equivalence between certain kernel methods and a one hidden layer neural

network networks with infinite number of random neurons was first shown in Neal (1996).

w,b

...
...

x1

x2

x3

xD

u2
1

u2
2

u2
3

u2
4

u2
N2

u1
1

u1
2

u1
3

u1
4

u1
N1

Figure 2.6: A neural network learns a hierarchy of features together with the linear function
to capture regularities in data. The core intuition for such a method is that certain functions
can be compactly represented by such a function composition. These learning algorithms
often work well in practice when combined with inductive biases in the data. Examples of
such neural networks with inductive biases include convolutional neural networks for visual
data and recurrent neural networks for sequence data.

With the advent of very large data-sets, progress in computer hardware and clever algorithms,

neural networks have emerged as effective algorithms for problems in machine learning.

Recently they achieved breakthrough results in image classification (Krizhevsky et al., 2012c;

He et al., 2016), speech recognition (Hinton et al., 2012), machine translation (Bahdanau et al.,

18

2.7. Discussion

2014), game playing (Mnih et al., 2013; Silver et al., 2017), image synthesis (Goodfellow et al.,

2014) and speech synthesis (Oord et al., 2016).

Neural networks pose interesting research challenges. They have shown to be vulnera-

ble to small perturbations in the data-set and this raises questions regarding their robust-

ness (Szegedy et al., 2013; Fawzi, 2016; Cisse et al., 2017a). The classical learning theory tools

using uniform convergence is proved to be inadequate in explaining the generalization in

neural networks (Zhang et al., 2016). Algorithm specific analysis (Bousquet and Elisseeff, 2002)

appears to be more suitable here (Hardt et al., 2015). Another interesting research avenue is

about better understanding the properties of the functions realized by the neural networks

in modeling natural signals so that we can analytically construct those functions (Bruna and

Mallat, 2013). Moreover, one of the strong reasons why neural networks work is because of the

inductive biases built into the algorithm, such as convolutions for natural images. It calls for a

better understanding of the data so that we can incorporate the knowledge (inductive bias)

about the data into the neural networks. This will reduce the model complexity of the neural

networks and make them generalize better.

Machine learning and neural networks also pose significant and interesting engineering

challenges. They disrupts traditional engineering practices which are based on abstracting

specifications (Sculley et al., 2014; Bottou, 2015). Abstraction leaks are common in machine

learning systems because the specifications used to build these systems are weak and not

exact, unlike the traditional software systems. Recently there have been attempts to build

systems which abstract away learning algorithms and learning systems. Examples of such

systems include Theano (Bergstra et al., 2011), Torch (Collobert et al., 2011) Tensorflow (Abadi

et al., 2016) and Pytorch (Paszke et al., 2017). At low level engineering, the major challenge

associated with neural networks include efficient implementations of primitive operations

across a wide range of hardware ranging from cell phones to super-computers by exploiting

fast changing advances in the hardware.

2.7 Discussion

We use many concepts discussed here in later chapters to derive learning algorithms. In

Chapter 3 we use the ERM principle to formulate our WARCA metric learning algorithm and

exploit a weak form of the Representer theorem to derive a kernelized WARCA. In Chapter 4

we address a few issues of recurrent neural networks, which are neural networks for learning

from sequence data. We design suitable regularizers for biasing our learning algorithms to

avoid over-fitting. All our RLM problems are optimized using SGD or its variants. Chapter 5 is

aimed at efficiently estimating an empirical expectation, such as the empirical risk.

19

3 Weighted Approximate Rank Compo-
nent Analysis

Contents

3.1 Introduction . 22

3.2 Related work . 23

3.3 Weighted Approximate Rank Component Analysis (WARCA) 26

3.3.1 Problem formulation . 26

3.3.2 Approximate OrthoNormal (AON) regularizer 28

3.3.3 Max-margin reformulation . 28

3.3.4 WARCA in kernel space . 30

3.4 Experiments . 32

3.4.1 Data-sets and baselines . 32

3.4.2 Technical details . 33

3.4.3 Comparison against state-of-the-art . 37

3.4.4 Analysis of the AON regularizer . 37

3.4.5 Analysis of the training time . 39

3.5 Discussion . 39

In this chapter we present the Weighted Approximate Rank Component Analysis (WARCA)

algorithm for metric learning. WARCA is scalable, robust, non-linear and ideal for learning

from data with large number of classes where the number of samples per class is small. WARCA

is based on the following publication:

Cijo Jose and François Fleuret. Scalable metric learning via weighted approximate

rank component analysis. In European Conference on Computer Vision, pages

875–890. Springer, 2016

21

Chapter 3. Weighted Approximate Rank Component Analysis

3.1 Introduction

Our core motivation for this chapter is small data learning with large number of classes and

also reasoning about classes which were not available during training using the regularities

learned from the data (zero-shot learning). The line of research we follow to tackle this

problem is metric learning. Metric learning methods aim at learning a parametrized distance

embedding from a labeled set of samples, so that under the learned embedding, samples

with the same labels are nearby and samples with different labels are far apart (Weinberger

and Saul, 2009). Many fundamental questions in computer vision such as “How to compare

two images? and for what information?” boil down to this problem. Among them, person

re-identification is the problem of recognizing individuals at different physical locations and

times, on images captured by different devices.

It is a challenging problem which recently received a lot of attention because of its importance

in various application domains such as video surveillance, biometrics, and behavior analysis

(Gong et al., 2014).

The performance of person re-identification systems relies mainly on the image feature

representation and the distance measure used to compare them. Hence the research in the

field has focused either on designing features (Cheng et al., 2011; Liao et al., 2015) or on

learning a distance function from a labeled set of images (Mignon and Jurie, 2012; Köstinger

et al., 2012; Li et al., 2013; Xiong et al., 2014; Liao et al., 2015; Liao and Li, 2015).

It is difficult to analytically design features that are invariant to the various non-linear trans-

formations that an image undergoes such as illumination, viewpoint, pose changes, and

occlusion. Furthermore, even if such features were provided, the standard Euclidean metric

would not be adequate as it does not take into account dependencies on the feature represen-

tation. This motivates the use of metric learning for person re-identification. As a consequence

many metric learning methods have been developed and applied to computer vision problems

and person re-identification is one of them.

Re-identification models are commonly evaluated by the cumulative match characteristic

(CMC) curve (Köstinger et al., 2012). This measure indicates how the matching performance

of the algorithm improves as the number of returned images increases. Given a matching

algorithm and a labeled test set, each image is compared against all the others, and the position

of the first correct match is recorded. The CMC curve indicates for each rank the fraction of

test samples which had that rank or better. A perfect CMC curve would reach the value 1 for

rank #1, that is the best match is always of the correct identity.

In this chapter we are interested in learning a Mahalanobis distance by minimizing a weighted

rank loss such that the precision at the top rank positions of the CMC curve is maximized.

When learning the metric, we directly learn the low-rank projection matrix instead of the

PSD matrix because of computational efficiency and scalability to high dimensional data-sets

(see § 3.3.1). But naively learning the low-rank projection matrix suffers from the problem of

22

3.2. Related work

matrix rank degeneration and non-isolated minima (Lim and Lanckriet, 2014). We address this

problem by using a simple regularizer which approximately enforces the orthonormality of the

learned matrix efficiently (see § 3.3.2). We extend the WARP loss (Usunier et al., 2009; Weston

et al., 2011; Lim and Lanckriet, 2014) and combine it with our approximate orthonormal

regularizer to derive a metric learning algorithm which approximately minimizes a weighted

rank loss efficiently using stochastic gradient descent (see § 3.3.3).

We extend our model to kernel space to handle distance measures which are more natural

for the features we are dealing with (see § 3.3.4). We also show that in kernel space SGD can

be carried out more efficiently by using preconditioning (Chapelle, 2007; Mignon and Jurie,

2012).

We validate our approach on nine person re-identification data-sets: Market-1501 (Zheng

et al., 2015), CUHK03 (Li et al., 2014), OpeReid (Liao et al., 2014), CUHK01 (Li et al., 2012),

VIPeR (Gray and Tao, 2008), CAVIAR (Cheng et al., 2011), 3DPeS (Baltieri et al., 2011), iLIDS (Zheng

et al., 2009) and PRI450s (Roth et al., 2014), where we outperform other metric learning meth-

ods proposed in the literature, both in speed and accuracy.

3.2 Related work

Metric learning is a well studied research problem (Yang and Jin, 2006). Metric learning

algorithms learn an embedding of the input data, where the points from the similar classes are

together and dissimilar classes are far apart. Formally, Given M data points (x1,x2, ...,xM) : xm ∈
RD and labels (y1, y2, ..., yM) : yi ∈ {1, ...,Q}, where Q is the number of classes, metric learning

methods aims at learning a function f (x;W) : RD 7→ RD ′
such that the intra-class distance

in RD ′
is minimized and the inter-class distance is maximized. W is the parameters that are

being learned. This is in contrast to multi-class classification where we learn a class specific

decision boundary for each of the classes. Most of the existing approaches to metric learning

have been developed in the context of the Mahalanobis distance learning paradigm (Xing

et al., 2002; Weinberger and Saul, 2009; Davis et al., 2007; Mignon and Jurie, 2012; Köstinger

et al., 2012), where f (x;W) = Wx : W ∈ RD ′×D . This consists in learning distances of the form:

D2
M(xi ,x j) = (xi −x j)T M(xi −x j), (3.1)

where M is a positive semi-definite matrix. Based on the way the problem is formulated the

algorithms for learning such distances involve either optimization in the space of positive

semi-definite (PSD) matrices, or learning the projection matrix W, in which case M = WT W.

Large margin nearest neighbours (Weinberger and Saul, 2009) (LMNN) is a metric learning

algorithm designed to maximize the performance of k-nearest neighbor classification in a large

margin framework. Information theoretic metric learning (Davis et al., 2007) (ITML) exploits

the relationship between the Mahalanobis distance and Gaussian distributions to learn the

metric. Many researchers have applied LMNN and ITML to re-identification problems with

23

Chapter 3. Weighted Approximate Rank Component Analysis

varying degree of success (Roth et al., 2014).

Pairwise Constrained Component Analysis (PCCA) (Mignon and Jurie, 2012) is a metric learn-

ing method that learns the low rank projection matrix W in kernel space from sparse pairwise

constraints. Xiong et al. (2014) extended PCCA with an L2 regularization term and showed

that it further improves the performance.

Köstinger et al. (2012) proposed the KISS (“Keep It Simple and Straight forward”) metric

learning abbreviated as KISSME. Their method enjoys very fast training and they show good

empirical performance and scaling properties with the number samples. However this method

suffers from the Gaussian assumptions on the model.

Li et al. (2013) consider learning a local thresholding rule for metric learning. This method is

computationally expensive to train, even with as few as 100 dimensions. Their paper discusses

solving the problem in dual form to decouple the dependency on the dimension but in practice

it is solved in primal form with off-the-shelf solvers.

The performance of many kernel-based metric learning methods for person re-identification

was evaluated by Xiong et al. (2014). In particular the authors evaluated PCCA (Mignon and

Jurie, 2012), variants of kernel Fisher discriminant analysis (KFDA) and reported that the KFDA

variants consistently outperform all other methods. The KFDA variants they investigated were

Local Fisher Discriminant Analysis (LFDA) and Marginal Fisher Discriminant Analysis (MFA).

Recently several metric learning algorithms have been presented for person re-identification.

Chen et al. (2015a) attempt to learn a metric in the polynomial feature map exploiting the

relationship between the Mahalanobis metric and the polynomial features. Ahmed et al. (2015)

propose a deep learning model which learns the features as well as the metric jointly. Liao

et al. (2015) propose XQDA exploiting the benefits of Fisher discriminant analysis and KISSME

to learn a metric. However like FDA and KISSME, XQDA’s modelling power is limited because

of the Gaussian assumptions on the data. In another work Liao and Li (2015) apply accelerated

proximal gradient descent (APGD) to a Mahalanobis metric under a logistic loss similar to the

loss of PCCA (Mignon and Jurie, 2012). The application of APGD makes this model converge

fast compared to existing batch metric learning algorithms but still it suffers from scalability

issues because all the pairs are required to take one gradient step and the projection step on

to the PSD cone is computationally expensive.

None of the above mentioned techniques explicitly models the objective that we are looking

for in person re-identification, that is to optimize a weighted rank measure. We show that

modeling this in the metric learning objective improves the performance. We address scalabil-

ity through stochastic gradient descent (SGD) and our model naturally eliminates the need for

asymmetric sample weighting as we use triplet based loss function.

There is an extensive body of work on optimizing ranking measures such as AUC, precision at

k, F1 score, etc. Most of this work focuses on learning a linear decision boundary in the original

24

3.2. Related work

Table 3.1: Notation

M Number of training samples
D Dimension of training samples
Q Number of classes
(xm , ym) ∈RD × {1, . . . ,Q} m-th training sample
1condition is equal to 1 if the condition is true, 0 otherwise
S The set pairs of indices of samples from the same class
Ty The set of indices of samples not from class y
FW The distance function under the linear map W
r anki , j (FW) For i and j of same class, number of miss-labeled examples closer to i than j is
L(r) The rank weighting function

input space, or in the feature space for ranking a list of items based on the chosen performance

measure. A well known such model is the structural SVM (Tsochantaridis et al., 2004). In

contrast here we are interested in ranking pairs of items by learning a metric. A related work

by McFee and Lanckriet (2010) studies metric learning with different rank measures in the

structural SVM framework. Wu et al. (2011) used this framework to do person re-identification

by optimizing the mean reciprocal rank criterion. Outside the direct scope of metric learning

from a single feature representation, Paisitkriangkrai et al. (2015) developed an ensemble

algorithm to combine different base metrics in the structural SVM framework which leads

to excellent performance for re-identification. Such an approach is complementary to ours,

as combining heterogeneous feature representations requires a separate additional level of

normalization or the combination with a voting scheme.

We use the WARP loss from WSABIE (Weston et al., 2011), proposed for large-scale image anno-

tation problem, that is, a multi-label classification problem. WSABIE learns a low dimensional

joint embedding for both images and annotations by optimizing the WARP loss. This work

reports excellent empirical results in terms of accuracy, computational efficiency, and memory

footprint.

The work that is closely related to us is FRML (Lim and Lanckriet, 2014) where the authors learn

a Mahalanobis metric by optimizing the WARP loss function with SGD. However there are some

key differences with our approach. FRML is a linear method using an L2 or LMNN regularizer,

and relies on an expensive projection step in the SGD. Beside, this projection requires to keep

a record of all the gradients in the mini-batch, which results in high memory footprint. A

rationale for the projection step is to accelerate the SGD because directly optimizing a low

rank matrix may result in rank deficient matrices and thus in non-isolated minima which

might generalize poorly to unseen samples. We propose a computationally cheap solution

to this problem by using a regularizer which approximately enforces the rank of the learned

matrix efficiently.

25

Chapter 3. Weighted Approximate Rank Component Analysis

3.3 Weighted Approximate Rank Component Analysis (WARCA)

This section presents our metric learning algorithm, Weighted Approximate Rank Component

Analysis (WARCA). Table 3.1 summarizes some important notation that we use in this chapter.

Let us consider a training set of data point / label pairs:

(xm , ym) ∈RD × {1, . . . ,Q}, m = 1, . . . , M . (3.2)

and let S be the set of pairs of indices of samples from the same class:

S = {
(i , j) ∈ {1, . . . , M }2, yi = y j

}
. (3.3)

For each class label y we define the set Ty of indices of samples not from class y :

Ty =
{
k ∈ {1, . . . , M }, yk 6= y

}
. (3.4)

In particular, to each (i , j) ∈S corresponds a set Tyi = Ty j .

Let W be a linear transformation that maps the data points from RD to RD ′
, with D ′ ≤ D . For

the ease of notation, we do not distinguish between matrices and their corresponding linear

mappings. The distance function under the linear map W is given by:

FW(xi ,x j) = ‖W(xi −x j)‖2. (3.5)

3.3.1 Problem formulation

For a pair of points (i , j) of same label yi = y j , we define a ranking error function:

∀(i , j) ∈S , er r (FW, i , j) =L
(
r anki , j (FW)

)
. (3.6)

where:

r anki , j (FW) =
∑

k∈Tyi

1FW(xi ,xk)≤FW(xi ,x j). (3.7)

is the number of samples xk of different labels which are closer to xi than x j is.

Formulating our objective that way, following closely the formalism of Weston et al. (2011),

shows how training a multi-class predictor shares similarities with our metric-learning prob-

lem. The former aims at avoiding, for any given sample to have incorrect classes with responses

higher than the correct one, while the latter aims at avoiding, for any pair of samples (xi ,x j) of

the same label, to have samples xk of other classes in between them.

Minimizing directly the rank treats all the rank positions equally, and usually in many problems

including person re-identification we are interested in maximizing the correct match within

26

3.3. Weighted Approximate Rank Component Analysis (WARCA)

Uniform

Harmonic

j1=i j2 j3 j4 j5 j6 j7 j8 j9 j10

• • • • • • •• • •

L
u

(r
a

n
k

i,
j 8

(F
W

))

L
h

(r
a

n
k

i,
j 8

(F
W

))

Figure 3.1: Given a query sample i , we define the rank of another sample j of the same class,
with respect to that query, as a function of the number of samples of other classes closer to
the query. The horizontal axis here corresponds to indexes of the samples sorted according
to their similarities to the query sample. Green dots stand for samples of the same class as
the query, and red circles for samples of different classes. The dashed line shows the uniform
weighting of the rank Lu

(
r anki , j (FW)

)
, which increases by one unit each time we cross a

sample of an incorrect class, and the thick line is the harmonic weighting Lh
(
r anki , j (FW)

)
,

which increases as 1/n. We used harmonic weighting for all our experiments.

the top few rank positions. This can be achieved by a weighting function L(·) which penalizes

more a drop in the rank at the top positions than at the bottom positions. In particular we use

the rank weighting function presented by Usunier et al. (2009), of the form:

L(R) =
R∑

r=1
αr , α1 ≥α2 ≥ ... ≥ 0. (3.8)

For example, using α1 =α2 = ·· · =αN will treat all rank positions equally, and using higher

values ofαs in top few rank positions will weight top rank positions more. We use the harmonic

weighting, which has such a profile and was also used by Weston et al. (2011) as it yielded

state-of-the-art results on their application.

Finally, we would like to solve the following empirical risk minimization problem:

min
W

1

|S|
∑

(i , j)∈S
L

(
r anki , j (FW)

)
. (3.9)

27

Chapter 3. Weighted Approximate Rank Component Analysis

3.3.2 Approximate OrthoNormal (AON) regularizer

The optimization problem of Equation 3.9 may lead to severe over-fitting on small and medium

scale data-sets. Regularization terms are central in re-identification for that reason.

The standard way of regularizing a low-rank metric learning objective function is by using an

L2 penalty, such as the Frobenius norm (Lim and Lanckriet, 2014). However, such a regularizer

tends to push toward rank-deficient linear mappings, which we observe in practice (see § 3.4.4,

and in particular Figure 3.3a).

Lim and Lanckriet (2014) in their FRML algorithm, address this problem by using a Riemannian

manifold update step in their SGD algorithm, which is computationally expensive and induces

a high memory footprint. We propose an alternative approach that maintains the rank of the

matrix by pushing toward orthonormal matrices. This is achieved by using as a penalty term

the L2 divergence of WWT from the identity matrix I :

‖WWT − I‖2. (3.10)

This orthonormal regularizer can also be seen as a strategy to mimic the behavior of ap-

proaches such as PCA or FDA, which ensure that the learned linear transformation is orthonor-

mal. For such methods, this property emerges from the strong Gaussian prior over the data,

which is beneficial on small data-sets but degrades performance on large ones where it leads

to under-fitting. Controlling the orthonormality of the learned mapping through a regularizer

weighted by a meta-parameter λ allows us to adapt it on each data-set individually through

cross-validation.

With this regularizer the ERM problem of Equation 3.9 becomes the following regularized loss

minimization problem:

min
W

λ

2
‖WWT − I‖2 + 1

|S|
∑

(i , j)∈S
L

(
r anki , j (FW)

)
. (3.11)

3.3.3 Max-margin reformulation

The RLM problem in Equation 3.11 aims at minimizing the 0-1 loss and as we discussed

in Chapter 2 that minimizing the 0-1 loss is a difficult optimization problem. Applying the

reasoning behind the WARP loss to make it tractable, we approximate the 0-1 loss with the

hinge loss with margin γ≥ 0. This is equivalent to minimizing the following regularized loss

function:

Gλ(W) = λ

2
‖WWT − I‖2 + 1

|S|
∑

(i , j)∈S

∑
k∈Tyi

L(r ankγi , j (FW))

∣∣γ+ξi j k
∣∣
+

r ankγi , j (FW)
, (3.12)

28

3.3. Weighted Approximate Rank Component Analysis (WARCA)

where:

ξi j k =FW(xi ,x j)−FW(xi ,xk) (3.13)

and r ankγi , j (FW) is the margin penalized rank:

r ankγi , j (FW) = ∑
k∈Tyi

1γ+ξi j k>0. (3.14)

The loss function in Equation 3.12 is the WARP loss (Usunier et al., 2009; Weston et al., 2011;

Lim and Lanckriet, 2014). It was shown by Weston et al. (2011) that the WARP loss can be

efficiently minimized by using stochastic gradient descent and we follow the same approach.

An unbiased estimator of
|γ+ξi j k |+

r ankγi , j (FW)
can be obtained with the following sampling procedure:

1. Sample (i , j) uniformly at random from S .

2. For the selected (i , j) uniformly sample k from
{
k ∈ Tyi : γ+ξi j k > 0

}
, i.e. from the set of

incorrect matches scored higher than the correct match x j .

The sampled triplet (i , j ,k) has a contribution of |γ+ξi j k |+ because the probability of drawing

a k in step 2 from the violating set is 1
r ankγi , j (FW)

(Weston et al., 2011).

We also get a stochastic approximation of the rank r ankγi , j (FW) from the above sampling

procedure. Let Z denote the number of times we have to sample from Tyi to get a margin

violating point k for (i , j) . It follows a geometric distribution:

P(Z = z) = (1−p)z−1p, (3.15)

where

p =
r ankγi , j (FW)

|Tyi |
. (3.16)

Therefore the expected number of times we have to sample until we get a margin violating

point E(Z) is given by:

E(Z) = 1

p
= |Tyi |

r ankγi , j (FW)
. (3.17)

and this motivates the use of the following approximation:

ˆr ank
γ

i , j (FW) =
⌊ |Tyi |

z

⌋
, (3.18)

which can be shown to be an upper bound of the true rank r ankγi , j (FW) by at most a factor

29

Chapter 3. Weighted Approximate Rank Component Analysis

ln p
p−1 ≥ 1.

We use the above sampling procedure to solve WARCA efficiently using mini-batch stochastic

gradient descent. We use the Adam SGD algorithm (Kingma and Ba, 2014a), which is found to

converge faster empirically compared to vanilla SGD. Algorithm 4 describes a vanilla stochastic

gradient descent algorithm for WARCA.

Algorithm 4 Stochastic gradient descent algorithm for WARCA

Input: Data point/label pairs: (xm , ym) ∈ RD × {1, . . . ,Q}, m = 1, . . . , M , Regularizer: λ ≥ 0,
Initial solution: W0 ∈RD ′×D , Step size: η, Margin: γ

1: S = {
(i , j) ∈ {1, . . . , M }2, yi = y j

}
2: ∀yi ∈ y,Tyi =

{
k ∈ {1, . . . , M }, yk 6= yi

}
3: t = 0
4: while (not converged) do
5: Sample (i , j) uniformly at random from S
6: di j =FW(xi ,x j)
7: z = 0
8: do
9: Sample k uniformly at random from Tyi

10: di k =FW(xi ,xk)
11: z = z +1
12: while z ≤ |Tyi | or γ+di j > di k

13: Wt+1 = Wt −2ηλ(Wt WT
t − I)Wt

14: if γ+di j > di k then

15: Wt+1 = Wt+1 −2ηL
(⌊ |Tyi |

z

⌋)
∇W|γ+FW(xi ,x j)−FW(xi ,xk)|+

∣∣
W=Wt

16: end if
17: t = t +1
18: end while
19: Output Wt

3.3.4 WARCA in kernel space

The most commonly used features in person re-identification are histogram-based such as LBP,

SIFT BOW, RGB histograms to name a few. The most natural distance measure for histogram-

based features is the χ2 distance. Most of the standard metric learning methods work on the

Euclidean distance with PCCA being a notable exception. To plug any arbitrary metric which is

suitable for the features, such as χ2, one has to resort to explicit feature maps that approximate

the χ2 metric. However, it blows up the dimension and the computational cost. Another way

to deal with this problem is to do metric learning in kernel space, which is the approach we

follow.

Let X ∈RD×M be the training data matrix, that is a set of M points in RD . Let us assume that W

30

3.3. Weighted Approximate Rank Component Analysis (WARCA)

is spanned by the training samples:

W = AXT = A

 xT
1

. . .

xT
N

 . (3.19)

Where A ∈RD ′×M . This leads us to expressing the distance function FW(., .) in terms of A, that

is:

FA(xi , x j) = ‖AXT (xi −x j)‖2, (3.20)

= ‖A(ki −k j)‖2. (3.21)

Where ki is the i th column of the kernel matrix K = XT X. Then the regularized loss function in

Equation 3.12 becomes:

Gλ(A) = λ

2
‖AKAT − I‖2 + 1

|S|
∑

(i , j)∈S

∑
k∈Tyi

L(r ankγi , j (FA))
|γ+ξi j k |+

r ankγi , j (FA)
, (3.22)

with:

ξi j k =FA(xi ,x j)−FA(xi ,xk). (3.23)

Apart from being able to do non-linear metric learning, kernelized WARCA can be solved

efficiently again by using stochastic gradient descent. If we use the inverse of the kernel matrix

as the pre-conditioner of stochastic gradient, the computation of the update equation, as well

the parameter update, can be carried out efficiently. Mignon and Jurie (2012) used the same

technique to minimize PCCA using gradient descent, and showed that it converges faster than

vanilla gradient descent. We use the same technique to derive an efficient update rule for our

kernelized WARCA. A stochastic sub-gradient of Equation 3.22 with the sampling procedure

described in the previous section is given as:

∇Gλ(A) = 2λ(AKAT − I)AK+2L(r ankγi , j (FA))A1γ+ξi j k>0Ui j k , (3.24)

where:

Ui j k = (ki −k j)(ki −k j)T

di j
− (ki −kk)(ki −kk)T

di k
, (3.25)

and:

di j =FA(xi ,x j), di k =FA(xi ,xk). (3.26)

31

Chapter 3. Weighted Approximate Rank Component Analysis

Multiplying the right hand side of equation B.14 by K−1:

∇Gλ(A)K−1 = 2λ(AKAT − I)A+2L(r ankγi , j (FA))AK1γ+ξi j k>0Vi j k . (3.27)

with:

Vi j k = K−1Ui j k K−1 = (ei−e j)(ei−e j)T

di j
− (ei−ek)(ei−ek)T

di k
. (3.28)

where el is the l th column of the canonical basis that is the vector whose l th component is

one and all others are zero. In the preconditioned stochastic sub-gradient descent we use

updates of the form:

At+1 = (I−2λη(At KAT
t − I))At −2ηL(r ankγi , j (FA))At K1γ+ξi j k>0Vi j k . (3.29)

Please note that Vi j k is a very sparse matrix with only nine non-zero entries. This makes the

update extremely fast. Preconditioning also enjoys faster convergence rates since it exploits

second order information through the preconditioning operator, here the inverse of the kernel

matrix (Chapelle, 2007).

