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Abstract
Clustering is a method for discovering structure in data, widely used across many scientific
disciplines. The two main clustering problems this dissertation considers are K-means
and K-medoids. These are NP-hard problems in the number of samples and clusters,
and both have well studied heuristic approximation algorithms. An example is Lloyd’s
algorithm for K-means, which is so widely used that it has become synonymous with the
problem it attempts to solve.
A large part of this dissertation is about accelerating Lloyd’s algorithm, and its mini-batch
and K-medoids variants. The basic tool used to achieve these accelerations is the triangle
inequality, which can be applied in a multitude of ways to eliminate costly distance
calculations between data samples, as well as to reduce the number of comparisons of
these distances.
The first effective use of the triangle inequality to accelerate K-means was by Elkan [2003],
with novel refinements appearing more recently in Hamerly [2010]. In Chapter 1 we extend
these approaches. First, we show that by using centers stored from previous iterations, one
can greatly reduce the number of sample-center distance computations, with substantial
improvements in algorithm execution time. We then present an improvement over
previous triangle inequality based algorithms for low-dimensions, which uses inter-center
distances in a novel way.
Chapter 2 considers the use of the triangle inequality to accelerate the mini-batch variant
of Lloyd’s algorithm [Sculley, 2010]. The main difficulty of incorporating triangle inequal-
ity bounding in this setting is that clusters can move significantly during the iterations
in which a sample is unused, which makes triangle inequality bounding ineffective. We
propose a modified sampling scheme to reduce the length of these periods of dormancy,
and present an algorithm which achieves an order of magnitude acceleration over the
standard mini-batch algorithm.
We then turn attention to the K-medoids problem. In Chapter 3 we focus on the specific
problem of determining the medoid of a set. With N samples in Rd, we present a simple
algorithm of complexity O(N3/2) to determine the medoid. It is the first sub-quadratic
algorithm for this problem when d > 1. The algorithm makes use of the triangle inequality
to eliminate all but O(N1/2) samples as potential medoid candidates.
Finally, in Chapter 4 we compare different K-medoids algorithms, and find that clarans
[Ng and Han, 1994], which iteratively replaces randomly selected centers with non-centers,
avoids the local minima of other popular K-medoids algorithms. This motivates the use
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of clarans for initializing Lloyd’s algorithm for K-means, which results in improved
final energies as compared to K-means++ seeding. We use the triangle inequality to
offset the increased computation required by clarans.
Keywords: clustering, triangle inequality, k-means, k-medoids, medoid, mini-batch
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Résumé
Le partitionnement de données est une méthode d’apprentissage non-supervisée qui vise
à diviser un ensemble de données en des groupes dans lesquels les données partagent des
caractéristiques communes. Les deux problèmes de partitionnement principaux considérés
dans cette thèse sont le K-means (K-moyennes) et le K-medoids (K-médoïdes). Ce sont
des problèmes NP-difficiles dans le nombre de données et de partitions, pour lesquels il
existe des algorithmes heuristiques bien étudiés. Le plus connu de ces algorithmes est
celui de Lloyd, que l’on appelle parfois simplement l’algorithme K-means.
Une grande partie de cette thèse porte sur l’accélération de l’algorithme de Lloyd et ses
variantes. L’outil de base pour réaliser ces accélérations est l’inégalité triangulaire, qui
peut être utilisée de multiples façons pour éliminer des calculs de distance coûteux entre
les données, ainsi que pour réduire le nombre de comparaisons de ces distances.
La première utilisation efficace de l’inégalité triangulaire pour accélérer l’algorithme
de Lloyd est due à Elkan [2003], avec des améliorations proposées plus récemment par
Hamerly [2010] et Ding et al. [2015]. Dans le chapitre 1 nous proposons des améliorations
supplémentaires. Tout d’abord, nous montrons qu’en utilisant des centres estimés lors
d’itérations précédentes, il est possible de réduire considérablement le nombre de calculs
de distances. Ensuite, nous présentons un algorithme qui utilise les distances entre les
centres d’une manière nouvelle, qui permet de grandes accélérations en basses dimensions
par rapport aux algorithmes existants.
Le chapitre 2 considère l’utilisation de l’inégalité triangulaire pour accélérer la variante
mini-batch de l’algorithme de Lloyd. La difficulté principale de l’incorporation de l’inégalité
triangulaire ici est que les centres peuvent se déplacer de manière significative au cours
des itérations dans lesquelles une donnée est inutilisée, ce qui rend inefficace la technique
de délimination. Nous proposons une méthode d’échantillonnage modifiée pour réduire
cette période d’inactivité, et nous présentons un algorithme avec une accélération d’un
ordre de grandeur par rapport à l’algorithme original du mini-batch.
Nous nous concentrons ensuite sur le problème K-medoids. Dans le chapitre 3, nous
abordons le problème spécifique de la détermination du medoid d’un ensemble de N
données. Nous présentons un algorithme simple qui est de complexité O(N3/2) dans
Rd, le premier algorithme sous-quadratique pour d > 1. L’algorithme utilise l’inégalité
triangulaire pour éliminer tous les données sauf O(N1/2) comme candidats medoids.
Enfin, dans le chapitre 4, nous comparons différents algorithmes de K-medoids, et nous
montrons que clarans [Ng and Han, 1994], qui échange aléatoirement des centres et
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des non-centres, évite les minima locaux d’autres algorithmes. Cela nous encourage à
utiliser clarans pour initialiser l’algorithme de Lloyd pour le K-means, ce qui donne des
énergies finales améliorées par rapport à K-means++ [Arthur and Vassilvitskii, 2007].
Nous utilisons l’inégalité triangulaire pour réduire la complexité de calcul de clarans
dans ce contexte.
Mots clés : partitionnement, inégalité triangulaire, k-moyennes, k-médoïdes, médoid,
mini-batch
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Introduction
The goal of machine learning is for computers to learn without being explicitly pro-
grammed. The field is commonly divided into two sub-fields, supervised and unsupervised
learning. In the supervised setting, the data which the computer learns from consists
of pairs, where each pair is an input and desired output. An example of supervised
learning is regression, where model parameters are learned to minimize prediction error.
The topic of this thesis, clustering, lies in the field of unsupervised learning, where data
consists of only inputs; there are no specified ‘correct’ outputs, or labels.

The goal of clustering is to separate data into meaningful groups. It is often used as a
first step in exploring new datasets; for example biologists may cluster gene expressions to
discover biological pathways, and retailers may cluster customers for targeted marketing.
It is also a commonly used technique in signal processing, where values are quantized to
satisfy memory/bandwidth constraints.

Clustering techniques can be divided into two categories, hierarchical and flat clustering
techniques. An example of hierarchical clustering is the construction of phylogenetic trees,
where different tree depths represent different degrees of genetic relatedness; species,
genus, family, order, etc. Flat clustering on the other hand assumes no relationship
between clusters. This dissertation deals exclusively with the flat variant, commonly
referred to as partitional clustering. This nomenclature can be misleading, as it suggests
that hierarchical clustering is non-partitional.

Flat clustering techniques can be further sub-divided into those which aim to minimize a
energy function, and those which do not. A popular algorithm where there is no energy
function minimization is DBSCAN of Ester et al. [1996], which iteratively agglomerates
items into clusters based on estimated point density. Such heuristic algorithms will not
be considered in this dissertation, which focuses instead on algorithms which attempt to
minimize an energy function.

With the energy minimization approach, an energy function is defined over a parameter-
ized set of possible clusterings, and the goal is to minimize this function. The canonical
example here is K-means, where the energy function is defined (in a vector space) as
the sum over data-points of the squared Euclidean distance to the nearest cluster center.
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Another example is spectral clustering of graphs, which attempts to minimize the number
of edges between nodes in different clusters. A third example is K-medoids, which
generalizes K-means to any loss function but adds the constraint that centers be samples.

Energy minimization clustering problems

Many energy minimization clustering problems such as K-means are NP-hard in the
number of samples, and in practice approximation algorithms are used. For K-means,
the most widely used is Lloyd’s algorithm, which relies on a two-step iterative process.
In the assignment step, each sample is assigned to the cluster whose center is nearest. In
the update step, cluster centers are updated to be the mean of their assigned samples.
Lloyd’s algorithm is generally considered to be fast. However, the linear dependence on
the number of clusters, the number of samples and the dimension of the space, means
that it requires upwards of a billion floating point operations per round on medium-sized
datasets. This, coupled with slow convergence and the fact that several runs are often
performed to find improved solutions, can make it slow in practice. Accelerating Lloyd’s
algorithm will be the focus of Chapter 1 of this dissertation, with special attention paid
to the triangle inequality bounding techniques of Elkan [2003].

Lloyd’s algorithm is often referred to as the exact algorithm, which can lead to confusion
as it does not solve the K-means problem exactly. The reason for this name is that there
are other algorithms which approximate Lloyd’s algorithm. Certain of these rely on a
relaxation of the assignment step, for example by only considering certain clusters for
each sample, according to some hierarchical ordering [Nister and Stewenius, 2006], or
by using an approximate nearest neighbor search, as in Philbin et al. [2007]. Others
rely on a relaxation of the update step, for example by using only a subset of data to
update centroids [Frahling and Sohler, 2006, Sculley, 2010]. Such relaxations can result
in enormous speed-ups for large datasets. These approximate algorithms, in particular
the mini-batch K-means algorithm of Sculley [2010] will be the focus of Chapter 2.

Lloyd’s algorithm only works in vector spaces, where a ‘mean’ sample, or centroid, can
be computed. To generalize the algorithm to any metric space, one can replace centroids
with medoids, the cluster elements whose mean energy with other cluster elements is
minimal. The resulting K-medoids algorithm can be applied to graph and sequence data.
Computing the medoid of a set has applications beyond clustering. In network analysis,
the medoid may represent an influential person in a social network, or the most central
station in a rail network. In operations research, the facility location problem requires
placing one or several facilities so as to minimize the cost of connecting to clients. A
simple algorithm for obtaining the medoid of a set of N elements is to directly compute
all inter-element distances, which costs Θ(N2). This is in contrast to the computation of
a set mean, which is O(N). In Chapter 3 we consider approximate and exact alternatives
for computing the medoid of a set, which reduce this quadratic dependency.
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0.2. Dissertation outline and contributions

Alternatives to Lloyd’s algorithm and its K-medoids equivalent alluded to in the previous
paragraph have been proposed. The majority of these algorithms do not scale linearly
in the number of samples. Examples are the algorithm of Kanungo et al. [2002a] and
the clarans K-medoids algorithm of Ng and Han [1994]. Lloyd’s algorithm is local, in
that far removed centers and points do not directly influence each other. This property
contributes to its tendency to terminate in poor minima if not well initialized. Good
initialization is key to guaranteeing that the refinement performed by lloyd is done
in the vicinity of a good solution, and a topic of active research [Celebi et al., 2013,
Bachem et al., 2016]. The clarans algorithm is robust to certain local minima of Lloyd’s
algorithm, indeed its local minima are a subset of those of Lloyd’s. Initialization and
these alternative clustering algorithms will be the topic of Chapter 4, where we consider
using clarans for initializing Lloyd’s algorithm.

Dissertation outline and contributions

The four chapters in this dissertation are based on four conference proceedings articles
[Newling and Fleuret, 2016a,b, 2017a,b]. While all four chapters are about clustering,
they are independent of each other and can be read in any order. Each chapter very
closely follows its original paper, with certain connections between the works highlighted
where relevant. Notation has been changed from the original papers where appropriate.

In Chapter 1, which is based on Newling and Fleuret [2016a], we propose a novel
accelerated exact k-means algorithm, which outperforms state-of-the-art low-dimensional
algorithm in 18 of 22 experiments, running up to 3× faster. We also propose a general
improvement of existing state-of-the-art accelerated exact k-means algorithms through
better estimates of the distance bounds used to reduce the number of distance calculations,
obtaining speedups in 36 of 44 experiments, of up to 1.8×. We have conducted experiments
with our own implementations of existing methods to ensure homogeneous evaluation
of performance, and we show that our implementations perform as well or better than
existing available implementations. Finally, we propose simplified variants of standard
approaches and show that they are faster than their fully-fledged counterparts in 59 of
62 experiments.

In Chapter 2, which is based on Newling and Fleuret [2016b], a new algorithm is
proposed which accelerates the mini-batch K-means algorithm of Sculley [2010] by using
the distance bounding approach of Elkan [2003]. We argue that, when incorporating
distance bounds into a mini-batch algorithm, already used data should preferentially be
reused. To this end we propose using nested mini-batches, whereby data in a mini-batch
at iteration t is automatically reused at iteration t + 1. Using nested mini-batches
presents two difficulties. The first is that unbalanced use of data can bias estimates,
which we resolve by ensuring that each data sample contributes exactly once to centroids.
The second is in choosing mini-batch sizes, which we address by balancing premature
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fine-tuning of centroids with redundancy induced slow-down. Experiments show that the
resulting nmbatch algorithm is very effective, often arriving within 1% of the empirical
minimum 100× earlier than the standard mini-batch algorithm.

In Chapter 3, which is based on Newling and Fleuret [2017a], we present a new algorithm
trimed for obtaining the medoid of a set, that is the element of the set which minimizes
the mean distance to all other elements. The algorithm is shown to have, under certain
weak assumptions, expected run time O(N

3
2 ) in Rd where N is the set size, making it the

first sub-quadratic exact medoid algorithm for d > 1. Experiments show that it performs
very well on spatial network data, frequently requiring two orders of magnitude fewer
distance calculations than state-of-the-art approximate algorithms. As an application, we
show how trimed can be used as a component in an accelerated K-medoids algorithm,
and then how it can be relaxed to obtain further computational gains with only a minor
loss in cluster quality.

In Chapter 4, which is based on Newling and Fleuret [2017b], we show experimentally
that the algorithm clarans of Ng and Han [1994] finds better K-medoids solutions
than the Voronoi iteration algorithm of Hastie et al. [2001]. This finding, along with
the similarity between the Voronoi iteration algorithm and Lloyd’s K-means algorithm,
motivates us to use clarans as a K-means initializer. We show that clarans outperforms
other algorithms on 23/23 datasets with a mean decrease over k-means-++ [Arthur and
Vassilvitskii, 2007] of 30% for initialization mean squared error (MSE) and 3% for final
MSE. We introduce algorithmic improvements to clarans which improve its complexity
and runtime, making it an extremely viable initialization scheme for large datasets.

