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Abstract— Industrial robots are increasingly used in various
applications where the robot accuracy becomes very important,
hence calibrations of the robot’s kinematic parameters and
the measurement system’s extrinsic parameters are required.
However, the existing calibration approaches are either too
cumbersome or require another expensive external measure-
ment system such as laser tracker or measurement spinarm.
In this paper, we propose SCALAR, a calibration method to
simultaneously improve the kinematic parameters of a 6-DoF
robot and the extrinsic parameters of a 2D Laser Range Finder
(LRF) that is attached to the robot. Three flat planes are placed
around the robot, and for each plane the robot moves to several
poses such that the LRF’s ray intersect the respective plane.
Geometric planar constraints are then used to optimize the
calibration parameters using Levenberg-Marquardt nonlinear
optimization algorithm. We demonstrate through simulations
that SCALAR can reduce the average position and orientation
errors of the robot system from 14.6 mm and 4.05o to 0.09 mm
and 0.02o.

I. INTRODUCTION

In traditional robotics applications such as pick and place,
spray-painting and spot-welding, the robots either do not
need very high accuracy or they are programmed by teaching,
where the repeatability of the robot is more important than
the accuracy. Repeatability refers to the robot’s capability
to return precisely to the same location as previously taught,
whereas accuracy refers to the robot’s capability to precisely
reach a pose computed based on the robot’s kinematic model.

However, there are many applications where the accuracy
of the robot becomes very crucial, given that the robot has
to adapt to each task automatically with a great precision.
Consider, for example, a robot drilling task in [1] where the
robot is required to drill several holes at precisely-defined
locations on a workpiece. The workpiece can be different
for each task, and the placement within the workspace may
not be precisely known. To program the robot automatically
for such task, the robot has to do a few things accurately: the
robot has to scan the workpiece, determine the location of
the holes, and finally move to that location accurately. The
accuracy of such a robotic system depends on at least two
things: The accuracy of the robot and the accuracy of the
measurement system.

The accuracy of the robot is determined by how closely
the kinematic parameters of the robot’s model resemble the
actual kinematic parameters of the physical robot. This is
affected by the manufacturing process, the assembly process,
and the wear and tear during the operation of the robot.
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Fig. 1. Calibration Setup

Robot kinematic calibration is usually conducted to achieve
a better accuracy, either by using an external measurement
system (such as motion capture system or coordinate mea-
suring machines) or by constraining the motion of the end-
effector.

The accuracy of the measurement system can be divided
into two parts: the accuracy of the measurement device
itself and the accuracy of its extrinsic parameters (i.e.
the relative pose between the robot and the measurement
system coordinate frame). The accuracy of the measurement
device depends on the type of device that is used and its
specification. For example, a camera system is generallly less
precise as compared to a laser system, although a camera
can give more information. The accuracy of the extrinsic
parameters can be improved by doing extrinsic calibration
of the measurement system.

In this paper we present SCALAR, a calibration method
to simultaneously improve the accuracy of the robot and
the measurement system. SCALAR calibrates simultaneously
the kinematic parameters of the robot and the extrinsic
parameters of a 2D Laser Range Finder (LRF) using only
the information provided by the LRF attached to the robot’s
flange. An LRF is chosen because it gives very accurate mea-
surement data both for the calibration and for the subsequent
tasks (such as drilling).

The overall calibration procedure is as follows:
1) The LRF is attached to the robot and three perpendicular

flat planes are placed around the robot (Fig. 1).
2) For each plane, the robot is moved to several poses such

that the LRF’s 2D ray is projected onto the plane. The
LRF data and the robot’s joint angles are collected.

3) An optimization algorithm is used to find the optimal



TABLE I
EXAMPLES OF UNCONSTRAINED CALIBRATION

Researchers Robot Measurement Device Initial Accuracy[mm] Final Accuracy[mm]

Ginani and Mota [2] ABB IRB 2000 ROMER Measurement Arm 2.20 1.40
Ye et al. [3] ABB IRB 2400/L Faro Laser Tracker 1.764 0.640

Nubiola and Bonev [4] ABB IRB 1600-6/1.45 Faro Laser Tracker ION 2.158 0.696
Newman et al. [5] Motoman P-8 SMX Laser Tracker 3.595 2.524

robot’s kinematic parameters and the LRF’s extrinsic
parameters, using the geometric constraint that the pro-
jected LRF data should be located on the three planes.