3.4 Experiments

We evaluate our proposed algorithm on nine standard person re-identification data-sets. All

experiments are evaluated in the zero-shot setting when the training and test classes are

disjoint. We first describe the data-sets and baseline algorithms and then present our results.

3.4.1 Data-sets and baselines

The largest data-set we experimented with is the Market-1501 data-set (Zheng et al., 2015)

which is composed of 32,668 images of 1,501 persons captured from 6 different view points. It

uses DPM (Felzenszwalb et al., 2008) detected bounding boxes as annotations. The CUHK03

data-set (Li et al., 2014) consists of 13,164 images of 1,360 persons and it has both DPM

detected and manually annotated bounding boxes. We use the manually annotated bounding

boxes here. The OpeReid data-set (Liao et al., 2014) consists of 7,413 images of 200 persons.

The CUHK01 data-set (Li et al., 2012) is composed of 3,884 images of 971 persons, with two

pairs of images per person, each pair taken from a different viewpoint. Each image is of

resolution 160×60. The VIPeR (Gray and Tao, 2008) data-set has 1,264 images of 632 person,

with 2 images per person. The images are of resolution 128x48, captured from horizontal

viewpoints but from widely different directions. The PRID450s data-set (Roth et al., 2014)

consists of 450 image pairs recorded from two different static surveillance cameras. The

CAVIAR data-set (Cheng et al., 2011) consists of 1,220 images of 72 individuals from 2 cameras

in a shopping mall. The number of images per person varies from 10 to 20 and image resolution

32

3.4. Experiments

also varies significantly from 141×72 to 39×17. The 3DPeS data-set (Baltieri et al., 2011) has

1,011 images of 192 individuals, with 2 to 6 images per person. The data-set is captured from

8 outdoor cameras with horizontal but significantly different viewpoints. Finally the iLIDS

data-set (Zheng et al., 2009) contains 476 images and 119 persons, with 2 to 8 images per

individual. It is captured from a horizontal view point at an airport.

We compare our method against the current state-of-the-art baselines MLAPG (Liao and Li,

2015), rPCCA (Mignon and Jurie, 2012), SVMML (Li et al., 2013), FRML (Lim and Lanckriet,

2014), LFDA (Xiong et al., 2014) and KISSME (Köstinger et al., 2012). A brief overview of these

methods is given in section 3.2. rPCCA, MLAPG, SVMML, FRML are iterative methods whereas

LFDA and KISSME are spectral methods on the second order statistics of the data. Since

WARCA, rPCCA and LFDA are kernel methods we used both the χ2 kernel and the linear kernel

with them to benchmark the performance. Marginal Fisher discriminant analysis (MFA) is

proven to give similar result to that of LFDA so we do not use them as the baseline.

We did not compare against other ranking based metric learning methods such as LORETA (Shalit

et al., 2012), OASIS (Chechik et al., 2010) and MLR (McFee and Lanckriet, 2010) because all

of them are linear methods. In fact we derived a kernelized OASIS but the results were not

as good as ours or rPCCA. We also do not compare against LMNN and ITML because many

researchers have evaluated them before (Mignon and Jurie, 2012; Köstinger et al., 2012; Li

et al., 2013) and found out that they do not perform as well as other methods considered here.

3.4.2 Technical details

For the Market-1501 data-set we used the experimental protocol and features described

in Zheng et al. (2015). We used their baseline code and features. As Market-1501 is quite large

for kernel methods we do not evaluate them. We also do not evaluate the linear methods such

as Linear rPCCA and SVMML because their optimization algorithms were found to be very

slow.

All other evaluations where carried out in the single-shot experiment setting (Gong et al.,

2014) and our experimental settings are very similar to the one adopted by Xiong et al. (2014).

Except for Market-1501, we randomly divided all the data-sets into two subsets such that there

are P individuals in the test set. We created 10 such random splits. In each partition one

image of each person was randomly selected as a probe image, and the rest of the images were

used as gallery images and this was repeated 10 times. The position of the correct match was

processed to generate the CMC curve. We followed the standard train-validation-test splits

for all the other data-sets and P was chosen to be 100, 119, 486, 316, 225, 36, 95 and 60 for

CUHK03, OpeReid, CUHK01, VIPeR, PRID450s, CAVIAR, 3DPeS and iLIDS respectively.

We used the same set of features for all the data-sets except for the Market-1501 and all the

features are essentially histogram based. First all the data-sets were re-scaled to 128×48

resolution and then 16 bin color histograms on RGB, YUV, and HSV channels, as well as

33

Chapter 3. Weighted Approximate Rank Component Analysis

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

Market-1501

LFDA-L

KISSME

WARCA-L

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

CUHK03

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

CUHK01

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

OpeReid

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

VIPeR

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

PRID450s

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

CAVIAR

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

3DPeS

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

iLIDS

KISSME

LFDA-L
LFDA-χ2

SVMML

FRML

MLAPG

rPCCA-L
rPCCA-χ2

WARCA-L
WARCA-χ2

Figure 3.2: CMC curves comparing WARCA against state-of-the-art methods on nine re-
identification data-sets.

34

Table 3.2: Table showing the rank 1, rank 5 and AUC performance measure of our method WARCA against other state-of-the-art methods.
Bold fields indicate best performing methods. The dashes indicate computation that could not be run in a realistic setting on Market-1501

(a) Rank 1 accuracy

Dataset WARCA-χ2 WARCA-L rPCCA-χ2 rPCCA-L MLAPG FRML SVMML LFDA-χ2 LFDA-L KISSME
Market-1501 − 45.16±0.00 − − − − − − 34.65±0.00 42.81±0.00
CUHK03 78.38±2.44 62.12±2.07 76.74±2.06 59.22±2.65 44.90±1.57 53.87±2.31 47.89±2.59 69.94±2.21 46.02±1.55 47.88±1.80
CUHK01 58.34±1.26 39.30±0.76 48.55±1.12 34.73±1.06 22.92±0.94 33.58±0.69 27.96±0.86 54.25±1.04 33.74±0.73 35.74±0.95
OpeReid 57.65±1.60 43.74±1.34 52.89±1.78 43.66±1.45 40.63±1.31 42.27±1.35 30.63±1.51 53.58±1.65 42.84±1.18 41.76±1.36
VIPeR 37.47±1.70 20.86±1.04 22.25±1.91 15.91±1.16 19.49±2.26 18.52±0.78 23.28±1.53 36.77±2.10 20.22±1.85 20.89±1.22
PRID450s 24.58±1.75 10.33±1.20 16.35±1.30 8.34±1.25 2.13±0.59 7.05±1.60 13.08±1.63 24.31±1.44 3.24±0.95 15.24±1.56
CAVIAR 43.44±1.82 39.35±1.98 37.56±2.17 27.26±2.15 36.74±1.96 35.40±2.67 26.82±1.64 41.29±2.25 37.72±2.08 31.99±2.17
3DPeS 51.89±2.27 43.57±2.18 46.42±2.25 33.12±1.58 41.17±2.26 39.03±1.85 29.94±2.10 51.44±1.40 43.24±2.57 37.55±1.80
iLIDS 36.61±2.40 31.77±2.77 26.57±2.60 23.07±3.07 31.13±1.57 25.68±2.25 21.32±2.89 36.23±1.89 32.70±3.12 28.29±3.59

(b) Rank 5 accuracy

Dataset WARCA-χ2 WARCA-L rPCCA-χ2 rPCCA-L MLAPG FRML SVMML LFDA-χ2 LFDA-L KISSME
Market-1501 − 68.23±0.00 − − − − − − 52.76±0.00 62.74±0.00
CUHK03 94.55±1.31 86.03±1.62 94.50±1.29 84.52±1.41 71.80±1.52 80.36±1.22 79.97±2.08 90.15±1.27 65.41±1.66 69.29±2.35
CUHK01 79.76±0.69 61.84±0.98 73.29±1.32 56.67±1.20 48.48±1.49 55.27±0.83 53.11±0.78 74.60±1.00 49.73±0.91 53.34±0.69
OpeReid 80.43±1.71 67.39±1.02 77.95±1.82 67.68±1.25 61.45±1.61 66.08±1.30 60.32±1.31 75.34±1.76 59.70±1.37 61.74±1.55
VIPeR 70.78±2.43 50.29±1.61 53.82±2.32 42.71±2.02 46.49±2.23 46.15±1.62 55.28±1.99 69.30±2.23 45.25±1.90 47.73±2.28
PRID450s 55.52±2.23 31.73±3.08 43.82±2.18 26.89±2.21 11.29±1.66 24.16±3.04 38.38±1.77 54.58±2.06 12.55±1.41 37.22±1.81
CAVIAR 74.06±3.13 68.06±2.44 70.62±2.26 57.44±2.48 65.83±2.73 66.24±3.08 61.53±3.64 69.12±3.02 61.60±2.94 61.17±3.21
3DPeS 75.64±2.80 68.26±1.91 73.54±2.26 58.34±2.31 65.06±1.89 65.20±2.15 59.52±2.62 75.36±1.91 65.64±1.91 60.22±2.05
iLIDS 66.09±2.31 59.27±3.12 57.07±2.93 51.55±3.59 57.31±3.12 53.42±2.17 51.45±4.30 65.20±2.68 59.66±2.51 54.08±3.63

(c) AUC score

Dataset WARCA-χ2 WARCA-L rPCCA-χ2 rPCCA-L MLAPG FRML SVMML LFDA-χ2 LFDA-L KISSME
Market-1501 − 75.41±0.00 − − − − − − 60.53±0.00 70.02±0.00
CUHK03 93.94±0.76 89.67±0.80 93.92±0.81 89.17±0.69 82.30±1.01 86.64±0.65 86.64±1.07 91.66±0.68 74.23±1.51 77.68±1.83
CUHK01 84.99±0.65 71.88±0.67 81.00±0.88 67.56±0.93 62.84±1.51 66.39±0.76 65.73±1.07 80.84±0.80 58.92±1.08 62.36±0.95
OpeReid 86.47±1.08 77.17±0.94 85.25±1.16 77.42±1.01 72.34±1.11 76.51±0.88 73.88±1.04 82.67±1.30 68.96±1.53 71.33±1.14
VIPeR 81.87±1.07 67.00±1.11 71.30±1.50 62.40±1.43 64.71±1.15 64.19±1.39 71.04±1.63 81.34±1.21 62.67±1.35 64.74±1.20
PRID450s 72.13±1.49 50.07±2.25 63.10±2.16 46.19±1.89 30.81±2.19 42.97±2.84 59.54±1.25 71.55±1.70 28.18±1.22 53.83±1.86
CAVIAR 85.76±1.48 83.01±1.44 84.41±1.28 76.57±1.29 81.58±1.50 81.88±1.85 79.38±2.19 81.94±2.32 76.76±1.69 78.85±1.54
3DPeS 83.89±1.53 78.07±1.57 82.84±1.44 72.27±1.96 75.98±1.28 76.89±1.44 73.38±1.70 83.49±0.95 75.87±1.49 72.22±1.31
iLIDS 79.04±1.60 73.42±1.96 74.10±2.04 69.60±2.44 72.45±1.99 71.26±1.55 70.25±2.09 78.98±1.43 74.26±2.02 70.33±2.90

Chapter 3. Weighted Approximate Rank Component Analysis

texture histogram based on Local Binary Patterns (LBP) were extracted on 6 non-overlapping

horizontal patches. All the histograms are normalized per patch to have unit L1 norm and

concatenated into a single vector of dimension 2,580 (Mignon and Jurie, 2012; Xiong et al.,

2014).

The source codes for LFDA, KISSME and SVMML are available from their respective authors

website, and we used those to reproduce the baseline results (Xiong et al., 2014). The code for

PCCA is not released publicly. A version from Xiong et al. (2014) is available publicly but the

memory footprint of that implementation is very high making it impossible to use with large

data-sets (e.g. it requires 17GB of RAM to run on the CAVIAR data-set). Therefore to reproduce

the results in (Xiong et al., 2014) we wrote our own implementation, which uses 30 times less

memory and can scale to much larger data-sets. We also ran sanity checks to make sure that it

behaves the same as that of the baseline code. All the implementations were done in Matlab

with mex functions for the acceleration of the critical components.

In order to fairly evaluate the algorithms, we set the dimensionality of the projected space

to be same for WARCA, rPCCA and LFDA. For the Market-1501 data-set the dimensionality

used is 200 and for VIPeR it is 100 and all the other data-sets it is 40. We choose the regular-

ization parameter and the learning rate through cross-validation across the data splits using

grid search in (λ,η) ∈ {10−8, . . . ,1}× {10−3, . . . ,1}. Margin γ is fixed to 1. Since the size of the

parameter matrix scales in O(D2) for SVMML and KISSME we first reduced the dimension of

the original features using PCA keeping 95% of the original variance and then applied these

algorithms. In our tables and figures WARCA−χ2, WARCA-L, rPCCA−χ2, rPCCA-L, LFDA−χ2

and LFDA-L denote WARCA with χ2 kernel, WARCA with linear kernel, rPCCA with χ2 kernel,

rPCCA with linear kernel, and LFDA with χ2 kernel, LFDA with linear kernel respectively.

For all experiments with WARCA we used harmonic weighting for the rank weighting function

of Equation 3.8. We also tried uniform weighting which gave poor results compared to the

harmonic weighting. For all the data-sets we used a mini-batch size of 512 in the SGD algo-

rithm and we ran the SGD for 2000 iterations (A parameter update using the mini-batch is

considered as 1 iteration).

Tables 3.2a and 3.2b summarize respectively the rank-1 and rank-5 performance of all the

methods, and Table 3.2c summarizes the Area Under the Curve (AUC) performance score.

Figure 3.2 reports the CMC curves comparing WARCA against the baselines on the nine

data-sets. The square and the star markers denote linear and kernel methods respectively.

WARCA improves over all other methods on all the data-sets. On VIPeR, 3DPeS, PRID450s

and iLIDS data-sets LFDA come very close to the performance of WARCA. The reason for this

is that these data-sets are too small and consequently simple methods such as LFDA which

exploits strong prior assumptions on the data distribution work nearly as well as WARCA.

36

3.4. Experiments

3.4.3 Comparison against state-of-the-art

We also compare against the state-of-the-art results reported using recent algorithms such as

MLAPG on LOMO features (Liao and Li, 2015), MLPOLY (Chen et al., 2015a) and IDEEP (Ahmed

et al., 2015) on VIPeR, CUHK01 and CUHK03 data-sets. The reason for not including these

comparisons in the main results is because apart from MLAPG the code for other methods is

not available, or the features are different which makes a fair comparison difficult. Our goal is

to evaluate experimentally that, given a set of features, which is the best off-the-shelf metric

learning algorithm for re-identification.

In this set of experiments we used the state-of-the-art LOMO features (Liao et al., 2015) with

WARCA for VIPeR and CUHK01 data-sets. The results are summarized in the Table 3.3. We

improve the rank1 performance by 21% on CUHK03 by 1.40% on CUHK01 data-set.

Table 3.3: Comparison of WARCA against state-of-the-art results for person re-identification

Data-set
WARCA(Ours) MLAPG (Liao and Li, 2015) MLPOLY (Chen et al., 2015a) IDEEP (Ahmed et al., 2015)

rank=1 rank=5 rank=10 rank=20 rank=1 rank=5 rank=10 rank=20 rank=1 rank=5 rank=10 rank=20 rank=1 rank=5 rank=10 rank=20
VIPeR 40.22 68.16 80.70 91.14 40.73 69.94 82.34 92.37 36.80 70.40 83.70 91.70 34.81 63.61 75.63 84.49

CUHK01 65.64 85.34 90.48 95.04 64.24 85.41 90.84 94.92 - - - - 47.53 71.60 80.25 87.45
CUHK03 78.38 94.5 97.52 99.11 57.96 87.09 94.74 98.00 - - - - 54.74 86.50 94.02 97.02

3.4.4 Analysis of the AON regularizer

Here we present an empirical analysis of the AON regulariser against the standard Frobenius

norm regularizer. We used the VIPeR data-set with LOMO features for the experiments shown

in the first two rows of Figure 3.3. With very low regularization strength AON and Frobenius

behave the same. As the regularization strength increases, Frobenius results in rank defi-

cient mappings (Figure 3.3a), which is less discriminant and perform poorly on the test set

(Figure 3.3b). The AON regularizer on the contrary pushes towards orthonormal mappings,

and results in an embedding well conditioned, which generalizes well to the test set. It is

also worth noting that training with the AON regularizer is robust over a wide range of the

regularization parameters which is not the case for the Frobenius norm. Finally, the AON

regularizer was found to be very robust to the choice of the SGD step size η (Figure 3.3c) which

is a crucial parameter in large-scale learning. A similar behavior was observed by Lim and

Lanckriet (2014) with their orthonormal Riemannian gradient update step in the SGD but it is

computationally expensive and not trivial to use with modern SGD algorithms.

37

Chapter 3. Weighted Approximate Rank Component Analysis

100

105

1010

10-5 100

C
on

di
tio

n
nu

m
be

r

Regularizer strength

Condition number of W

AON
Frobenius

(a)

 5

 10

 15

 20

 25

 30

 35

 40

10-5 100

R
an

k-
1

pe
rf

or
m

an
ce

Regularizer strength

Sensitivity to regularizer strength

AON
Frobenius

(b)

 20

 25

 30

 35

 40

10-4 100

R
an

k-
1

pe
rf

or
m

an
ce

Step size

Sensitivity to step size

AON
Frobenius

(c)

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 10 15 20 30

M
at

ch
in

g
ra

te
 (%

)

Rank score

CMC curve

AON
Frobenius

(d)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

CUHK03 CUHK01 OpeReid VIPeR PRID450s CAVIAR 3DPeS iLIDS

R
an

k-
1

pe
rf

or
m

an
ce

AON
Frobenius

No regularizer

(e)

Figure 3.3: Comparison of the Approximate OrthoNormal (AON) regularizer we use in our
algorithm to the standard Frobenius norm (L2) regularizer. Graph (a) shows the condition
number (ratio between the two extreme eigenvalues of the learned mapping) vs. the weight
λ of the regularization term. As expected, the AON regularizer pushes this value to one, as it
eventually forces the learning to chose an orthonormal transformation, while the Frobenius
regularizer eventually kills the smallest eigenvalues to zero, making the ratio extremely large.
Graph (b) shows the Rank-1 performance vs. the regularizer weight λ, graph (c) the Rank-1
performance vs. the SGD step size η, graph (d) CMC curve with the two regularizers and finally
graph (e) shows the Rank-1 performance on different data-sets

38

3.5. Discussion

3.4.5 Analysis of the training time

Figure 3.4 illustrates how the performance in test of WARCA and rPCCA increase as a function

of training time on 3 data-sets. We implemented both the algorithms entirely in C++ to have a

fair comparison of running times. In this set of experiments we used 730 test identities for

CUHK03 data-set to have a quick evaluation. Experiments with other data-sets follow the

same protocol described above. Please note that we do not include spectral methods in this

plot because the solutions are found analytically. Linear spectral methods are very fast for low

dimensional problems but the training time scales quadratically in the data dimension. In

case of kernel spectral methods the training time scales quadratically in the number of data

points. We also do not include iterative methods MLAPG and SVMML because they proved to

be very slow and not giving good performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350

T
es

t p
er

fo
rm

an
ce

 (%
)

Time (seconds)

CUHK03

WARCA-χ2 Rank-1

rPCCA-χ2 Rank-1

WARCA-χ2 Rank-5

rPCCA-χ2 Rank-5

WARCA-χ2 AUC

rPCCA-χ2 AUC
 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120

T
es

t p
er

fo
rm

an
ce

 (%
)

Time (seconds)

OpeReid

WARCA-χ2 Rank-1

rPCCA-χ2 Rank-1

WARCA-χ2 Rank-5

rPCCA-χ2 Rank-5

WARCA-χ2 AUC

rPCCA-χ2 AUC
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50

T
es

t p
er

fo
rm

an
ce

 (%
)

Time (seconds)

CUHK01

WARCA-χ2 Rank-1

rPCCA-χ2 Rank-1

WARCA-χ2 Rank-5

rPCCA-χ2 Rank-5

WARCA-χ2 AUC

rPCCA-χ2 AUC

Figure 3.4: WARCA performs significantly better than the state-of-the-art rPCCA on large
data-sets for a given training time budget

3.5 Discussion

We have presented a simple and scalable approach to metric learning that combines a new

and simple regularizer to a proxy for a weighted sum of the precision at different ranks. The

later can be used for any weighting of the precision-at-k metrics. Experimental results show

that it outperforms state-of-the-art methods on standard person re-identification data-sets,

and that contrary to most of the current state-of-the-art methods, it allows for large-scale

learning.

WARCA is a shallow metric learning algorithm. It works well when we have a vector space

embedding of the data such as the different feature descriptors we discussed in section 3.4.

When we extract those features from raw pixel data we discard a lot of information which

might be useful for learning an informative embedding. This might hurt the performance

of shallow learning algorithms like WARCA. This is one of the limitations of WARCA. This

limitation can tackled by deriving a deep metric learning algorithm with WARCA loss, where

the layers are parametrized by convolutions. However deep learning algorithms requires large

amount of data to train and the current data-sets available for person re-identification are

limited in size.

From a more theoretical perspective, we are interested also in looking at the relations between

39

Chapter 3. Weighted Approximate Rank Component Analysis

the behavior of the learning with the orthonormal regularizer, and the recent residual net-

works (He et al., 2016). In both case, strong regularization pushes toward full-rank mappings

instead of null transformations, as standard L2 penalty does, which appears to be a very

reasonable behavior to expect in general.

40

4 Kronecker Recurrent Units

Contents

4.1 Introduction . 42

4.2 Recurrent neural network formalism . 44

4.2.1 Over parametrization and computational efficiency 45

4.2.2 Poor conditioning implies gradients explode or vanish 45

4.2.3 Why complex field? . 45

4.3 Kronecker recurrent units (KRU) . 46

4.3.1 Soft unitary constraint . 47

4.4 Experiments . 47

4.4.1 Copy memory problem . 47

4.4.2 Adding problem . 49

4.4.3 Pixel by pixel MNIST . 51

4.4.4 Character level language modelling on Penn TreeBank (PTB) 52

4.4.5 Polyphonic music modeling . 53

4.4.6 Framewise phoneme classification on TIMIT 54

4.4.7 Influence of soft unitary constraints . 55

4.5 Discussion . 56

In this chapter we present a new recurrent neural network (RNN) called Kronecker Recurrent

Units (KRU). Unlike classical RNNs, KRU is parameter efficient and robust to vanishing and

exploding gradients. KRU is based on the following preprint:

Cijo Jose, Moustpaha Cisse, and Francois Fleuret. Kronecker recurrent units. arXiv

preprint arXiv:1705.10142, 2017

41

Chapter 4. Kronecker Recurrent Units

4.1 Introduction

Deep neural networks have defined the state-of-the-art in a wide range of problems in com-

puter vision, speech analysis, and natural language processing (Krizhevsky et al., 2012c; Hinton

et al., 2012; Mikolov, 2012). However, these models suffer from two key issues. (1) They are

over-parametrized; thus it takes a very long time for training and inference. (2) Learning deep

models is difficult because of the poor conditioning of the matrices that parametrize the model.

These difficulties are especially problematic to recurrent neural networks. Indeed, the number

of distinct parameters in RNNs grows as the square of the size of the hidden state conversely

to convolutional networks which enjoy weight sharing. Moreover, poor conditioning of the re-

current matrices results in the gradients to explode or vanish exponentially fast along the time

horizon. This problem prevents RNN from capturing long-term dependencies (Hochreiter,

1991; Bengio et al., 1994).

There exists an extensive body of literature addressing over-parametrization in neural net-

works. LeCun et al. (1990) first studied the problem and proposed to remove unimportant

weights in neural networks by exploiting the second order information. Several techniques

which followed include low-rank decomposition (Denil et al., 2013), training a small network

on the soft-targets predicted by a big pre-trained network (Ba and Caruana, 2014), low bit

precision training (Courbariaux et al., 2014), hashing (Chen et al., 2015b), etc. A notable

exception to the above approaches is the deep fried convnets (Yang et al., 2015) which explic-

itly parametrize the fully connected layers in a convnet with a computationally cheap and

parameter-efficient structured linear operator, the Fastfood transform (Le et al., 2013). These

techniques are primarily aimed at feed-forward fully connected networks and very few studies

have focused on the particular case of recurrent networks (Arjovsky et al., 2016).

The problem of vanishing and exploding gradients has also received significant attention.