Finally, in Chapter 5, we summarize our findings and suggest directions for future
investigation.
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1 Fast K-means with Accurate
Bounds

Chapter introduction

The K-means problem is to compute a set of K centroids (centers) to minimize the sum
over data-points of the squared distance to the nearest centroid. As mentioned in the
thesis introduction, it is an NP-hard problem for which the most popular approximation
algorithm is Lloyd’s algorithm, often referred to as the K-means algorithm. It has
applications in data compression, data classification, density estimation and many other
areas, and was recognised in Wu et al. [2008] as one of the top-10 algorithms in data
mining.

Recall that Lloyd’s algorithm is also called the exact K-means algorithm, as there is no
approximation in the assignment or update step. Note that Lloyd’s algorithm does not
state how these steps should be performed, and as such provides a scaffolding on which
more elaborate algorithms can be constructed. These more elaborate algorithms, often
called accelerated exact K-means algorithms, are the primary focus of this chapter. They
can be dropped-in wherever Lloyd’s algorithm is used.

Approximate K-means

Alternatives to exact K-means have been proposed. Certain of these rely on a relaxation
of the assignment step [Nister and Stewenius, 2006, Philbin et al., 2007]. Others rely on
a relaxation of the update step, for example by using only a subset of data to update
centroids as in [Sculley, 2010], which will be the focus of Chapter 2.

When comparing approximate K-means clustering algorithms such as those just men-
tioned, the two criteria of interest are the quality of the final clustering, and the
computational requirements. The two criteria are not independent, making comparison
between algorithms more difficult and often preventing their adoption. When comparing
accelerated exact K-means algorithms on the other hand, all algorithms produce the
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same final clustering, and so comparisons can be made based on speed alone. Once an
accelerated exact K-means algorithm has been confirmed to provide a speed-up, it is
rapidly adopted, automatically inheriting the trust which the exact algorithm has gained
through its simplicity and extensive use over several decades.

Accelerated exact K-means

The first published accelerated K-means algorithms borrowed techniques used to ac-
celerate the nearest neighbour search. Examples are the adaptation of the algorithm
of Orchard [1991] in Phillips [2002], and the use of kd-trees [Bentley, 1975] in Kanungo
et al. [2002b]. These algorithms relied on storing centroids in special data structures,
enabling nearest neighbor queries to be processed without computing distances to all K
centroids.

The next big acceleration [Elkan, 2003] came about by maintaining bounds on distances
between samples and centroids, frequently resulting in more than 90% of distance
calculations being avoided. It was later shown [Hamerly, 2010] that in low-dimensions,
it is more effective to keep bounds on distances to only the two nearest centroids, and
that in general bounding-based algorithms are significantly faster than tree-based ones.
Further bounding-based algorithms were proposed by Drake [2013] and Ding et al. [2015],
each providing accelerations over their predecessors in certain settings. In this chapter,
we continue in the same vain.

Our contribution

Our first contribution (Section 1.3.1) is a new bounding-based accelerated exact K-means
algorithm, the Exponion algorithm. Its closest relative is the Annular algorithm [Drake,
2013], a state-of-the-art accelerated exact K-means algorithm in low-dimensions. We
show that the Exponion algorithm is significantly faster than the Annular algorithm on
a majority of low-dimensional datasets.

Our second contribution (Section 1.3.2) is a technique for making bounds tighter, allowing
further redundant distance calculations to be eliminated. The technique, illustrated in
Figure 1.1, can be applied to all existing bounding-based K-means algorithms.

Finally, we show how certain of the current state-of-the-art algorithms can be accel-
erated through strict simplifications (Section 1.2.2 and Section 1.2.6). Fully paral-
lelised implementations of all algorithms are provided under an open-source license at
https://github.com/idiap/eakmeans
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1.2. Notation and baselines

Notation and baselines

We describe four accelerated exact K-means algorithms in order of publication date.
For two of these we propose simplified versions which offer natural stepping stones in
understanding the full versions, as well as being faster (Section 1.4.1).

Our notation is based on that of Hamerly [2010], and only where necessary is new
notation introduced. We use for example N for the number of samples and K for the
number of clusters. Indices i and j always refer to data and cluster indices respectively,
with a sample denoted by x(i) and the index of the cluster to which it is assigned by
a(i). A cluster’s centroid is denoted as c(j). We introduce new notation by letting n1(i)
and n2(i) denote the indices of the clusters whose centroids are the nearest and second
nearest to sample i respectively.

Note that a(i) and n1(i) are different, with the objective in a round of K-means being
to set a(i) to n1(i). a(i) is a variable maintained by algorithms, changing within loops
whenever a better candidate for the nearest centroid is found. On the other hand, n1(i)
is introduced purely to aid in proofs, and is external to any algorithmic details. It can
be considered to be the hidden variable which algorithms need to reveal.

All of the algorithms which we consider are elaborations of Lloyd’s algorithm, and thus
consist of repeating the assignment step and update step, given respectively as

a(i)← n1(i), i ∈ {1, . . . , N} (1.1)

c(j)←
∑
i:a(i)=j x(i)
‖i : a(i) = j‖

, j ∈ {1, . . . ,K}. (1.2)

These two steps are repeated until there is no change to any a(i), or some other stopping
criterion is met. We reiterate that all the algorithms discussed provide the same output
at each iteration of the two steps, differing only in how a(i) is computed in (1.1).

Standard algorithm (sta)

The Standard algorithm, in this chapter reffered to as sta, is the simplest implementation
of Lloyd’s algorithm. The only variables kept are x(i) and a(i) for i ∈ {1, . . . , N} and c(j)
for j ∈ {1, . . . ,K}. The assignment step consists of, for each i, calculating the distance
from x(i) to all centroids, thus revealing n1(i).

Simplified Elkan’s algorithm (selk)

Simplified Elkan’s algorithm, henceforth selk, uses a strict subset of the strategies
described in Elkan [2003]. In addition to x(i), a(i) and c(j), the variables kept are
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p(j), the distance moved by c(j) in the last update step, and bounds l(i, j) and u(i),
maintained to satisfy,

l(i, j) ≤ ‖x(i)− c(j)‖, u(i) ≥ ‖x(i)− c(a(i))‖.

These bounds are used to eliminate unnecessary centroid-data distance calculations using,

u(i) < l(i, j) =⇒ ‖x(i)− c(a(i))‖ < ‖x(i)− c(j)‖ =⇒ j 6= n1(i). (1.3)

We refer to (1.3) as an inner test, as it is performed within a loop over centroids for
each sample. This as opposed to an outer test which is performed just once per sample,
examples of which will be presented later.

To maintain the correctness of the bounds when centroids move, bounds are updated at
the beginning of each assignment step with

l(i, j)← l(i, j)− p(j), u(i)← u(i) + p(a(i)). (1.4)

The validity of these updates is a simple consequence of the triangle inequality, with a
proof in A.1.1. We say that a bound is tight if it is known to be equal to the distance it
is bounding, a loose bound is one which is not tight. For selk, bounds are initialized to
be tight, and tightening a bound evidently costs one distance calculation.

When in a given round u(i) ≥ l(i, j), the test (1.3) fails. The first time this happens in a
round for sample i, both u(i) and l(i, j) are loose due to preceding bound updates of
the form (1.4). Tightening either bound may result in the test succeeding, but bound
u(i) should be tightened before l(i, j), as it reappears in all tests for sample i and will
thus be reused. In the case of a test failure with tight u(i) and loose l(i, j) bound l(i, j)
is tightened. A test failure with u(i) and l(i, j) both tight implies that centroid j is
nearer to sample i than the currently assigned cluster centroid, and so a(i) ← j and
u(i)← l(i, j).

Elkan’s algorithm (elk)

The fully-fledged algorithm of Elkan [2003], henceforth elk, adds to selk an additional
strategy for eliminating distance calculations in the assignment step. Two further
variables, cc(j, j′), the matrix of inter-centroid distances, and s(j), the distance from
centroid j to its nearest other centroid, are kept. A simple application of the triangle
inequality, proved in A.1.2, provides the following test,

cc(a(i), j)
2 > u(i) =⇒ j 6= n1(i). (1.5)
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Algorithm elk uses (1.5) in unison with (1.3) to obtain an improvement on the test of
elk, of the form,

max
(
l(i, j), cc(a(i), j)

2

)
> u(i) =⇒ j 6= n1(i). (1.6)

In addition to the inner test (1.6), elk uses an outer test, whose validity follows from
that of (1.5), given by,

s(a(i))
2 > u(i) =⇒ n1(i) = a(i). (1.7)

If the outer test (1.7) is successful, one proceeds immediately to the next sample without
changing a(i), thus not only saving K distance calculations but also K floating-point
comparisons.

Hamerly’s algorithm (ham)

The algorithm of Hamerly [2010], henceforth ham, represents a shift of focus from inner
to outer tests, completely foregoing the inner test of elk, and providing an improved
outer test.

The K lower bounds per sample of elk are replaced by a single lower bound on all
centroids other than the one assigned, defined to satisfy

l(i) ≤ min
j 6=a(i)

‖x(i)− c(j)‖.

The variables p(j) and u(i) used in elk have the same definition for ham. The test for a
sample i is

max
(
l(i), s(a(i))

2

)
> u(i) =⇒ n1(i) = a(i), (1.8)

with the proof of correctness being essentially the same as that for the inner test of elk.
If test (1.8) fails for sample i, then u(i) is made tight, by computing ‖x(i) − c(a(i))‖.
If test (1.8) fails with u(i) tight, then all the distances from sample i to centroids
are computed, thus revealing n1(i) and n2(i) and allowing the updates a(i) ← n1(i),
u(i)← ‖x(i)− c(n1(i))‖ and l(i)← ‖x(i)− c(n2(i))‖. As with elk, at the start of the
assignment step, bounds need to be adjusted to ensure their correctness following the
update step. This is done via,

l(i)← l(i)− arg max
j 6=a(i)

p(j), u(i)← u(i) + p(a(i)).
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Annular algorithm (ann)

The Annular algorithm of Drake [2013], henceforth ann, is a strict extension of ham,
adding one novel test. In addition to the variables used in ham, one new variable b(i) is
required, which roughly speaking is to n2(i) what a(i) is to n1(i). Also, the centroid
norms ‖c(j)‖ should be computed and sorted in each round.

Upon failure of test (1.8) with tight bound u(i) in ham, ‖x(i)− c(j)‖ is computed for all
j ∈ {1, . . . ,K} to reveal n1(i) and n2(i). With ann, certain of these K calculations can
be eliminated. Define the radius, and corresponding set of cluster indices,

R(i) = max (u(i), ‖x(i)− c(b(i))‖) ,
J (i) = {j : |‖c(j)‖ − ‖x(i)‖| ≤ R(i)}. (1.9)

The following implication, proved in A.1.3, is used

j 6∈ J (i) =⇒ j 6∈ {n1(i), n2(i)}.

Thus only distances from sample i to centroids of the clusters whose indices are in J (i)
need to be calculated for n1(i) and n2(i) to be revealed. Once n1(i) and n2(i) revealed,
a(i), u(i) and l(i) are updated as per ham, and b(i)← n2(i).

Note that by keeping an ordering of ‖c(j)‖ the set J (i) can be determined in Θ(log(K))
operations with two binary searches, one for each of the inner and outer radii of J (i).

Simplified Yinyang (syin) and Yinyang (yin) algorithms

The basic idea with the Yinyang algorithm [Ding et al., 2015] and the Simplified Yinyang
algorithm, henceforth yin and syin respectively, is to maintain consistent lower bounds
for groups of clusters as a compromise between the K − 1 lower bounds of elk and the
single lower bound of ham. In Ding et al. [2015] the number of groups is fixed at one
tenth the number of centroids. The groupings are determined and fixed by an initial
clustering of the centroids. The algorithm appearing in the literature most similar to
yin is Drake’s algorithm of [Drake and Hamerly, 2012], not to be confused with ann.
According to Ding et al. [2015], Drake’s algorithm does not perform as well as yin, and
we thus choose not to consider it in this chapter.

Denote by G the number of groups of clusters. Variables required in addition to those
used in sta are p(j) and u(i), as per elk, G(f), the set of indices of clusters belonging
to the f ’th group, g(i), the group to which cluster a(i) belongs, q(f) = maxj∈G(f) p(j),
and bound l(i, f), maintained to satisfy,

l(i, f) ≤ arg min
j∈G(f)\{a(i)}

‖x(i)− c(j)‖.
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For both syin and yin, both an outer test and group tests are used. To these, yin adds
an inner test. The outer test is

min
f∈{1,...,G}

l(i, f) > u(i) =⇒ a(i) = n1(i). (1.10)

If and when test (1.10) fails, group tests of the form

l(i, f) > u(i) =⇒ a(i) 6∈ G(f), (1.11)

are performed. As with elk and ham, if test (1.11) fails with u(i) loose, u(i) is made
tight and the test reperformed.

The difference between syin and yin arises when (1.11) fails with u(i) tight. With
syin, the simple approach of computing distances from x(i) to all centroids in G(f),
then updating l(i, f), l(i, g(i)), u(i), a(i) and g(i) as necessary, is taken. With yin a final
effort at eliminating distance calculations by the use of a local test is made, as described
in A.2.1. As will be shown (Section 1.4.1), it is not clear that the local test of yin makes
it any faster. Finally, we mention how u(i) and l(i, f) are updated at the beginning of
the assignment step for syin and yin,

l(i, f)← l(i, f)− arg max
j∈G(f)

p(a(i)),

u(i)← u(i) + p(a(i)).

Contributions and new algorithms

We first present (Section 1.3.1) an algorithm which we call Exponion, and then (Section
1.3.2) an improved bounding approach.

Exponion algorithm (exp)

Like ann, exp is an extension of ham which adds a test to filter out j 6∈ {n1(i), n2(i)}
when test (1.8) fails. Unlike ann, where the filter is an origin-centered annulus, exp has
as filter a ball centred on centroid a(i). This change is motivated by the ratio of volumes
of an annulus of width r at radius w and a ball of radius r from the origin, which is
d
(
w
r

)d−1 in Rd. We expect r to be greater than w, whence the expected improvement.
Define,

R(i) = 2u(i) + s(a(i)),
J (i) = {j : ‖c(j)− c(a(i))‖ ≤ R(i)}. (1.12)
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The underlying test used, proved in A.1.4, is

j 6∈ J (i) =⇒ j 6∈ {n1(i), n2(i)}.

In moving from ann to exp, the decentralization from the origin to the centroids incurs
two costs, one which can be explained algorithmically, the other is related to effective
computer memory use.