The remainder of the paper is as follows. In Section II we
discuss the existing approaches to the calibration problem for
robot’s kinematic parameters and LRF’s extrinsic parameters,
and how SCALAR differs from the other approaches. In
Section III, SCALAR is explained in detail. A simulation
study is presented in Section IV to verify SCALAR, and
finally we conclude with a few remarks in Section V.

II. RELATED WORKS

A. Calibration of robot’s kinematic parameters

Robot kinematic calibration has been researched for a long
time; some of the earliest works began in 1980s. The cal-
ibration procedures can be categorized into unconstrained
and constrained calibration. In unconstrained calibration,
the robot moves its end-effector to several poses while an
external measurement system measures the pose. The mea-
sured pose is then compared to the one computed from the
kinematic model, and the model is updated to minimize the
difference between the predicted pose and the measured pose.
In constrained calibration, some constraints are applied
to the motion of the end-effector, and the constraints yield
several calibration equations by which the robot’s kinematic
parameters are calibrated.

Examples of unconstrained calibration works can be seen
in Table I. The issues with such calibration method are
the difficulty in setting up the calibration setup and the
expensive cost of the external measurement system. For
example, the cost of a laser tracker is more than $100, 000
USD [4]. Therefore, many researchers try to find calibration
methods which only rely on the internal sensors of the robot
by constraining the motion of the end-effector such as in
constrained calibration.

In [6], Ikits and Hollerbach propose a kinematic calibra-
tion method using a planar constraint. A touch probe attached
to the robot’s flange is moved to touch random points on a
plane. When the touch probe is in contact with the plane,
the joint angles are recorded. The kinematic parameters
of the robot model are then updated to satisfy the planar
constraint. While the approach is promising, they also report
that some of the parameters are hardly observable (i.e. cannot
be obtained accurately) when the measurements are noisy or
when the model is not complete.

In [7], Zhuang et al. investigate robot calibration with
planar constraints, in particular the observability conditions

of the robot’s kinematic parameters. They prove that a single-
plane constraint is insufficient for calibrating a robot, and a
minimum of three planar constraints are necessary. Using
three planar constraints, the constrained system is proved to
be equivalent to an unconstrained point-measurement system
under three conditions: a) All three planes are mutually non-
parallel, b) the identification Jacobian of the unconstrained
system is nonsingular, and c) the measured points from each
individual plane do not lie on a line on that plane. They verify
the theory by doing a simulation on a PUMA560 robot.

In [8], Joubair and Bonev calibrated both the kinematic
and non-kinematic (stiffness) parameters of a FANUC LR
Mate 200iC industrial robot by using four planar constraints,
in the form of a high precision 9-inches granite cube. The
cube’s surfaces are flat to within 0.002 mm). The robot is
equipped with an MP250 Renishaw touch probe which is
moved to touch four sides of the granite cube. They improved
the maximum plane error from 3.740 mm to 0.083 mm.

B. Calibration of extrinsic 2D LRF parameters

Extrinsic calibration of an LRF consists of finding the pre-
cise homogeneous transformation from the robot coordinate
frame to the laser coordinate frame. Most of the works on
extrinsic calibration of an LRF involves a camera, since both
sensors are often used together in many applications. The
works in this field are largely based on Zhang and Pless’
work [9]. They propose a method to calibrate both a camera
and an LRF using a planar checkerboard pattern. First, the
camera is calibrated by a standard hand-eye calibration [10]
using the checkerboard pattern. The calibrated camera is then
used to calculate the pose of the pattern. Next, the robot is
moved to several poses with the LRF pointing to the pattern.
By using the geometric constraints that all the data points
from the LRF should fall on the pattern plane, the extrinsic
parameters of the LRF can be obtained. Finally, the same
constraints are used to optimize both the intrinsic and extrin-
sic parameters of the camera and the extrinsic parameters of
the LRF. The nonlinear optimization problem is solved by
using Levenberg-Marquardt optimization algorithm.