Hochreiter and Schmidhuber (1997) proposed an effective gating mechanism in their sem-

inal work on LSTMs. Later, this technique was adopted by other models such as the Gated

Recurrent Units (GRU) (Chung et al., 2015) and the Highway networks (Srivastava et al., 2015)

for recurrent and feed-forward neural networks respectively. Other popular strategies in-

clude gradient clipping (Pascanu et al., 2013), and orthogonal initialisation of the recurrent

weights (Le et al., 2015). More recently (Arjovsky et al., 2016) proposed to use a unitary recur-

rent weight matrix. The use of norm preserving unitary maps prevents the gradients from

exploding or vanishing, and thus helps to capture long-term dependencies. The resulting

model called unitary RNN (uRNN) is computationally efficient since it only explores a small

subset of general unitary matrices. Unfortunately, since uRNN can only span a reduced subset

of unitary matrices their expressive power is limited (Wisdom et al., 2016). We denote this

restricted capacity unitary RNN as RC uRNN. Full capacity unitary RNN (FC uRNN) (Wisdom

et al., 2016) proposed to overcome this issue by parameterising the recurrent matrix with a full

dimensional unitary matrix, hence sacrificing computational efficiency. Indeed, FC uRNN

requires a computationally expensive projection step which takes O(N 3) time (N being the

size of the hidden state) at each step of the stochastic optimization to maintain the unitary

42

4.1. Introduction

constraint on the recurrent matrix. Mhammedi et al. (2016) in their orthogonal RNN (oRNN)

avoided the expensive projection step in FC uRNN by parametrizing the orthogonal matrices

using Householder reflection vectors. Their parametrization allows a fine-grained control

over the number of parameters by choosing the number of Householder reflection vectors.

When the number of these vectors approaches N , this parametrization spans the full reflec-

tion set, which is one of the disconnected subset of the full orthogonal set. Jing et al. (2017)

also presented a way of parametrizing unitary matrices which allows fine-grained control on

the number of parameters. This work, called Efficient Unitary RNN (EURNN), exploits the

continuity of the unitary set to have a tunable parametrization ranging from a subset to the

full unitary set.

Although the idea of parametrizing recurrent weight matrices with a strict unitary linear

operator is appealing, it suffers from several issues: (1) Strict unitary constraints severely

restrict the search space of the model, thus making the learning process unstable. (2) Strict

unitary constraints make forgetting irrelevant information difficult. While this may not be

an issue for problems with non-vanishing long term influence, it causes failure when dealing

with real world problems that have vanishing long term influence. Henaff et al. (2016) have

previously pointed out that the good performance of strict unitary models on certain synthetic

problems is because it exploits the biases in these data-sets which favors a unitary recurrent

map and these models may not generalize well to real world data-sets. More recently Vorontsov

et al. (2017) have also studied this problem of unitary RNNs and the authors found out that

relaxing the strict unitary constraint on the recurrent matrix to a soft unitary constraint

improved the convergence speed as well as the generalization performance.

Our motivation is to address the problems of existing recurrent networks mentioned above.

We present a new model called Kronecker Recurrent Units (KRU). At the heart of KRU is

the use of Kronecker factored recurrent matrices which provide an elegant way to adjust

the number of parameters to the problem at hand. This factorization allows us to finely

modulate the number of parameters required to encode N ×N matrices, from O(log(N)) when

using factors of size 2×2, to O(N 2) parameters when using a single factor of the size of the

matrix itself. We tackle the vanishing and exploding gradient problem through a soft unitary

constraint ?? (Henaff et al., 2016; Cisse et al., 2017b; Vorontsov et al., 2017). Thanks to the

properties of Kronecker matrices (Van Loan, 2000), this constraint can be enforced efficiently.

Please note that KRU can readily be plugged into vanilla real space RNN, LSTM and other

variants in place of standard recurrent matrices. However in the case of LSTMs we do not need

to explicitly enforce the approximate orthogonality constraints as the gating mechanism is

designed to prevent vanishing and exploding gradients. Our experimental results on seven

standard data-sets reveal that KRU and KRU variants of real space RNN and LSTM can reduce

the number of parameters drastically (hence the training and inference time) without trading

the statistical performance. Our core contribution in this work is a flexible, parameter efficient

and expressive recurrent neural network model which is robust to vanishing and exploding

gradient problem.

43

Chapter 4. Kronecker Recurrent Units

The chapter is organized as follows: in section 2 we restate the formalism of RNN and detail

the core motivations for KRU. In section 3 we present the Kronecker recurrent units (KRU). We

present our experimental findings in section 4 and section 5 concludes our work.

Table 4.1: Notation

D, N , M Input, hidden and output dimensions

xt ∈RD or CD , ht ∈CD Input and hidden state at time t

yt ∈RM or CM , ŷt ∈RM or CM Prediction targets and RNN predictions at time t

U ∈CN×D ,W ∈CN×N ,V ∈CM×N Input, recurrent amd output weight matrices

b ∈RN or CN ,c ∈RM or CM Hidden and output bias

σ(.),L(ŷ,y) Point-wise non-linear activation function and the loss function

4.2 Recurrent neural network formalism

Table 4.1 summarizes some notation that we use in this chapter. We consider the field to be

complex rather than real numbers. We will motivate the choice of complex numbers later in

this section. Consider a standard recurrent neural network (Elman, 1990). Given a sequence

of T input vectors: x1,x2, . . . ,xT , at a time step t the RNN performs the following:

ht =σ(Wht−1 +Uxt +b) (4.1)

ŷt = Vht +c, (4.2)

where ŷt is the predicted value at time step t . An illustration of a recurrent neural network

unrolled along the time is shown in Figure ??.

ht−2

V

ŷt−1

xt−1

ht−1

V

ŷt

xt

ht

V

ŷt+1

xt+1

U U U

W W WW

Figure 4.1: A slice of a recurrent neural network unrolled along the time. RNN is a very deep
network along the time with shared parameters. At time step t RNN receives the input xt and
this input is encoded via the input to hidden matrix U. This encoded input is combined with
the information from the previous hidden state ht−1 using the recurrent weight matrix W to
get the next hidden state. The information from the hidden state is extracted using the hidden
to output matrix V also called decoder to predict the targets ŷt .

44

4.2. Recurrent neural network formalism

4.2.1 Over parametrization and computational efficiency

The total number of parameters in an RNN is c(DN +N 2 +N +M +M N), where c is 1 for

real and 2 for complex parametrizations. As we can see, the number of parameters grows

quadratically with the hidden dimension, i.e., O(N 2). We show in the experiments that this

quadratic growth is an over parametrization for many real world problems. Moreover, it has a

direct impact on the computational efficiency of RNNs because the evaluation of Wht−1 takes

O(N 2) time and it recursively depends on previous hidden states. However, other components

Uxt and Vht can usually be computed efficiently by a single matrix-matrix multiplication

for each of the components. That is, we can perform U[x1, . . . ,xT] and V[h1, . . . ,hT], which

is efficient using modern BLAS libraries. So to summarize, if we can control the number of

parameters in the recurrent matrix W, then we can control the computational efficiency.

4.2.2 Poor conditioning implies gradients explode or vanish

The vanishing and exploding gradient problem refers to the decay or growth of the partial

derivative of the loss L(.) with respect to the hidden state ht i.e. ∂L
∂ht

as the number of time

steps T grows (Arjovsky et al., 2016). By the application of the chain rule, the following can be

shown (Arjovsky et al., 2016):∥∥∥∥ ∂L∂ht

∥∥∥∥≤ ‖W‖T−t . (4.3)

The derivation of the above inequality (4.3) is shown in appendix C.1. From Equation 4.3, it is

clear that if the absolute value of the eigenvalues of W deviates from 1 then ∂L
∂ht

may explode or

vanish exponentially fast with respect to T −t . So a strategy to prevent vanishing and exploding

gradient is to control the spectrum of W.

4.2.3 Why complex field?

Although Arjovsky et al. (2016) and Wisdom et al. (2016) use complex valued networks with

unitary constraints on the recurrent matrix, the motivations for such models are not clear. We

give a simple but compelling reason for complex-valued recurrent networks.

The absolute value of the determinant of a unitary matrix is 1. Hence in the real space, the set

of all unitary (orthogonal) matrices have a determinant of 1 or −1, i.e., the set of all rotations

and reflections respectively. Since the determinant is a continuous function, the unitary set

in real space is disconnected. Consequently, with real-valued networks we cannot span the

full unitary set using the standard continuous optimization procedures. On the contrary, the

unitary set is connected in the complex space as its determinants are the points on the unit

circle and we do not have this issue.

As we mentioned in the introduction Jing et al. (2017) use this continuity of unitary space to

45

Chapter 4. Kronecker Recurrent Units

have a tunable continuous parametrization ranging from subspace to full unitary space. Any

continuous parametrization in real space can only span a subset of the full orthogonal set. For

example, the Householder parametrization (Mhammedi et al., 2016) suffers from this issue.

4.3 Kronecker recurrent units (KRU)

We consider parametrizing the recurrent matrix W as a Kronecker product of F matrices

W1, . . . ,WF ,

W = W1 ⊗·· ·⊗WF =⊗F
f =1W f . (4.4)

Where each W f ∈CP f ×Q f and
∏F

f =1 P f =
∏F

f =1 Q f = N . W f ’s are called as Kronecker factors.

To illustrate the Kronecker product of matrices, let us consider the simple case where ∀ f {P f =
Q f = 2}. This implies F = log 2N , and W is recursevly defined as follows:

W =⊗log 2N
f =1 W f =

[
w1(1,1) w1(1,2)

w1(2,1) w1(2,2)

]
⊗log 2N

f =2 W f , (4.5)

=
[

w1(1,1)W2 w1(1,2)W2

w1(2,1)W2 w1(2,2)W2

]
⊗log 2N

f =3 W f . (4.6)

When ∀ f {P f = Q f = 2} the number of parameters is 8log2 N and the time complexity of

hidden state computation is O(N log2 N). When ∀ f {P f = Q f = N } then F = 1 and we will

recover standard complex valued recurrent neural network. We can span every Kronecker

representation in between by choosing the number of factors and the size of each factor. In

other words, the number of Kronecker factors and the size of each factor give us fine-grained

control over the number of parameters and hence over the computational efficiency. This

strategy allows us to design models with the appropriate trade-off between computational

budget and statistical performance. All the existing models lack this flexibility.

The idea of using Kronecker factorization for approximating Fisher matrix in the context of

natural gradient methods has recently received much attention. The algorithm was originally

presented in Martens and Grosse (2015) and was later extended to convolutional layers (Grosse

and Martens, 2016), distributed second order optimization (Ba et al., 2016) and for deep

reinforcement learning (Wu et al., 2017). However Kronecker matrices have not been well

explored as learnable parameters except by Zhang et al. (2015) who used its spectral property

for fast orthogonal projections and Zhou et al. (2015) who used it as a layer in convolutional

neural networks.

46

4.4. Experiments

4.3.1 Soft unitary constraint

Poor conditioning results in vanishing or exploding gradients. Unfortunately, the standard

solution of optimizing on the strict unitary set suffers from the retention of noise over time.

Indeed, the small eigenvalues of the recurrent matrix can represent a truly vanishing long-term

influence on the particular problem and in that sense, there can be good or bad vanishing

gradients. Consequently, enforcing strict unitary constraint (forcing the network to never

forget) can be a bad strategy. A simple solution to get the best of both worlds is to enforce the

unitary constraint approximately by using the following regularization:∥∥∥WH
f W f − I

∥∥∥2
,∀ f ∈ {1, . . . ,F } (4.7)

Please note that these constraints are enforced on each factor of the Kronecker factored

recurrent matrix. This procedure is computationally very efficient since the size of each factor

is typically small. It suffices to do so because if each of the Kronecker factors {W1, . . . ,WF }

are unitary then the full matrix W is unitary (Van Loan, 2000) and if each of the factors are

approximately unitary then the full matrix is approximately unitary.

This type of regularizer has recently been exploited for real-valued models. Cisse et al. (2017b)

showed that enforcing approximate orthogonality constraints on the weight matrices make

the network robust to adversarial samples as well as improve the learning speed. As we have

shown in the previous chapter, in metric learning (Jose and Fleuret, 2016) it better conditions

the projection matrix thereby improving the robustness of stochastic gradient over a wide

range of step sizes as well as the generalisation performance. Henaff et al. (2016) and Vorontsov

et al. (2017) have also used this soft unitary constraints on standard RNN after identifying

the problems with the strict unitary RNN models. However the computational complexity of

naively applying this soft constraint is O(N 3). This is prohibitive for RNN with large hidden

state unless one considers a Kronecker factorisation.

4.4 Experiments

Existing deep learning libraries such as Theano (Bergstra et al., 2011), Tensorflow (Abadi et al.,

2016) and Pytorch (Paszke et al., 2017) do not support fast primitives for Kronecker products

with arbitrary number of factors. So we wrote custom CUDA kernels for Kronecker forward

and backward operations. All our models are implemented in C++. We use tanh as activation

function for RNN, LSTM and our model KRU-LSTM. whereas RC uRNN, FC uRNN and KRU

use complex rectified linear units (Arjovsky et al., 2016).

4.4.1 Copy memory problem

The copy memory problem (Hochreiter and Schmidhuber, 1997) tests the model’s ability to

recall a sequence after a long time gap. In this problem each sequence is of length T + 20

47

Chapter 4. Kronecker Recurrent Units

3 7 · · · 6 1 0 0 · · · 0 0 9 0 0 · · · 0 0

Input sequence: x

T −1 blank category10 elements from unif[1,8] Delimiter 10 blank category

0 0 · · · 0 0 3 7 · · · 6 1

Target sequence: y

T +10 blank category First 10 entries of x

Figure 4.2: An illustration of the copy memory problem. x is the input sequence of length
T +20 and y is the target sequence to be predicted. First 10 entries of x is filled from unif[1, 8]
and the next T −1 is 0 - the ’blank’ category, followed by 9 - ’the delimiter’. The goal of this
task is to predict ’the blank category’ for the first T +10 steps and as soon as ’the delimter’ is
encountered it should reproduce the first 10 entries of the input sequence x.

and each element in the sequence come from 10 classes {0, . . . ,9}. The first 10 elements are

sampled uniformly with replacement from {1, . . . ,8}. The next T −1 elements are filled with

0, the ‘blank’ class followed by 9, the ‘delimiter’ and the remaining 10 elements are ‘blank’

category. The goal of the model is to output a sequence of T + 10 blank categories followed by

the 10 element sequence from the beginning of the input sequence. The expected average

cross entropy for a memory-less strategy is 10log8
T+20 .

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 2000 4000 6000 8000 10000

C
ro

ss
 e

nt
ro

py

Training steps

Sequence length = 1000

RNN
LSTM

RC uRNN
FC uRNN

KRU
 0

 0.005

 0.01

 0.015

 0.02

 0 2000 4000 6000 8000 10000

C
ro

ss
 e

nt
ro

py

Training steps

Sequence length = 2000

RNN
LSTM

RC uRNN
FC uRNN

KRU

Figure 4.3: Learning curves on copy memory problem for T =1000 and T =2000.

Our experimental setup closely follows (Wisdom et al., 2016) which in turn follows (Arjovsky

et al., 2016) but T extended to 1000 and 2000. Our model, KRU, uses a hidden dimension N

of 128 with 2x2 Kronecker factors which corresponds to ≈5K parameters in total. We use an

RNN of N = 128 (≈ 19K parameters) , LSTM of N = 128 (≈ 72K parameters), RC uRNN of N

= 470 (≈ 21K parameters) (Wisdom et al., 2016) , FC uRNN of N = 128 (≈ 37K parameters).

All the baseline models are deliberately chosen to have slighly more parameters than KRU.

Following Wisdom et al. (2016); Arjovsky et al. (2016), we choose the training and test set size

48

4.4. Experiments

to be 100K and 10K respectively. All the models were trained using RMSprop with a learning

rate of 1e−3, decay of 0.9 and a batch size of 20. For both the settings T = 1000 and T = 2000,

KRU converges to zero average cross entropy faster than FC uRNN. All the other baselines are

stuck at the memory-less cross entropy.

The results are shown in Figure 4.3. For this problem we do not learn the recurrent matrix of

KRU, We initialize it to a random unitary matrix and just learn the input to hidden matrix,

hidden to output matrix and the bias. We found out that this strategy already solves the

problem faster than all other methods. Our model in this case is similar to a parametrized

echo state networks (ESN). ESNs are known to be able to learn long-term dependencies if they

are properly initialized (Jaeger, 2001). We argue that this data-set is not an ideal benchmark

for evaluating RNNs in capturing long term dependencies. Just a unitary initialization of the

recurrent matrix would solve the problem.

4.4.2 Adding problem

0.54 0.07 0.63 0.13 0.84 0.43 1 0 0 0 1 0

Input sequence: x

T entries from unif[0,1] T
2 entries with one 1. T

2 entries with one 1.

Figure 4.4: Adding problem of sequence length T = 6. It is consists of two sequences of length
T = 6. The first sequence entries (T = 6) are sampled uniformly at random from [0,1]. In the
next sequence exactly 2 of the entries are 1, each of them located uniformly at random in each
half of the sequence. The goal of the adding problem is to predict sum of the numbers in the
first sequence corresponding to the marked two locations after seeing the whole sequence. In
this example the marked locations in the second sequence are 7 and 11, which corresponds to
1 and 5 in the first sequence so the prediction target is y = x[1]+x[5] = 0.54+0.84 = 1.38.

Following Arjovsky et al. (2016) we describe the adding problem (Hochreiter and Schmidhuber,

1997). Each input vector is composed of two sequences of length T . The first sequence is

sampled from U [0,1]. In the second sequence exactly two of the entries are 1, the ‘marker’ and

the remaining are 0. The first 1 is located uniformly at random in the first half of the sequence

and the other 1 is located again uniformly at random in the other half of the sequence. The

network’s goal is to predict the sum of the numbers from the first sequence corresponding to

the marked locations in the second sequence.

We evaluate four settings as in (Arjovsky et al., 2016) with T =100, T =200, T =400, and T =750.

For all four settings, KRU uses a hidden dimension N of 512 with 2x2 Kronecker factors which

corresponds to ≈3K parameters in total. We use an RNN of N = 128 (≈ 17K parameters) , LSTM

of N = 128 (≈ 67K parameters), RC uRNN of N = 512 (≈ 7K parameters) , FC uRNN of N = 128

(≈ 33K parameters). The train and test set sizes are chosen to be 100K and 10K respectively.

49

Chapter 4. Kronecker Recurrent Units

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
sq

ua
re

d
er

ro
r

Training samples seen (thousands)

Sequence length = 100

RNN
LSTM

RC uRNN
FC uRNN

KRU

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000

M
ea

n
sq

ua
re

d
er

ro
r

Training samples seen (thousands)

Sequence length = 200

RNN
LSTM

RC uRNN
FC uRNN

KRU

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
sq

ua
re

d
er

ro
r

Training samples seen (thousands)

Sequence length = 400

RNN
LSTM

FC uRNN
KRU

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
sq

ua
re

d
er

ro
r

Training samples seen (thousands)

Sequence length = 750

RNN
LSTM

FC uRNN
KRU

Figure 4.5: Results on adding problem for T =100, T =200, T =400 and T =750. KRU consistently
outperforms the baselines on all the settings with fewer parameters.

All the models were trained using RMSprop with a learning rate of 1e−3 and a batch size of 20

or 50 with the best results being reported here.

The results are presented in Figure 4.5. KRU converges faster than all other baselines even

though it has much fewer parameters. This shows the effectiveness of soft unitary constraint

which controls the flow of gradients through very long time steps and thus deciding what

to forget and remember in an adaptive way. LSTM also converges to the solution and this is

achieved through its gating mechanism which controls the flow of the gradients and thus the

long term influence. However LSTM has 10 times more parameters than KRU. Both RC uRNN

and FC uRNN converges for T = 100 but as we can observe, the learning is not stable. The

reason for this is that RC uRNN and FC uRNN retain noise since they are strict unitary models.

Please note that we do not evaluate RC uRNN for T = 400 and T = 750 because we found out

that the learning is unstable for this model and is often diverging.

50

4.4. Experiments

4.4.3 Pixel by pixel MNIST

As outlined by Le et al. (2015), We evaluate the Pixel by pixel MNIST task. MNIST digits are

shown to the network pixel by pixel and the goal is to predict the class of the digit after seeing

all the pixels one by one. We consider two tasks: (1) Pixels are read from left to right from

top or bottom and (2) Pixels are randomly permuted before being shown to the network. The

sequence length for these tasks is T = 28×28 = 784. The size of the MNIST training set is 60K

among which we choose 5K as the validation set. The models are trained on the remaining 55K

points. The model which gave the best validation accuracy is chosen for test set evaluation.

All the models are trained using RMSprop with a learning rate of 1e−3 and a decay of 0.9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350

V
al

id
at

io
n

ac
cu

ra
cy

Training steps (hundreds)

Pixel by pixel MNIST

LSTM, n=128, ≈68K params
RC uRNN, n=512, ≈16K params

FC uRNN, n=512, ≈540K params
FC uRNN, N=116, ≈0K params

KRU, n=512, ≈11K params
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

V
al

id
at

io
n

ac
cu

ra
cy

Training steps (hundreds)

Pixel by pixel permuted MNIST

LSTM, n=128, ≈68K params
RC uRNN, n=512, ≈16K params

FC uRNN, n=512, ≈540K params
FC uRNN, N=116, ≈30K params

KRU , n=512, ≈11K params

Figure 4.6: Validation accuracy on pixel by pixel MNIST and permuted MNIST class prediction
as the learning progresses.

Table 4.2: KRU achieves state of the art performance on pixel by pixel permuted MNIST while
having up to four orders of magnitude less parameters than other models.

Model n
Parameters Unpermuted accuracy Permuted accuracy

Total Recurrent Valid. Test Valid. Test

LSTM (Arjovsky et al., 2016) 128 ≈68K ≈65K 98.1 97.8 91.7 91.3
RC uRNN (Wisdom et al., 2016) 512 ≈16K ≈3.6K 97.9 97.5 94.2 93.3
FC uRNN (Wisdom et al., 2016) 512 ≈540K ≈524K 97.5 96.9 94.7 94.1
FC uRNN (Wisdom et al., 2016) 116 ≈30K ≈27K 92.7 92.8 92.2 92.1
oRNN (Mhammedi et al., 2016) 256 ≈11K ≈8K 97.0 97.2 - -
EURNN (Jing et al., 2017) 1024 ≈13K ≈4K - - 94.0 93.7
KRU 512 ≈11K 72 96.6 96.4 94.7 94.5

The results are summarized in Table 4.2 and Figure 4.6. On the unpermuted task LSTM

achieve the state of the art performance even though the convergence speed is slow. Recently

a low rank plus diagonal gated recurrent unit (LRD GRU) (Barone, 2016) has shown to achieves

94.7 accuracy on permuted mnist with 41.2K parameters whereas KRU achieves 94.5 with just

12K parameters i.e KRU has 3x parameters fewer than LRD GRU. Please also note that KRU is a

simple model without a gating mechanism. KRU can be straightforwardly plugged into LSTM

and GRU to exploit the additional benefits of the gating mechanism which we will show in the

51

Chapter 4. Kronecker Recurrent Units

next experiments with a KRU-LSTM.

4.4.4 Character level language modelling on Penn TreeBank (PTB)

We now consider character level language modeling on the Penn TreeBank data-set (Mar-

cus et al., 1993). Penn TreeBank is composed of 5017K characters in the training set, 393K

characters in the validation set and 442 characters in the test set. The size of the vocabulary

was limited to 10K most frequently occurring words and the rest of the words are replaced by

a special <UNK> character (Mikolov, 2012). The total number of unique characters in the

data-set is 50, including the special <UNK> character.

Table 4.3: Performance in BPC of KRU variants and other models for character level language
modeling on the Penn TreeBank data-set. KRU has fewer parameters in the recurrent matrix
which significantly bring down training and inference time.

Model N
Parameters

Valid. BPC Test BPC
Total Recurrent

RNN 300 ≈120K 90K 1.65 1.60
LSTM 150 ≈127K 90K 1.63 1.59
oRNN (Mhammedi et al., 2016) 512 ≈183K ≈130K 1.73 1.68
KRU 411 ≈120K ≈38K 1.65 1.60
RNN 600 ≈420K 360K 1.56 1.51
LSTM 300 ≈435K 360K 1.50 1.45
KRU 993 ≈418K ≈220K 1.53 1.48
KRU-LSTM 500 ≈377K ≈250K 1.53 1.47

All our models were trained for 50 epochs with a batch size of 50 and using ADAM (Kingma

and Ba, 2014b). We use a learning rate of 1e−3 which was found through cross-validation with

default beta parameters (Kingma and Ba, 2014b). If we do not see an improvement in the

validation bits per character (BPC) after each epoch then the learning rate is decreased by 0.30.

Back-propagation through time (BPTT) is unrolled for 30 time frames on this task.

We did two sets of experiments to have a fair evaluation with the models whose results were

available for a particular parameter setting (Mhammedi et al., 2016) and also to see how the

performance evolves as the number of parameters is increased. We present our results in

Table 4.3. We observe that the strict orthogonal model, oRNN fails to generalize as well as

other models even with a high capacity recurrent matrix. KRU and KRU-LSTM perform very

close to RNN and LSTM with fewer parameters in the recurrent matrix. Please recall that the

computational bottleneck in RNN is the computation of hidden states (4.2.1) and thus having

fewer parameters in the recurrent matrix can significantly reduce the training and inference

time.

Recently HyperNetworks (Ha et al., 2016) have shown to achieve the state of the art perfor-

mance of 1.265 and 1.219 BPC on the PTB test set with 4.91 and 14.41 million parameters

52

4.4. Experiments

respectively. This is respectively 38 and 13 times more parameters than the KRU-LSTM model

which achieves 1.47 test BPC. Also Recurrent Highway Networks (RHN) (Zilly et al., 2016)

proved to be a promising model for learning very deep recurrent neural networks. Running

experiments, and in particular exploring meta-parameters, with models of that size, requires

unfortunately computational means beyond what was at our disposal for this work. How-

ever, there is no reason that the consistent behavior and improvement observed on the other

reference baselines would not generalize to that type of large-scale models.

4.4.5 Polyphonic music modeling

We exactly follow the experimental framework of Chung et al. (2014) for Polyphonic music

modelling (Boulanger-Lewandowski et al., 2012) on two data-sets: JSB Chorales and Piano-

midi. Similar to (Chung et al., 2014) our main objective here is to have a fair evaluation of

different recurrent neural networks. We took the baseline RNN and LSTM models of (Chung

et al., 2014) whose model sizes were chosen to be small enough to avoid over-fitting. We

choose the model size of KRU and KRU-LSTM in such a way that it has fewer parameters

compared to the baselines. As we can see in Table 4.4 both our models (KRU and KRU-LSTM)

over-fit less and generalizes better. We also present the wall-clock running time of different

methods in Figure 4.7.