Recall that ann sorts ‖c(j)‖ in each round, thus guaranteeing that the set of candidate
centroids (1.9) can be obtained in O(log(k)) operations. To guarantee that the set
of candidate centroids (1.12) can be obtained with O(log(k)) operations requires that
‖c(j)−c(a(i))‖ be sorted. For this to be true for all samples requires sorting ‖c(j)−c(j′)‖
for all j ∈ {1, . . . ,K}, increasing the overhead of sorting from O(k log k) to O(k2 log k).

The cache memory cost incurred is that, unless samples are ordered by a(i), the bisection
search performed to obtain J (i) is done with a different row of c(j, j′) for each sample,
resulting in cache memory misses.

To offset these costs, we replace the exact sorting of cc with a partial sorting, paying for
this approximation with additional distance calculations. We maintain, for each centroid,
dlog2 ke concentric annuli, each succesive annulus containing twice as many centroids as
the one interior to it. For cluster j, annulus f ∈ {1, . . . , dlog2 ke} is defined by inner and
outer radii e(j, f − 1) and e(j, f), and a list of indices w(j, f) with |w(j, f)| = 2f , where

w(j, f) = {j′ : e(j, f − 1) < ‖c(j′)− c(j)‖ ≤ e(j, f)}.

Note that w(j, f) is not an ordered set, but there is an ordering between sets,

j′ ∈ w(j, f), j′′ ∈ w(j, f + 1) =⇒ ‖c(j′)− c(j)‖ < ‖c(j′′)− c(j)‖.

Given a search radius R(i), without a complete ordering of c(j, j′) we cannot obtain J (i)
in O(log(k)) operations, but we can obtain a slightly larger set J ∗(i) defined by

f∗(i) = min{f : e(a(i), f) ≥ R(i)},

J ∗(i) =
⋃

f≤f∗(i)
w(j, f),

in log log(k) operations. It is easy to see that |J ∗(i)| ≤ 2|J (i)|, and so using the partial
sorting cannot cost more than twice the number of distance calculations.

12



1.3. Contributions and new algorithms

•

•

•

••

x(i)
ct(j)

ct+1(j)

ct+2(j)ct+3(j)

Figure 1.1 – The classical sn-bound is the sum of the last known distance between the
sample to a previous position of the centroid (thick solid line), with all the distances
between successive positions of the centroid since then (thin solid lines). The ns-bound
we propose uses the actual distance between that previous location of the centroid and
its current one (dashed line).

Improving bounds (sn to ns)

In all the algorithms presented so far, upper bounds (lower bounds) are updated in each
round with increments (decrements) of norms of displacements. If tests are repeatedly
successful, these increments (decrements) accumulate. Consider for example the upper
bound update,

ut0+1(i)← ut0(i) + pt0(a(i)),

where subscripts denote rounds. The upper bound after δt such updates without bound
tightening is

ut0+δt(i) = ut0(i) +
t+δt−1∑
t′=t0

pt′(a(i)). (1.13)

The summation term is a (s)um of (n)orms of displacement, thus we refer to it as an
sn-bound and to an algorithm using only such an update scheme as an sn-algorithm. An
alternative upper bound at round t0 + δt is,

ut0+δt(i) = ut0(i) +

∥∥∥∥∥∥
t0+δt−1∑
t′=t0

ct′+1(i)− ct′(i)

∥∥∥∥∥∥ ,
= ut0(i) + ‖ct0+δt(i)− ct0(i)‖. (1.14)

Bound (1.14) derives from the (n)orm of a (s)um, and hence we refer to it as an ns-
bound. An ns-bound is guaranteed to be tighter than its equivalent sn-bound by a simple
application of the triangle inequality, shown in A.1.5. We have presented an upper
ns-bound, but lower ns-bound formulations are similar. In fact, for cases where lower
bounds apply to several distances simultaneously, due to the additional operation of
taking a group maximum, there are three possible ways to compute a lower bound, as

13



Chapter 1. Fast K-means with Accurate Bounds

discussed in Appendix A.2.2.

Simplified Elkan’s algorithm-ns (selk-ns)

In transforming an sn-algorithm into an ns-algorithm, additional variables need to be
maintained. These include a record of previous centroids C, where C(j, t) = ct(j), and
displacement of c(j) with respect to previous centroids, P (j, t) = ‖c(j) − ct(j)‖. We
no longer keep rolling bounds for each sample, instead we keep a record of when most
recently bounds were made tight and the distances then calculated. For Simplified Elkan’s
Algorithm-ns, henceforth selk-ns, we define T (i, j) to be the last time ‖x(i) − c(j)‖
was calculated, with corresponding distance l(i, j) = ‖x(i)− cT (i,j)(j)‖. We emphasize
that l(i, j) is defined differently here to in selk, with u(i) similarly redefined as u(i) =
‖x(i)− cT (i,a(i))(a(i))‖.

The underlying test is

u(i) + P (a(i), T (i, a(i))) < l(i, j)−P (j, T (i, j)) =⇒ j 6= n1(i).

As with selk, the first bound failure for sample i results in u(i) being updated, with
subsequent failures resulting in l(i, j) being updated to the current distance. In addition,
when u(i) (l(i, j)) is updated, T (i, a(i)) (T (i, j)) is set to the current round.

Due to the additional variables C,P and T , the memory requirement imposed is larger
with selk-ns than with selk-sn. Ignoring constants, in round t the memory requirement
assuming samples of size O(d) is,

memns = O(Nd+Nk + ktd),

where x, l and C are the principal contributors to the above three respective terms.
selk consists of only the first two terms, and so when t > N/min(k, d), the dominant
memory consumer in selk-ns is the new variable C. To guarantee that C does not
dominate memory consumption, an sn-like reset is performed in rounds {t : t ≡ 0
mod (N/min(k, d))}, consisting of the following updates,

u(i)← u(i) + P (a(i), T (i, a(i))),
l(i, j)← l(i, j)− P (j, T (i, j)),
T (i, j)← t,

and finally the clearing of C.

14



1.4. Experiments and results

Changing bounds for other algorithms

All sn- to ns- coversions are much the same as that described in Section 1.3.3. We have
implemented versions of elk, syin and exp using ns-bounds, which we refer to as elk-ns,
syin-ns and exp-ns respectively.

Experiments and results

Our first set of experiments are conducted using a single core. We first establish that our
implementations of baseline algorithms are as fast or faster than existing implementations.
Having done this, we consider the effects of the novel algorithmic contributions presented;
simplification, the Exponion algorithm, and ns-bounding. The final set of experiments
are conducted on multiple cores, and illustrate how all algorithms presented parallelise
gracefully.

We compare 23 K-means implementations, including our own implementations of all
algorithms described, original implementations accompanying the papers [Hamerly, 2010,
Drake, 2013, Ding et al., 2015], and implementations in two popular machine learning
libraries, VLFeat and mlpack. We use the following notation to refer to implementations:
{codesource-algorithm}, where codesource is one of bay [Hamerly, 2015], mlp [Curtin
et al., 2013], pow [Low et al., 2010], vlf [Vedaldi and Fulkerson, 2008] and own (our own
code), and algorithm is one of the algorithms described.

Unless otherwise stated, times are wall times excluding data loading. We impose a time
limit of 40 minutes and a memory limit of 4 GB on all {dataset, implementation, K,
seed} runs. If a run fails to complete in 40 minutes, the corresponding table entry is ‘t’.
Similarly, failure to execute with 4GB of memory results in a table entry ‘m’. We confirm
that for all {dataset, K, seed} triplets, all implementations which complete within the
time and memory constraint take the same number of iterations to converge to a common
local minimum, as expected.

The implementations are compared over the 22 datasets presented in Table 1.1, for
K ∈ {100, 1000}, with 10 distinct centroid initializations (seeds). For all {dataset, K,
seed} triplets, the 23 implementations are run serially on a machine with an Intel i7
processor and 8MB of cache memory. All experiments are performed using double
precision floating point numbers.

Findings in Drake [2013] suggest that the best algorithm to use for a dataset depends
primarily on dimension, where in low-dimensions, ham and ann are fastest, in high-
dimensions elk is fastest, and in intermediate dimensions an approach maintaining a
fractional number of bounds, Drake’s algorithm, is fastest. Our findings corroborate
these on real datasets, although the lines separating the three groups are blurry. In
presenting our results we prefer to consider a partitioning of the datasets into just two
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Chapter 1. Fast K-means with Accurate Bounds

d N

i 2 100k
ii 2 169k
iii 2 1m
iv 3 165k
v 3 164k

d N

vi 4 200k
vii 4 200k
viii 9 68k
ix 11 41k
x 15 166k
xi 17 23k

d N

xii 28 66k
xiii 30 1m
xiv 50 60k
xv 50 130k
xvi 55 581k

d N

xvii 68 2.6m
xviii 74 146k
xix 108 1m
xx 128 14k
xxi 310 95k
xxii 784 60k

Table 1.1 – The 22 datasets used in experiments, ranging in dimension from 2 to 784.
The datasets come from: the UCI, KDD and KEEL repositories (11,2,2), MNIST and
STL-10 image databases (2,1), random (2), European Bioinformatics Institute (1) and
Joensuu University (1). Full names and further details in A.3.

groups about the dimension d = 20. ham and its derivatives are considered for d < 20,
elk and its derivatives for d ≥ 20, and syin and yin for all d.

Single core experiments

A complete presentation of wall times and number of iterations for all {dataset, imple-
mentation, K} triplets is presented over two pages in Tables A.2 and A.3 (Appendix
A.3). Here we attempt to summarise our findings. We first compare implementations of
published algorithms (Section 1.4.1), and then show how selk and syin often outperform
their more complex counterparts (Section 1.4.1). We show that exp is in general much
faster than ann (Section 1.4.1), and finally show how using ns-bounds can accelerate
algorithms (Section 1.4.1) .

Comparing implementations of baselines

There are algorithmic techniques which can speedup all K-means algorithms discussed
in this chapter, we mention a few which we use. One is pre-computing the squares
of norms of all samples just once, and those of centroids once per round. Another,
first suggested in Hamerly [2010], is to update the sum of samples by considering only
those samples whose assignment changed in the previous round. A third optimization
technique is to decompose while-loops which contain inner branchings dependant on the
tightness of upper bounds into separate while-loops, eliminating unnecessary comparisons.
Finally, while there are no large matrix operations with bounding-based algorithms, in
high-dimensions distance calculations can be accelerated by the use of SSE, as in VLFeat,
or by fast implementations of BLAS, such as OpenBLAS Xianyi [2016].

Our careful attention to optimization is reflected in Table 1.2 (Section 1.4.1), where
implementations of elk, ham, ann and yin are compared. The values shown are ratios of
mean runtimes using another implementation (column) and our own implementation of
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1.4. Experiments and results

the same algorithm, on a given dataset (row). Our implementations are faster in all but
4 comparisons.

Benefits of simplification

We compare published algorithms elk and yin with their simplified counterparts selk
and syin. The values in Table 1.3 are ratios of mean runtimes using simplified and
original algorithms, values less than 1 mean that the simplified version is faster. We
observe that selk is faster than elk in 16 of 18 experiments, and syin is faster than
yin in 43 of 44 experiments, often dramatically so.

It is interesting to ask why the inventors of elk and yin did not instead settle on
algorithms selk and syin respectively. A partial answer might relate to the use of BLAS,
as the speedup obtained by simplifying yin to syin never exceeds more than 10% when
BLAS is deactivated. syin is more responsive to BLAS than yin as it has larger matrix
multiplications due to it not having a final filter.

From Annular to Exponion

We compare the Annular algorithm (ann) with the Exponion algorithm (exp). The values
in Table 1.4 are ratios of mean runtimes (columns qt) and of mean number of distance
calculations (columns qau). Values less than 1 denote better performance with exp. We
observe that exp is markedly faster than ann on most low-dimensional datasets, reducing
by more than 30% the mean runtime in 17 of 22 experiments. The primary reason for
the speedup is the reduced number of distance calculations.

Table 1.5 summarises how many times each of the sn-algorithms is fastest on the 44
{dataset, K} experiments, ns-algorithms excluded. The 13 experiments on which exp
is fastest are all very low-dimensional (d < 5), the 24 on which syin is fastest are
intermediate (8 < d < 69) and selk or elk are fastest in very high dimensions (d > 73).
For a detailed comparison across all algorithms, consult Tables A.2 and A.3 (Appendix
A.3).

From sn to ns bounding

For each of the 44 {dataset, K} experiments, we compare the fastest sn-algorithm with
its ns-variant. The results are presented in Table 1.6. Columns ‘x’ denote the fastest
sn-algorithm. Values are ratios of means over runs of some quantity using the ns- and
sn- variants. The ratios are qt (runtimes), qa (number of distance calculations in the
assignment step) and qau (total number of distance calculations).