Unnikrishnan and Hebert [11] use the same setup as
[9], although they do not optimize the camera parameter
simultaneously due to the nonlinearity of the resulting cost
function. Li et al. [12] use a specially designed checkerboard
to calibrate the extrinsic parameters between a camera and an
LRF, and claim that the result is better than [9]. Vasconcelos
et al. [13] develop a minimal closed-form solution for the
extrinsic calibration of a camera and an LRF, based on the
work in [9].



C. Novelty of the proposed method

SCALAR can be seen as a combination of the algorithm
for extrinsic calibration of an LRF [9] and the algorithm for
calibration of robot’s kinematic parameters using three planar
constraints [8]. It has the following advantages as compared
to the other calibration approaches:

1) SCALAR simultaneously calibrates both the LRF’s ex-
trinsic parameters and the robot’s kinematic parameters.
Since calibration is often cumbersome, this saves a lot
of time and effort. Moreover, the errors in the robot’s
kinematic parameters affect the extrinsic calibration
accuracy and vice versa, so calibrating both parameters
simultaneously results in better accuracy.

2) SCALAR does not need an additional camera to cali-
brate the LRF, unlike [9].

3) SCALAR does not need another expensive external
measurement system. The measurement is done using
the LRF that will be used in the subsequent robot
task, hence it does not incur additional cost. Moreover,
an LRF can give very high accuracy at much lower
cost (more than ten times cheaper) as compared to the
commonly used measurement systems such as Vicon or
Faro Laser Tracker.

4) SCALAR does not need a precisely manufactured cali-
bration object such as the granite cube in [8]. SCALAR
only requires three flat surfaces which are oriented
roughly perpendicular to each other and the rough
estimate of their locations.

5) The calibration poses can be distributed throughout the
whole workspace, instead of being confined only in a
local region such as in [8].

III. METHOD

The calibration setup is depicted in Fig. 1, where three
roughly perpendicular planes (k = 1, 2, 3) are placed around
the robot. An LRF is attached to the robot flange. For each
plane, the robot is moved to N poses such that the LRF’s
ray is directed to the respective plane. One data set from the
LRF consists of hundreds of data points, so M data points
are randomly selected from the LRF data for each pose, and
the robot’s joint angles are recorded.

This section describes the calibration algorithm. First, the
initial estimate of the LRF’s extrinsic parameters is obtained
using the linear least-squares method with the data from
one of the planes. This is based on the algorithm in [9],
although presented differently for better clarity. After that,
the robot’s kinematic parameters and the LRF’s extrinsic
parameters are optimized simultaneously to satisfy the three
planar constraints using Levenberg-Marquardt nonlinear op-
timization method. Finally, we explain how Singular Value
Decomposition (SVD) can be used to analyse which calibra-
tion parameters are identifiable, and the steps to handle the
unidentifiable parameters are then presented.

A. Initial Estimate of the LRF Extrinsic Parameters

To obtain an initial estimate of the LRF’s extrinsic parame-
ters, only the data from one plane is necessary. Arbitrarily,

the bottom plane P1 is chosen. The extrinsic parameters of
the LRF ETL, i.e. the homogeneous transformation from the
robot flange coordinate frame to the LRF coordinate frame,
is estimated by the following calculations.

Let the subscript/superscript B, E, and L denote the
coordinate frame of the robot base, the robot flange, and
the LRF, while the subscript i, j, and k refer to the LRF
data point index, the robot pose index, and the plane index
respectively. Let pji be one of the data points from the LRF
which lies on the P1, n1 be the normal unit vector of P1,
and l1 be the perpendicular distance from the origin of the
robot coordinate system to P1. Since pji is located on the
P1, it has to satisfy the following constraint,

BnT1
Bpji − Bl1 = 0 . (1)

Bpji depends on the robot pose BTE,j at pose index j and
the LRF’s extrinsic parameter ETL, so (1) can be expanded,

BnT1
BTE,j

ETL
Lpji − Bl1 = 0 . (2)

Bn1 and Bl1 are known approximately ([0 0 1 0] and 0.0),
BTE,j can be computed from the robot’s joint angles at pose
index j, and Lpji is obtained from the laser. Let

n
′

j

T
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[
n

′

j,1 n
′

j,2 n
′

j,3 n
′

j,4

]
, (3)

then n
′

j

T ETL
Lpji − Bl1 = 0 . (4)

The only unknown in (4) is ETL which has 12 elements
ruv , where u and v denote the column and the row index of
the matrix. Note that the fourth row of ETL only consists
of 0 and 1. Without loss of generality, let’s assume that the
data points from the LRF lie on the XZ planes of the laser
frame L, so Lpji =

[
Lpi,x 0 Lpi,z 1

]
. If we expand (4)

and rearrange such that the components of ETL are stacked
together as a vector ΦL, we have

xji
T ΦL = Bl1 − n

′

j,4 , (5)

where xji =
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and ΦL = [r11 r21 r31 r13 r23 r33 r14 r24 r34]

T
.