Table 4.4: Average negative log-likelihood of KRU and KRU-LSTM compared to the baseline
models.

Model n
Parameters JSB Chorales Piano-midi

Total Recurrent Train Test Train Test

RNN (Chung et al., 2014) 100 ≈20K 10K 8.82 9.10 5.64 9.03

LSTM (Chung et al., 2014) 36 ≈20K ≈5.1K 8.15 8.67 6.49 9.03

KRU 100 ≈10K 58 7.90 8.59 7.57 8.28

KRU-LSTM 45 ≈19K 176 7.47 8.54 7.55 8.18

 10

 10 20 30 40 50 60 70

V
al

id
at

io
n

lo
ss

Time (seconds)

JSB Chorales

RNN

LSTM

KRU

KRU-LSTM

 10

 50 100 150 200 250

V
al

id
at

io
n

lo
ss

Time (seconds)

Piano-midi

RNN

LSTM

KRU

KRU-LSTM

Figure 4.7: Wall clock training time on JSB Chorales and Piano-midi data-set.

53

Chapter 4. Kronecker Recurrent Units

4.4.6 Framewise phoneme classification on TIMIT

Framewise phoneme classification (Graves and Schmidhuber, 2005) is the problem of clas-

sifying the phoneme corresponding to a sound frame. We evaluate the models for this task

on the real world TIMIT data-set (Garofolo et al., 1993). TIMIT contains a training set of 3696

utterances among which we use 184 as the validation set. The test set is composed of 1344

utterances. We extract 12 Mel-Frequency Cepstrum Coefficients (MFCC) (Mermelstein, 1976)

from 26 filter banks and also the log energy per frame. We also concatenate the first derivative,

resulting in a feature descriptor of dimension 26 per frame. The frame size is chosen to be

10ms and the window size is 25ms.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 5 10 15 20

V
al

id
at

io
n

ac
cu

ra
cy

Number of epochs

Phoneme classification on TIMIT

RNN
LSTM

KRU
KRU-LSTM

Model N
Parameters

Valid. accuracy Test accuracy
Total Recurrent

RNN 600 ≈406K 360K 65.84 64.53

LSTM 300 ≈406K 360K 65.99 64.56

KRU 2048 ≈195K 16K 65.91 64.55

KRU-LSTM 2048 ≈404 66K 66.54 64.81

Figure 4.8: KRU and KRU-LSTM performs better than the baseline models with far fewer
parameters in the recurrent weight matrix on the challenging TIMIT data-set (Garofolo et al.,
1993). This significantly bring down the training and inference time of RNNs. Both LSTM and
KRU-LSTM converged within 5 epochs whereas RNN and KRU took 20 epochs. A similar result
was obtained by (Graves and Schmidhuber, 2005) using RNN and LSTM with 4 times fewer
parameters respectively than our models. However in their work the LSTM took 20 epochs to
converge and the RNN took 70 epochs. We have also experimented with the same model size
as that of (Graves and Schmidhuber, 2005) and have obtained very similar results as in the
table but at the expense of longer training times.

The number of time steps to which back-propagation through time (BPTT) is unrolled corre-

sponds to the length of each sequence. Since each sequence is of different length this implies

that for each sample the BPTT steps are different. All the models are trained for 20 epochs

with a batch size of 1 using ADAM with default parameters (Kingma and Ba, 2014b). The

54

4.4. Experiments

learning rate was cross-validated for each of the models from η ∈ {1e−2,1e−3,1e−4} and the

best results are reported here. The best learning rate was found out to be 1e−3 for all the

models. Again if we do not observe a decrease in the validation error after each epoch, we

decrease the learning rate by a factor of γ ∈ {1e−1,2e−1,3e−1} which is again cross-validated.

Figure 4.8 summarizes our results.

4.4.7 Influence of soft unitary constraints

Here we study the properties of soft unitary constraints on KRU. We use Polyphonic music

modeling data-sets (Boulanger-Lewandowski et al., 2012): JSB Chorales and Piano-midi, as

well as TIMIT data-set for this set of experiments. We varied the amplitude of soft unitary

constraints from 1e −7 to 1e −1, the higher the amplitude the closer the recurrent matrix will

be to the unitary set. All other hyper-parameters, such as the learning rate and the model size

are fixed. We present our studies in Figure 4.9. As we increase the amplitude we can see that

the recurrent matrix is getting better conditioned and the spectral norm or the spectral radius

is approaching towards 1. As we can see that the validation performance can be improved

using this simple soft unitary constraints. For JSB Chorales the best validation performance is

achieved at an amplitude of 1e −2, whereas for Piano-midi it is at 1e −1.

 1

10-7 10-6 10-5 10-4 10-3 10-2 10-1

C
on

di
tio

n
nu

m
be

r o
f

W

Amplitude of soft unitary constraint

JSB Chorales

 1

10-7 10-6 10-5 10-4 10-3 10-2 10-1

C
on

di
tio

n
nu

m
be

r o
f

W

Amplitude of soft unitary constraint

Piano-midi

 1

 10

 100

10-7 10-6 10-5 10-4 10-3 10-2 10-1

C
on

di
tio

n
nu

m
be

r o
f

W

Amplitude of soft unitary constraint

Phoneme classification on TIMIT

 1

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Sp
ec

tr
al

 n
or

m
 o

f
W

Amplitude of soft unitary constraint

JSB Chorales

 1

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Sp
ec

tr
al

 n
or

m
 o

f
W

Amplitude of soft unitary constraint

Piano-midi

 1

 10

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Sp
ec

tr
al

 n
or

m
 o

f
W

Amplitude of soft unitary constraint

Phoneme classification on TIMIT

 8.58

 8.6

 8.62

 8.64

 8.66

 8.68

 8.7

10-7 10-6 10-5 10-4 10-3 10-2 10-1

V
al

id
at

io
n

lo
ss

Amplitude of soft unitary constraint

JSB Chorales

 7.74

 7.75

 7.76

 7.77

 7.78

 7.79

 7.8

10-7 10-6 10-5 10-4 10-3 10-2 10-1

V
al

id
at

io
n

lo
ss

Amplitude of soft unitary constraint

Piano-midi

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

10-7 10-6 10-5 10-4 10-3 10-2 10-1

V
al

id
at

io
n

er
ro

r

Amplitude of soft unitary constraint

Phoneme classification on TIMIT

Figure 4.9: Analysis of soft unitary constraints on three data-sets. First, second and the third
column presents JSB Chorales, Piano-midi and TIMIT data-sets respectively.

55

Chapter 4. Kronecker Recurrent Units

For TIMIT phoneme recognition problem, the best validation error is achieved at 1e −5 but

as we increase the amplitude further, the performance drops. This might be explained by

a vanishing long-term influence that has to be forgotten. Our model achieve this by cross-

validating the amplitude of soft unitary constraints. These experiments also reveals the

problems of strict unitary models such as RC uRNN (Arjovsky et al., 2016), FC uRNN (Wisdom

et al., 2016), oRNN (Mhammedi et al., 2016) and EURNN (Jing et al., 2017) that they suffer

from the retention of noise from a vanishing long term influence and thus fails to generalize.

A popular heuristic strategy to avoid exploding gradients in RNNs and thereby making their

training robust and stable is gradient clipping. Most of the state of the art RNN models use

gradient clipping for training. Please note that we are not using gradient clipping with KRU.

Our soft unitary constraints offer a principled alternative to gradient clipping.

Moreover Hardt et al. (2016) recently showed that gradient descent converges to the global

optimizer of linear recurrent neural networks even though the learning problem is non-convex.

The necessary condition for the global convergence guarantee requires that the spectral norm

of recurrent matrix is bounded by 1. This seminal theoretical result also inspires to use

regularizers which control the spectral norm of the recurrent matrix, such as the soft unitary

constraints.

4.5 Discussion

We have presented a new recurrent neural network model based on a Kronecker factored

recurrent matrix. Our reason for using a Kronecker factored recurrent matrix stems from

its elegant algebraic and spectral properties. Kronecker matrices are neither low-rank nor

block-diagonal but they are multi-scale like the FFT matrix. The Kronecker factorization

provides a fine control over the model capacity and its algebraic properties enable us to design

fast matrix multiplication algorithms. Its spectral properties allow us to efficiently enforce

constraints like positive semi-definiteness, unitarity and stochasticity. As we have shown, we

used the spectral properties to efficiently enforce a soft unitary constraint.

Our experimental results show that our approach out-perform classical methods which use

O(N 2) parameters in the recurrent matrix. Maybe as important, these experiments show that

both on toy problems (§ 4.4.1 and 4.4.2), and on real ones (§ 4.4.3, 4.4.4, , and § 4.4.6), while

existing methods require tens of thousands of parameters in the recurrent matrix, competitive

or better than state-of-the-art performance can be achieved with far fewer parameters in

the recurrent weight matrix. This surprising result provides a new and counter-intuitive

perspective on desirable memory-capable architectures: the state should remain of high

dimension to allow the use of high-capacity networks to encode the input into the internal

state, and to extract the predicted value, but the recurrent dynamic itself can, and should, be

implemented with a low-capacity model.

From a practical standpoint, the idea in our method is applicable not only to vanilla recurrent

56

4.5. Discussion

neural networks and LSTMS as we showed, but also to a variety of machine learning models

such as feed-forward networks (Zhou et al., 2015) and boosting weak learners. Our future

work encompasses exploring other machine learning models and dynamically increasing

the capacity of the models on the fly during training to have a perfect balance between

computational efficiency and sample complexity.

57

5 Importance Sampling Tree for Large-
scale Empirical Expectation

Contents

5.1 Introduction . 60

5.2 Related work . 61

5.3 Weighted averages in machine learning . 63

5.3.1 Importance sampling for Monte-carlo simulations 64

5.4 Importance Sampling Tree (IST) . 64

5.4.1 Adaptive sampling . 65

5.5 Experiments and results . 66

5.5.1 Multi-layer Neural Network on a 2D synthetic data-sets 66

5.5.2 Deep Convolution Network on CIFAR10 68

5.6 Discussion . 70

This chapter presents the Importance Sampling Tree data structure (IST) and this is a joint work

with Olivier Canévet (2017). Section 5.1, 5.2, 5.3 and 5.4 is a rephrasing of the Chapter 5 in the

thesis, Canévet (2017) and the publication, Canévet et al. (2016). The experiments we report

are different from Canévet (2017) except one synthetic problem which we reproduced the results

using our own implementation. IST is based on the following publication:

Olivier Canévet, Cijo Jose, and Francois Fleuret. Importance sampling tree for

large-scale empirical expectation. In International Conference on Machine Learn-

ing, pages 1454–1462, 2016

59

Chapter 5. Importance Sampling Tree

5.1 Introduction

As we have seen in the Chapter 2, virtually every single machine learning algorithm using

the ERM principle relies on data-based empirical expectations, either to estimate a loss, or

the response of a predictor (see the examples in § 5.3). The larger the data-set, the more

accurate the prediction, and many state-of-the-art results have been obtained by enriching

the already very large sets using data augmentation, resulting in hundreds of millions of

labeled samples Krizhevsky et al. (2012a).

An empirical expectation takes the form of a sum of a quantity evaluated on many data-points,

and in practice most of the terms in the sum are negligible. In training it is because most

of the samples are far from the decision boundary between populations, and get a “trivially

correct answer”. Figure 5.1 illustrates this scenario in the training of a deep convolutional

neural network on CIFAR10 data-set enriched with data augmentation. In test it is because

the prediction on a test point is modulated only by its immediate neighbors in the training set.

For example in the case of Gaussian kernel machines trained on large data-sets, even though

the model has a very large number of support vectors, in many cases only few of them will

actually matter in the final decision score.

0

0.2

0.4

0.6

0.8

1

0 450000 1000000 1800000

C
u

m
u

la
ti

ve
gr

ad
ie

n
tn

o
rm

Sorted training points

Epoch 1
Epoch 2
Epoch 5
Epoch 10
Epoch 15
Epoch 20

Figure 5.1: Cumulative gradient norms of the training points on CIFAR10 dataset enriched
with data augmentation, using a state of the art convolutional neural network as learning
algorithm. As the learning progresses most of the contribution to the empirical expectation
comes from very few number of points.

Despite this well known state of affairs, algorithms still rely on an exhaustive loop through the

samples. Some approaches have been developed to prioritize samples after they have already

been seen (Kalal et al., 2008; Fleuret and Geman, 2008), or in subsets sampled uniformly (Loosli

et al., 2007). But they do not use data structures given a priori over the said samples, combining

it with statistical observations made over those already observed to reject sets without looking

at them.

60

5.2. Related work

So if we have an efficient mechanism which gives us the set of points which contribute most

to the empirical expectation then we can focus the computation on this set of points, thereby

saving computation time. This problem of identifying important points in a set is related

to the choice of an optimal move in a strategy game. This has been tackled traditionally

with branch-and-bound approaches, going down the tree of possible choices, and discarding

sub-trees that can be proven to be bad. But the branch and bound techniques find their limit

in games of very large combinatorial complexity and this setting is generally tackled by using

data structures which can sample and optimize the sampling over the configuration at the

same time. For example, state-of-the-art performance for the game of Go is obtained with

Monte-Carlo Tree Search (Gelly et al., 2006) which samples the optimal move and at the same

time optimizes over sampling configurations for the future moves.

In this chapter we present a data structure, dubbed IST for “Importance Sampling Tree” for

efficiently estimating an empirical expectation. IST organizes the data into a tree structure

using the given metric on the data. IST at the same time, samples the data points, provides a

correcting factor to compensate for its sampling bias, and optimizes inner statistical estimates

to improve sampling over time.

5.2 Related work

Batch learning becomes infeasible when it comes to training predictors on very large data-sets.

Therefore, sub-sampling appears to be one solution to make it practical and as we discussed

in Chapter 2, stochastic gradient descent (SGD) is the default choice when we have large

data-sets. It has been shown that a smart sampling, as opposed to a uniform sampling with

SGD, has an impact on the performance of the final classifier.

Bordes et al. (2005) presented LASVM, an online algorithm with importance sampling to

train kernel support vector machines. They show that importance sampling reduces the

training time and also results in models which are compact with fewer support vectors, while

maintaining equal or better prediction accuracy compared to standard algorithms.

Recently, importance sampling has been theoretically studied in the context of stochastic

gradient descent (SGD) algorithms (Zhao and Zhang, 2014). Their key observation is that,

though sampling observations uniformly at random from the training set results in a stochastic

gradient which is an unbiased estimate of the true gradient, the resulting estimator may have

high variance. In order to mitigate the convergence issue with high variance they propose an

importance sampling scheme. Their theoretical results show that under certain conditions,

importance sampling can improve the convergence rate of SGD algorithms.

In the context of boosting the procedures proposed by Fleuret and Geman (2008), and Kalal

et al. (2008) select samples to train a weak learner based on their boosting weights. The

classifier is thus presented with highly misclassified samples, with a high individual weight,

but also with representatives of populations of low weighted individual samples which have a

61

Chapter 5. Importance Sampling Tree

Table 5.1: Notation

wm ∈R+ Positive weights we want to approximate through sampling
T ,L⊂ T Nodes and leaves of IST
D The depth of the tree
c0(x),c1(x) Children of node x
U Minimum number of observations to look before biasing the θx

L(x) ⊂L Set of leaves of the sub-tree whose root is x
n(x) ∈ {1, . . . , M } Index of the weight at leaf x
Θ= (θx)x∈T \L Probabilities to chose the right sub-tree at each node during sampling
µΘ(m; x) Probability to reach leaf m given that the sampling passes through node x
w(x) =∑

y∈L(x) wn(y) Sum of the weights of the leaves in the sub-tree whose root is x
ν(x) Number of times the sampling has been through node x
s(x) Sum of the individual estimates of w(x)
ŵx = s(x)/ν(x) Estimate of w(x)
S(x) Statistics accumulated at node x

large cumulative weight.

Another approach designed for boosting is the reservoir boosting (Lefakis and Fleuret, 2013).

Reservoir boosting is designed for the case when the learner cannot use all the samples to

choose the next weak learner and can only use a subset called the reservoir because of the

memory constraint. At each boosting round, the reservoir is filled efficiently with a sample

which maximizes the information of the entire set as projected onto the classifier space.

More generally a sampling approach called Monte Carlo Tree Search (Browne et al., 2012)

has gain much interest in the past years for the tremendous improvement for games such

as Computer Go. The purpose of MCTS is to find the optimal solution in a potentially huge

space organized as a tree by sampling this tree. The tree is traversed from top to bottom by

recursively applying a multi-armed bandit on the children of the current node until reaching

a leaf. A reward related to the optimal solution is then obtained and the outcome is back-

propagated up the root. The next sampling will use the accumulated statistics to prioritize the

sampling towards promising branches and eventually find the optimal value.

Contrary to what is the core purpose of MCTS, we are not interested in finding the best leaf or

leaves, but to sample among all the leaves, according to their weights. These two objectives

are very distinct when an important fraction of the total weight comes from a large population

of low-weighting leaves.

62

5.3. Weighted averages in machine learning

5.3 Weighted averages in machine learning

Given M positive weights wm ∈R+, m = 1, . . . , M and a function f : {1, . . . , M } →RD , we are

interested in the weighted average

M∑
m=1

wm f (m) (5.1)

when M is too large to allow an exhaustive visit of the weights. Our interest in weighted average

stems from the fact most of the important quantities in machine learning can be expressed as

an empirical expectation, such as

– The edge of a weak-learner in Adaboost∑
m

exp(−ymψ(xm))︸ ︷︷ ︸
wm

ymh(xm)︸ ︷︷ ︸
f (m)

. (5.2)

– The gradient for training a neural network

∑
m

∇αL(ψ(xm ;α), ym) =∑
m

‖∇αL(ψ(xm ;α), ym)‖︸ ︷︷ ︸
wm

∇αL(ψ(xm ;α), ym)

‖∇αL(ψ(xm ;α), ym)‖︸ ︷︷ ︸
f (m)

. (5.3)

– The prediction function of kernel machines∑
m
αm ymk(xm ,x) =∑

n
αmk(xm ,x)︸ ︷︷ ︸

wm

ym︸︷︷︸
f (m)

. (5.4)

In these examples, a weight can be interpreted as the “importance” of a sample. This impor-

tance is large either because the said sample impacts a lot in the training using ERM(induces a

large loss, or a large gradient norm), or because it impacts a lot the predicted value (has a large

kernel value with the evaluation point). More importantly, in many practical situations, the

vast majority of them are negligible or more precisely, large populations of samples contribute

to a fraction of the total of the cumulative weights. We aim at devising an approach – relying

on a prior tree structure on the weights – that (1) balances computation proportionally to

the weights themselves, and (2) does so by looking at a fraction of the full family of weights,

opening the way to extremely large samples sets.

63

Chapter 5. Importance Sampling Tree

5.3.1 Importance sampling for Monte-carlo simulations

Given an arbitrary distribution µ on {1, . . . , M } which puts non-zero probabilities on all the

values, we can rewrite Equation (5.1) as

∑
m
µ(m)

wm

µ(m)
f (m) =Em∼µ

[
wm

µ(m)
f (m)

]
(5.5)

which we can approximate by generating m1, . . . ,mK i.i.d ∼µ, and using the empirical expec-

tation

Êm∼µ
[

wm

µ(m)
f (m)

]
= 1

K

K∑
k=1

wmk

µ(mk)
f (mk). (5.6)

The µ which minimizes the variance of the expectation is: µ(m) = wm∑
k wk

, This implies that we

should invest the computation proportionally to the weights, and minimize optimally the

variance of our estimator.

This choice makes sense if computing
∑

k wk is tractable, or so cheap to compute compared

to the computation of the f (m)s that it still provides a substantial gain. However, we are

interested in situations where not only wm is more expensive to compute than f (m), but we

also aim at scaling M up to values far greater than the number of CPU operations we have at

our disposal.

5.4 Importance Sampling Tree (IST)

We present a data-structure called Importance Sampling Tree (IST), which is a binary tree

carrying the weights w1, . . . , wM at its leaves, and having at each internal node statistics about

the weights in the leaves below it. Given such a tree, we use a recursive sampling procedure

that results in a sampling of the leaves, and – in a manner similar to the MCTS – we update

the estimates at the nodes every time a sampling is done, and modulate the sampling policy

accordingly.

Let T be the set of tree nodes, x∗ ∈ T the root node, L⊂ T the leaves. Since the leaves carry

the weights w1, . . . , wM , for any leaf x ∈L let m(x) ∈ {1, . . . , M } be the index of the weight there.

Note that we will often make a confusion between x ∈L and m(x), identifying a leaf with its

index.

For any internal node x ∈ T \L, let c0(x),c1(x) ∈ T be its two child nodes. Finally let L(x) be

the leaves of the sub-tree starting at x and w(x) the sum of their weights. Hence, in particular

∀ x ∈L, w(x) = wm(x).

Given a family of “bifurcation probabilities”Θ= (θx)x∈T \L ∈ [0,1]‖T \L‖, that is for each node

the probability to “go down on the right”, we can derive for each node x and each leaf m a

64

5.4. Importance Sampling Tree (IST)

probability µΘ(m; x) to reach the leaf m if we start from x and follow the θs at each node we

meet. This probability can be defined recursively as

∀x ∈ T , µΘ(m; x) =
1{m(x)}(m) if x ∈L

(1−θx)µΘ(m;c0(x))+θxµΘ(m;c1(x)) otherwise.
(5.7)

and it is trivial that ∀x ∈ T ,Θ ∈ [0,1]‖T ‖, these probabilities sum to 1 and µ(.; x,Θ) is a distri-

bution on {1, . . . , M }. We can easily sample according to these distributions with a recursive

procedure: For a leaf, return the leaf number, and for an internal node x recursively pick one

of the two child nodes at random according to θx . Given a leaf m, the µΘ(m; x) for all the

parents x of m can be computed in O(D).

5.4.1 Adaptive sampling

We could use many different policies to modulate the θx and bias the sampling according to

what we have observed. We present a strategy, based on accumulating at every node statistics

S(x) about the weights observed during the previous sampling. Here S(x) = (s(x),ν(x)) where

s(x) is the sum of the weight estimates wm/µΘ(m; x), and ν(x) is the number of times the

sampling went through x. For ν(x) > 0, ŵ(x) = s(x)/ν(x) is an unbiased estimator of w(x). We

set θx to the ratio of the number of leaves in the child sub-trees if we do not have enough

sampling for proper estimations, and to the ratio of the estimations of the weights otherwise.

Formally with U a meta-parameter setting the minimum number of observations we request

for biasing:

θx =


‖L(c1(x))‖

‖L(c0(x))‖+‖L(c1(x))‖
if ν(c0(x)) <U

or ν(c1(x)) <U ,

ŵ(c1(x))

ŵ(c0(x))+ ŵ(c1(x))
otherwise.

(5.8)

Hence, if we need T samples, for t = 1, . . . ,T :

1. Recursively sample a path down the tree to a leaf mt , according to µΘt (. ; x∗).

2. For every node x visited on that path compute S t+1(x) and θt+1
x according to Equation

(5.8) . All other nodes remain unchanged.

Then, following § 5.3.1, we can use

M∑
m=1

wm f (m) ' 1

T

T∑
t=1

wmt

µΘt (mt ; x∗)
f (mt). (5.9)

Note that the Θt s in this expression – and the resulting µs – are the ones that were in the

tree when each sampling was done. Also, note that the update of S and Θ can be delayed,

65

Chapter 5. Importance Sampling Tree

suppressed, or done in an arbitrary order if implementation constraints impose it.

5.5 Experiments and results

5.5.1 Multi-layer Neural Network on a 2D synthetic data-sets

Figure 5.2: Two synthetic data-sets (Sinusoidal and batman) used to evaluate the training
of multi-layer perceptron using importance sampling tree. Both of these data-sets require
capturing fine details to separate the categories.

We consider two 2D synthetic problem, depicted in Figure 5.2. In Sinusoidal data-set the

boundary between the two classes is an oscillation of variable frequency and for the Batman

data-set it is the bat symbol which separates the classes. Both of the problems exhibit the

difficulty of many real-world data-sets in which the core issue is to capture fine details of the

boundary.

For the Sinusoidal data-set, we train a neural network with two units as input standing for

the coordinates in the [0,1]2 domain, two fully connected hidden layers with 40 units each,

and one output unit. The transfer function is the hyperbolic tangent, and the weights are

initialized layer after layer so that the response of every unit before non-linearity is centered,

of standard deviation 0.5. We use the quadratic loss for training, and a pure stochastic gradient

descent, one sample at a time. Every 1,000 gradient steps, we compute a validation loss and

adapt the step size. The experiments are repeated for 10 times with different train/validation

splits.

For the Batman data-set, we used a 3 layer network with two input units as input standing for

the coordinates in the [0,1]2 domain. The two hidden layers have 32 neurons each interleaved

66

5.5. Experiments and results

with rectified linear units as non-linear activation functions. The final layer is a linear classifier.

We use the binary logistic loss as the loss function. The model is trained for 20 epochs

with a batch size of 64 and the validation performance is calculated after each epoch. The

experiments are repeated for 10 times with different random seeds and we average out the

results.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 500 1000 1500 2000 2500 3000

V
al

id
at

io
n

lo
ss

Epochs

Sinusoidal data-set

Uniform sampling
IST (loss)
IST (gradient norm)

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

0 2 4 6 8 10 12 14 16 18 20

V
al

id
at

io
n

er
ro

r

Epochs

Batman data-set

Uniform sampling
IST (loss)

Figure 5.3: A multi-layer neural network on two synthetic 2D problems. The first column
represents the sampling heat-map on the problems using IST. As we can see the computation
focuses near the decision boundaries.