In all but 8 of 44 experiments (italicised), we observe a speedup using ns-bounding, by
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10
0

i 1.23 1.04 0.78 7.52 xii 2.51 2.69 1.87 2.48
ii 1.28 0.99 0.86 4.91 xiii 3.84 1.36 1.56 t
iii 1.19 1.27 0.88 9.84 xiv 1.98 1.75 1.53 2.72
iv 1.59 1.15 1.24 6.21 xv 2.21 1.48 1.48 2.01
v 1.59 1.20 1.24 6.01 xvi 2.30 1.68 2.00 2.85
vi 1.78 1.27 1.32 6.41 xvii m 1.79 1.88 2.61
vii 1.78 1.17 1.48 5.63 xviii 1.69 1.91 1.46 2.68
viii 2.67 1.38 2.38 3.99 xix 1.49 1.64 1.74 2.44
ix 2.93 1.51 2.90 3.65 xx 1.35 2.53 2.21 2.41
x 3.59 1.75 2.67 3.28 xxi 1.24 2.35 1.57 1.81
xi 3.89 2.04 3.18 2.17 xxii 1.16 2.86 1.43 1.35

10
00

i 1.51 1.03 1.06 7.57 xii 3.37 6.21 3.20 2.44
ii 1.52 1.04 1.17 8.03 xiii t m m m
iii 1.47 1.05 1.04 8.57 xiv 2.09 1.89 1.86 2.07
iv 1.77 1.09 1.59 6.98 xv 3.14 1.43 2.76 1.80
v 1.77 1.09 1.59 7.01 xvi 3.98 m m m
vi 2.07 1.17 1.79 7.23 xvii m m m m
vii 1.99 1.17 1.73 6.57 xviii 1.82 1.78 1.40 1.92
viii 3.01 1.38 2.97 4.63 xix t m m m
ix 3.28 1.58 3.34 4.06 xx 2.06 6.17 2.60 1.72
x 3.92 1.76 3.57 5.08 xxi 1.32 2.88 1.80 1.51
xi 4.08 1.99 4.03 2.89 xxii 1.17 4.82 1.74 1.28

Table 1.2 – Comparing implementations. For 100 (above) and 1000 (below) clusters, and
in low- (left) and high- (right) dimensions. Existing implementations (colums) of ham,
ann, yin and elk are compared to our implementations as a ratio of mean runtimes,
with the mean runtime of our implementation in the denominator. Values greater than 1
mean our implementation runs faster. ‘t’ and ‘m’ are described in paragraph 3 of Section
1.4.
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1.4. Experiments and results

own-yin → own-elk →
own-syin own-selk

100 1000 100 1000 100 1000
i 0.96 0.90 xii 0.58 0.76 xii 0.85 1.05
ii 1.03 0.86 xiii 0.66 0.61 xiii 0.97 m
iii 0.88 0.92 xiv 0.50 0.55 xiv 0.84 0.57
iv 0.94 0.87 xv 0.49 0.58 xv 0.54 0.49
v 0.93 0.88 xvi 0.49 0.66 xvi 0.92 m
vi 0.91 0.87 xvii 0.44 0.58 xvii 0.75 m
vii 0.96 0.90 xviii 0.42 0.47 xviii 0.86 0.66
viii 0.79 0.80 xix 0.36 0.42 xix 0.72 m
ix 0.77 0.80 xx 0.38 0.60 xx 1.12 0.74
x 0.72 0.73 xxi 0.32 0.36 xxi 0.89 0.73
xi 0.64 0.71 xxii 0.36 0.38 xxii 0.99 0.89

Table 1.3 – Comparing yin and elk to simplified versions syin and selk. Values are ratios
of mean runtimes of simplified versions to their originals, for different low-dimensional
datasets (rows) and K (columns). Values less than 1 mean that the simplified version is
faster. In all but 3 of 62 cases (italicised), simplification results in speedup, by as much
as 3×.

own-ann → own-exp
100 1000 100 1000

qt qau qt qau qt qau qt qau
i 0.48 0.52 0.72 0.61 vii 0.71 0.80 0.36 0.32
ii 0.54 0.80 0.58 0.50 viii 1.12 1.24 1.02 0.93
iii 0.53 0.58 0.48 0.44 ix 0.96 0.99 0.73 0.64
iv 0.63 0.80 0.36 0.33 x 0.67 0.65 0.55 0.41
v 0.63 0.80 0.37 0.34 xi 1.24 1.43 1.30 1.16
vi 0.62 0.73 0.42 0.38

Table 1.4 – Ratios of mean runtimes (‘qt’) and mean number of distance calculations
(‘qau’) using the Exponion (own-exp) and Annular (own-ann) algorithms, on datasets
with d < 20. Exponion is faster in all but the four italicised cases. The speedup is
primarily due to the reduced number of distance calculations.

ham ann exp syin yin selk elk
0 0 13 24 0 6 1

Table 1.5 – Number of times each sn-algorithm is fastest, over the 44 {dataset, K}
experiments, ns-algorithms not considered here.
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own-x → own-x-ns
100 1000

x qt qa qau x qt qa qau
i exp 0.96 0.97 0.99 exp 0.99 0.98 1.00
ii exp 0.94 0.97 0.97 exp 0.99 0.99 1.00
iii exp 0.95 0.97 0.98 exp 0.98 0.96 0.99
iv exp 0.97 0.97 0.97 exp 0.99 0.97 0.98
v exp 0.96 0.97 0.97 exp 0.98 0.96 0.98
vi exp 0.95 0.96 0.97 exp 0.97 0.96 0.98
vii syin 0.98 0.82 0.86 exp 0.98 0.96 0.99
viii syin 0.98 0.86 0.88 syin 0.87 0.44 0.65
ix syin 0.98 0.83 0.86 syin 0.83 0.32 0.66
x syin 1.03 0.91 0.92 syin 1.11 0.72 0.80
xi selk 0.92 0.80 0.84 syin 0.81 0.56 0.69
xii syin 1.00 0.86 0.88 syin 0.96 0.51 0.85
xiii syin 0.96 0.84 0.84 syin 0.87 0.58 0.61
xiv syin 0.99 0.86 0.87 syin 0.74 0.51 0.63
xv syin 1.06 0.93 0.94 syin 0.94 0.58 0.69
xvi syin 1.04 0.91 0.93 syin 0.98 0.61 0.79
xvii syin 1.00 0.87 0.89 syin m m m
xviii selk 0.89 0.81 0.82 syin 0.75 0.64 0.68
xix selk 0.88 0.84 0.85 syin 0.91 0.75 0.77
xx elk 1.02 0.96 1.02 selk 1.06 0.99 1.00
xxi selk 0.85 0.81 0.82 selk 0.72 0.72 0.73
xxii selk 0.80 0.77 0.78 selk 0.55 0.68 0.69

Table 1.6 – The effect of using ns-bounds. Columns ‘x’ denotes the fastest sn-algorithm
for a particular {dataset, K} experiment. Columns ‘qt’ denote the ratio of mean runtimes
of ns- and sn- variants of x. Italicised values are cases where using ns-bounding results
in a slow down (qt > 1), in the majority of cases there is a speedup. ‘qa’ and ‘qau’ denote
ratios of ns- to sn- mean number of distance calculations in the assignment step (a) and
in total (au). ‘m’ described in paragraph 3 of §1.4.

up to 45%. As expected, the number of distance calculations in the assignment step is
never greater when using ns-bounds, however the total number of distance calculations
is occasionally increased due to initial variables being maintained.

Multicore experiments

We have implemented parallelised versions of all algorithms described in this chapter
using the C++11 thread support library. To measure the speedup using multiple cores, we
compare the runtime using four threads to that using one thread on a non-hyperthreading
four core machine. The results are summarised in Table 1.7, where near fourfold speedups
are observed.
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i-xi
100 1000

own-exp-ns 0.29 0.31
own-syin-ns 0.31 0.29

xii-xxii
100 1000

own-selk-ns 0.33 0.30
own-elk-ns 0.30 0.28
own-syin-ns 0.27 0.27

Table 1.7 – The median speedup using four cores. The median is over i-xi on the left and
xii-xxii on the right.

Chapter conclusion and future work

The experimental results presented show that the ns-bounding scheme makes exact
K-means algorithms faster, and that our Exponion algorithm is significantly faster than
existing state-of-the-art algorithms in low-dimensions. Both can be seen as good default
choices for K-means clustering on large data-sets.

The main practical weakness that remains is the necessary prior selection of which
algorithm to use, depending on the dimensionality of the problem at hand. This should
be addressed through an adaptive procedure able to select automatically the optimal
algorithm through an efficient exploration/exploitation strategy. The second and more
prospective direction of work will be to introduce a sharing of information between samples,
instead of processing them independently. Finally we mention that for extremely large
datasets, only algorithms which are sublinear in the number of datapoints are feasible.
This is the topic of the following chapter.
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2 Nested Mini-Batch K-means

Chapter introduction

Given N training samples X = {x(1), . . . , x(N)} in vector space V , the K-means task is
to find C = {c(1), . . . , c(K)} in V to minimize energy E defined by,

E(C) = 1
N

N∑
i=1
‖x(i)− c(a(i))‖2, (2.1)

where a(i) = arg minj∈{1,...,K} ‖x(i)− c(j)‖. Recall that Lloyd’s algorithm is a popular
algorithm for approximately solving the K-means problem. In Chapter 1 we referred to
the unoptimized version of Lloyd’s algorithm as sta, in this chapter we will refer to it as
lloyd. Please note the change in notation here: lloyd is no longer just the ‘scaffolding’
described in the previous chapter, but the full algorithm without any optimization.

In Chapter 1 we considered approaches for accelerating lloyd, where the required number
of distance calculations and bound floating point value comparisons was reduced without
changing the final clustering. Hamerly [2010] showed that previous approaches relying
on triangle inequality based distance bounds [Phillips, 2002, Elkan, 2003, Hamerly, 2010]
always provide greater speed-ups than those based on spatial data structures [Pelleg and
Moore, 1999, Kanungo et al., 2002b]. We will rediscuss the bounding based approach in
Section 2.2.1.

Previous approximate K-means algorithms

The assignment step of lloyd requires more computation than the update step. The
majority of approximate algorithms thus focus on relaxing the assignment step, in one of
two ways. The first is to assign all data approximately, so that centroids are updated
using all data, but some samples may be incorrectly assigned. This is the approach used
in Wang et al. [2012] with cluster closures. The second approach is to exactly assign a
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fraction of data at each iteration. This is the approach used in Agarwal et al. [2005],
where a representative core-set is clustered, and in Bottou and Bengio [1995], and Sculley
[2010], where random samples are drawn at each iteration. Using only a fraction of data
is effective in reducing redundancy induced slow-downs.

The mini-batch K-means algorithm of Sculley [2010], henceforth mbatch, proceeds as
follows. Centroids are initialized as a random selection of K samples. Then at every
iteration, b of N samples are selected uniformly at random and assigned to clusters.
Cluster centroids are updated as the mean of all samples ever assigned to them, and
are therefore running averages of assignments. Samples randomly selected more often
have more influence on centroids as they reappear more frequently in running averages,
although the law of large numbers smooths out any discrepancies in the long run. mbatch
is presented in greater detail in Section 2.2.2.

Contribution of this chapter

The underlying goal of this chapter is to accelerate mbatch by using triangle inequality
based distance bounds. In so doing, we hope to merge the complementary strengths
of two powerful and widely used approaches for accelerating lloyd: approximation as
in Sculley [2010] and exact acceleration with the triangle inequality as in Elkan [2003].

The effective incorporation of bounds into mbatch requires a new sampling approach. To
see this, first note that bounding can only accelerate the processing of samples which
have already been visited, as the first visit is used to establish bounds. Next, note that
the expected proportion of visits during the first epoch which are revisits is at most 1/e,
as shown in B.1. Thus the majority of visits are first time visits and hence cannot be
accelerated by bounds. However, for highly redundant datasets, mbatch often obtains
satisfactory clustering in a single epoch, and so bounds need to be effective during the
first epoch if they are to contribute more than a minor speed-up.

To better harness bounds, one must preferentially reuse already visited samples. To
this end, we propose nested mini-batches. Specifically, lettingMt ⊆ {1, . . . , N} be the
mini-batch indices used at iteration t ≥ 1, we enforce thatMt ⊆ Mt+1. One concern
with nesting is that samples entering in early iterations have more influence than samples
entering at late iterations, thereby introducing bias. To resolve this problem, we enforce
that samples appear at most once in running averages. Specifically, when a sample is
revisited, its old assignment is first removed before it is reassigned. The idea of nested
mini-batches is discussed in Section 2.3.1.

The second challenge introduced by using nested mini-batches is determining the size
ofMt. On the one hand, ifMt grows too slowly, then one may suffer from premature
fine-tuning. Specifically, when updating centroids usingMt ⊂ {1, . . . , N}, one is using
energy estimated on samples indexed byMt as a proxy for energy over all N training
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samples. If Mt is small and the energy estimate is poor, then minimising the energy
estimate exactly is a waste of computation, as as soon as the mini-batch is augmented
the proxy energy loss function will change. On the other hand, ifMt grows too rapidly,
the problem of redundancy arises. Specifically, if centroid updates obtained with a
small fraction ofMt are similar to the updates obtained withMt, then it is waste of
computation usingMt in its entirety. These ideas are pursued in Section 2.3.2.

Related works

Exact acceleration using the triangle inequality

We briefly rediscuss the use of the triangle inequality to accelerate the exact algorithm.
The idea introduced in Elkan [2003] is to eliminate certain of the K distance calculations
per sample by maintaining bounds on distances between samples and centroids. Several
novel bounding based algorithms have since been proposed, such as the yinyang algorithm
of Ding et al. [2015] and others described in Chapter 1. We illustrate the use of the
triangle inequality in Alg. 1, where for sample i one maintains K lower bounds, l(i, j)
for j ∈ {1, . . . ,K}, each bound satisfying l(i, j) ≤ ‖x(i) − c(j)‖. Before computing
‖x(i) − c(j)‖ on line 4 of Alg. 1, one checks that l(i, j) < d(i), where d(i) is the
distance from sample i to the nearest currently found centroid. If l(i, j) ≥ d(i) then
‖x(i)− c(j)‖ ≥ d(i), and thus j can automatically be eliminated as a nearest centroid
candidate.

Algorithm 1 assignment-with-bounds(i)
1: d(i)← ‖x(i)− c(a(i))‖ . where d(i) is distance to nearest centroid found so far
2: for all j ∈ {1, . . . ,K} \ {a(i)} do
3: if l(i, j) < d(i) then
4: l(i, j)← ‖x(i)− c(j)‖ . make lower bound on distance tight
5: if l(i, j) < d(i) then
6: a(i) = j
7: d(i) = l(i, j)
8: end if
9: end if

10: end for

As detailed in Chapter 1, the fully-fledged algorithm of Elkan [2003] uses additional tests
to the one shown in Alg. 1, and includes upper bounds and inter-centroid distances.

To maintain the validity of bounds, after each centroid update one performs l(i, j) ←
l(i, j)− p(j), where p(j) is the distance moved by centroid j during the centroid update,
the validity of this correction follows from the triangle inequality. Lower bounds are
initialized as exact distances in the first iteration, and only in subsequent iterations can
bounds help in eliminating distance calculations. Therefore, the triangle inequality base
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algorithms are all at least as slow as lloyd during the first iteration.

Mini-batch K-means

The work of Sculley [2010] introduces mbatch, presented in Alg. 4, as a scalable alternative
to lloyd. Reusing notation from that paper, we let the mini-batch size be b, and the
total number of assignments ever made to cluster j be v(j). Let S(j) be the cumulative
sum of data samples assigned to cluster j, accumulated over all rounds. The centroid
update, line 9 of Alg. 4, is then c(j)← S(j)/v(j). Sculley [2010] present mbatch in the
context of sparse datasets, and at the end of each round an l1-sparsification operation is
performed to encourage sparsity. In this chapter we are interested in mbatch in a more
general context and do not consider sparsification.