For each data point i, we obtain such equation as in (5).
With M data points per pose and a total of N robot poses,
there are NM such equations. The equations can be stacked
together to form the following matrix equation,

XΦL = D , (6)

where X =
[
x11 · · · x1M x21 · · · x2M · · · xNM

]T
and D =

[
Bl1 − n

′

1,4 · · · Bl1 − n
′

1,4
Bl1 − n

′

2,4

· · · Bl1 − n
′

2,4 · · · Bl1 − n
′

N,4

]T
.



Equation (6) can be solved by a linear least-square procedure
to obtain ΦL. ETL can then be computed from ΦL as
follows:

1) The parameters [r11 r21 r31]T and [r13 r23 r33]T

are required to be unit vectors, so they have to be
normalized. They consistute the first and the third
column of the matrix ETL.

2) The parameters [r14 r24 r34]T constitute the position
component of the matrix ETL (the 4th column).

3) The parameters [r12 r22 r32]T can be calcu-
lated as the cross product of [r13 r23 r33]T and
[r11 r21 r31]T .

ETL has 12 parameters, but only 6 parameters are inde-
pendent. To reduce the redundancy in the subsequent steps,
the rotation part of ETL is represented by the axis-angle
representation [rx ry rz rθ], while the position part is
represented by [px py pz].

B. Optimizing both the LRF Extrinsic Parameters and
Robot’s Kinematic Parameters

In the second step, the data from all the three planes are
used to optimize the extrinsic parameters of the LRF, the
robot’s kinematic parameters and the plane parameters. The
objective function is described as follows:

f(Φ) =

3∑
k=1

N∑
j=1

M∑
i=1

(Bnk
T Bpji − Blk)2 (7)

The parameters Φ consist of the following:
1) Robot’s kinematic parameters. We use DH parameters

[14] [ai , αi , θi , di], i = 1, 2, · · · , 6 to represent the
robot’s kinematics, so there are 24 DH parameters for
a 6-DoF robot arm.

2) LRF’s extrinsic parameters. As mentioned in the pre-
vious section, we use the axis angle representation for
the rotation part [rx ry rz rθ], and [px py pz]
for the position part.

3) Plane parameters. Each plane can be described by a
unit vector [Bnk,x

Bnk,y
Bnk,z] normal to the plane

and its perpendicular distance from the robot base’s
coordinate system origin Blk, so there are 12 parameters
for 3 planes.

In total, there are 43 parameters to be optimized. The
optimization problem is then solved using a Levenberg-
Marquardt nonlinear optimizer [15]. The objective function
f(Φ) uses the geometric constraints that all data points from
the LRF have to fall on the respective plane. Zhuang et al.
[7] prove that a calibration process with such constraints
is equivalent to the calibration of a robot using end-point
measurement in unconstrained calibration.

For the unit vector parameters ([rx ry rz] and
[Bnk,x

Bnk,y
Bnk,z]), the following constraints are

added to the optimization solver:

rz =
√

1 − rx2 − ry2 (8)

Bnk,z =

√
1 − Bnk,x

2 − Bnk,y
2 (9)

TABLE II
DH PARAMETERS OF DENSO VS060

i αi [
o] ai [mm] θi [

o] di [mm]

1 0.0 0.0 θ1 345.0
2 -90.0 0.0 θ2 - 90.0 0.0
3 0.0 305.0 θ3 + 90.0 0.0
4 90.0 -10.0 θ4 300.0
5 -90.0 0.0 θ5 0.0
6 90.0 0.0 θ6 70.0

C. Identifiability of the calibration parameters

Depending on the chosen robot calibration poses and the
robot’s kinematic model, some of the calibration parameters
might not be observable due to the linear dependency among
the parameters. This is a critical problem in calibration, as it
will result in some of the parameters assuming erratic values
which gives us unstable calibration result. To prevent that,
we have to first analyse which calibration parameters are
identifiable and which are not.