We compare three strategies: 1) ANN is the baseline, using uniform sampling for SGD. 2) ANN-

IST samples with IST using the gradient norm as importance function, following Equation

(5.3) and the same tree structure. However we did not evaluate ANN-IST with gradient norm

as importance on the Batman data-set because computing the per-sample gradient in a mini-

batch requires extra computation. 3) ANN-IST-L In this strategy we use the loss per sample

instead of the gradient norm as the importance function. Since the gradient norms and loss

67

Chapter 5. Importance Sampling Tree

are order preserving, using loss as importance is a reasonable proxy. Also it is computationally

efficient. Our results are summarized in Figure 5.3 and Table 5.2. IST improves convergence

speed of SGD on both the data-sets by focusing the computation on the important points.

Table 5.2: Classification error of different sampling strategies on the synthetic Sinusoidal and
Batman data-sets.

Data-set ANN ANN-IST ANN-IST-L

Sinusoidal 0.0264±0.0029 0.0062±0.0014 0.0158±0.0060
Batman 0.0976±0.0170 - 0.0692±0.0126

5.5.2 Deep Convolution Network on CIFAR10

1 node

10 nodes

50k nodes

1.8m leaves

Split classes
(' 4 levels)

Split samples
(' 13 levels)

Synthetic deforma-
tions
(' 6 levels)

. . .

.

.

.

Figure 5.4: Structure of the sample tree we use to train a CNN on the CIFAR10 data-set. The
first levels of the tree split the classes uniformly, the next levels split the images of each
class according to the L2 metric, until we get to individual images, from which the tree splits
synthesized images using the same “deformation tree” replicated for each single original
image.

For the synthetic examples of the previous section, we have exploited the Euclidean structure

of the problem to build the IST. The main (potential) weakness for using it in practice is the

availability of a tree structure consistent with the gradient norm.

We show in this section that this is not the case, and that a very natural tree structure leads

to consistent sampling of training points with large gradient norms on a state-of-the-art

large-scale problem of image classification.

Our experiments replicate the training of a network1 designed for a Kaggle competition on

the CIFAR10 data-set (Krizhevsky and Hinton, 2009), which relies on synthetic deformations

of the original 50,000 images with translations and scalings to create a total of 1.8 millions

images.

The IST for this data-set has the structure depicted in Figure 5.4: we first split the classes, then

the images in each class separately with a top down clustering using the image gradient maps.

1https://github.com/nagadomi/kaggle-cifar10-torch7

68

https://github.com/nagadomi/kaggle-cifar10-torch7

5.5. Experiments and results

 0.001

 0.01

 0.1

 1

 1 5 10 20

C
um

ul
at

iv
e

lo
ss

Epoch number

IST
Uniform

Figure 5.5: CNN experiment on CIFAR10. This scatter plot shows the ratio between the cumu-
lative loss obtained with the IST-based sampling, and the same with the uniform sampling
vs. the latter. Each dot corresponds to an epoch. As expected, when learning progresses, the
cumulative loss goes down (dots move to the left) and gain with the IST goes up (dots move to
the top). This is both due to a better estimate in the IST and a higher variance in the sample
individual losses.

That is, we recursively apply a K -means with K = 2 at each node: starting from the full set of

images at the top, the set is clustered into two sub-sets, which are themselves each clustered

in two, etc. until reaching a single image, where we then stop and create a leaf. From that

point we split the synthetically generated images by clustering the deformations themselves

so that similar deformations are close in the tree.

We use the gradient norm as the importance for each sample in the IST, and we update

it after every step of mini-batch gradient descent. We exploit the property of the matrix

product as described in Goodfellow (2015) to compute the gradient norms efficiently for the

fully connected layers. For the convolutional layers we have the per-sample gradients in the

intermediate computations which we use to compute the gradient norms by trading some

computational efficiency.

To evaluate performance, for both the uniform sampling that we use as baseline – and allows

to replicate the error rate obtained in the original experiments with that network – and the

IST sampling, we compute for each epoch the cumulative sample loss. The scatter plot in

Figure 5.5 depicts the ratio between the latter quantity and the former as a function of the

former. The results show that IST allows to capture up to three times more loss in the late

69

Chapter 5. Importance Sampling Tree

stages of the optimization.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

Pr
ob

ab
ili

ty

Gradient norm

Uni epoch 1
Uni epoch 3
Uni epoch 5
IST epoch 1
IST epoch 3
IST epoch 5

Figure 5.6: Gradient norms of the sampled training points on three different epochs. This
plot shows that as the training progresses (1) most of the examples get a small gradient norm,
and a small proportion of “hard” examples appears, with greater gradient norm, and (2) the
sampling based on IST (red curves) is always better than uniform (blue curves), and improves
in time, as reflected by the increasing gap between the curves.

In Figure 5.6 we show that the IST-based sampling is able to leverage the structure of the

tree to sample training points with large gradient norms. In particular, after five epochs, the

0.75-quantile of the gradient norm is 2.64×10−4 with the uniform sampling, and 0.52 with the

IST.

To assess the stability of the convergence of IST, we also computed the correlation between

the ŵ after each epoch between two randomized runs. The correlation goes from −0.017 after

the first epoch, to 0.9897 after 10 epochs and remains above this value after that, showing that

the two runs lead to virtually identical weight values. Figure 5.7 shows this result.

5.6 Discussion

We have presented a simple data-structure for the estimation of weighted sums over very

large data-sets. Instead of sampling uniformly, or designing a priori a sampling scheme, our

data-structure adaptively modulates the sampling according to data it has sampled previously.

Because it compensates the sampling bias at any time, estimation of the empirical quantities

of interest is done at the same time the sampling is improved.

70

5.6. Discussion

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

C
or

re
la

tio
n

co
ef

fi
ci

en
t

Epochs

Figure 5.7: Graph showing the correlation coefficient between the sampling weights predicted
by IST between two randomized runs along the epochs. As we can see two of the runs
converges to the same distribution after few epochs.

Two key elements remain to be investigated thoroughly. The first is the construction of the tree

itself. In our experiments on real data, it was constructed with a recursive partitioning based

on the Euclidean metric. The rationale behind this strategy is that “close samples” should

be “similarly weighted”. This makes sense for the problem with a given kernel such as the

synthetic data-sets on the Euclidean plane where a Gaussian kernel under a Euclidean metric

is suitable. But this is an unsatisfactory proxy for the Neural networks since we are learning

the kernel along with the classifier.

The second point is the sampling procedure. We have presented a strategy using empirical

weight estimates. What is missing in our approach is a bandit-type use of a confidence interval

on the estimate. For instance based on the Hœffding’s inequality, to get something similar to

the UCB policy used in MCTS.

71

6 Conclusions

6.1 Summary

In this thesis we have presented new algorithms for learning embeddings and a new data-

structure for the efficient estimation of an empirical expectation over a large collection of data

points.

In Chapter 3 we devised the WARCA metric learning algorithm which learns an embedding

under a Mahalanobis distance by minimizing a loss defined on the weighted sum of the

precision at different ranks. WARCA is designed to learn from data with a very large number of

classes and few examples per class. It is also designed to tackle the problem settings where not

all the classes are available during training (zero-shot learning). Our application of WARCA

focused on the person re-identification problem for video surveillance and our results on 9

standard person re-identification data-sets show that WARCA can improves the state of the art.

We have also presented a simple regularizer which prevents rank-deficient linear mappings in

low rank matrix optimization by encouraging orthonormal linear maps. We have shown its

effectiveness in the training of WARCA. This regularizer has later become popular in the deep

learning community for training robust and very deep neural networks (Cisse et al., 2017b;

Henaff et al., 2016; Xie et al., 2017; Vorontsov et al., 2017).

Chapter 4 was aimed at designing a parameter efficient and robust recurrent neural network

which is an effective learning algorithm for embedding sequences. The algorithm we presented

called Kronecker Recurrent Units (KRU) is parameter efficient and flexible through a Kronecker

factored recurrent matrix and it is robust to the vanishing and exploding gradient problem

by enforcing the same regularizer we presented for WARCA on the recurrent weight matrices.

We have shown that enforcing this regularizer is computationally efficient for KRU because of

the Kronecker factorization. The experimental results on 7 standard data-sets have proved

the effectiveness of KRU and the KRU variant of LSTM in bringing down the number of

parameters, improving the computational efficiency and the robustness of RNN without

trading the statistical performance.

73

Chapter 6. Conclusions

In Chapter 5 we presented the Importance Sampling Tree (IST) data-structure for selecting

and modulating the important points in a large data-set to efficiently estimate an empirical

expectation over the data-set. IST organizes the data-set into a tree by using the given metric

on the data and use this metric regularity to sample efficiently the important points and at the

same time modulate the sampling weights using the points it has sampled previously. We have

shown that, using IST can improve the performance of stochastic gradient descent by reducing

the variance of the stochastic gradients, on the synthetic data-sets. On the CIFAR10 data-

set where the metric is being learned along with the classifier using a convolutional neural

network, we show that IST can still sample and modulate important points by organizing the

data using a hierarchical 2-means clustering on the edge features. However we did not observe

an improvement in the performance of SGD compared to uniform sampling.

6.2 Future directions

The WARCA algorithm we developed is a shallow learning algorithm. It works well when we

have a good kernel function which captures the similarity between the data points well, such

as the χ2 kernel on the hand designed image features. However WARCA does not perform well

when we do not have a good kernel function on our data representation. For example, when

the data representation is raw pixels instead of hand designed image features. Convolutional

neural networks (CNNs) (LeCun et al., 1998) have proved to be an effective algorithm for

learning from the raw pixels. CNNs learn a hierarchical kernel parametrized by convolutions

along with the linear discriminator. However CNNs are shown to be vulnerable to adversarial

perturbations in the input images (Szegedy et al., 2013; Fawzi, 2016; Cisse et al., 2017b).

It would be interesting to see a linear WARCA as a layer on convolutional neural network,

in particular whether WARCA could improve the robustness of CNNs. WARCA is not only

designed to discriminate classes (maximize inter class distance) but also it explicitly minimizes

intra class distance which the standard sample decomposable loss functions used with CNNs

does not do. Incorporating this constraint might improve the robustness of CNNs.

The application of Kronecker matrices in machine learning is not just restricted to recurrent

neural networks. It is useful for machine learning problems with very high dimensional input

or output spaces where even learning a linear model is computationally prohibitive. Examples

of such problems include extreme multi-label classification and machine translation. Current

approaches in extreme multi-label classification rely on low-rank factorizations. In machine

translation the current models restrict the size of the vocabulary or use approximate loss

functions. However these models suffer from the problem of long-tail due to the low-rank

methods and the use of approximate loss functions. As we go down the tail, the performance of

these methods deteriorates rapidly. Predicting accurately the tail labels in extreme multi-label

classification and correctly modeling the rare words in natural language processing can be

beneficial in improving the performance and Kronecker matrices seem to be a promising

choice.

74

6.2. Future directions

Our importance sampling tree (IST) concludes with interesting avenues for future research.

We have empirically showed that IST converges to its stationary distribution. However under

what conditions will it converge is an open theoretical question and an answer to this question

would guide us to a better design of IST.

75

A Chapter 2 Appendix

A.1 Perceptron convergence proof

Theorem 3. If the data is linearly separable with a margin γ > 0, that is, there exists w∗ :

ym(w∗T xm∗) ≥ γ and ‖xm‖ ≤ R for all m ∈ {1, . . . , M } then Perceptron converges to 0 empirical

risk in t ≤ R2‖w∗‖2

γ2 steps (Novikoff, 1962).

Proof. The proof is a simple application of triangle inequality and Cauchy-Schwarz inequality.

Consider a step t of Perceptron which makes mistake on (xt , yt):

wt = wt−1 + yt xt (A.1)

‖wt‖2 = ∥∥wt−1 + yt xt
∥∥2 (A.2)

≤ ‖wt−1‖2 +‖xt‖2 (A.3)

≤ ‖wt−1‖2 +R2 (A.4)

≤ tR2 (A.5)

Now consider the dot product wT
t w∗, the above A.5 implies:

wT
t w∗ ≤ ∥∥w∗∥∥ptR (A.6)

wT
t w∗ = (wt−1 + yt xt)T w∗ (A.7)

≥ (wT
t−1w∗+γ) (A.8)

≥ tγ (A.9)

77

Appendix A. Chapter 2 Appendix

Combining A.6 and A.9:

tγ≤p
tR

∥∥w∗∥∥ (A.10)

p
t ≤ R ‖w∗‖

γ
(A.11)

t ≤ R2 ‖w∗‖2

γ2 (A.12)

78

B Chapter 3 Appendix

B.1 Metric learning

Most of the existing similarity measure learning approaches have been developed in the

context of Mahalanobis distance learning paradigm (Xing et al., 2002; Weinberger and Saul,

2009; Davis et al., 2007; Mignon and Jurie, 2012; Köstinger et al., 2012). These methods

essentially find a linear transformation of the data and then do the nearest neighbor search

to find the points which are similar to the queried point in the projected space. Formally,

Given M data points (x1,x2, ...,xM) : xn ∈RD and labels (y1, y2, ..., yM) : yi ∈ {1, ...,Q}, where Q

is the number of classes, these methods aims at learning a linear projection matrix W where

the distance DW(xi ,x j) = ‖W(xi −x j)‖2
2 is small for similar pairs and large for dissimilar pairs.

Based on the way the problem is formulated the algorithms for learning W involve either

optimization on the space of positive definite matrices or spectral methods on the second

order statistics of the data. An illustration of metric learning using Mahalanobis metric is

given in the figure B.1. Here we we present some of the most elegant models.

••
•••

• ••
•

••
•••

• ••
•

•• ••• •
•• •

•• ••• •
•• •

Learned metric

••
•••

• ••
•

••
•••

• ••
•

•• ••• •
•• •

•• ••• •
•• •

Figure B.1: A schematic illustration of metric learning.

79

Appendix B. Chapter 3 Appendix

B.1.1 Principal component analysis

PCA computes a linear transformation W that projects the D-dimensional data points into D ′

dimensional subspace (1 ≤ D ′ ≤ D) that minimizes the L2 reconstruction error or maximizes

the variance of the projected inputs, subject to the constraint that the columns of W are

orthonormal . Thus the objective of the PCA can be written as an optimization problem in

terms of the data covariance matrix C:

C = 1

M

M∑
m=1

(xm −µ)(xm −µ)t (B.1)

where µ= 1
M

∑M
m=1 xi is data mean vector. The PCA optimization problem is given as follows.

max
W

tr ace(WT CW)

subject to WWT = I.
(B.2)

The above equation also called as the Rayleigh-Quotient has an elegant closed form solution

in terms of the first K Eigen vectors of the covariance matrix. By using the representation

theorem we can kernelize PCA and thus have a non-linear variant, which is very handy for

the problems where the data lives in a non-linear low-dimensional manifold. PCA does not

exploit the labels to generate more informative projections but it has some good properties

in-terms of reducing the noise in the data as well as reducing the dimensionality of the input

data thereby improving the performance of nearest neighbors and accelerating the nearest

neighbor search.

B.1.2 Fisher discriminant analysis

Fisher discriminant analysis aims at finding a linear transformation of the data such that in

the projected space the intra class scatter is minimized and inter class scatter is maximized.

The inter class and intra class scatter matrices are defined by:

Ci nter = 1

Q

Q∑
q=1

µnµ
t
n

Ci ntr a = 1

M

Q∑
q=1

∑
i∈cl ass(q)

(xi −µq)(xi −µq)t

(B.3)

80

B.1. Metric learning

where µq is the class q data mean vector. Thus FDA optimization problem is given as follows.

max
W

tr ace(
WT Ci ntr aW

WT Ci nter W
)

subject to WWT = I.

(B.4)

Similar to PCA the above equation has a closed form solution in terms of the Eigen vectors of

C−1
i nter Ci ntr a . FDA and its kernel variant (Schölkopf and Smola, 2002) is one of the most widely

used algorithms for dimensionality reduction and for metric learning. The current state of the

art methods on many person re-identification datasets is some variant of FDA (Xiong et al.,

2014).

Large margin nearest neighbors (Weinberger and Saul, 2009)

Weinberger and Saul (2009) proposed a Mahalanobis metric learning approach in a large

margin setting by exploiting the local structure in the data. For each data-point x the points

which doesn’t belong to its class and are with in the k-nearest neighbor radius is penalized and

at the same time the it also penalizes large distance between the k-nearest points having the

same label. The above ideas can be realized by solving the following optimization problem

min
W

λ
∑
j i

‖WT (xi −x j)‖2 + (1−λ)
∑

i , j i

∑
l

(1− yi l)
[

1+‖WT (xi −x j)‖2 −‖WT (xi −xl)‖2
]
+

(B.5)

Where [x]+ is the standard hinge loss, That is, [x]+ = max(0, x) and λ is the parameter con-

trolling the trade-off between minimizing the k-nearest neighbor distance between similar

points and penalizing the invading points in the k-nearest neighbor radius. Though this is

an elegant formulation there are some inherent difficulties in solving this problem in large

scale. The above formulation is not convex. We can get away from that problem by replacing

W by M = WWT but then it is computationally expensive because of the positive semi-definite

constraint on the matrix M. The authors propose a gradient descent algorithm, with projec-

tions of current parameter estimate on to the positive semi-definite cone after each gradient

update. This projection step makes the formulation difficult to apply in large scale setting as it

involves a spectral decomposition at each gradient iteration.

B.1.3 Information-theoretic metric learning (Davis et al., 2007)

Davis et al. (2007) exploits the relationship between multivariate Gaussian distributions and

the set of Mahalanobis distances. The idea is to search for a distance metric M that satisfies

the constraints from the point labels and at the same time close to a distance metric prior

M0. The closeness acts as a regularizer and it is captured through the KL divergence between

81

Appendix B. Chapter 3 Appendix

the corresponding distributions. The constraints enforce that the distance between similar

pairs are below a threshold, that is DM(xi ,x j) ≤ l and the distance between dissimilar points

are large, ie DM(xi ,x j) ≥ u. Solving the resulting optimization involves Bregmen projections

(Bregman et al., 2003).

B.1.4 KISS metric learning (Köstinger et al., 2012)

Köstinger et al. (2012) proposes KISS (Keep It Simple and Straight forward) metric learning.

This method considers two independent data generating distributions one for similar and

other for dissimilar pairs. Then whether a pair of points (xi ,x j) is dissimilar or not can be

obtained by a log-odd ratio test. Under Gaussian assumptions the likelihood ratio between

two points xi and x j can be written as

ψi j = (xi −x j)t (ΣS −ΣD)(xi −x j)+ log (|ΣD|)− log (|ΣS |), (B.6)

where ΣS and ΣD are the covariance matrices for similar pairs of points S and dissimilar pairs

of points D respectively. Assuming zero mean on pairwise differences between points in S
and D. The covariance matrices can be written as follows:

ΣS = 1

|S|
∑

(i , j)∈S
(xi −x j)(xi −x j)t

Σd = 1

|D|
∑

(i , j)∈D
(xi −x j)(xi −x j)t

(B.7)

The smaller the ψi j is, the similar the points are. By eliminating the constant term and

projecting (ΣS −ΣD) to the PSD cone they obtain a metric which can be used to match points.

B.1.5 Siamese neural network (Chopra et al., 2005)

Chopra et al. (2005) proposes a non-linear transformation based similarity measure learning

using convolutional neural network. This model is specifically designed in the context of face

verification and the learning process minimizes a discriminative loss function that drives

similarity measure to be small for similar pairs of faces and large for different pairs. The

mapping function from raw pixel features to target feature space is a convolutional neural

network which is designed to be robust against geometric distortions.

82

B.2. Person re-identification

B.1.6 Chopping (Fleuret and Blanchard, 2005)

A notable exception from the Mahalanobis distance based similarity measure learning paradigm

is the chopping algorithm (Fleuret and Blanchard, 2005). It works by creating a large number of

random binary splits of data labels such that all points having the same label are put together.

Classifiers are trained on these binary splits and for prediction, given two samples the response

of the split predictors are combined with a Bayesian rule into a posterior probability of similar-

ity. Our current research is mainly based on this approach. The original chopping algorithm

was developed to create binary splits of data label and use Perceptron as the predictor but it is

straight forward to extend the algorithm to K -ary (2 ≤ k ≤ number of training classes) splits of

data label and use more powerful predictors such as Adaboost, Support vector machine or any

other algorithms.

B.2 Person re-identification

Person re-identification (Gong et al., 2014) is the problem of matching people across disjoint

camera views. This is a very challenging problem that has tremendous applications in var-

ious domains of video-surveillance. As illustrated in Figure B.2 the application that we are

primarily interested in is improving the performance of the multi-object tracking by person

re-identification to disambiguate tracklets (Shitrit et al., 2011).

Figure B.2: Person re-identification to improve multi object tracking. Image of the occluded
person is matched against a set of gallery images with the help of re-identification model to
resolve identity switches, thereby improving tracking.

This problem is challenging because of the illumination, view point changes, occlusions and

various other non-linear transformations between the images of the person obtained between

multiple camera views. The research efforts for tackling this problem can be broadly classified

into two categories (Gong et al., 2014): 1) Design features that are discriminative and invariant

to various non-linear transformations. 2)Develop machine learning algorithms that exploits

83

Appendix B. Chapter 3 Appendix

existing labeled data information to learn the semantics that are invariant across various

complex transformations.

B.2.1 Performance measures for person re-identification

The most commonly used performance metric for person re-identification is the Cumulative

Matching Characteristic(CMC) curve (Gong et al., 2014). The CMC curve shows how the

matching performance increases as the allowed number of returned image increases. To

generate the CMC curve for a particular algorithm, the rank of the correct observation is

recorded and aggregated over the entire test set to generate the Match Characteristic M(r), the

probability that the rank r choice is right and then this is accumulated to get the CMC curve.

Pedagadi et al. (2013) uses PUR (Proportion of Uncertainty Removed) scores. Let N is the

number of images against to which an image is matched against. When we match a person

image against a set of images we can assume that each image in the set has equal prior

probability of being correct therefore the initial uncertainty or entropy is log (N). After the

matching, the posterior probability that the retrieved image at rank r is the correct match

is the match characteristic M(r) and expected uncertainty at rank r is −∑r
i=1 M(i)l og (M(i)).

Therefore the proportion of uncertainty removed or PUR score at r is the difference between

log (r) and the expected uncertainty at rank r . To make it invariant to the gallery size we can

normalize it by initial entropy. Thus PUR score is defined as:

PU R = log (N)+∑N
r=1 M(r)l og (M(r))

l og (N)
(B.8)

B.3 Feature space visualization for WARCA

In Figure B.3 and B.4 we show the visualization of feature space in the χ2 kernel space and

the feature space learned by WARCA on iLIDS and CUHK01 dataset using the tSNE algo-

rithm (Maaten and Hinton, 2008). The tSNE visualizations illustrate that the WARCA embed-

dings bring together points from the similar class and separates dissimilar class.

84

[118]

[118]

[118]

[118]

[49]

[49]

[49]

[12]

[12]

[12]

[12]

[12]

[78]

[78]

[78]

[78]

[41]

[41]

[41]

[2]

[2]
[2]

[2]

[34] [34][34]

[34]
[34]

[69]
[69]

[69]

[112]

[112]

[112]

[7]

[7]

[90]

[90]

[113]

[113]

[113]

[113]

[113]

[43]

[43]

[43]

[43]

[43]

[43]

[36]

[36]

[36]
[36]

[36]

[36]

[36]

[56]

[56]

[56] [99]

[99]

[99]

[99]

[99]

[99]

[65]

[65]

[65]

[65][65]

[76]
[76]

[76]

[76]

[115]

[115]

[23]

[23]

[23]

[23]

[23]

[23]

[117]

[117]

[117]

[30]

[30]

[30]

[46]

[46]

[46][46]

[46]

[15]

[15]

[15]

[15]

[15]

[15]

[15]

[107]

[107]

[107]

[107]

[26]

[26]
[26]

[26]

[26][26]

[26]

[26]

[108] [108] [108]

[84]

[84]

[71]

[71]

[71]

[83]

[83]

[83]

[83]

[39]

[39]
[39]

[39]

[39]

[39]

[114]

[114][114]

[114]

[114]

[33]

[33]

[33]

[33]
[33]

[32]

[32]

[32]

[32]

[32]

[32]

[32]

[32]

[73]

[73]

[73]

[72]

[72]

[72]

[53]

[53]

[53]

[53]

[53]

[25]

[25]

[25]

[25]

[25]

[25][25]

[25]

[4]

[4]

[4]

[97]

[97]

[110]

[110]

[110]

[110]

[40]

[40]

[40]

[40]

[40]

[40]

[17]

[17]

[8]

[8]

[92]

[92]

[9]

[9]

[9]

[9]

[89]

[89]

[89]

[1]
[1]

[1]

[1]

[58]

[58]

[58]

[79]

[79]

[79]

[79]

[44]

[44]

[44]

[44][44]

[44]

[101]

[101]

[38]

[38]

[38]

[38]
[38]

[38]

[11]
[11]

[11]

[11]

[11]

[27]

[27]

[27]

[27]

[27]

[27]

[52]

[52]

[52]

[52]

[52]

[37]

[37]
[37]

[37]

[37]

[37]

[74]

[74]

[74]

[74]

[74]

[80]

[80]

[80][80]

[80]

[80]

TSNE visualization of Chi2 Kernel Space

[118][118][118][118]

[49][49][49]

[12]
[12][12]

[12]
[12]

[78]
[78][78][78]

[41][41][41]

[2][2][2]
[2]

[34]
[34]

[34][34]
[34]

[69][69][69]

[112][112][112]

[7][7]

[90][90]

[113]

[113]

[113]
[113]

[113]

[43]

[43][43]

[43]
[43]

[43]

[36]

[36][36]

[36]

[36]
[36]

[36]

[56][56][56]

[99]

[99]
[99][99]

[99]
[99]

[65][65]

[65][65]
[65]

[76][76][76][76]

[115][115]

[23]

[23]
[23]

[23]

[23]

[23]

[117][117][117]

[30][30][30]

[46]
[46][46]
[46][46]

[15]

[15][15]
[15] [15]

[15] [15]

[107][107]
[107][107]

[26]

[26]

[26]

[26] [26]

[26]

[26] [26]

[108][108][108]

[84][84]

[71][71][71]

[83][83][83]
[83]

[39]

[39][39]
[39]

[39]
[39]

[114][114]
[114]

[114][114]

[33]
[33]
[33]
[33][33]

[32]

[32]

[32]
[32]

[32]

[32]
[32]

[32]

[73][73][73]

[72][72][72]

[53]
[53]
[53]

[53]

[53]

[25]
[25]

[25]

[25]

[25]

[25]

[25]

[25]

[4][4][4]

[97][97]

[110][110]
[110]
[110]

[40]

[40]
[40]

[40][40]

[40]

[17][17]

[8][8]

[92][92]

[9]
[9]
[9]
[9]

[89][89][89]

[1][1][1]
[1]

[58][58][58]

[79]
[79][79][79]

[44]

[44]

[44][44]

[44]
[44]

[101][101]

[38]

[38]

[38]
[38]

[38] [38]

[11]
[11]

[11][11]
[11]

[27]

[27]

[27]
[27]

[27]

[27]

[52]
[52]

[52]

[52]
[52]

[37][37]

[37]
[37]

[37][37]

[74]
[74][74]

[74]
[74]

[80]

[80] [80]
[80]

[80] [80]

TSNE visualization of WARCA Space

Points in the χ2 kernel space. Points in the space learned by WARCA.