Algorithm 2 initialize-c-S-v
for j ∈ {1, . . . ,K} do

c(j)← x(i) for some i ∈ {1, . . . , N}
S(j)← x(i)
v(j)← 1

end for

Algorithm 3 accumulate(i)
S(a(i))← S(a(i)) + x(i)
v(a(i))← v(a(i)) + 1

Algorithm 4 mbatch
1: initialize-c-S-v()
2: while convergence criterion not satisfied do
3: M ← uniform random sample of size b from {1, . . . , N}
4: for all i ∈M do
5: a(i)← arg minj∈{1,...,k} ‖x(i)− c(j)‖
6: accumulate(i)
7: end for
8: for all j ∈ {1, . . . ,K} do
9: c(j)← S(j)/v(j)

10: end for
11: end while

Nested mini-batch K-means : nmbatch

The bottleneck of mbatch is the assignment step, on line 5 of Alg. 4, which requires K
distance calculations per sample. The underlying motivation of this chapter is to reduce
the number of distance calculations at assignment by using distance bounds. However,
as already discussed in Section 2.1.2, simply wrapping line 5 in a bound test would not
result in much gain, as only a minority of visited samples would benefit from bounds
in the first epoch, as there is no acceleration for a first visit. For this reason, we will
replace random mini-batches at line 3 of Alg. 4 by nested mini-batches. This modification
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2.3. Nested mini-batch K-means : nmbatch

motivates a change to the running average centroid updates, discussed in Section 2.3.1.
It also introduces the need for a scheme to choose mini-batch sizes, discussed in Section
2.3.2. The resulting algorithm, which we refer to as nmbatch, is presented in Alg. 5.

There is no random sampling in nmbatch, although an initial random shuffling of samples
can be performed to remove any ordering that may exist. Let bt be the size of the
mini-batch at iteration t, that is bt = |Mt|. We simply takeMt to be the first bt indices,
that is Mt = {1, . . . , bt}. Thus Mt ⊆ Mt+1 corresponds to bt ≤ bt+1. Let T be the
number of iterations of nmbatch before terminating. We use as stopping criterion that
no assignments change on the full training set, although this is not important and can
be modified.

Modifying cumulative sums to prevent duplicity

In mbatch, a sample used n times makes n contributions to one or more centroids,
through line 6 of Alg. 4. Due to the extreme and systematic difference in the number of
times samples are used with nested mini-batches, it is necessary to curtail any potential
bias that duplicated contribution may incur. To this end, we only allow a sample’s most
recent assignment to contribute to centroids. This is done by removing old assignments
before samples are reused, shown on lines 15 and 16 of Alg. 5.

Balancing premature fine-tuning and redundancy

We now discuss how one may select mini-batch size bt, where recall that the sample
indices of the mini-batch at iteration t areMt = {1, . . . , bt}. The only constraint imposed
so far is that bt ≤ bt+1 for t ∈ {1, . . . , T − 1}, that is that bt does not decrease. We
consider two extreme schemes to illustrate the importance of finding a scheme where bt
grows neither too rapidly nor too slowly.

The first extreme scheme is bt = N for t ∈ {1, . . . , T}. This is just a return to full
batch K-means, and thus redundancy is a problem, particularly at early iterations. The
second extreme scheme, whereMt grows very slowly, is the following: if any assignment
changes at iteration t, then bt+1 = bt, otherwise bt+1 = bt + 1. The problem with this
second scheme is that computation may be wasted in finding centroids which accurately
minimize the energy estimated on unrepresentative subsets of the full training set. This
is what we refer to as premature fine-tuning.

To develop a scheme which balances redundancy and premature fine-tuning, we need
to find sensible definitions for these terms. A first attempt might be to define them in
terms of energy (2.1), as this is ultimately what we wish to minimize. Redundancy would
correspond to a slow decrease in energy caused by long iteration times, and premature
fine-tuning would correspond to approaching a local minimum of a poor proxy for (2.1).
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Algorithm 5 nmbatch
1: t = 1 . Iteration number
2: M0 ← {}
3: M1 ← {1, . . . , bs} . Indices of samples in current mini-batch
4: initialize-c-S-v()
5: for j ∈ {1, . . . ,K} do
6: sse(j)← 0 . Initialize sum of squares of samples in cluster j
7: end for
8: while stop condition is false do
9: for i ∈Mt−1 and j ∈ {1, . . . ,K} do

10: l(i, j)← l(i, j)− p(j) . Update bounds of reused samples
11: end for
12: for i ∈Mt−1 do
13: aold(i)← a(i)
14: sse(aold(i))← sse(aold(i))− d(i)2 . Remove old sse, S and v contributions
15: S(aold(i))← S(aold(i))− x(i)
16: v(aold(i))← v(aold(i))− 1
17: assignment-with-bounds(i) . Reset assignment a(i)
18: accumulate(i)
19: sse(a(i))← sse(a(i)) + d(i)2

20: end for
21: for i ∈Mt \Mt−1 and j ∈ {1, . . . ,K} do
22: l(i, j)← ‖x(i)− c(j)‖ . Tight initialization for new samples
23: end for
24: for i ∈Mt \Mt−1 do
25: a(i)← arg minj∈{1,...,K} l(i, j)
26: d(i)← l(i, a(i))
27: accumulate(i)
28: sse(a(i))← sse(a(i)) + d(i)2

29: end for
30: for j ∈ {1, . . . ,K} do
31: σ̂C(j)←

√
(sse(j))/ (v(j)(v(j)− 1))

32: cold(j)← c(j)
33: c(j)← S(j)/v(j)
34: p(j)← ‖c(j)− cold(j)‖
35: end for
36: if minj∈{1,...,K} (σ̂c(j)/p(j)) > ρ then . Check doubling condition
37: Mt+1 ← {1, . . . ,min (2|Mt|, N)}
38: else
39: Mt+1 ←Mt

40: end if
41: t← t+ 1
42: end while
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ct(j)

ct+1(j|bt)

ct+1(j|2bt)ct(j) ct+1(j|2bt)

ct+1(j|bt)

Figure 2.1 – Centroid based definitions of redundancy and premature fine-tuning. Starting
from centroid ct(j), the update can be performed with a mini-batch of size bt or 2bt. On
the left, it makes little difference and so using all 2bt points would be redundant. On
the right, using 2bt samples results in a much larger change to the centroid, suggesting
that ct(j) is near to a local minimum of energy computed on bt points, corresponding to
premature fine-tuning.

A difficulty with an energy based approach is that we do not want to compute (2.1) at
each iteration and there is no clear way to quantify the underestimation of (2.1) using a
mini-batch. We instead consider definitions based on centroid statistics.

Balancing intra-cluster standard deviation with centroid displacement

Let ct(j) denote centroid j at iteration t, and let ct+1(j|b) be ct+1(j) when Mt+1 =
{1, . . . , b}, so that ct+1(j|b) is the update to ct(j) using samples {x(1), . . . , x(b)}. Consider
two options, bt+1 = bt with resulting update ct+1(j|bt), and bt+1 = 2bt with update
ct+1(j|2bt). If,

‖ct+1(j|2bt)− ct+1(j|bt)‖ � ‖ct(j)− ct+1(j|bt)‖, (2.2)

then it makes little difference if centroid j is updated with bt+1 = bt or bt+1 = 2bt, as
illustrated in Figure 2.1, left. Using bt+1 = 2bt would therefore be redundant. If on the
other hand,

‖ct+1(j|2bt)− ct+1(j|bt)‖ � ‖ct(j)− ct+1(j|bt)‖, (2.3)

this suggests premature fine-tuning, as illustrated in Figure 2.1, right. Balancing redun-
dancy and premature fine-tuning thus equates to balancing the terms on the left and
right hand sides of (2.2) and (2.3). Let us denote byMt(j) the indices of samples in
Mt assigned to cluster j. In B.2 we show that the term on the left hand side of (2.2)
and (2.3) can be estimated by 1

2 σ̂C(j), where

σ̂2
C(j) = 1

|Mt(j)|2
∑

i∈Mt(j)
‖x(i)− ct(j)‖2. (2.4)

σ̂C(j) may underestimate ‖ct+1(j|2bt)− ct+1(j|bt)‖ as samples {x(bt+1), . . . , x(2bt)} have
not been used by centroids at iteration t, however our goal here is to establish dimensional
homogeneity. The right hand sides of (2.2) and (2.3) can be estimated by the distance
moved by centroid j in the preceding iteration, which we denote by p(j). Balancing
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redundancy and premature fine-tuning thus equates to preventing σ̂C(j)/p(j) from getting
too large or too small.

It may be that σ̂C(j)/p(j) differs significantly between clusters j. It is not possible to
independently control the number of samples per cluster, and so a joint decision needs to
be made by clusters as to whether or not to increase bt. We choose to make the decision
based on the minimum ratio, on line 37 of Alg. 5, as premature fine-tuning is less costly
when performed on a small mini-batch, and so it makes sense to allow slowly converging
centroids to catch-up with rapidly converging ones.

The decision to use a double-or-nothing scheme for growing the mini-batch is motivated
by the fact that σ̂C(j) drops by a constant factor when the mini-batch doubles in size. A
linearly increasing mini-batch would be prone to premature fine-tuning as the mini-batch
would not be able to grow rapidly enough.

Starting with an initial mini-batch size b0, nmbatch iterates until minj σ̂C(j)/p(j) is
above some threshold ρ, at which point mini-batch size increases as bt ← min(2bt, N),
shown on line 37 of Alg. 5. The mini-batch size is guaranteed to eventually reach N ,
as p(j) eventually goes to zero. The doubling threshold ρ reflects the relative costs of
premature fine-tuning and redundancy.

A note on parallelization

The parallelization of nmbatch can be done in the same way as in mbatch, whereby a
mini-batch is simply split into sub-mini-batches to be distributed. For mbatch, the only
constraint on sub-mini-batches is that they are of equal size to guarantee equal processing
times. With nmbatch the constraint is slightly stricter, as the time required to process a
sample depends on its time of entry into the mini-batch, due to bounds. Samples from
all iterations should thus be balanced, the constraint becoming that each sub-mini-batch
contains an equal number of samples fromMt \Mt−1 for all t. This is easy to implement.

Results

We have performed experiments on 3 dense vector datasets and the sparse dataset used
in Sculley [2010]. The INFMNIST dataset [Loosli et al., 2007] is an extension of MNIST,
consisting of 28×28 hand-written digits (d = 784). We use 400,000 such digits for
performing K-means and 40,000 for computing a validation energy EV . STL10P [Coates
et al., 2011] consists of 6×6×3 image patches (d = 108), we train with 960,000 patches
and use 40,000 for validation. KDDC98 contains 75,000 training samples and 20,000
validation samples, in 310 dimensions. Finally, the sparse RCV1 dataset of Lewis et al.
[2004] consists of data in 47,237 dimensions, with two partitions containing 781,265 and
23,149 samples respectively. As done in Sculley [2010], we use the larger partition to
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learn clusters.

The experimental setup used on each of the datasets is the following: for 20 random
seeds, the training dataset is shuffled and the first K datapoints are taken as initialising
centroids. Then, for each of the algorithms, K-means is run on the shuffled training set.
At regular intervals, a validation energy EV is computed on the validation set. The time
taken to compute EV is not included in run times. The batchsize for mbatch and initial
batchsize for nmbatch are 5, 000, and k = 50 clusters. The mean and standard deviation
of EV over the 20 runs are computed, and this is what is plotted in Figure 2.2, relative to
the lowest obtained validation energy over all runs on a dataset, E∗. Before comparing
algorithms, we note that our implementation of the baseline mbatch is competitive with
existing implementations, as shown in Section 2.6.

In Figure 2.2, we plot time-energy curves for nmbatch with three baselines. We use
ρ = 100, as described in the next paragraph. On the 3 dense datasets, we see that nmbatch
is much faster than mbatch, obtaining a solution within 2% of E∗ between 10× and 100×
earlier than mbatch. On the sparse dataset RCV1, the speed-up becomes noticeable
within 0.5% of E∗. Note that in a single epoch nmbatch gets very near to E∗, whereas the
full batch algorithms lloyd and yinyang only complete one iteration. The mean final
energies of nmbatch and the exact algorithms are consistently within one initialization
standard deviation. This means that the random initialization seed has a larger impact
on final energy than the choose between nmbatch and an exact algorithm.

We now discuss the choice of ρ. Recall that the mini-batch size doubles whenever
minj σ̂C(j)/p(j) > ρ. Thus a large ρ means smaller p(j)s are needed to invoke a
doubling, which means less robustness against premature fine-tuning. The relative costs
of premature fine-tuning and redundancy are influenced by the use of bounds. Consider
the case of premature fine-tuning with bounds. p(j) becomes small, and thus bound
tests become more effective as they decrease more slowly (line 10 of Alg. 5). Thus, while
premature fine-tuning does result in more samples being visited than necessary, each visit
is processed rapidly and so is less costly. We have found that taking ρ to be large works
well for nmbatch. Indeed, there is little difference in performance for ρ ∈ {10, 100, 1000}.
To test that our formulation is sensible, we performed tests with the bound test (line 3
of Alg. 1) deactivated. When deactivated, ρ = 10 is in general better than larger values
of ρ, as seen in Figure 2.3. Full time-energy curves for different ρ values are provided in
Appendix B.3.

Chapter conclusion and future work

We have shown how triangle inequality based bounding can be used to accelerate mini-
batch K-means. The key is the use of nested batches, which enables rapid processing
of already used samples. The idea of replacing uniformly sampled mini-batches with
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Figure 2.2 – The mean energy on validation data (EV ) relative to lowest energy (E∗)
across 20 runs with standard deviations. Baselines are lloyd, yinyang, and mbatch,
shown with the new algorithm nmbatch with ρ = 100. We see that nmbatch is consistently
faster than all baselines, and obtains final minima very similar to those obtained by the
exact algorithms. On the sparse dataset RCV1, the speed-up is noticeable within 0.5%
of the empirical minimum E∗. On the three dense datasets, the speed-up over mbatch
is between 10× and 100× at 2% of E∗, with even greater speed-ups below 2% where
nmbatch converges very quickly to local minima.
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Figure 2.3 – Relative errors on validation data at t ∈ {2, 10}, for nmbatch with and
with bound tests, for ρ ∈ {10−1, 100, 101, 102, 103}. In the standard case of active bound
testing, large values of ρ work well, as premature fine-tuning is less of a concern. However
with the bound test deactivated, premature fine-tuning becomes costly for large ρ, and
an optimal ρ value is one which trades off redundancy (ρ too small) and premature
fine-tuning (ρ too large).

nested mini-batches is quite general, and applicable to other mini-batch algorithms. In
particular, we believe that the sparse dictionary learning algorithm of Mairal et al. [2009]
could benefit from nesting. One could also consider adapting nested mini-batches to
stochastic gradient descent, although this is more speculative.

Celebi et al. [2013] show that specialised initialization schemes such as K-means++ can
result in better clusterings. While this is not the case for the datasets we have used, it
would be interesting to consider adapting such initialization schemes to the mini-batch
context. It is not clear if using mini-batches, one can benefit as much from careful
initialization.