Following the approach in [8] and [16], SVD is applied
on the identification Jacobian matrix J . J can be computed
as follows. Let fkji(Φ) be the geometric constraint equation
on the data point i at the robot pose j and on the plane k,

fkji(Φ) = Bnk
T Bpji − Blk = 0 . (10)

Then J can be computed by differentiating (10) for all the
data points i = 1, · · · ,M at the robot poses j = 1, · · · , N
and for all the planes k = 1, 2, 3, then stack them together
as a matrix,

J =
[
∂f111(Φ)
∂Φ

∂f112(Φ)
∂Φ · · · ∂f3MN (Φ)

∂Φ

]T
. (11)

We can then apply SVD to the matrix J = UΣV T .
Note that for this identification step, the parameters
[rz

Bn1,z
Bn2,z

Bn3,z] are excluded from the parame-
ters vector Φ, since those four parameters are obtained as
linear combinations of other parameters (Equation (8) and
(9)). That leaves us with 43-4 = 39 parameters in Φ, which
correlate to the 39 singular values in Σ. The number of
zero singular values in Σ is then equal to the number of
unidentifiable parameters in the calibration procedure. For a
given zero-value singular value σr, the rth column vector of
the matrix V is the linear combination of the parameters Φ
which cannot be identified independently.

In this paper, we use a Denso VS060 6-DoF industrial
manipulator with its DH parameters presented in Table II.
The LRF’s frame is defined such that the rotation part
[rx ry rz rθ] = [0 0 1 π], and the position part
[px py pz] = [−0.1275 −0.033 0.1015]. Applying the
identifiability analysis to the system, we found that there are
7 sets of linearly dependent parameters.

1) The parameters d6 (the translation along the z-axis
of the 6th link frame on the flange) and pz (the z
coordinate of the LRF’s frame) are linearly dependent.
Physically this means that if we shift the origin of the
6th link’s frame in its z direction by changing d6, we can



compensate by shifting the origin of the LRF’s frame
in the opposite direction by changing pz .

2) The parameters θ6 and rθ are linearly dependent. These
correspond to the rotation of the 6th link’s frame and
the rotation of the LRF’s frame around the same z-axis.

3) The parameters d2 and d3 are linearly dependent. These
correspond to the shift in the z-axis direction of the 2nd
and 3rd link’s frames respectively, which are along the
same direction.

4) Lastly, we have four sets of linearly dependent parame-
ters due to the linear combinations of the first link’s
DH parameters [a1, α1, θ1, d1] and the three calibration
planes’ parameters. Physically, this relates to the fact
that we can shift the robot’s base frame freely by
changing the value of [a1, α1, θ1, d1], and the plane pa-
rameters will adjust according to the new base location.
In other words, the base coordinate is not constrained
(floating base).

For each set of the linearly dependent parameters, we can
assign a fix value to one of the parameters. In this case, we
fix the value of the parameters [d6, θ6, d2, a1, α1, θ1, d1] to
their initial model’s values.

These results apply to most existing 6-DoF industrial
robots whose kinematic configurations are the same as that
of our Denso robot.

IV. SIMULATION

We verify SCALAR through simulation of the calibration
procedure. The simulation is conducted by using Robot
Operating System and Gazebo where the robot model, the
LRF, and the three planes can be simulated. As shown in
Fig. 1, three perpendicular planes are located around the
robot, and the robot is moved such that the LRF’s ray
intersects each plane. Simulated data from the LRF can be
obtained and Gaussian noise with zero mean and standar
deviation σnoise can be added to the data. The data is then
used as input to the calibration algorithm. The optimization
is typically completed in less than 15 s using Python.