Figure B.3: Feature space visualization on iLIDS data-set using tSNE (Maaten and Hinton, 2008).

[376][376]

[376]

[376]

[454][454]

[454]
[454]

[405][405]

[405][405]

[741][741]

[741][741]

[820][820]

[820]

[820]

[687][687]

[687][687]

[910][910]

[910]

[910]

[273][273]

[273]

[273]

[734][734]

[734]

[734]

[418]

[418]

[418]

[418]

[299][299]

[299]

[299]

[469]
[469]

[469]

[469]

[142][142]

[142]

[142]

[194][194]

[194][194]

[730][730]

[730]

[730]

[178][178]

[178]

[178]

[824][824]

[824]

[824]

[848][848]

[848][848]

[611]

[611]

[611]

[611]

[707]

[707]

[707]

[707]

[791][791]

[791]
[791]

[220]
[220]

[220]

[220]

[246][246]

[246]

[246]

[101]

[101]

[101]

[101]

[359][359]

[359]

[359]

[366][366]

[366] [366]

[902][902]

[902]

[902]

[398][398]

[398]

[398]

[425][425]

[425]
[425]

[692][692]

[692] [692]

[314][314]

[314][314]

[490][490]

[490]
[490]

[629]

[629]

[629]

[629]

[182][182]

[182]

[182]

[39][39]

[39][39]

[326][326]

[326]

[326]

[584][584]

[584][584]

[586][586]

[586]

[586]

[537][537]

[537]

[537]

[525]
[525]

[525]

[525]

[603][603]

[603]

[603]

[595][595]

[595]

[595]

[323][323]

[323][323]

[950][950]

[950]

[950]

[511][511]

[511] [511]

[877][877]

[877]

[877]

[881][881]

[881][881]

[384][384]

[384]

[384]

[212][212]

[212]

[212]

[634]
[634]

[634]

[634]

[582][582]

[582]

[582]

[787]
[787]

[787]

[787]

[306][306]

[306][306]

[641]

[641]

[641]

[641]

[879][879]

[879]

[879]

[742][742]

[742]

[742]

[291]

[291]

[291][291]

[225][225]

[225]
[225]

[295][295]

[295][295]

[172]

[172]

[172]

[172]

[936][936]

[936]

[936]

[552][552]

[552][552]

[855][855]

[855][855]

[714][714]

[714]

[714]

[217][217]

[217][217]

[522][522]

[522]

[522]

[773][773]

[773][773]

[725]
[725]

[725]

[725]

[650][650]

[650]

[650]

[235][235]

[235][235]

[555]
[555]

[555]

[555]

[688][688]

[688]
[688]

[945][945]

[945][945]

[249][249]

[249][249]

[471]

[471]

[471]

[471]

[875][875]

[875][875]

[63][63]

[63]
[63]

[813][813]

[813]

[813]

[671][671]

[671]

[671]

[380][380]

[380]

[380]

[497][497]

[497]

[497]

[666][666]

[666]

[666]

[784][784]

[784][784]

[357][357]

[357]

[357]

[817][817]

[817]

[817]

[296]

[296]

[296][296]

[305][305]

[305][305]

[5][5]

[5][5]

[613]

[613]

[613]

[613]

[951][951]

[951][951]

[810][810]

[810]

[810]

[515][515]

[515]

[515]

[544][544]

[544]

[544]

[935][935]

[935]

[935]

[752][752]

[752][752]

[551][551]

[551][551]

[867][867]

[867]

[867]

[19][19]

[19]

[19]

[778][778]

[778]

[778]

[576][576]

[576]

[576]

[270]

[270]

[270][270]

[753]

[753]

[753]

[753]

[62][62]

[62]

[62]

[610][610]

[610][610]

[739]

[739]

[739][739]

[821][821]

[821]

[821]

[937][937]

[937]

[937]

[674][674]

[674]

[674]

[661][661]

[661]
[661]

[962][962]

[962]

[962]

[389][389]

[389]

[389]

[50][50]

[50]

[50]

[46][46]

[46][46]

[180][180]

[180][180]

[118]

[118]

[118]

[118]

[406][406]

[406]

[406]

[929][929]

[929]

[929]

[954][954]

[954]

[954]

[717]

[717]

[717]

[717]

[236][236]

[236][236]

[598][598]

[598]

[598]

[230][230]

[230]

[230]

[324][324]

[324][324]

[782][782]

[782]

[782]

[673]

[673]

[673]

[673]

[56][56]

[56]

[56]

[957][957]

[957][957]

[620][620]

[620]

[620]

[350]

[350]

[350]

[350]

[720][720]

[720][720]

[102]

[102]

[102][102]

[640][640]

[640]

[640]

[123][123]

[123]

[123]

[535]

[535]

[535][535]

[191][191]

[191]

[191]

[427][427]

[427]

[427]

[259]

[259]

[259]

[259]

[282][282]

[282]

[282]

[832][832]

[832]

[832]

[573][573]

[573]

[573]

[143][143]

[143]

[143]

[401][401]

[401]

[401]

[575][575]

[575]

[575]

[809][809]

[809]

[809]

[325]

[325]

[325][325]

[700][700]

[700]

[700]

[232][232]

[232]

[232]

[853][853]

[853]

[853]

[301]
[301]

[301]

[301]

[330]
[330]

[330]

[330]

[693][693]

[693]

[693]

[618]
[618]

[618]

[618]

[278][278]

[278][278]

[965][965]

[965]

[965]

[404][404]

[404]

[404]

[483]

[483]

[483][483]

[286][286]

[286]

[286]

[747][747]

[747][747]

[913][913]

[913]

[913]

[52][52]

[52][52]

[255]
[255]

[255]

[255]

[48][48]

[48]

[48]

[378][378]

[378]

[378]

[685][685]

[685]

[685]

[963][963]

[963][963]

[956][956]

[956]

[956]

[395][395]

[395]
[395]

[823][823]

[823][823]

[407]

[407]

[407][407]

[619][619]

[619]

[619]

[201][201]

[201]

[201]

[863][863]

[863]

[863]

[896][896]

[896][896]

[570][570]

[570]

[570]

[842][842]

[842]

[842]

[20][20]

[20]

[20]

[181][181]

[181]

[181]

[604][604]

[604]

[604]

[854][854]

[854][854]

[109][109]

[109]

[109]

[912]

[912]

[912]
[912]

[69][69]

[69]

[69]

[458][458]

[458][458]

[321][321]

[321]

[321]

[337][337]

[337]

[337]

[545][545]

[545][545]

[165][165]

[165]

[165]

[11][11]

[11]

[11]

[759][759]

[759][759]

[931][931]

[931]

[931]

[179]

[179]

[179][179]

[417][417]

[417]

[417]

[762][762]

[762]

[762]

[751][751]

[751][751]

[627][627]

[627]

[627]

[336][336]

[336]

[336]

[934][934]

[934]

[934]

[577][577]

[577][577]

[647][647]

[647]

[647]

[474]

[474]

[474]

[474]

[690][690]

[690]

[690]

[738][738]

[738]

[738]

[958][958]

[958]

[958]

[338][338]

[338][338]

[513][513]

[513]

[513]

[516][516]

[516][516]

[239][239]

[239][239]

[103][103]

[103][103]

[560]

[560]

[560]

[560]

[633][633]

[633]

[633]

[127]

[127]

[127]

[127]

[72][72]

[72]

[72]

[445][445]

[445]

[445]

[539]
[539]

[539]

[539]

[243][243]

[243]

[243]

[542][542]

[542][542]

[652][652]

[652]

[652]

[361]

[361]

[361][361]

[245]

[245]

[245][245]

[428]

[428]

[428]

[428]

[196][196]

[196]

[196]

[86][86]

[86]

[86]

[277][277]

[277][277]

[160][160]

[160][160]

[509][509]

[509]

[509]

[106][106]

[106]

[106]

[21][21]

[21]

[21]

[36][36]

[36]

[36]

[463][463]

[463][463]

[670][670]

[670]

[670]

[227][227]

[227][227]

[436][436]

[436][436]

[462][462]

[462]

[462]

[76][76]

[76]

[76]

[316][316]

[316][316]

[266][266]

[266]

[266]

[872][872]
[872][872]

[574][574]

[574]

[574]

[53][53]

[53][53]

[658][658]

[658]

[658]

[327]

[327]

[327][327]

[22][22]

[22][22]

[263][263]

[263]

[263]

[911][911]

[911]

[911]

[594][594]

[594]

[594]

[333][333]

[333]

[333]

[166]

[166]

[166][166]

[439]

[439]

[439]

[439]

[711][711]

[711]

[711]

[362][362]

[362]

[362]

[925][925]

[925]

[925]

[901][901]

[901]

[901]

[288][288]

[288]

[288]

[917][917]

[917]
[917]

[185][185]

[185]

[185]

[470]
[470]

[470]
[470]

[646][646]

[646]

[646]

[579][579]

[579]

[579]

[805][805]

[805][805]

[429][429]

[429]

[429]

[605][605]

[605]
[605]

[92][92]

[92]

[92]

[766][766]

[766]

[766]

[16][16]

[16]

[16]

[507]
[507]

[507]

[507]

[485][485]

[485]
[485]

[70][70]

[70]

[70]

[265][265]

[265][265]

[447]

[447]

[447]

[447]

[272] [272]

[272] [272]

[581][581]

[581]

[581]

[377][377]

[377]

[377]

[65][65]

[65][65]

[959][959]

[959]

[959]

[44][44]

[44]

[44]

[391]
[391]

[391]

[391]

[85][85]

[85]
[85]

[865][865]

[865][865]

[876][876]

[876][876]

[189][189]

[189][189]

[761][761]

[761]

[761]

[562]

[562]

[562]

[562]

[82][82]

[82]

[82]

[701][701]

[701]

[701]

[32][32]

[32]

[32]

[370][370]

[370]

[370]

[122]

[122]

[122]

[122]

[6][6]

[6]

[6]

[421][421]

[421]

[421]

[789][789]

[789]

[789]

[679][679]

[679]

[679]

[757][757]

[757]
[757]

[609][609]

[609]

[609]

[508][508]

[508]

[508]

[561]

[561]

[561]

[561]

[856][856]

[856]

[856]

[596][596]

[596]

[596]

[532]
[532]

[532]

[532]

[133]
[133]

[133]

[133]

[715][715]

[715]

[715]

[443]

[443]

[443]

[443]

[745][745]

[745][745]

[718][718]

[718][718]

[147][147]

[147][147]

[309]
[309]

[309][309]

[198][198]

[198]

[198]

[894][894]

[894][894]

[364]

[364]

[364]

[364]

[355]

[355]

[355]

[355]

[1][1]

[1][1]

[686][686]

[686]

[686]

[373][373]

[373][373]

[113][113]

[113][113]

[558]

[558]

[558]

[558]

[137][137]

[137]

[137]

[776][776]

[776]

[776]

[955][955]

[955]

[955]

[564]
[564]

[564]

[564]

[369][369]

[369]

[369]

[78][78]

[78]

[78]

[861][861]

[861]

[861]

[557]

[557]

[557][557]

[420]

[420]

[420]

[420]

[281][281]

[281]

[281]

[169]

[169]

[169]

[169]

[625][625]

[625]

[625]

[591][591]

[591][591]

[852][852]

[852][852]

[254][254]

[254][254]

[580][580]

[580][580]

[623][623]

[623]

[623]

[276][276]

[276][276]

[905][905]

[905][905]

[780]
[780]

[780][780]

[667][667]

[667][667]

[788][788]

[788][788]

[151][151]

[151]

[151]

[385][385]

[385]

[385]

[260][260]

[260]

[260]

[482]

[482]

[482]
[482]

[175][175]

[175]
[175]

[148][148]

[148][148]

[684][684]

[684]

[684]

[253][253]

[253]

[253]

[173][173]

[173][173]

[381][381]

[381]

[381]

[89][89]

[89]

[89]

[14][14]

[14]

[14]

[193][193]

[193]

[193]

[589]

[589]

[589]

[589]

[636][636]

[636]

[636]

[131]
[131]

[131]
[131]

[280][280]

[280][280]

[315][315]

[315][315]

[9][9]

[9]

[9]

[213][213]

[213][213]

[221][221]

[221]

[221]

[329]

[329]

[329]
[329]

[410][410]

[410]

[410]

[948][948]

[948]

[948]

[475]

[475]

[475]

[475]

[411][411]

[411]

[411]

[891][891]

[891]
[891]

[915][915]

[915]

[915]

[426][426]

[426]

[426]

[550][550]

[550]
[550]

[540][540]

[540]

[540]

[851][851]

[851][851]

[248][248]

[248]

[248]

[654][654]

[654]

[654]

[748][748]

[748]

[748]

[807][807]

[807][807]

[926][926]

[926]

[926]

[387][387]

[387]

[387]

[268]
[268]

[268]

[268]

[318][318]

[318]

[318]

[792][792]

[792][792]

[802][802]

[802][802]

[920][920]

[920]
[920]

[409][409]

[409]

[409]

[368]

[368]

[368]

[368]

[258][258]

[258][258]

[585][585]

[585]

[585]

[33][33]

[33][33]

[486][486]

[486]

[486]

[668][668]

[668]

[668]

[99][99]

[99]

[99]

[161][161]

[161][161]

[174][174]

[174]

[174]

[769][769]

[769]

[769]

[64][64]

[64]

[64]

[251][251]

[251]

[251]

[432]
[432]

[432]

[432]

[721][721]

[721]

[721]

[840][840]

[840][840]

[833][833]

[833][833]

[630][630]

[630] [630]

[543][543]

[543][543]

[827][827]

[827]

[827]

[536]

[536]

[536]

[536]

[352][352]

[352]

[352]

[124][124]

[124][124]

[702][702]

[702]

[702]

[588]

[588]

[588]
[588]

[918][918]

[918]

[918]

[372][372]

[372]

[372]

[524][524]

[524]
[524]

[645][645]

[645]

[645]

[907][907]

[907][907]

[638][638]

[638]

[638]

[704][704]

[704]

[704]

[399]

[399]

[399]

[399]

[347][347]

[347]

[347]

[149][149]

[149][149]

[146][146]

[146][146]

[831][831]

[831]
[831]

[649][649]

[649]

[649]

[66][66]

[66][66]

[176][176]

[176]

[176]

[868][868]

[868][868]

[883][883]

[883][883]

[283]

[283]

[283][283]

[210][210]

[210]

[210]

[492][492]

[492][492]

[441][441]

[441] [441]

[452][452]

[452]

[452]

[59][59]

[59]

[59]

[677]
[677]

[677]

[677]

[518][518]

[518]

[518]

[961][961]

[961]

[961]

[451][451]

[451]

[451]

[967]

[967]

[967]

[967]

[47][47]

[47][47]

[207][207]

[207]

[207]

[446][446]

[446]

[446]

[615][615]

[615]

[615]

[882][882]

[882]

[882]

[322][322]

[322]
[322]

[502]

[502]

[502]

[502]

[159][159]

[159]
[159]

[694][694]

[694]

[694]

[878][878]

[878][878]

[434][434]

[434]

[434]

[98][98]

[98]
[98]

[67][67]

[67]

[67]

[416][416]

[416][416]

[114][114]

[114]

[114]

[397][397]

[397]

[397]

[888][888]

[888]

[888]

[157][157]

[157]

[157]

[45][45]

[45]

[45]

[632]

[632]

[632]

[632]

[779][779]

[779]

[779]

[379][379]

[379]

[379]

[455]
[455]

[455]

[455]

[121]

[121]

[121]

[121]

[706][706]

[706][706]

[727][727]

[727]

[727]

[390][390]

[390]

[390]

[499][499]

[499]

[499]

[250][250]

[250]

[250]

[68][68]

[68]

[68]

[10][10]

[10]

[10]

[208][208]

[208][208]

[394][394]

[394]

[394]

[41][41]

[41]

[41]

[26][26]

[26]

[26]

[158][158]

[158]

[158]

[814][814]

[814]

[814]

[457][457]

[457]
[457]

[895][895]

[895]

[895]

[847][847]

[847][847]

[49][49]

[49][49]

[197][197]

[197]

[197]

[28][28]

[28]

[28]

[200][200]

[200]

[200]

[835][835]

[835]
[835]

[134][134]

[134]
[134]

[716][716]

[716]

[716]

[500]

[500]

[500]

[500]

[461]

[461]

[461][461]

[869][869]

[869][869]

[388][388]

[388]

[388]

[256][256]

[256][256]

[841][841]

[841][841]

[593][593]

[593][593]

[808][808]

[808]

[808]

[940][940]

[940]

[940]

[414][414]

[414]

[414]

[35][35]

[35]

[35]

[297]

[297]

[297]

[297]

TSNE visualization of Chi2 Kernel Space

[376][376][376][376]

[454][454][454][454]

[405][405][405][405]

[741][741][741][741]

[820][820][820][820]

[687][687][687][687][910][910][910][910]

[273][273][273][273]

[734][734][734][734]

[418][418][418][418]

[299][299][299][299]

[469][469][469][469]

[142][142][142][142]

[194][194][194][194]

[730][730][730][730]

[178][178][178][178]

[824][824][824][824]

[848][848][848][848]

[611][611][611][611]

[707][707][707][707]

[791][791][791][791]
[220][220][220][220]

[246][246][246][246]

[101][101][101][101]

[359][359][359][359]

[366][366][366][366]

[902][902][902][902]

[398][398][398][398]

[425][425][425][425]

[692][692][692][692]

[314][314][314][314]

[490][490][490][490]

[629][629][629][629]

[182][182][182][182]

[39][39][39][39]

[326][326][326][326]

[584][584][584][584]

[586][586][586][586]

[537][537][537][537]

[525][525][525][525]

[603][603][603][603]

[595][595][595][595]

[323][323][323][323]

[950][950][950][950]

[511][511][511][511]

[877][877][877][877]

[881][881][881][881]

[384][384][384][384]

[212][212][212][212]

[634][634][634][634]

[582][582][582][582]

[787][787][787][787]

[306][306][306][306]

[641][641][641][641]

[879][879][879][879]

[742][742][742][742]

[291][291][291][291]

[225][225][225][225]

[295][295][295][295]

[172][172][172][172]

[936][936][936][936]

[552][552][552][552]

[855][855][855][855]

[714][714][714][714]

[217][217][217][217]

[522][522][522][522]

[773][773][773][773]

[725][725][725][725]

[650][650][650][650]

[235][235][235][235]

[555][555][555][555]

[688][688][688][688]

[945][945][945][945]

[249][249][249][249]

[471][471][471][471]

[875][875][875][875]

[63][63][63][63]

[813][813][813][813]

[671][671][671][671]

[380][380][380][380]

[497][497][497][497]

[666][666][666][666]

[784][784][784][784]

[357][357][357][357]

[817][817][817][817]

[296][296][296][296]

[305][305][305][305]
[5][5][5][5]

[613][613][613][613]

[951][951][951][951]

[810][810][810][810]

[515][515][515][515]

[544][544][544][544]

[935][935][935][935]

[752][752][752][752]

[551][551][551][551]

[867][867][867][867]

[19][19][19][19]

[778][778][778][778]

[576][576][576][576]

[270][270][270][270]

[753][753][753][753]

[62][62][62][62]

[610][610][610][610]

[739][739][739][739]

[821][821][821][821]

[937][937][937][937]

[674][674][674][674]

[661][661][661][661]

[962][962][962][962]

[389][389][389][389]

[50][50][50][50]

[46][46][46][46]

[180][180][180][180]

[118][118][118][118]

[406][406][406][406]

[929][929][929][929]

[954][954][954][954]

[717][717][717][717]

[236][236][236][236]

[598][598][598][598]

[230][230][230][230]

[324][324][324][324]

[782][782][782][782]

[673][673][673][673]

[56][56][56][56]

[957][957][957][957]

[620][620][620][620]

[350][350][350][350]

[720][720][720][720]

[102][102][102][102]

[640][640][640][640]

[123][123][123][123]

[535][535][535][535]

[191][191][191][191]

[427][427][427][427]

[259][259][259][259]

[282][282][282][282]

[832][832][832][832]

[573][573][573][573]

[143][143][143][143]

[401][401][401][401]
[575][575][575][575]

[809][809][809][809]

[325][325][325][325]

[700][700][700][700]

[232][232][232][232]

[853][853][853][853]

[301][301][301][301]

[330][330][330][330]

[693][693][693][693]

[618][618][618][618]

[278][278][278][278]

[965][965][965][965]

[404][404][404][404]

[483][483][483][483]

[286][286][286][286]

[747][747][747][747]

[913][913][913][913]

[52][52][52][52]

[255][255][255][255]

[48][48][48][48]

[378][378][378][378]

[685][685][685][685]

[963][963][963][963]

[956][956][956][956]

[395][395][395][395]

[823][823][823][823]

[407][407][407][407]

[619][619][619][619]

[201][201][201][201]

[863][863][863][863]

[896][896][896][896]

[570][570][570][570]

[842][842][842][842]

[20][20][20][20]

[181][181][181][181]

[604][604][604][604]

[854][854][854][854]

[109][109][109][109]

[912][912][912][912]

[69][69][69][69]

[458][458][458][458]

[321][321][321][321]

[337][337][337][337]

[545][545][545][545]

[165][165][165][165]

[11][11][11][11]

[759][759][759][759]

[931][931][931][931]

[179][179][179][179]

[417][417][417][417]

[762][762][762][762]

[751][751][751][751]

[627][627][627][627]

[336][336][336][336]

[934][934][934][934]

[577][577][577][577]

[647][647][647][647]

[474][474][474][474]

[690][690][690][690]

[738][738][738][738]

[958][958][958][958]

[338][338][338][338]

[513][513][513][513]

[516][516][516][516]

[239][239][239][239]

[103][103][103][103]

[560][560][560][560]

[633][633][633][633]

[127][127][127][127]

[72][72][72][72]

[445][445][445][445]

[539][539][539][539]

[243][243][243][243]

[542][542][542][542]

[652][652][652][652]

[361][361][361][361]

[245][245][245][245]

[428][428][428][428]

[196][196][196][196]

[86][86][86][86]

[277][277][277][277]

[160][160][160][160]

[509][509][509][509]

[106][106][106][106]

[21][21][21][21]
[36][36][36][36]

[463][463][463][463]

[670][670][670][670]

[227][227][227][227]

[436][436][436][436]

[462][462][462][462]

[76][76][76][76]

[316][316][316][316]

[266][266][266][266]

[872][872][872][872]

[574][574][574][574]

[53][53][53][53]

[658][658][658][658]

[327][327][327][327]

[22][22][22][22]

[263][263][263][263]

[911][911][911][911]

[594][594][594][594]

[333][333][333][333]

[166][166][166][166]

[439][439][439][439]

[711][711][711][711]

[362][362][362][362]

[925][925][925][925]

[901][901][901][901]

[288][288][288][288]
[917][917][917][917]

[185][185][185][185]

[470][470][470][470]

[646][646][646][646]

[579][579][579][579]

[805][805][805][805]

[429][429][429][429]

[605][605][605][605]

[92][92][92][92]

[766][766][766][766]

[16][16][16][16]

[507][507][507][507]

[485][485][485][485]

[70][70][70][70]

[265][265][265][265]

[447][447][447][447]

[272][272][272][272]

[581][581][581][581]

[377][377][377][377]

[65][65][65][65]

[959][959][959][959]
[44][44][44][44]

[391][391][391][391]

[85][85][85][85]

[865][865][865][865]

[876][876][876][876]

[189][189][189][189]

[761][761][761][761]

[562][562][562][562]

[82][82][82][82]

[701][701][701][701]

[32][32][32][32]

[370][370][370][370]

[122][122][122][122]

[6][6][6][6]

[421][421][421][421]

[789][789][789][789]

[679][679][679][679]

[757][757][757][757]

[609][609][609][609]

[508][508][508][508]

[561][561][561][561]

[856][856][856][856]

[596][596][596][596]

[532][532][532][532]
[133][133][133][133]

[715][715][715][715]

[443][443][443][443]

[745][745][745][745]

[718][718][718][718]

[147][147][147][147]

[309][309][309][309]

[198][198][198][198]

[894][894][894][894]

[364][364][364][364]

[355][355][355][355]

[1][1][1][1]

[686][686][686][686]

[373][373][373][373]

[113][113][113][113]

[558][558][558][558]

[137][137][137][137]

[776][776][776][776]

[955][955][955][955]

[564][564][564][564]

[369][369][369][369]
[78][78][78][78]

[861][861][861][861]

[557][557][557][557]

[420][420][420][420]

[281][281][281][281]

[169][169][169][169]

[625][625][625][625]

[591][591][591][591]

[852][852][852][852]

[254][254][254][254]

[580][580][580][580]

[623][623][623][623]

[276][276][276][276]

[905][905][905][905]

[780][780][780][780]

[667][667][667][667]

[788][788][788][788]

[151][151][151][151]

[385][385][385][385]

[260][260][260][260]

[482][482][482][482]

[175][175][175][175]

[148][148][148][148]

[684][684][684][684]

[253][253][253][253]

[173][173][173][173]

[381][381][381][381]

[89][89][89][89]

[14][14][14][14]

[193][193][193][193]

[589][589][589][589]

[636][636][636][636]

[131][131][131][131]

[280][280][280][280]

[315][315][315][315]

[9][9][9][9]

[213][213][213][213]

[221][221][221][221]

[329][329][329][329]

[410][410][410][410]

[948][948][948][948]

[475][475][475][475]

[411][411][411][411]

[891][891][891][891]

[915][915][915][915]

[426][426][426][426]

[550][550][550][550]

[540][540][540][540]

[851][851][851][851]

[248][248][248][248]

[654][654][654][654]

[748][748][748][748]

[807][807][807][807]

[926][926][926][926]

[387][387][387][387]

[268][268][268][268]

[318][318][318][318]

[792][792][792][792]

[802][802][802][802]

[920][920][920][920]

[409][409][409][409]

[368][368][368][368]

[258][258][258][258]

[585][585][585][585]

[33][33][33][33]

[486][486][486][486]

[668][668][668][668]

[99][99][99][99]

[161][161][161][161]

[174][174][174][174]

[769][769][769][769]

[64][64][64][64]

[251][251][251][251]

[432][432][432][432]

[721][721][721][721]

[840][840][840][840]

[833][833][833][833]

[630][630][630][630]

[543][543][543][543]

[827][827][827][827]

[536][536][536][536]

[352][352][352][352]

[124][124][124][124]

[702][702][702][702]

[588][588][588][588]

[918][918][918][918]

[372][372][372][372]

[524][524][524][524]

[645][645][645][645]

[907][907][907][907]

[638][638][638][638]

[704][704][704][704]

[399][399][399][399]

[347][347][347][347]

[149][149][149][149]

[146][146][146][146]

[831][831][831][831]

[649][649][649][649]

[66][66][66][66]

[176][176][176][176]

[868][868][868][868]

[883][883][883][883]

[283][283][283][283]

[210][210][210][210]

[492][492][492][492]

[441][441][441][441]

[452][452][452][452]

[59][59][59][59] [677][677][677][677]

[518][518][518][518]

[961][961][961][961]

[451][451][451][451]

[967][967][967][967]

[47][47][47][47]

[207][207][207][207]

[446][446][446][446]

[615][615][615][615]

[882][882][882][882]

[322][322][322][322]

[502][502][502][502]
[159][159][159][159]

[694][694][694][694]

[878][878][878][878]

[434][434][434][434]

[98][98][98][98]

[67][67][67][67]

[416][416][416][416]

[114][114][114][114]

[397][397][397][397]

[888][888][888][888]

[157][157][157][157]

[45][45][45][45]

[632][632][632][632]

[779][779][779][779]

[379][379][379][379]

[455][455][455][455]

[121][121][121][121]

[706][706][706][706]

[727][727][727][727]

[390][390][390][390]

[499][499][499][499]

[250][250][250][250]

[68][68][68][68]

[10][10][10][10]

[208][208][208][208]

[394][394][394][394]

[41][41][41][41]

[26][26][26][26]

[158][158][158][158]

[814][814][814][814]

[457][457][457][457][895][895][895][895]

[847][847][847][847]

[49][49][49][49]

[197][197][197][197]

[28][28][28][28]

[200][200][200][200]

[835][835][835][835]

[134][134][134][134]

[716][716][716][716]

[500][500][500][500]

[461][461][461][461]

[869][869][869][869]

[388][388][388][388]

[256][256][256][256]

[841][841][841][841]

[593][593][593][593]

[808][808][808][808]

[940][940][940][940]

[414][414][414][414]

[35][35][35][35]

[297][297][297][297]

TSNE visualization of WARCA Space

Points in the χ2 kernel space. Points in the space learned by WARCA.