Our nested mini-batch algorithm nmbatch uses a very simple bounding scheme. We
believe that further improvements could be obtained through more advanced bounding
as introduced in Chapter 1, and that the memory footprint of O(KN) could be reduced
by using a scheme where, as the mini-batch grows, the number of bounds maintained
decreases, so that bounds on groups of clusters merge.

Comparing Baseline Implementations

We compare our implementation of mbatch with two publicly available implementations,
that accompanying Sculley [2010] in C++, and that in scikit-learn [Pedregosa et al., 2011],
written in Cython. Comparisons are presented in Table 2.1, where our implementations
are seen to be competitive. Experiments were all single threaded. Our C++ and Python
code is available at https://github.com/idiap/eakmeans.
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INFMNIST (dense) RCV1 (sparse)
ours sklearn ours sklearn sofia
12.4 20.6 15.2 63.6 23.3

Table 2.1 – Comparing implementations of mbatch on INFMNIST (left) and RCV1
(right). Time in seconds to process N datapoints, where N = 400, 000 for INFMNIST
and N = 781, 265 for RCV1. Implementations are our own (ours), that in scikit-learn
(sklearn), and that of Sculley [2010] (sofia).
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3 A Sub-Quadratic Exact Medoid
Algorithm

Chapter introduction

A popular measure of the centrality of an element of a set is its mean distance to all
other elements. In network analysis, this measure is referred to as closeness centrality,
we will refer to it as energy. Given a set S = {x(1), . . . , x(N)} the energy of element
i ∈ {1, . . . , N} is thus given by,

E(i) = 1
N

∑
j∈{1,...,N}

dist(x(i), x(j)).

Note the change in definition of energy from the K-means setting of the previous chapters
where the distance was squared. An element in S with minimum energy is referred to as
a 1-median or a medoid. Without loss of generality, we will assume that S contains a
unique medoid. The problem of determining the medoid of a set arises in the contexts of
clustering, operations research, and network analysis. In clustering, the Voronoi iteration
K-medoids algorithm [Hastie et al., 2001, Park and Jun, 2009] requires determining
the medoid of each of K clusters at each iteration. In operations research, the facility
location problem requires placing one or several facilities so as to minimize the cost
of connecting to clients. In network analysis, the medoid may represent an influential
person in a social network, or the most central station in a rail network.

Medoid algorithms and our contribution

A simple algorithm for obtaining the medoid of a set of N elements computes the energy of
all elements and selects the one with minimum energy, requiring N2 distance calculations.
In certain settings Θ(N) algorithms exist, such as in 1-D where the problem is solved
by Quickselect [Hoare, 1961], and more generally on trees. However, no general purpose
o(N2) algorithm exists. An example illustrating the impossibility of such an algorithm
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is presented in Appendix C.1. Related to finding the medoid of a set is finding the
geometric median, which in vector spaces is defined as the point in the vector space with
minimum energy. The relationship between the two problems is discussed in Section
3.2.1.

Much work has been done to develop approximate algorithms in the context of network
analysis. The RAND algorithm of Eppstein and Wang [2004] can be used to estimate
the energy of all nodes in a graph. The accuracy of RAND depends on the diameter of
the network, which motivated Cohen et al. [2014] to use pivoting to make RAND more
effective for large diameter networks. The work most closely related to ours is that of
Okamoto et al. [2008], where RAND is adapted to the task of finding the k lowest energy
nodes, k = 1 corresponding to the medoid problem. The resulting TOPRANK algorithm of
Okamoto et al. [2008] has complexity Õ(N5/3) under certain assumptions, and returns
the medoid with probability 1−O(1/N), that is with high probability (w.h.p.). Note that
only their run time result requires any assumption on the network data, obtaining the
medoid w.h.p. is guaranteed. TOPRANK is discussed in Section 3.2.2.

In this chapter we present an algorithm which has expected run time O(N3/2) under
certain assumptions and always returns the medoid. In other words, we present an
exact medoid algorithm with improved complexity over the state-of-the-art approximate
algorithm, TOPRANK. We show through experiments that the new algorithm works well
for low-dimensional data in Rd and for spatial network data. Our new medoid algorithm,
which we call trimed, uses the triangle inequality to quickly eliminate elements which
cannot be the medoid. The O(N3/2) complexity follows from the surprising result that
all but O(N1/2) elements can be eliminated in this way.

The complexity bound on expected run time which we derive contains a term which
grows exponentially in dimension d, and experiments show that in very high dimensions
trimed often ends up computing O(N2) distances.

K-medoids algorithms and our contribution

The K-medoids problem is to partition a set into K clusters, so as to minimize the
sum over elements of dissimilarites with their nearest medoids. That is, to choose
M = {m(1), . . . ,m(K)} ⊂ {1, . . . , N} to minimize,

L(M) =
N∑
i=1

min
k∈{1,...,K}

diss(x(i), x(m(k))).

In this chapter we focus on the special case where the dissimilarity is a distance (diss =
dist), which is still more general than K-means which only applies to vector spaces. K-
medoids is used in bioinformatics where elements are genetic sequences or gene expression
levels [Chipman et al., 2003] and has been applied to clustering on graphs [Rattigan
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et al., 2007]. In machine vision, K-medoids is often preferred over K-means, as a medoid
is more easily interpretable than a mean [Frahm et al., 2010].

The K-medoids problem is NP-hard, but there exist approximation algorithms. The
Voronoi iteration algorithm, appearing in Hastie et al. [2001] and later in Park and Jun
[2009], consists of alternating between updating medoids and assignments, much in the
same way as Lloyd’s algorithm works for the K-means problem. We will refer to it as
KMEDS, and to Lloyd’s K-means algorithm as lloyd.

One significant difference between KMEDS and lloyd is that the computation of a medoid
is quadratic in the number of elements per cluster whereas the computation of a mean is
linear. By incorporating our new medoid algorithm into KMEDS, we break the quadratic
dependency of KMEDS, bringing it closer in performance to lloyd. We also show how
ideas for accelerating lloyd presented in Elkan [2003] can be used in KMEDS.

It should be noted that algorithms other than KMEDS have been proposed for finding
approximate solutions to the K-medoids problem, and we will show that they are very
effective in Chapter 4. These include PAM and CLARA of Kaufman and Rousseeuw [1990],
and CLARANS of Ng and Han [1994]. In this chapter we do not compare cluster qualities
of these algorithms, but focus on accelerating the lloyd equivalent for K-medoids as a
test setting for our medoid algorithm trimed.

Previous works

A related problem: the geometric median

A problem closely related to the medoid problem is the geometric median problem. In
the vector space V the geometric median, assuming it is unique, is defined as,

g(S) = arg min
v∈V

(∑
x∈S
‖v − x‖

)
. (3.1)

While the medoid of a set is defined in any space with a distance measure, the geometric
median is specific to vector spaces, where addition and scalar multiplication are defined.
The convexity of the objective function being minimized in (3.1) has enabled the de-
velopment of fast algorithms. In particular, Cohen et al. [2016] present an algorithm
which obtains an estimate for the geometric median with relative error 1 + O(ε) with
complexity O(Nd log3(Nε )) in Rd. In Rd, one may hope that such an algorithm can be
converted into an exact medoid algorithm, but it is not clear how to do this.

Thus, while it may be possible that fast geometric median algorithms can provide
inspiration in the development of medoid algorithms, they do not work out of the box.
Moreover, geometric median algorithms cannot be used for network data as they only
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work in vector spaces, thus they are not applicable for the spatial network datasets which
we consider in Section 3.5.

Medoid algorithms : TOPRANK and TOPRANK2

In Eppstein and Wang [2004], the RAND algorithm for estimating the energy of all elements
of a set S = {x(1), . . . , x(N)} is presented. While RAND is presented in the context of
graphs, where the N elements are nodes of an undirected graph and the metric is shortest
path length, it can equally well be applied to any set endowed with a distance. The
simple idea of RAND is to estimate the energy of each element from a sample of anchor
nodes I, so that for j ∈ {1, . . . , N},

Ê(j) = 1
|I|
∑
i∈I

dist(x(j), x(i)).

An elegant feature of RAND in the context of sparse graphs is that Dijkstra’s algorithm
needs only be run from anchor nodes i ∈ I, and not from every node. The key result
of Eppstein and Wang [2004] is the following. Suppose that S has diameter ∆, that is

∆ = max
(i,j)∈{1,...,N}2

dist(x(i), x(j)),

and let ε > 0 be some error tolerance. If I is of size Ω(log(N)/ε), then P(|E(j)− Ê(j)| >
ε∆) is O

(
1
N2

)
for all j ∈ {1, . . . , N}. Using the union bound, this means there is a

O
(

1
N

)
probability that at least one energy estimate is off by more than ε∆, and so we

say that with high probability (w.h.p.) all errors are less than ε∆.

RAND forms the basis of the TOPRANK algorithm of Okamoto et al. [2008]. Whereas RAND
w.h.p. returns an element which has energy within ε of the minimum, TOPRANK is designed
to w.h.p. return the true medoid. In motivating TOPRANK, Okamoto et al. [2008] observe
that the expected difference between consecutively ranked energies is O(∆/N), and
so if one wishes to correctly rank all nodes, one needs to distinguish between energies
at a scale ε = ∆/N , for which the result of Eppstein and Wang [2004] dictates that
Θ(N logN) anchor elements are required with RAND, which is more elements than S
contains. However, to obtain just the highest ranked node should require less information
than obtaining a full ranking of nodes, and it is to this task that TOPRANK is adapted.

The idea behind TOPRANK is to accurately estimate only the energies of promising elements.
The algorithm proceeds in two passes, where in the first pass promising elements are
earmarked. Specifically, the first pass runs RAND with N2/3 log1/3(N) anchor elements to
obtain Ê(i) for i ∈ {1, . . . , N}, and then discards elements whose Ê(i) lie below threshold
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τ given by,

τ = arg min
j∈{1,...,N}

Ê(j) + 2∆̂α′
( logn

n

) 1
3
, (3.2)

where ∆̂ is an upper bound on ∆ obtained from the anchor nodes, and α′ is some constant
satisfying α′ > 1. The second pass computes the true energy of the undiscarded elements,
returning the one with lowest true energy. Note that a smaller α′ value results in a lower
(better) threshold, we discuss this point further in Appendix C.3.

To obtain run time guarantees, TOPRANK requires that the distribution of node energies is
non-decreasing near to the minimum, denoted by E∗. More precisely, letting fE be the
probability distribution of energies, the algorithms require the existence of ε > 0 such
that,

E∗ ≤ ẽ < e < E∗ + ε =⇒ fE(ẽ) ≤ fE(e). (3.3)

If assumption 3.3 holds, then the run time is Õ(N
5
3 ). A second algorithm presented

in Okamoto et al. [2008] is TOPRANK2, where the anchor set I is grown incrementally until
some heuristic criterion is met. There is no runtime guarantee for TOPRANK2, although
it has the potential to run much faster than TOPRANK under favourable conditions.
Pseudocode for RAND, TOPRANK and TOPRANK2 is presented in Appendix C.3.

K-medoids algorithm : KMEDS

The Voronoi iteration algorithm, which we refer to as KMEDS, is similar to lloyd, the
main difference being that cluster medoids are computed instead of cluster means. It has
been described in the literature at least twice, once in Hastie et al. [2001] and then in
Park and Jun [2009], where a novel initialization scheme is developed. Pseudocode is
presented in Appendix C.2.

All N2 distances are computed and stored upfront with the KMEDS of Park and Jun [2009].
Then, at each iteration, KN comparisons are made during assignment and Ω(N2/K)
additions are made during medoid update. The initialization scheme of KMEDS requires
all N2 distances. Each iteration of KMEDS requires retrieving at least max

(
KN,N2/K

)
distinct distances, as can be shown by assuming balanced clusters.

As an alternative to computing all distances upfront, one could store per-cluster dis-
tance matrices which get updated on-the-fly when assignments change. Using such an
approach, the best one could hope for would be max

(
KN,N2/K

)
distance calculations

and Θ(N2/K) memory. If one were to completely forego storing distances in memory
and calculate distances only when needed, the number of distance calculations would be
at least r(KN +N2/K), where r is the number of iterations.
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Chapter 3. A Sub-Quadratic Exact Medoid Algorithm

The initialization scheme of Park and Jun [2009] selects K well centered elements as
initial medoids. This scheme goes against the general wisdom for K-means initialization,
where centroids are initialized to be well separated [Arthur and Vassilvitskii, 2007]. While
the new scheme of Park and Jun [2009] performs well on a limited number of small 2-D
datasets, we show in Apppendix C.1 that in general uniform initialization performs as
well or better.

Our new medoid algorithm : trimed

We present our new algorithm, trimed, for determining the medoid of a given set
S = {x(1), . . . , x(N)}. Whereas the approach with TOPRANK is to empirically estimate
E(i) for i ∈ {1, . . . , N}, the approach with trimed, presented as Alg. 6, is to bound
E(i). When trimed terminates, an index m∗ ∈ {1, . . . , N} has been determined, along
with lower bounds l(i) for all i ∈ {1, . . . , N}, such that E(m∗) ≤ l(i) ≤ E(i), and thus
x(m∗) is the medoid. The bounding approach uses the triangle inequality, as depicted in
Figure 3.1.

Algorithm 6 The trimed algorithm for computing the medoid of {x(1), . . . , x(N)}.
1: l← 0N // lower bounds on energies, maintained such that l(i) ≤ E(i) and initialized

as l(i) = 0.
2: mcl, Ecl ← −1,∞ // index of best medoid candidate found so far, and its energy.
3: for i ∈ shuffle ({1, . . . , N}) do
4: if l(i) < Ecl then
5: for j ∈ {1, . . . , N} do
6: d(j)← dist(x(i), x(j))
7: end for
8: l(i)← 1

N

∑N
j=1 d(j) // set l(i) to be tight, that is l(i) = E(i).