After the calibration, the robot is moved to 10,000 random
poses to evaluate the accuracy of the calibrated parameters.
Let BTL,j,true and BTL,j,model be the true and calibrated
pose of the LRF’s frame w.r.t. the robot base frame at
the robot pose index j, respectively, then the error of the
calibrated model can be computed as

∆Tj = BTL,j,model
−1 BTL,j,true . (12)

Let δtuv be the element of ∆Tj with the subscript u and v
refer to the row and column index, then the position error
at the robot pose index j, δpj , can be computed by

δpj =
√
δt214 + δt224 + δt234 . (13)

Let δRj be the rotation part of the homogeneous transfor-
mation matrix ∆Tj . δRj can be represented by using an
axis-angle notation, [rj,1 rj,2 rj,3 δθj ]. We use δθj as
the orientation error at the robot pose index j. δθj can
be seen as the amount of rotation necessary to rotate the

calibrated pose to the true pose. The errors δpj and δθj are
then averaged over the 10,000 random poses.

The simulated robot’s model is considered as having the
true kinematics and extrinsic parameters, and an initial model
is generated by introducing random Gaussian errors to the
true parameters within the range of ± 2 mm and ± 1o for
the linear and angular parameters, respectively. Note that
the initial model’s errors are intentionally set to be large
to illustrate the robustness of the calibration method. The
average position and orientation errors of the initial model
as compared to the true model are 14.6 mm and 4.05o, while
the maximum errors are 103.9 mm and 5.95o. We run the
calibration procedure to improve the initial model with 3N
= 120, M = 100 and σnoise = 0.1mm, and the resulting
calibrated model has the average position and orientation
errors reduced to 0.09 mm and 0.02o, while the maximum
errors are reduced to 0.19 mm and 0.035o.

Next, we evaluate the effect of the measurement noise,
the number of poses (N ) and points (M ), and the plane
parameters’ initial estimate on the calibration errors.

A. Effect of the measurement noise
The accuracy of the calibration procedure depends greatly

on the accuracy of the measurement system, which is affected
by the noise on the data. In this section, Gaussian noise
with zero means and varying standard deviations σnoise are
added to the measurement data in the simulation, and its
effect on the calibration errors is shown in Fig. 2a. As σnoise
decreases, the calibration errors decrease. At σnoise = 0.1
mm, the average position and orientation errors are around
0.1 mm and 0.02o, respectively. For the subsequent sections,
σnoise is set at 0.1 mm.

B. Effect of the number of calibration poses and the number
of points

For each plane, the robot is moved to N poses, so in total
there are 3N calibration poses. At each pose, we select M
data points from the LRF data. In this section we evaluate
the effect of 3N and M to the calibration errors. In Fig. 2b,
it can be seen that as the number of poses 3N increases, the
error decreases until around 3N = 60, beyond which it does
not change significantly. It can be concluded that 60 robot
poses are sufficient to calibrate the robot model accurately.
We also conduct similar analysis on M (not presented in this
paper) and found that M = 20 is sufficient for the calibration.

C. Effect of the plane parameters’ initial estimate
One of the advantages of SCALAR is that the plane

parameters do not need to be precisely known. Here the plane
parameters’ estimate is varied to demonstrate the method’s
robustness . The initial estimates of the positions and the
normals of the planes are disturbed by up to 100 mm and
30o, as shown in Fig. 2c and Fig. 2d. From the figures, it
can be seen that the calibration position and orientation errors
are not affected by the errors in the plane parameters’ initial
estimate. In fact, after calibration, the plane parameters in the
calibrated model approach the true parameters within 0.1 mm
and 0.01o.
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Fig. 2. Effect of a) the measurement noise, b) the number of poses, c) planes’ position estimate error, and d) plane’s orientation estimate error towards
the position and orientation error after calibration

V. CONCLUSIONS

In this paper, we have proposed SCALAR, a method
to simultaneously calibrate a 6-DoF robot’s kinematic pa-
rameters and a 2D LRF’s extrinsic parameters using only
three flat planes, arranged perpendicularly towards each other
around the robot. SCALAR is easier to implement than the
previous methods in the literature as it does not require other
expensive measurement systems or tedious setup. We have
verified from simulations that the method reduces the average
errors in position and orientation from (14.6 mm, 4.05o) to
(0.09 mm, 0.02o), respectively. This is very useful for many
industrial robotics applications that require great accuracy.

The next step is to implement SCALAR on the real
system. Some challenges that may appear on the real system
are the backlash of the robot’s transmission system, the
elasticity of the joints, the roughness of the calibration
planes and the noise of the LRF data which will reduce the
calibration accuracy. We will present the calibration result
on the real system in our future work.
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