Figure B.4: Feature space visualization on CUHK01 data-set using tSNE (Maaten and Hinton, 2008).

B.4. Maximizing AUC with a Mahalanobis metric

B.4 Maximizing AUC with a Mahalanobis metric

Here we present a simple algorithm to Maximize AUC with Mahalanobis Metric (MAMM). This

is the first algorithm we derived in order to learn from small data with very number of classes.

Let us consider a training set of data point / label pairs

(xm , ym) ∈RD × {1, . . . ,Q},m = 1, . . . , M

Let T be a set of triplet of indexes from the training set defined as follows:

T = {
(i , j ,k) ∈ {1, . . . , M }3, yi = y j , yi 6= yk

}
.

Let W be a linear transformation that maps the data points from RD to RD ′
, with D ′ ≤ D . The

distance function under the linear map W is given by

FW(xi ,x j) = ‖W(xi −x j)‖2

We are interested in learning the parameter W of the distance function by maximizing the area

under the curve. The AUC estimated on the training set using the distance function defined

above is:

AUC = 1

|T |
|T |∑
t=1

1ξit jt kt >0.

where

ξi j k =F2
W(xi ,xk)−F2

W(xi ,x j).

Our goal is to find a mapping W ∗ that maximizes the above equation. This is equivalent to

minimizing:

min
W

|T |∑
t=1

1ξit jt kt ≤0.

The above optimization problem is not tractable as it aims at minimizing the 0-1 loss. In

order to make it tractable we upper bound this loss with the hinge loss Shalev-Shwartz and

Ben-David (2014). Also, to control the capacity of the model, we add a L2 regularizer on the

87

Appendix B. Chapter 3 Appendix

parameters we are estimating. Thus the optimization problem becomes:

minimize
W

1

2
‖W‖2 +C

|T |∑
t=1

ξi t jt kt

subject to, ∀(i , j ,k) ∈ T ,

F2
W(xi ,xk)−F2

W(xi ,x j) ≥ γ−ξi j k ,

ξi j k ≥ 0.

where γ> 0 is the margin at which similar pairs and dissimilar pairs are separated, C ≥ 0 is the

parameter that controls the capacity of the learner and ‖W‖2 is the square of the Frobenius

norm of the matrix W. That is ‖W‖2 = Tr (WWT). This is equivalent to minimizing the following

loss, without constraint:

L(W) = 1

2
‖W‖2 +C

|T |∑
t=1

∣∣∣γ+F2
W(xi t ,x jt)−F2

W(xi t ,xkt)
∣∣∣+. (B.9)

This optimization problem has important connections to the popular large margin nearest

neighbors (LMNN) Weinberger and Saul (2009). For each point xi we consider all of its

neighbors to minimize the triplet loss where as in LMNN only the k nearest neighbors are

considered and that is equivalent to a surrogate loss maximizing the area under the curve

up-to location k or the precision at k Shalev-Shwartz and Ben-David (2014).

B.4.1 Kernelization

Let W be of the form:

W = AXT = A

 xT
1

. . .

xT
N



Using the above definition we can write everything in terms of the kernel between samples in

the training set.

FA(xi ,x j) = ‖AXT (xi −x j)‖2 (B.10)

= ‖A(ki −k j)‖2 (B.11)

where ki and k j are the i th and j th columns of the kernel matrix L = XT X. Then, the loss (B.9)

becomes:

L(A) = 1

2
‖AKAT ‖2 +C

T∑
t

∣∣∣γ+F2
A(ki t ,k jt)−F2

A(ki t ,kkt)
∣∣∣+ (B.12)

88

B.4. Maximizing AUC with a Mahalanobis metric

B.4.2 Optimization

A sub-gradient of the function L(A) is given as:

∇L(A) = 2AK+2C A
T∑
t

1ht (A)>0Gt (B.13)

= 2AK+2C AKK−1
T∑
t

1ht (A)>0Gt (B.14)

where

ht (A) =
∣∣∣γ+F2

A(ki t ,k jt)−F2
A(ki t ,kkt)

∣∣∣+ (B.15)

and

Gt = (ki t −k jt)(ki t −k jt)T − (ki t −kkt)(ki t −kkt)T . (B.16)

Multiplying the right hand side of the equation (B.14) by K−1:

∇L(A)K−1 = 2A+2C AKK−1
T∑
t

1ht (A)>0Gt K−1. (B.17)

By taking the K−1 on the both side of summation inside, we get:

∇L(A)K−1 = 2A+2C AK
T∑
t

1ht (A)>0Ut , (B.18)

with

Ut = K−1Gt K−1 (B.19)

= (ei t −e jt)(ei t −e jt)T−(ei t −ekt)(ei t −ekt)T , (B.20)

where el is the l th column of the canonical basis that is the vector whose l th component is

one and all others are zero. In the preconditioned sub-gradient descent we use the updates of

the form:

Ap+1 = (1−2η)Ap −η2C Ap K
T∑
t

1ht (Ap)>0Ut , (B.21)

where Ap is the parameter obtained after p iterations and η is the step size obtained by a line

search algorithm.

89

Appendix B. Chapter 3 Appendix

Algorithm 5 Preconditioned gradient descent algorithm for MAMM

Input: Label vector y ∈ {1, ...,Q}M , Kernel matrix K ∈RM×M , Regularizer C ≥ 0, Initial solution
A0 ∈RD ′×N , Step size η

1: T = {
(i , j ,k) ∈ {1, . . . , N }3, yi = y j , yi 6= yk

}
.

2: p = 0
3: while (not converged) do
4: X′ = Ap K

5: G =
0 . . . 0
...

. . .
...

0 . . . 0︸ ︷︷ ︸
M

M

6: Z =PairwiseEuclideanDistanceSquared(X′)
7: for t = 1 ... |T | do
8: if 1+Z[ti][t j]−Z[ti][tk] > 0 then
9: G[t j][t j] = G[t j][t j]+1

10: G[ti][t j] = G[ti][t j]−1
11: G[t j][ti] = G[t j][ti]−1
12: G[tk][tk] = G[tk][tk]−1
13: G[ti][tk] = G[ti][tk]+1
14: G[tk][ti] = G[tk][ti]+1
15: end if
16: end for
17: Ap+1 = (1−2η)Ap −2ηC X′G
18: p = p +1
19: end while
20: Output Ap

90

B.4. Maximizing AUC with a Mahalanobis metric

Iterative methods Spectral methods
Dataset MAMM-χ2 MAMM-L rPCCA-χ2 rPCCA-L SVMML LFDA-χ2 LFDA-L KISSME
CUHK01 0.52±0.01 #2 0.35±0.01 0.49±0.01 #3 0.35±0.01 0.28±0.01 0.55±0.01 #1 0.34±0.01 0.36±0.01
VIPeR 0.26±0.01 #2 0.20±0.01 0.22±0.02 0.16±0.01 0.23±0.02 #3 0.31±0.02 #1 0.20±0.02 0.21±0.01
PRID450s 0.19±0.02 #2 0.09±0.01 0.17±0.02 #3 0.08±0.01 0.13±0.02 0.24±0.02 #1 0.03±0.01 0.15±0.02
CAVIAR 0.38±0.03 #2 0.34±0.02 0.37±0.02 #3 0.27±0.02 0.27±0.02 0.41±0.02 #1 0.37±0.02 #3 0.32±0.02
3DPeS 0.47±0.03 #2 0.40±0.03 0.46±0.02 #3 0.33±0.02 0.30±0.02 0.52±0.02 #1 0.43±0.03 0.38±0.02
iLIDS 0.28±0.03 #3 0.26±0.04 0.28±0.03 #3 0.23±0.03 0.21±0.03 0.36±0.02 #1 0.33±0.03 #2 0.28±0.04

Table B.1: Rank 1 performance of different methods on different data-sets. We indicated the
ranking of the top-3 methods for each data-set.

Iterative methods Spectral methods
Dataset MAMM-χ2 MAMM-L rPCCA-χ2 rPCCA-L SVMML LFDA-χ2 LFDA-L KISSME
CUHK01 0.76±0.01 #1 0.56±0.02 0.74±0.01 #2 0.57±0.02 0.54±0.02 0.76±0.01 #1 0.49±0.01 0.54±0.01
VIPeR 0.58±0.02 #2 0.49±0.02 0.53±0.02 #3 0.43±0.02 0.52±0.02 0.64±0.02 #1 0.45±0.02 0.48±0.03
PRID450s 0.47±0.03 #2 0.30±0.02 0.44±0.03 #3 0.27±0.02 0.38±0.02 0.55±0.02 #1 0.13±0.01 0.37±0.02
CAVIAR 0.72±0.02 #1 0.64±0.02 0.71±0.02 #2 0.57±0.02 0.62±0.04 0.69±0.04 #3 0.62±0.03 0.61±0.03
3DPeS 0.73±0.02 #2 0.66±0.02 0.73±0.02 #2 0.58±0.02 0.60±0.03 0.75±0.02 #1 0.66±0.02 0.60±0.02
iLIDS 0.57±0.02 0.54±0.03 0.58±0.03 #3 0.52±0.04 0.51±0.04 0.66±0.03 #1 0.60±0.03 #2 0.54±0.04

Table B.2: Rank 5 performance of different methods on different data-sets. We indicated the
ranking of the top-3 methods for each data-set.

B.4.3 Experiments

In this section we describe the set of experiments we carried out to evaluate our proposed

method.

We used the same set of features for all the datasets and all the features are essentially his-

togram based. First all the datasets were rescaled to 128×48 resolution and then 16 bin color

histograms on RGB, YUV, and HSV channels, as well as texture histogram based on Local Binary

Patterns (LBP) were extracted on 6 non-overlapping horizontal patches. All the histograms are

normalized per patch to have unit L1 norm and concatenated into a single vector of dimension

2580 Mignon and Jurie (2012); Xiong et al. (2014).

In order to fairly evaluate the algorithms, we set the dimensionality of the projected space to 40

for both MAMM and rPCCA. We chose the regularization parameter through cross validation

across the data splits. Since the size of the parameter matrix scales like O(D2) for SVMML and

KISSME we first reduced the dimension of the original features using PCA keeping 95% of the

original variance and then applied these algorithms. In our tables and figures MAMM−χ2,

MAMM-L, rPCCA−χ2, rPCCA-L, LFDA−χ2 and LFDA-L denote MAMM with χ2 kernel, MAMM

with linear kernel, rPCCA with χ2 kernel, rPCCA with linear kernel and LFDA with χ2 kernel,

LFDA with linear kernel respectively.

Tables B.1 and B.2 summarize respectively the rank1 and rank5 performance of all the methods,

and Table B.3 summarizes the AUC performance score. Figure B.5 reports the CMC curves

comparing MAMM against the baselines on all the six data-sets. The dashed curves denote

spectral methods and the continuous ones denote the iterative methods, the circle and the

star markers denote linear and kernel methods respectively.

91

Appendix B. Chapter 3 Appendix

Iterative methods Spectral methods
Dataset MAMM-χ2 MAMM-L rPCCA-χ2 rPCCA-L SVMML LFDA-χ2 LFDA-L KISSME
CUHK01 0.83±0.01 #1 0.67±0.01 0.81±0.01 #3 0.68±0.01 0.66±0.01 0.82±0.01 #2 0.58±0.01 0.63±0.01
VIPeR 0.74±0.01 #2 0.67±0.01 0.71±0.01 #3 0.62±0.01 0.71±0.02 #3 0.79±0.01 #1 0.63±0.01 0.65±0.01
PRID450s 0.65±0.02 #2 0.49±0.02 0.63±0.02 #3 0.46±0.02 0.60±0.01 0.72±0.02 #1 0.28±0.01 0.54±0.02
CAVIAR 0.85±0.01 #1 0.81±0.01 #3 0.84±0.01 #2 0.77±0.01 0.79±0.02 0.81±0.02 #3 0.77±0.02 0.79±0.02
3DPeS 0.82±0.01 #3 0.77±0.02 0.83±0.02 #1 0.72±0.02 0.73±0.02 0.83±0.01 #1 0.76±0.01 0.72±0.01
iLIDS 0.74±0.02 #3 0.72±0.02 0.75±0.02 #2 0.70±0.02 0.70±0.02 0.79±0.02 #1 0.74±0.02 #3 0.70±0.03

Table B.3: AUC of different methods on different data-sets. We indicated the ranking of the
top-3 methods for each data-set.

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
CUHK01

MAMM- χ
2

MAMM-L

rPCCA-χ
2

rPCCA-L

SVMML

KISSME

LFDA-χ
2

LFDA-L

KISSME

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
VIPeR

MAMM- χ
2

MAMM-L

rPCCA-χ
2

rPCCA-L

SVMML

KISSME

LFDA-χ
2

LFDA-L

KISSME

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
PRID450s

MAMM- χ
2

MAMM-L

rPCCA-χ
2

rPCCA-L

SVMML

KISSME

LFDA-χ
2

LFDA-L

KISSME

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
CAVIAR

MAMM- χ
2

MAMM-L

rPCCA-χ
2

rPCCA-L

SVMML

KISSME

LFDA-χ
2

LFDA-L

KISSME

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
3DPeS

MAMM- χ
2

MAMM-L

rPCCA-χ
2

rPCCA-L

SVMML

KISSME

LFDA-χ
2

LFDA-L

KISSME

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
iLIDS

MAMM- χ
2

MAMM-L

rPCCA-χ
2

rPCCA-L

SVMML

KISSME

LFDA-χ
2

LFDA-L

KISSME

Figure B.5: CMC curves comparing MAMM against other methods on six re-identification
datasets.

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
CUHK01

MAMM- χ
2

LFDA-χ
2

LFDA-χ
2

MFA-χ
2

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
VIPeR

MAMM- χ
2

LFDA-χ
2

LFDA-χ
2

MFA-χ
2

Rank Score

0 5 10 15 20 25 30

M
a
t
c
h
i
n
g

R
a
t
e

(
%
)

0

20

40

60

80

100
CAVIAR

MAMM- χ
2

LFDA-χ
2

LFDA-χ
2

MFA-χ
2

Figure B.6: CMC curves comparing MAMM against FDA variants under low capacity setting.

Comparison to iterative methods

MAMM-χ2 improves over SVMML on all the data-sets and this is coupled by the fact that

MAMM is optimizing a better loss function and it can exploit better features through the

kernel. MAMM-χ2 performs better than rPCCA on all data-sets except iLIDS. Especially the

92

B.4. Maximizing AUC with a Mahalanobis metric

performance of MAMM-χ2 over rPCCA and SVMML on the most challenging VIPeR data-set is

worth noting.

Comparison to FDA variants

Despite having better performance than recently published algorithms, MAMM does not

improve the overall best performance drastically, in spite of explicitly optimizing the perfor-

mance measure itself. The reason for this is that the existing re-identification data-sets are too

small for sophisticated algorithms to learn the invariances without over-fitting. Consequently

simple methods such as Fisher Discriminant Analysis (FDA) work nearly as well or better than

sophisticated models by optimizing a criterion different from the performance measure.

We did some additional experiments to verify this claim. We limited the capacity of MAMM

and FDA by reducing the projected dimension to 5 and evaluated how the models behave

under low capacity. Figure B.6 summarizes our results. MAMM works better than FDA and

its variants. Please note that even under his low capacity setting there is a lot of over-fitting

happening. On the training splits AUC of both the models is nearly 1.

93

C Chapter 4 Appendix

C.1 Analysis of vanishing and exploding gradients in RNN

Given a sequence of T input vectors: x0,x1, . . . ,xT−1, let us consider the operation at the hidden

layer t of a recurrent neural network:

zt = Wt ht−1 +Ut xt +b (C.1)

ht =σ(zt) (C.2)

By the chain rule,

∂L
∂ht

= ∂L
∂hT

∂hT

∂ht
(C.3)

= ∂L
∂hT

T−1∏
k=t

∂hk+1

∂hk
= ∂L
∂hT

T−1∏
k=t

Jk+1WT (C.4)

where σ is the non-linear activation function and Jk+1 = di ag (σ
′
(zk+1)) is the Jacobian matrix

of the non-linear activation function.

∥∥∥∥ ∂L∂ht

∥∥∥∥=
∥∥∥∥∥ ∂L
∂hT

T−1∏
k=t

Jk+1WT

∥∥∥∥∥ (C.5)

≤
∥∥∥∥ ∂L
∂hT

∥∥∥∥T−1∏
k=t

∥∥Jk+1WT
∥∥ (C.6)

≤
∥∥∥∥ ∂L
∂hT

∥∥∥∥‖W‖T−t
T−1∏
k=t

‖Jk+1‖ (C.7)

95

Appendix C. Chapter 4 Appendix

From equation C.7 it is clear the norm of the gradient is exponentially dependent upon two

factors along the time horizon:

• The norm of the Jacobian matrix of the non-linear activation function ‖Jk+1‖.

• The norm of the hidden to hidden weight matrix ‖W‖.

These two factors are causing the vanishing and exploding gradient problem.

Since the gradient of the standard non-linear activation functions such as tanh and ReLU are

bounded between [0, 1], ‖Jk+1‖ does not contribute to the exploding gradient problem but it

can still cause vanishing gradient problem.

C.2 Long short-term memory (LSTM) (Hochreiter and Schmidhu-

ber, 1997)

LSTM networks presented an elegant solution to the vanishing and exploding gradients

through the introduction of gating mechanism. Apart from the standard hidden state in RNN,

LSTM introduced one more state called cell state ct for controlling the flow of information

along the time. LSTM has three different gates whose functionality is described as follows:

• Forget gate (W f ,U f ,b f): Decides what information to keep and erase from the previous

cell state.

• Input gate (Wi ,U f ,bi): Decides what new information should be added to the cell state.

• Output gate (Wo ,Uo ,bo): Decides which information from the cell state is going to the

output.

In addition to the gates, LSTM prepares candidates for the information from the input gate that

might get added to the cell state through the action of input gate. Let’s denote the parameters

describing the function that prepares this candidate information as Wc ,Uc ,bc .

Given a sequence of T input vectors: x0,x1, . . . ,xT−1, at a time step t LSTM performs the

following:

96

C.3. Unitary evolution RNN (Arjovsky et al., 2016)

ft =σ(W f ht−1 +U f xt +b f) (C.8)

it =σ(Wi ht−1 +Ui xt +bi) (C.9)

ot =σ(Woht−1 +Uoxt +bo) (C.10)

ĉt = τ(Wc ht−1 +Uc xt +bc) (C.11)

ct = ct−1 ¯ ft + ĉt ¯ it (C.12)

ht = τ(ct)¯ot (C.13)

where σ(.) and τ(.) are the point-wise sigmoid and tanh functions. ¯ indicates element-wise

multiplication. The first three are gating operations and the 4th one prepares the candidate

information. The 5th operation updates the cell-state and finally in the 6th operation the

output gate decided what should go into the current hidden state.

C.3 Unitary evolution RNN (Arjovsky et al., 2016)

Unitary evolution RNN (uRNN) proposed to solve the vanishing and exploding gradients

through a unitary recurrent matrix, which is for the form:

W = D3R2F
−1D2ΠR1F D1. (C.14)

Where:

• D1,D2,D3: Diagonal matrices whose diagonal entries are of the from Dkk = e iθk , implies

each matrix have N parameters, (θ0, . . . ,θN−1).

• F and F−1: Fast Fourier operator and inverse fast Fourier operator respectively.

• R1,R2: Householder reflections. R = I−2 v v H

‖v‖ , where v ∈CN .

The total number of parameters for this uRNN operator is 7N and the matrix vector can be

done N l og (N) time. It is parameter efficient and fast but not flexible and suffers from the

retention of noise and difficulty in optimization due its unitarity.

C.4 Full capacity unitary RNN (Wisdom et al., 2016)

Full capacity unitary RNN (FC uRNN) does optimization on the full unitary set instead on a

subset like uRNN. That is FC uRNN’s recurrent matrix W ∈U (N). There are several challenges

in optimization over unitary manifold especially when combined with stochastic gradient

method. The primary challenge being the optimization cost is O(N 3) per step.

97

Appendix C. Chapter 4 Appendix

C.5 Orthogonal RNN (Mhammedi et al., 2016)

Orthogonal RNN (oRNN) parametrizes the recurrent matrices using Householder reflections.

W =HN (vN)...HN−K+1(vN−k+1). (C.15)

where

HK (vK) =
[

IN−K 0

0 IK −2
vK vH

K
‖vK ‖

]
(C.16)

and

H1(v) =
[

IN−1 0

0 v ∈ {−1,1}

]
(C.17)

where vK ∈RK . The number of parameters in this parameterization is O(N K). When N = K =
1 and v = 1, it spans the rotation subset and when v =−1, it spans the full reflection subset.

C.6 Properties of Kronecker matrix (Van Loan, 2000)

Consider a matrix W ∈CN×N factorized as a Kronecker product of F matrices W1, . . . ,WF ,

W = W1 ⊗·· ·⊗WF =⊗F
f =1W f . (C.18)

Where each W f ∈ CP f ×Q f respectively and
∏F

f =1 Pi = ∏F
f =1 Q f = N . W f ’s are called as Kro-

necker factors.

If the factors Wi ’s are



Nonsingular

Symmetric

Stochatsic

Orthogonal

Unitary

PSD

Toeplitz


then W is



Nonsingular

Symmetric

Stochatsic

Orthogonal

Unitary

PSD

Block Toeplitz


Theorem 4. If ∀ f ∈ 1, . . . ,F , W f is unitary then W is also unitary.

Proof.

WH W = (W1 ⊗·· ·⊗WF)H (W1 ⊗·· ·⊗WF) (C.19)

= (WH
1 ⊗·· ·⊗WH

F)(W1 ⊗·· ·⊗WF) (C.20)

= WH
1 W1 ⊗·· ·⊗WH

F WF = I. (C.21)

98

C.7. Product between a dense matrix and a Kronecker matrix

N log N

N
2

Dimension

T
im

e
co

m
p

le
xi

ty

Matrix vector product

Figure C.1: Graph illustrating the time complexity of dense vector product with Kronecker
factored square matrices as a function of the vector dimension. Kronecker factorization allows
a fine-grained control over the number of parameters and hence the computational efficiency.
By choosing the number of factors and the size of each factors we can span all the Kronecker
matrices in the shaded region of the graph and thus can control the amount of computation
we want to invest in.

C.7 Product between a dense matrix and a Kronecker matrix

For simplicity here we use real number notations. Consider a dense matrix X ∈RM×K and a

Kronecker factored matrix W ∈RN×K . That is W =⊗F
f =1W f , where each W f ∈RP f ×Q f respec-

tively and
∏F

f =1 P f = N and
∏F

f =1 Q f = K . Let us illustrate the matrix product XWT resulting in

a matrix Y ∈RM×N .

Y = XWT . (C.22)

The computational complexity first expanding the Kronecker factored matrix and then com-

puting the matrix product is O(M N K). This can be reduced by exploiting the recursive

definition of Kronecker matrices. For examples when N = K and ∀ f {P f =Q f = 2}, the matrix

product can be computed in O(M N log N) time instead of O(M N 2).