9: if l(i) < Ecl then
10: mcl, Ecl ← i, l(i)
11: end if
12: for j ∈ {1, . . . , N} do
13: l(j)← max(l(j), |l(i)−d(j)|) // using E(i) and dist(x(i), x(j)) to possibly

improve bound on E(j).
14: end for
15: end if
16: end for
17: m∗, E∗ ← mcl, Ecl return x(m∗)

The algorithm trimed iterates through the N elements of S in a random order. Each
time a new element with energy lower than the current lowest energy (Ecl) is found, the
index of the current best medoid (mcl) is updated (line 10). Lower bounds on energies
are used to quickly eliminate poor medoid candidates (line 4). Specifically, if lower bound
l(i) on the energy of element i is greater than or equal to Ecl, then i is eliminated. If
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x(i)
x(j)

x(i)
x(j)

Figure 3.1 – Using the inequality E(j) ≥ |E(i) − dist(x(i), x(j)) | to eliminate x(j) as
a medoid candidate. Computed element x(i) with energy E(i) ≥ Ecl is used as a pivot
to lower bound E(j). The two cases where the inequality is effective are when (case 1,
above) dist(x(i), x(j))−E(i) ≥ Ecl and (case 2, below) E(i)− dist(x(i), x(j)) ≥ Ecl, as
both lead to E(j) ≥ Ecl which eliminates x(j) as a medoid candidate.

the bound test fails to eliminate element i, then it is computed, that is, all distances
to element i are computed (line 6). The computed distances are used to potentially
improve lower bounds for all elements (line 13). Theorem 3.3.1 states that trimed finds
the medoid. The proof relies on showing that lower bounds remain consistent when
updated (line 13).

The algorithm is very straightforward to implement, and requires only two additional
floating point values per datapoint: for sample i, one for l(i) and one for d(i). Computing
either all or no distances from a sample makes particularly good sense for network data,
where computing all distances to a single node is efficiently performed using Dijkstra’s
algorithm.

Theorem 3.3.1. trimed returns the medoid of set S.

Proof. We need to prove that l(j) ≤ E(j) for all j ∈ {1, . . . , N} at all iterations of the
algorithm. Clearly, as l(j) = 0 at initialization, we have l(j) ≤ E(j) at initialization.
E(j) does not change, and the only time that l(j) may change is on line 13, where we
need to check that |l(i)− d(j)| ≤ E(j). At line 13, l(i) = E(i) from line 8, and d(j) =
dist(x(i), x(j)), so at line 13 we are effectively checking that |E(i)−dist(x(i), x(j))| ≤ E(j).
But this is a simple consequence of the triangle inequality, as we now show. Using the
definition, E(j) = 1

N

∑N
l=1 dist(x(l), x(j)), we have on the one hand,

E(j) ≥ 1
N

N∑
l=1

dist(x(l), x(i))− dist(x(i), x(j))

≥ E(i)− dist(x(i), x(j)), (3.4)
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and on the other hand,

E(j) ≥ 1
N

N∑
l=1

dist(x(i), x(j))− dist(x(l), x(i))

≥ dist(x(i), x(j))− E(i). (3.5)

Combining (3.4) and (3.5) we obtain the required inequality |E(i)− dist(x(i), x(j))| ≤
E(j).

The bound test (line 4) becomes more effective at later iterations, for two reasons. Firstly,
whenever an element is computed, the lower bounds of other samples may increase.
Secondly, Ecl will decrease whenever a better medoid candidate is found. The main
result of this chapter, presented as Theorem 3.3.2, is that in Rd the expected number of
computed elements is O(N

1
2 ) under some weak assumptions. We show in Section 3.5

that the O(N
1
2 ) result holds even in settings where the assumptions are not valid or

relevent, such as for network data.

The shuffle on line 3 is performed to avoid w.h.p. pathological orderings, such as when
elements are ordered in descending order of energy which would result in all N elements
being computed.

Theorem 3.3.2. Let S = {x(1), . . . , x(N)} be a set of N elements in Rd, drawn inde-
pendently from probability distribution function fX . Let the medoid of S be x(m∗), and
let E(m∗) = E∗. Suppose that there exist strictly positive constants ρ, δ0 and δ1 such that
for any set size N with probability 1−O(1/N)

x ∈ Bd(x(m∗), ρ) =⇒ δ0 ≤ fX(x) ≤ δ1, (3.6)

where Bd(x, r) = {x′ ∈ Rd : ‖x′ − x‖ ≤ r}. Let α > 0 be a constant (independent of N)
such that with probability 1−O(1/N) all i ∈ {1, . . . , N} satisfy,

x(i) ∈ Bd(x(m∗), ρ) =⇒ (3.7)
E(i)− E∗ ≥ α‖x(i)− x(m∗)‖2.

Then, the expected number of elements computed by trimed is O
((

Vd[1]δ1 + d
(

4
α

)d)
N

1
2

)
,

where Vd[1] = π
d
2 /(Γ(d2 + 1)) is the volume of Bd(0, 1).

On the assumptions in theorem 3.3.2

The assumption of constants ρ, δ0 and δ1 made in Theorem 3.3.2 is weak, and only
pathological distributions might fail it, as we now discuss. For the assumptions to fail
requires that fX vanishes or diverges at the distribution medoid. Any reasonably behaved
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δ0

δ1
f X

x(m∗) x(m∗) + ρ

E
−
E
∗

α‖x− x(m∗)‖2

Figure 3.2 – Illustration in 1-D of the constants used in Theorem 3.3.2. Above, δ0 and δ1
bound the probability density function in a region containing the distribution medoid.
Below, the energy of samples grows quadratically around the medoid x(m∗). The energy
E is a sum of cones centered on samples, which is approximately quadratic unless fX
vanishes or explodes, guaranteeing the existence of α > 0 required in Theorem 3.3.2.

distribution does not have this behaviour, as illustrated in Figure 3.2. The constant α is
a strong convexity constant. The existence of α > 0 is guaranteed by the existence of
ρ, δ0 and δ1, as the mean of a sum of uniformly spaced cones converges to a quadratic
function. This is illustrated in 1-D in Figure C.2 in Appendix C.7, but holds true in any
dimension.

Note that the assumptions made are on the distribution fX , and not on the data itself.
This allows us to prove the complexity result in N . We would like to formulate our result
in terms of only the data, we are still investigating if this is possible.

Sketch of proof of theorem 3.3.2

We now sketch the proof of Theorem 3.3.2, showing how (3.6) and (3.7) are used. A full
proof is presented in Appendix C.7. Firstly, let the index of the first element after the
shuffle on line 3 be i′. Then, no elements beyond radius 2E(i′) of x(i′) will subsequently
be computed, due to type 1 eliminations (see Figure 3.1). Therefore, all computed
elements are contained within Bd(x(i′), 2E(i′)).

Next, notice that once an element x(i) has been computed in trimed, no elements in
the ball Bd(x(i), E(i)− Ecl) will subsequently be computed, due to type 2 eliminations
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(see Figure 3.1). We refer to such a ball as an exclusion ball. By upper bounding the
number of exclusion balls contained in Bd(x(i′), 2E(i′)) using a volumetric argument,
we can obtain a bound on the number of computed elements, but obtaining such an
upper bound requires that the radii of exclusion ball E(i)− Ecl be bounded below by a
strictly positive value. However, by using a volumetric argument only beyond a certain
positive radius of the medoid (a radius N−1/2d), we have α > 0 in (C.8) which provides
a lower bound on exclusion ball radii, assuming Ecl ≈ E∗. Using δ0 we can show that
Ecl approaches E∗ sufficiently fast to validate the approximation Ecl ≈ E∗.

It then remains to count the number of computed elements within radius N−1/2d of the
medoid. One cannot find a strict upper bound here, but using the boundedness of fX
provided by δ1, we have w.h.p. that the number of elements computed within N−1/2d is
O(δ1N

1/2), as the volume of a sphere scales as the d’th power of its radius.

Accelerated K-medoids algorithm : trikmeds

We adapt our new medoid algorithm trimed and borrow ideas from Elkan [2003] to
show how KMEDS can be accelerated. We abandon the initial N2 distance calculations,
and only compute distances when necessary. The accelerated version of lloyd of Elkan
[2003] maintains KN bounds on distances between points and centroids, allowing a large
proportion of distance calculations to be eliminated. We use this approach to accelerate
assignment in trikmeds, incurring a memory cost O(KN). By adopting the exponion
algorithm from Chapter 1, or that of Hamerly [2010], the memory overhead can be
reduced to O(N). We accelerate the medoid update step by adapting trimed, reusing
lower bounds between iterations, so that trimed is only run from scratch once at the
start. Details and pseudocode are presented in Appendix C.8.

One can relax the bound test in trimed so that for ε > 0 element i is computed if
l(i)(1 + ε) < Ecl, guaranteeing that an element with energy within a factor 1 + ε of E∗ is
found. It is also possible to relax the bound tests in the assignment step of trikmeds,
such that the distance to an assigned cluster’s medoid is always within a factor 1 + ε of
the distance to the nearest medoid. We denote by trikmeds-ε the trikmeds algorithm
where the update and assignment steps are relaxed as just discussed, with trikmeds-0
being exactly trikmeds. The motivation behind such a relaxation is that, at all but
the final few iterations, it is probably a waste of computation obtaining medoids and
assignments at high resolution, as in subsequent iterations they may change.

Results

We first compare the performance of the medoid algorithms TOPRANK, TOPRANK2 and
trimed. We then compare the K-medoids algorithms, KMEDS and trikmeds.
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Figure 3.3 – Comparison of TOPRANK and our algorithm trimed on simulated data. On
the left, points are drawn uniformly from [0, 1]d for d ∈ {2, . . . , 6}, and on the right they
are drawn from Bd(0, 1) for d ∈ {2, 6}, with an increased density near the edge of the
ball. Fewer points (elements) are computed by trimed than by TOPRANK in all scenarios.
For small N , TOPRANK computes O(N) points, before transitioning to Õ(N2/3) computed
points for large N . trimed computes O(N1/2) points. Note that trimed performs better
in low-d than in high-d, with the reverse trend being true for TOPRANK. These observations
are discussed in further detail in the text.

Medoid algorithm results

We compare our new exact medoid algorithm trimed with state-of-the-art approximate
algorithms TOPRANK and TOPRANK2. Recall, Okamoto et al. [2008] prove that the ap-
proximate algorithms return w.h.p. the true medoid. We confirm that this is the case
in all our experiments, where the approximate algorithms return the same element as
trimed, which we know to be correct by Theorem 3.3.1. We now focus on comparing
computational costs, which are proportional to the number of computed points.

Results on artificial datasets are presented in Figure 3.3, where our two main observations
relate to scaling in N and dimension d. The artificial data are (left) uniformly drawn
from [0, 1]d and (right) drawn from Bd(0, 1) with probability of lying within radius 1/21/d

of 1/200, as opposed to 1/2 as would be the case under uniform density. Details about
sampling from this distribution can be found in Appendix C.6. Results on a mix of
publicly available real and artificial datasets are presented in Table 3.1 and discussed in
Section 3.5.1.

Scaling with N and d on artificial datasets

In Figure 3.3 we observe that the number of points computed by trimed is O(N1/2), as
predicted by Theorem 3.3.2. This is illustrated (right) by the close fit of the number of
computed points to exact square root curves at sufficiently large N for d ∈ {2, 6}.

Recall that TOPRANK consists of two passes, a first where N2/3 log1/3N anchor points are
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computed, and a second where all sub-threshold points are computed. We observe that
for small N TOPRANK computes all N points, which corresponds to all points lying below
threshold. At sufficiently large N the threshold becomes low enough for all points to be
eliminated after the first pass. The effect is particularly dramatic in high dimensions
(d = 6 on right), where a phase transition is observed between all and no points being
computed in the second pass.

Dimension d appears in Theorem 3.3.2 through a factor d(4/α)d, where α is the strong
convexity of the energy at the medoid. In Figure 3.3, we observe that the number of
computed points increases with d for fixed N , corresponding to a relatively small α.
The effect of α on the number of computed elements is considered in greater detail in
Appendix C.6.

In contrast to the above observation that the number of computed points increases as
dimension increases for trimed, TOPRANK appears to scale favourably with dimension.
This observation can be explained in terms of the distribution of energies, with energies
close to E∗ being less common in higher dimensions, as discussed in Appendix C.10.

Results on publicly available real and simulated datasets

We present the datasets used here in detail in Appendix C.9. For all datasets, algorithms
TOPRANK, TOPRANK2 and trimed were run 10 times with a distinct seed, and the mean
number of iterations (n̂) over the 10 runs was computed. We observe that our algorithm
trimed is the best performing algorithm on all datasets, although in high-dimensions
(MNIST-0) and on social network data (Gnutella) no algorithm computes significantly
fewer than N elements. The failure in high-dimensions (MNIST-0) of trimed is in
agreement with Theorem 3.3.2, where dimension appears as the exponent of a constant
term. The small world network data, Gnutella, can be embedded in a high-dimensional
Euclidean space, and thus the failure on this dataset can also be considered as being
due to high-dimensions. For low-dimensional real and spatial network data, trimed
consistently computes O(N1/2) elements.

But who needs the exact medoid anyway?

A valid criticism that could be raised at this stage would be that for large datasets,
finding the exact medoid is probably not necessary, as any point with energy reasonably
close to E∗ suffices for most applications. But consider, the RAND algorithm requires
computing logN/ε2 elements to confidently return an element with energy within εE∗

of E∗. For N = 105 and ε = 0.05, this is 4600, already more than trimed requires to
obtain the exact medoid on low-d datasets of comparable size.
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TOPRANK TOPRANK2 trimed

dataset type N n̂ n̂ n̂

Birch 1 2-d 1.0× 105 57944 100180 2180
Birch 2 2-d 1.0× 105 66062 100180 2208
Europe 2-d 1.6× 105 176095 169535 2862

U-Sensor Net u-graph 3.6× 105 113838 327216 1593
D-Sensor Net d-graph 3.6× 105 99896 176967 1372

Pennsylvania road u-graph 1.1× 106 216390 time-out 2633
Europe rail u-graph 4.6× 104 35913 47041 518
Gnutella d-graph 6.3× 103 7043 6407 6328
MNIST 784-d 6.7× 103 7472 6799 6514

Table 3.1 – Comparison of TOPRANK, TOPRANK2 and our algorithm trimed on publicly
available real and simulated datasets. Column 2 provides the type of the dataset, where
‘x-d’ denotes x-dimensional vector data, while ‘d-graph’ and ‘u-graph’ denote directed and
undirected graphs respectively. Column n̂ gives the mean number of elements computed
over 10 runs. Our proposed trimed algorithm obtains the true medoid with far fewer
computed points in low dimensions and on spatial network data. On the social network
dataset (Gnutella) and the very high-d dataset (MNIST), all algorithms fail to provide
speed-up, computing approximately N elements.