The matrix product in equation C.22 can be recursively defined as:

99

Appendix C. Chapter 4 Appendix

Y = (. . . (X¯WT
1)⊗·· ·⊗WT

F). (C.23)

Please note that the binary operator ¯ is not the standard matrix multiplication operator but

instead it denotes a strided matrix multiplication. The stride is computed according to the

algebra of Kronecker matrices. Let us define Y recursively:

Y1 = X¯W1 (C.24)

Y f = Y f −1 ¯W f . (C.25)

Combining equation C.27 and C.25

Y = YF = (. . . (X¯WT
1)⊗·· ·⊗WT

F). (C.26)

We use the above notation for Y in the algorithm. That is the algorithm illustrated here will

cache all the intermediate outputs (Y1, . . . ,YF) instead of just YF . These intermediate outputs

are later used to compute the gradients during the back-propagation and this cache will save

some computation in that case. If the model is just being used for inference then the algorithm

can the organized in such a way that we do not need to cache the intermediate outputs and

thus save memory.

Algorithm for computing the product between a dense matrix and a Kronecker factored

matrix C.27 is given in 6. All the matrices are assumed to be stored in row major order. For

simplicity the algorithm is illustrated in a serial fashion. Please note the lines 4 to 15 except

lines 9-11 can be trivially parallelized as they writes to independent memory locations. The

GPU implementation exploits this fact. Please also note that in the algorithm all the indices

start from 0 instead of 1 in order to be consistent with the C/C++ programming language.

100

C.7. Product between a dense matrix and a Kronecker matrix

Algorithm 6 Dense matrix product with a Kronecker matrix, Y = (. . . (XWT
0)⊗·· ·⊗WT

F−1)

Input: Dense matrix X ∈RM×K , Kronecker factors {W0, . . . ,WF−1} : W f ∈RP f ×Q f , Size of each

Kronecker factors {(P0,Q0), . . . , (PF−1,QF−1)} :
∏F−1

f =0 P f = N ,
∏F−1

f =0 Q f = K ,

Output: Output matrix YF−1 ∈RM×N

1: for f = 0 to F −1 do

2: str i de = K /Q f , i ndex = 0

3: for m = 0 to M −1 do

4: Xm = X+m ×K

5: for p = 0 to P f −1 do

6: for s = 0 to str i de −1 do

7: Y f [i ndex] = 0

8: for q = 0 to Qk −1 do

9: Y f [i ndex] = Y f [i ndex]+Xm[q × str i de + s]×W f [p ×Q f +q]

10: end for

11: i ndex = i ndex +1

12: end for

13: end for

14: end for

15: K = str i de, M = M ×P f

16: X = Y f

17: end for

101

Appendix C. Chapter 4 Appendix

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

T
im

e(
m

s)

Dimension

Kronecker GEMM

Kronecker Matrix
Dense Matrix

Figure C.2: Comparison of matrix product between a dense matrix and a Kronecker matrix
with 2x2 factors vs Dense matrix matrix product (GEMM). We use the standard BLAS notations
(M = 64, Dimension = N = K).

C.8 Gradient computation in a Kronecker layer

Following the notations from the above section C.7, here we illustrate the algorithm for

computing the gradients in a Kronecker layer. To be clear and concrete the Kronecker layer

does the following computation in the forward pass(equation C.25).

Y = YF = (. . . (X¯WT
1)⊗·· ·⊗WT

F). (C.27)

That is, the Kronecker layer is parametrized by a Kronecker factored matrix W = ⊗F
f =1W f

stored as it factors {W1, . . . ,WF } and it takes an input X and produces output Y = YF−1 using

the algorithm 6.

The following algorithm 7 computes the Gradient of the Kronecker factors: {gW1, . . . ,gWF } and

the Jacobian of the input matrix gX given the Jacobian of the output matrix: gY = gYF . The

algorithm is illustrated with all the indices starting from 0 instead of 1 in order to be consistent

with the C/C++ programming language.

102

C.8. Gradient computation in a Kronecker layer

Algorithm 7 Gradient computation in a Kronecker layer.

Input: Input matrix X ∈RM×K , Kronecker factors {W0, . . . ,WF−1} : W f ∈RP f ×Q f , Size of each
Kronecker factors {(P0,Q0), . . . , (PF−1,QF−1)} :

∏F−1
f =0 P f = N ,

∏F−1
f =0 Q f = K , All intermediate

output matrices from the forward pass: {Y0, . . . ,YF−1}, Jacobian of output matrix: gYF−1 ∈
RM×N

Output: Gradient of Kronecker factors: {gW0, . . . ,gWF−1} and Jacobian of input matrix: gX ∈
RM×K .

1: T = M ×N , str i deP = 1, str i deQ = 1
2: gY = gYF−1

3: for f = F −1 to 0 do
4: R = str i deP ×P f , S = str i deQ ×Q f , T = T /P f

5: Z = null ptr , gZ = null ptr
6: if f == 0 then
7: Z = X, gZ = gX
8: else
9: gZ = Y f −1, Z = gZ

10: end if
11: i ndex = 0
12: for t = 0 to T −1 do
13: Zt = Z+ t ×S
14: for p = 0 to P f −1 do
15: for s = 0 to str i deQ −1 do
16: for q = 0 to Qk −1 do
17: gW f [p ×Qk +1] = gW f [p ×Qk +1]+Zt [q × str i deQ + s]×gY[i ndex]
18: end for
19: i ndex = i ndex +1
20: end for
21: end for
22: end for
23: i ndex = 0
24: for t = 0 to T −1 do
25: gYt = gY+ t ×R
26: for p = 0 to P f −1 do
27: for s = 0 to str i deQ −1 do
28: gZ[i ndex] = 0
29: for q = 0 to Qk −1 do
30: gZ[i ndex] = gZ[i ndex]+gY[q × str i deQ + s]×W f [q ×P f +q]
31: end for
32: i ndex = i ndex +1
33: end for
34: end for
35: end for
36: gY = gZ //We reuse the memory for the intermediate outputs to store the gradients.
37: str i deQ = S, str i deP = R ×Q f /P f

38: end for

103

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine

learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Ejaz Ahmed, Michael Jones, and Tim K Marks. An improved deep learning architecture for

person re-identification. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3908–3916, 2015.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.

In International Conference on Machine Learning, pages 1120–1128, 2016.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural

information processing systems, pages 2654–2662, 2014.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using

kronecker-factored approximations. 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Davide Baltieri, Roberto Vezzani, and Rita Cucchiara. 3dpes: 3d people dataset for surveillance

and forensics. In Proceedings of the 2011 joint ACM workshop on Human gesture and

behavior understanding, pages 59–64. ACM, 2011.

Antonio Valerio Miceli Barone. Low-rank passthrough neural networks. arXiv preprint

arXiv:1603.03116, 2016.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

James Bergstra, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier Delalleau, Guil-

laume Desjardins, Ian Goodfellow, Arnaud Bergeron, Yoshua Bengio, and Pack Kaelbling.

Theano: Deep learning on gpus with python. 2011.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active

learning. The Journal of Machine Learning Research, 6:1579–1619, 2005.

105

Bibliography

Léon Bottou. Two big challenges in machine learning, 2015. URL http://icml.cc/2015/invited/

LeonBottouICML2015.pdf.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation

and transcription. arXiv preprint arXiv:1206.6392, 2012.

Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in neural

information processing systems, pages 161–168, 2008.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine Learning

Research, 2(Mar):499–526, 2002.

Lev M. Bregman, Yair Censor, Simeon Reich, and Yael Zepkowitz-Malachi. Finding the projec-

tion of a point onto the intersection of convex sets via projections onto half-spaces. J. Approx.

Theory, 124(2):194–218, October 2003. ISSN 0021-9045. doi: 10.1016/j.jat.2003.08.004. URL

http://dx.doi.org/10.1016/j.jat.2003.08.004.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,

S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. Computational

Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions

on pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Olivier Canévet. Object detection with active sample harvesting. 2017.

Olivier Canévet, Cijo Jose, and Francois Fleuret. Importance sampling tree for large-scale

empirical expectation. In International Conference on Machine Learning, pages 1454–1462,

2016.

Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):

1155–1178, 2007.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning of image

similarity through ranking. The Journal of Machine Learning Research, 11:1109–1135, 2010.

Dapeng Chen, Zejian Yuan, Gang Hua, Nanning Zheng, and Jingdong Wang. Similarity learning

on an explicit polynomial kernel feature map for person re-identification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 1565–1573, 2015a.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing

neural networks with the hashing trick. In International Conference on Machine Learning,

pages 2285–2294, 2015b.

D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino. Custom pictorial structures for

re-identification. In British Machine Vision Conference (BMVC), 2011.

106

http://icml.cc/2015/invited/LeonBottouICML2015.pdf
http://icml.cc/2015/invited/LeonBottouICML2015.pdf
http://dx.doi.org/10.1016/j.jat.2003.08.004

Bibliography

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,

with application to face verification. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01,

CVPR ’05, pages 539–546, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-

2372-2. doi: 10.1109/CVPR.2005.202. URL http://dx.doi.org/10.1109/CVPR.2005.202.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,

2014.

Junyoung Chung, Caglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback

recurrent neural networks. In ICML, pages 2067–2075, 2015.

Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini: Fooling deep

structured prediction models. arXiv preprint arXiv:1707.05373, 2017a.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.

Parseval networks: Improving robustness to adversarial examples. arXiv preprint

arXiv:1704.08847, 2017b.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environ-

ment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376,

2011.

Matthieu Courbariaux, Jean-Pierre David, and Yoshua Bengio. Low precision storage for deep

learning. Arxiv: 1412.7024, 2014.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic

metric learning. In Proceedings of the 24th annual International Conference on Machine

Learning (ICML-07), pages 209–216. ACM, 2007.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, 2009.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters

in deep learning. In Advances in Neural Information Processing Systems, pages 2148–2156,

2013.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Alhussein Fawzi. Robust Image Classification: Analysis and Applications. PhD thesis, Ecole

Polytechnique Fédérale de Lausanne, 2016.

Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively trained, mul-

tiscale, deformable part model. In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1–8. IEEE, 2008.

107

http://dx.doi.org/10.1109/CVPR.2005.202

Bibliography

F. Fleuret and G. Blanchard. Pattern recognition from one example by Chopping. In Proceedings

of the international conference on Neural Information Processing Systems (NIPS), pages 371–

378, 2005. URL http://fleuret.org/papers/fleuret-blanchard-nips2005.pdf.

F. Fleuret and D. Geman. Stationary features and cat detection. 9:2549–2578, 2008.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathon G Fiscus, and David S Pallett. Darpa

timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1. NASA

STI/Recon technical report n, 93, 1993.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with Patterns in Monte-Carlo

Go. Technical Report RR-6062, INRIA, 2006.

S. Gong, M. Cristani, S. Yan, and Loy, editors. Person Re-Identification. Advances in Computer

Vision and Pattern Recognition. Springer, 2014.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,

2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural

information processing systems, pages 2672–2680, 2014.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional

lstm and other neural network architectures. Neural Networks, 18(5):602–610, 2005.

Douglas Gray and Hai Tao. Viewpoint invariant pedestrian recognition with an ensemble of

localized features. In Computer Vision–ECCV 2008, pages 262–275. Springer, 2008.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convo-

lution layers. In International Conference on Machine Learning, pages 573–582, 2016.

David Ha, Andrew Dai, and Quoc Le. Hypernetworks. 2016.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of

stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical

systems. arXiv preprint arXiv:1609.05191, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-

age recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

Mikael Henaff, Arthur Szlam, and Yann LeCun. Orthogonal RNNs and long-memory tasks.

arXiv preprint arXiv:1602.06662, 2016.

108

http://fleuret.org/papers/fleuret-blanchard-nips2005.pdf

Bibliography

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural

networks for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis, diploma

thesis, Technische universität münchen, 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9

(8):1735–1780, 1997.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks-

with an erratum note. Bonn, Germany: German National Research Center for Information

Technology GMD Technical Report, 148(34):13, 2001.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and

Marin Soljačić. Tunable efficient unitary neural networks (EUNN) and their application to

RNNs. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

pages 1733–1741, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.

PMLR. URL http://proceedings.mlr.press/v70/jing17a.html.

Cijo Jose and François Fleuret. Scalable metric learning via weighted approximate rank

component analysis. In European Conference on Computer Vision, pages 875–890. Springer,

2016.

Cijo Jose, Moustpaha Cisse, and Francois Fleuret. Kronecker recurrent units. arXiv preprint

arXiv:1705.10142, 2017.

Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling for large-scale boosting. In BMVC,

2008.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014a.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014b.

Martin Köstinger, Martin Hirzer, Paul Wohlhart, Peter M Roth, and Horst Bischof. Large scale

metric learning from equivalence constraints. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pages 2288–2295. IEEE, 2012.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Computer

Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. pages 1097–1105, 2012a.

109

http://proceedings.mlr.press/v70/jing17a.html

Bibliography

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012c.

Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood-approximating kernel expansions in loglinear

time. In Proceedings of the international conference on machine learning, 2013.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks

of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural

information processing systems, pages 598–605, 1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

L. Lefakis and F. Fleuret. Reservoir boosting : Between online and offline ensemble learning.

In Proceedings of the international conference on Neural Information Processing Systems

(NIPS), 2013.

Wei Li, Rui Zhao, and Xiaogang Wang. Human reidentification with transferred metric learning.

In ACCV (1), pages 31–44, 2012.

Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deepreid: Deep filter pairing neural network

for person re-identification. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE

Conference on, pages 152–159. IEEE, 2014.

Zhen Li, Shiyu Chang, Feng Liang, Thomas S Huang, Liangliang Cao, and John R Smith.

Learning locally-adaptive decision functions for person verification. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3610–3617. IEEE, 2013.

Shengcai Liao and Stan Z Li. Efficient psd constrained asymmetric metric learning for person

re-identification. In Proceedings of the IEEE International Conference on Computer Vision,

pages 3685–3693, 2015.

Shengcai Liao, Zhipeng Mo, Yang Hu, and Stan Z Li. Open-set person re-identification. arXiv

preprint arXiv:1408.0872, 2014.

Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z Li. Person re-identification by local maximal

occurrence representation and metric learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2197–2206, 2015.

110

Bibliography

Daryl Lim and Gert Lanckriet. Efficient learning of mahalanobis metrics for ranking. In

Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages

1980–1988, 2014.

G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using selective

sampling. In Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors,

Large Scale Kernel Machines, pages 301–320. MIT Press, Cambridge, MA., 2007. URL http:

//leon.bottou.org/papers/loosli-canu-bottou-2006.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine

Learning Research, 9(Nov):2579–2605, 2008.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large an-

notated corpus of english: The penn treebank. Computational linguistics, 19(2):313–330,

1993.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-

proximate curvature. In International Conference on Machine Learning, pages 2408–2417,

2015.

Brian McFee and Gert R Lanckriet. Metric learning to rank. In Proceedings of the 27th annual

International Conference on Machine Learning (ICML-10), pages 775–782, 2010.

Paul Mermelstein. Distance measures for speech recognition, psychological and instrumental.

Pattern recognition and artificial intelligence, 116:374–388, 1976.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthog-

onal parametrisation of recurrent neural networks using householder reflections. arXiv

preprint arXiv:1612.00188, 2016.

Alexis Mignon and Frédéric Jurie. Pcca: A new approach for distance learning from sparse pair-

wise constraints. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference

on, pages 2666–2672. IEEE, 2012.

Tomáš Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis, Ph. D.

thesis, Brno University of Technology, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602, 2013.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages

29–53. Springer, 1996.

A. B. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on

the Mathematical Theory of Automata, volume 12, pages 615–622, New York, NY, USA, 1962.

Polytechnic Institute of Brooklyn.

111

http://leon.bottou.org/papers/loosli-canu-bottou-2006
http://leon.bottou.org/papers/loosli-canu-bottou-2006

Bibliography

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,

Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model

for raw audio. arXiv preprint arXiv:1609.03499, 2016.

S. Paisitkriangkrai, C. Shen, and A. van den Hengel. Learning to rank in person re-identification

with metric ensembles. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. ICML (3), 28:1310–1318, 2013.

Adam Paszke, Sam Gross, and Soumith Chintala. Pytorch, 2017.

Sateesh Pedagadi, James Orwell, Sergio Velastin, and Boghos Boghossian. Local fisher discrim-

inant analysis for pedestrian re-identification. In Proceedings of the 2013 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR ’13, pages 3318–3325, Washington, DC,

USA, 2013. IEEE Computer Society. ISBN 978-0-7695-4989-7. doi: 10.1109/CVPR.2013.426.

URL http://dx.doi.org/10.1109/CVPR.2013.426.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances

in neural information processing systems, pages 1177–1184, 2008.

Peter M Roth, Martin Hirzer, Martin Köstinger, Csaba Beleznai, and Horst Bischof. Maha-

lanobis distance learning for person re-identification. In Person Re-Identification, pages

247–267. Springer, 2014.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT press, 2002.

D Sculley, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael Young. Machine

learning: The high-interest credit card of technical debt. 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press, 2014.

Uri Shalit, Daphna Weinshall, and Gal Chechik. Online learning in the embedded manifold of

low-rank matrices. The Journal of Machine Learning Research, 13(1):429–458, 2012.

H. Ben Shitrit, J. Berclaz, F. Fleuret, , and P. Fua. Tracking Multiple People under Global

Appearance Constraints. International Conference on Computer Vision, 2011.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game

of go without human knowledge. Nature, 550(7676):354–359, 2017.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv

preprint arXiv:1505.00387, 2015.

112

http://dx.doi.org/10.1109/CVPR.2013.426

Bibliography

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support

vector machine learning for interdependent and structured output spaces. In Proceedings of

the 21st annual International Conference on Machine Learning (ICML-04), page 104. ACM,

2004.

Nicolas Usunier, David Buffoni, and Patrick Gallinari. Ranking with ordered weighted pairwise

classification. In Proceedings of the 26th annual International Conference on Machine

Learning (ICML-09), pages 1057–1064. ACM, 2009.

Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and applied

mathematics, 123(1):85–100, 2000.

Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and

learning recurrent networks with long term dependencies. arXiv preprint arXiv:1702.00071,

2017.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest

neighbor classification. The Journal of Machine Learning Research, 10:207–244, 2009.

Jason Weston, Samy Bengio, and Nicolas Usunier. WSABIE: Scaling up to large vocabulary

image annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity

unitary recurrent neural networks. In Advances In Neural Information Processing Systems,

pages 4880–4888, 2016.

Yang Wu, Makoto Mukunoki, Takuya Funatomi, Michihiko Minoh, and Shihong Lao. Optimiz-

ing mean reciprocal rank for person re-identification. In Advanced Video and Signal-Based

Surveillance (AVSS), 2011 8th IEEE International Conference on, pages 408–413. IEEE, 2011.

Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable trust-region

method for deep reinforcement learning using kronecker-factored approximation. arXiv

preprint arXiv:1708.05144, 2017.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better

solution for training extremely deep convolutional neural networks with orthonormality

and modulation. arXiv preprint arXiv:1703.01827, 2017.

Eric P Xing, Michael I Jordan, Stuart Russell, and Andrew Y Ng. Distance metric learning

with application to clustering with side-information. In Advances in neural information

processing systems, pages 505–512, 2002.

113

Bibliography

Fei Xiong, Mengran Gou, Octavia Camps, and Mario Sznaier. Person re-identification us-

ing kernel-based metric learning methods. In Computer Vision–ECCV 2014, pages 1–16.

Springer, 2014.

Liu Yang and Rong Jin. Distance metric learning: A comprehensive survey. Michigan State

Universiy, 2, 2006.

Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, and

Ziyu Wang. Deep fried convnets. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1476–1483, 2015.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-

standing deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530,

2016.

Xu Zhang, Felix X Yu, Ruiqi Guo, Sanjiv Kumar, Shengjin Wang, and Shi-Fu Chang. Fast

orthogonal projection based on kronecker product. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2929–2937, 2015.

P. Zhao and T. Zhang. Stochastic optimization with importance sampling. arXiv preprint

arXiv:1401.2753, 2014.

Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, Jiahao Bu, and Qi Tian.

Scalable person re-identification: A benchmark. Computer Vision, IEEE International

Conference on, 2015.

Wei-Shi Zheng, Shaogang Gong, and Tao Xiang. Associating groups of people. In British

Machine Vision Conference (BMVC), volume 2, page 6, 2009.

Shuchang Zhou, Jia-Nan Wu, Yuxin Wu, and Xinyu Zhou. Exploiting local structures with the

kronecker layer in convolutional networks. arXiv preprint arXiv:1512.09194, 2015.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. Recurrent

highway networks. arXiv preprint arXiv:1607.03474, 2016.

114

Bibliography

115

Cijo Jose
Rue Marc-Morand 7, 1920 Martigny, Valais, Switzerland

(41) 762935669 cijo.jose@idiap.ch
Objective

A career in machine learning research.

Area of Research Interests
Learning embeddings, Neural networks, Kernel methods, Computational and statistical tradeoffs in machine
learning, Software tools for machine learning.

Education
École Polytechnique Fédérale de Lausanne Lausanne, Switzerland. • Doctoral Student in Electrical
Engineering., January 2014 - February 2018
Adviser: Dr. François Fleuret

Indian Institute of Technology Delhi Delhi, India. • Master of Technology in Computer Science., July 2010 -
September 2012
Adviser: Dr. Manik Varma

College of Engineering Trivandrum Kerala, India. • Bachelor of Technology in Computer Science., September
2004 - June 2008

Publications

• Cijo Jose, and François Fleuret. Scalable Metric Learning via Weighted Approximate Rank Component
Analysis. In Proceedings of the European Conference in Computer Vision (ECCV) , Amsterdam,
Netherlands, October 2016.

• Olivier Canévet, Cijo Jose, and François Fleuret. Importance Sampling Tree for Large Scale Empirical
Expectation. In Proceedings of the International Conference on Machine Learning (ICML) , Newyork City,
Newyork, June 2016.

• Cijo Jose, Prasoon Goyal, Parv Agarwal, and Manik Varma. Local Deep Kernel Learning for Efficient
Non-linear SVM Prediction. In Proceedings of the International Conference on Machine Learning (ICML) ,
Atlanta, Georgia, June 2013.

Preprints

• Cijo Jose, Moustapha Cissé and François Fleuret. Kronecker Recurrent Units. In Arxiv May 2017.

Professional Experience
Idiap Research Institute (December 2013 - Present)
Research Assistant

• Carrying out research in learning embeddings and importance sampling for the doctoral studies.

Facebook AI Research (January 2017 - April 2017)
Research Intern

• Conceptualised, designed and developed Kronecker recurrent units.

Microsoft Corporation (October 2012 - April 2013)
Research Intern

• Improved the research results on local deep kernel learning.
• Explored different machine learning models for the ad-serving system in Bing search engine.

Huawei Technologies Co. Ltd - Research and Development (October 2008 - July 2009)
Software Engineer

• Delivered the GPRS and 3G platform, called the service delivery platform(SDP) to the TATA-Docomo
mobile service in India.

• Designed and developed a report system for the SDP platform.

Skills
Programming Languages: C, C++.
Scripting Languages: Python, Lua, Matlab, Shell Scripting.
Markup Languages: LATEX, HTML, XML.

	Abstract (English/Français)
	Acknowledgements
	List of figures
	List of tables
	List of algorithms
	
	Introduction
	Motivations
	Learning from small data with large number of classes
	Learning to embed sequences
	Efficient estimation of an empirical expectation

	Summary of contributions
	Thesis outline
	Notation

	Background on Machine Learning
	Introduction
	Empirical Risk Minimization (ERM) principle
	Bias-variance trade-off

	Perceptron learning algorithm
	Remarks

	Stochastic gradient descent (SGD)
	Representer theorem and non-linear learning algorithms
	Kernel learning and neural networks
	Random feature map for Gaussian RBF kernel
	Neural networks

	Discussion

	Weighted Approximate Rank Component Analysis
	Introduction
	Related work
	Weighted Approximate Rank Component Analysis (WARCA)
	Problem formulation
	Approximate OrthoNormal (AON) regularizer
	Max-margin reformulation
	WARCA in kernel space

	Experiments
	Data-sets and baselines
	Technical details
	Comparison against state-of-the-art
	Analysis of the AON regularizer
	Analysis of the training time

	Discussion

	Kronecker Recurrent Units
	Introduction
	Recurrent neural network formalism
	Over parametrization and computational efficiency
	Poor conditioning implies gradients explode or vanish
	Why complex field?

	Kronecker recurrent units (KRU)
	Soft unitary constraint

	Experiments
	Copy memory problem
	Adding problem
	Pixel by pixel MNIST
	Character level language modelling on Penn TreeBank (PTB)
	Polyphonic music modeling
	Framewise phoneme classification on TIMIT
	Influence of soft unitary constraints

	Discussion

	Importance Sampling Tree
	Introduction
	Related work
	Weighted averages in machine learning
	Importance sampling for Monte-carlo simulations

	Importance Sampling Tree (IST)
	Adaptive sampling

	Experiments and results
	Multi-layer Neural Network on a 2D synthetic data-sets
	Deep Convolution Network on CIFAR10

	Discussion

	Conclusions
	Summary
	Future directions

	Chapter 2 Appendix
	Perceptron convergence proof

	Chapter 3 Appendix
	Metric learning
	Principal component analysis
	Fisher discriminant analysis
	Information-theoretic metric learning Davis2007
	KISS metric learning Kostinger2012
	Siamese neural network ChopraCVPR2005
	Chopping FleuretNIPS2005

	Person re-identification
	Performance measures for person re-identification

	Feature space visualization for WARCA
	Maximizing AUC with a Mahalanobis metric
	Kernelization
	Optimization
	Experiments

	Chapter 4 Appendix
	Analysis of vanishing and exploding gradients in RNN
	Long short-term memory (LSTM) hochreiter1997long
	Unitary evolution RNN arjovsky2015unitary
	Full capacity unitary RNN wisdom2016full
	Orthogonal RNN mhammedi2016efficient
	Properties of Kronecker matrix van2000ubiquitous
	Product between a dense matrix and a Kronecker matrix
	Gradient computation in a Kronecker layer

	Bibliography
	Curriculum Vitae