K-medoids algorithm results

With N elements to cluster, KMEDS of Park and Jun [2009] is Θ(N2) in memory, rendering
it unusable on even moderately large datasets. To compare the initialization scheme
proposed in Park and Jun [2009] to random initialization, we have performed experiments
on 14 small datasets, with K ∈ {10, dN1/2e, dN/10e}. For each of these 42 experimental
set-ups, we run the deterministic KMEDS initialization once, and then uniform random
initialization, 10 times. Comparing the mean final energy of the two initialization schemes,
in only 9 of 42 cases does KMEDS initialization result in a lower mean final energy. A
Table containing all results from these experiments in presented in Appendix C.5.

Having demonstrated that random uniform initialization performs at least as well as the
initialization scheme of KMEDS, and noting that trikmeds-0 returns exactly the same
clustering as would KMEDS with uniform random initialization, we turn our attention to
the computational performance of trikmeds. Table 3.2 presents results on 4 datasets,
each described in Appendix C.9. The first numerical column is the relative number
of distance calculations using trikmeds-0 and KMEDS, where large savings in distance
calculations, especially in low-dimensions, are observed. Columns φc and φE are the
number of distance calculations and energies respectively, using ε ∈ {0.01, 0.1}, relative
to ε = 0. We observe large reductions in the number of distance computations with only
minor increases in energy.
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K = 10 K = d
√
Ne

ε = 0 ε = 0.01 ε = 0.1 ε = 0 ε = 0.01 ε = 0.1
Dataset N d Nc/N

2 φc φE φc φE Nc/N
2 φc φE φc φE

Europe 1.6× 105 2 0.067 0.33 1.004 0.01 1.054 0.008 0.68 1.031 0.39 1.090
Conflong 1.6× 105 3 0.042 0.67 1.001 0.08 1.014 0.006 0.92 1.003 0.61 1.026
Colormo 6.8× 104 9 0.163 0.92 1.000 0.35 1.015 0.011 0.98 1.000 0.82 1.005
MNIST50 6.0× 104 50 0.280 0.99 1.000 0.95 1.001 0.019 0.99 1.001 0.97 1.001

Table 3.2 – Relative numbers of distance calculations and final energies using trikmeds-ε
for ε ∈ {0, 0.01, 0.1}. The number of distance calculations with trikmeds-0 is Nc,
presented here relative to the number computed using KMEDS (N2) in column Nc/N

2.
The number of distance calculations with ε ∈ {0.01, 0.1} relative to trikmeds-0 are given
in columns φc, so φc = 0.33 means 3× fewer calculations than with ε = 0. The final
energies with ε ∈ {0.01, 0.1} relative to trikmeds-0 are given in columns φE . We see that
trikmeds-0 uses significantly fewer distance calculations than would KMEDS, especially
in low-dimensions where a greater than K× reduction is observed (NC/N

2 < 1/K). For
low-d, additional relaxation further increases the saving in distance calculations with
little cost to final energy.

Chapter conclusion and future work

We have presented our new trimed algorithm for computing the medoid of a set, and
provided strong theoretical guarantees about its performance in Rd. In low-dimensions,
it outperforms the state-of-the-art approximate algorithm on a large selection of datasets.
The algorithm is very simple to implement, and can easily be extended to the general
ranking problem. In the future, we propose to explore the idea of using more complex
triangle inequality bounds involving several points, with as goal to improve on the
O(N1/2) number of computed points. We would also like to derive an O(N1/2) result
which depends on the data alone, and not on the distribution it came from. This would
be more elegant, and possibly more natural.

We have demonstrated how trimed, when combined with the approach of Elkan [2003],
can greatly reduce the number of distance calculations required by the Voronoi iteration
K-medoids algorithm of Park and Jun [2009]. In the future we would like to replace
the strategy of Elkan [2003] with that of Hamerly [2010], which will be better adapted
to graph clustering as either all or no distances are computed with it, making it more
amenable to Dijkstra’s algorithm.
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Chapter introduction

Recall that the K-medoids problem differs from the K-means problem in that the center
of a cluster is its medoid, not its mean, where the medoid is the cluster member which
minimizes the sum of dissimilarities between itself and other cluster members. In this
chapter, as our application is K-means seeding (initialization with samples), we focus
on the case where dissimilarity is squared distance. Note that this is in contrast to the
previous chapter where dissimilarity was exactly the distance. Note too that K-medoids
generalises to non-metric spaces and arbitrary dissimilarity measures, as discussed in
Appendix D.1.

Recall from previous chapters that the popular K-means Lloyd’s algorithm, once again
referred to as lloyd in this chapter, consists of an assignment step, where for each point
the nearest (frozen) center is determined, and an update step, where each center is set to
the mean of points assigned to it. By modifying the update step in lloyd to compute
medoids instead of means, a viable K-medoids algorithm is obtained. This algorithm
has been proposed at least twice [Hastie et al., 2001, Park and Jun, 2009] and is often
referred to as the Voronoi iteration algorithm. In this chapter we continue to refer to
it as medlloyd. The only difference between medlloyd and the KMEDS algorithm of the
previous chapter is that KMEDS specifically minimizes the sum of distances, without any
quadratic or other term. Indeed the bounding technique used in the KMEDS algorithm
cannot be extended to the quadratic case, whereas the algorithms presented in this
chapter are more widely applicable.

Another K-medoids algorithm is clarans of [Ng and Han, 1994], for which there is no
direct K-means equivalent. It works by randomly proposing swaps between medoids
and non-medoids, and accepting only those which decrease MSE. We will discuss how
clarans works, what advantages it has over medlloyd, and our motivation for using it
for K-means initialization in Section 4.2 and Appendix D.1.

49



Chapter 4. K-medoids For K-means Seeding
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Figure 4.1 – N = 3 points, to be partitioned into K = 2 clusters with lloyd, with
two possible initializations (top) and their solutions (bottom). Colors denote clusters,
stars denote samples, rings denote means. Initialization with clarans enables jumping
between the initializations on the left and right, ensuring that when lloyd eventually
runs it avoids the local minimum on the left.

K-means initialization

lloyd is a local algorithm, in that far removed centers and points do not directly influence
each other. This property contributes to lloyd’s tendency to terminate in poor minima
if not well initialized. Good initialization is key to guaranteeing that the refinement
performed by lloyd is done in the vicinity of a good solution, an example showing this
is given in Figure 4.1.

In the comparative study of K-means initialization methods of Celebi et al. [2013], 8
schemes are tested across a wide range of datasets. Comparison is done in terms of
speed (time to run initialization+lloyd) and energy (final MSE). They find that 3/8
schemes should be avoided, due to poor performance. One of these schemes is uniform
initialization, henceforth uni, where K samples are randomly selected to initialize centers.
Of the remaining 5/8 schemes, there is no clear best, with results varying across datasets,
but the authors suggest that the algorithm of Bradley and Fayyad [1998], henceforth bf,
is a good choice.

The bf scheme of Bradley and Fayyad [1998] works as follows. Samples are separated
into J (= 10) partitions. lloyd with uni initialization is performed on each of the
partitions, providing J centroid sets of size K. A superset of JK elements is created by
concatenating the J center sets. lloyd is then run J times on the superset, initialized at
each run with a distinct center set. The center set which obtains the lowest MSE on the
superset is taken as the final initializer for the final run of lloyd on all N samples.

Probably the most widely implemented initialization scheme other than uni isK-means++
[Arthur and Vassilvitskii, 2007], henceforth km++. Its popularity stems from its simplicity,
low computational complexity, theoretical guarantees, and strong experimental support.
The algorithm works by sequentially selecting K seeding samples. At each iteration,
a sample is selected with probability proportional to the square of its distance to the
nearest previously selected sample.

The work of Bachem et al. [2016] focused on developing sampling schemes to accelerate
km++, while maintaining its theoretical guarantees. Their algorithm afk-mc2 results in
as good initializations as km++, while using only a small fraction of the KN distance
calculations required by km++. This reduction is important for massive datasets.
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4.1. Chapter introduction

In none of the 4 schemes discussed is a center ever replaced once selected. Such refinement
is only performed during the running of lloyd. In this chapter we show that perform-
ing refinement during initialization with clarans, before the final lloyd refinement,
significantly lowers K-means MSEs.

Our contribution and chapter summary

We compare the K-medoids algorithms clarans and medlloyd, finding that clarans
finds better local minima, in Section 4.3 and Appendix D.1. We offer an explanation for
this, which motivates the use of clarans for initializing lloyd (Figure 4.2). We discuss
the complexity of clarans, and briefly show how it can be optimized in Section 4.4, with
a full presentation of acceleration techniques in Appendix D.4.

Most significantly, we compare clarans with methods uni, bf, km++ and afk-mc2 for
K-means initialization, and show that it provides significant reductions in initialization
and final MSEs in Section 4.5. We thus provide a conceptually simple initialization
scheme which is demonstrably better than km++, which has been the de facto initialization
method for one decade now.

Our source code at https://github.com/idiap/zentas is available under an open source
license. It consists of a C++ library with Python interface, with several examples for
diverse data types (sequence data, sparse and dense vectors), metrics (Levenshtein, l1,
etc.) and potentials (quadratic as in K-means, logarithmic, etc.).

Other related works

Alternatives to lloyd have been considered which resemble the swapping approach of
clarans. One is by Hartigan [1975], where points are randomly selected and reassigned.
Telgarsky and Vattani [2010] show how this heuristic can result in better clustering when
there are few points per cluster.

The work most similar to clarans in the K-means setting is that of Kanungo et al.
[2002a], where it is indirectly shown that clarans finds a solution within a factor 25 of the
optimal K-medoids clustering. The local search approximation algorithm they propose
is a hybrid of clarans and lloyd, alternating between the two, with sampling from a
kd-tree during the clarans-like step. Their source code includes an implementation of
an algorithm they call ‘Swap’, which is exactly the clarans algorithm of Ng and Han
[1994].
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Two K-medoids algorithms

Like km++ and afk-mc2, K-medoids generalises beyond the standard K-means setting of
Euclidean metric with quadratic potential, but we consider only the standard setting in
the main body of this chapter, referring the reader to D.1 for a more general presentation.
In Algorithm 7, medlloyd is presented. It is essentially lloyd with the update step
modified for K-medoids. Alternatively, it is KMEDS of the previous chapter, with distance
squared instead of just distance.

Algorithm 7 two-step iterative medlloyd algorithm (vector space, quadratic potential).
1: Initialize center indices c(k), as distinct elements of {1, . . . , N}, where index k ∈
{1, . . . ,K}.

2: do
3: for i = 1 : N do
4: a(i)← arg min

k∈{1,...,K}
‖x(i)− x(c(k))‖2

5: end for
6: for k = 1 : K do
7:
8: c(k)← arg min

i:a(i)=k

∑
i′:a(i′)=k

‖x(i)− x(i′)‖2

9: end for
10: while c(k) changed for at least one k

Algorithm 8 swap-based clarans algorithm (vector space, quadratic potential).
1: nr ← 0
2: Initialize center indices C ⊂ {1, . . . , N}
3: ψ− ←

∑N
i=1 mini′∈C ‖x(i)− x(i′)‖2

4: while nr ≤ Nr do
5: sample i− ∈ C and i+ ∈ {1, . . . , N} \ C
6:
7: ψ+ ←

∑N
i=1 mini′∈C\{i−}∪{i+} ‖x(i)− x(i′)‖2

8: if ψ+ < ψ− then
9: C ← C \ {i−} ∪ {i+}

10: nr ← 0, ψ− ← ψ+
11: else
12: nr ← nr + 1
13: end if
14: end while

In Algorithm 8, clarans is presented. Following a random initialization of the K centers
(line 2), it proceeds by repeatedly proposing a random swap (line 5) between a center
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4.3. A simple simulation study

• •
•

• •

•
•x(1)

x(2)
x(3)

x(4)
x(5)
x(6)

x(7)

Figure 4.2 – Example with N = 7 samples, of which K = 2 are medoids. Current medoid
indices are 1 and 4. Using medlloyd, this is a local minimum, with final clusters {x(1)},
and the rest. clarans may consider swap (i−, i+) = (4, 7) and so escape to a lower
MSE. The key to swap-based algorithms is that cluster assignments are never frozen.
Specifically, when considering the swap of x(4) and x(7), clarans assigns x(2), x(3) and
x(4) to the cluster of x(1) before computing the new MSE.

(i−) and a non-center (i+). If a swap results in a reduction in energy (line 8), it is
implemented (line 9). clarans terminates when Nr consecutive proposals have been
rejected. Alternative stopping criteria could be number of accepted swaps, rate of energy
decrease or time. We use Nr = K2 throughout, as this makes proposals between all pairs
of clusters probable, assuming balanced cluster sizes.

clarans was not the first swap-based K-medoids algorithm, being preceded by pam and
clara of Kaufman and Rousseeuw [1990]. It can however provide better complexity than
other swap-based algorithms if certain optimizations are used, as discussed in Section
4.4.

When updating centers in lloyd and medlloyd, assignments are frozen. In contrast,
with swap-based algorithms such as clarans, assignments change along with the medoid
index being changed (i− to i+). As a consequence, swap-based algorithms look one step
further ahead when computing MSEs, which helps them escape from the minima of
medlloyd. This is described in Figure 4.2.

A simple simulation study

We generate simple 2-D data, and compare medlloyd, clarans, and baseline K-means
initializers km++ and uni, in terms of MSEs. The data is described in Figure 4.3, where
sample initializations are also presented. Results in Figure 4.4 show that clarans provides
significantly lower MSEs than medlloyd, an observation which generalises across data
types (genomic, sparse, etc), metrics (Levenshtein, l∞, etc), and potentials (exponential,
logarithmic, etc), as shown in Appendix D.1.

Complexity and accelerations

lloyd requires KN distance calculations to update K centers, assuming no acceleration
technique such as that of Elkan [2003] is used. The cost of several iterations of lloyd
outweighs initialization with any of uni, km++ and afk-mc2. We ask if the same is
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Figure 4.3 – (Column 1 ) Simulated data in R2. For each cluster center g ∈ {0, . . . , 19}2,
100 points are drawn from N (g, σ2I), illustrated here for σ ∈ {2−6, 2−4, 2−2}. (Columns
2,3,4,5 ) Sample initializations. We observe ‘holes’ for methods uni, medlloyd and km++.
clarans successfully fills holes by removing distant, under-utilised centers. The spatial
correlation of medlloyd’s holes are due to its locality of updating.
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Figure 4.4 – Results on simulated data. For 400 values of σ ∈ [2−10, 2−1], initialization
(left) and final (right) MSEs relative to true cluster variances. For σ ∈ [2−5, 2−2]
km++ never results in minimal MSE (MSE/σ2 = 1), while clarans does for all σ.
Initialization MSE with medlloyd is on average 4 times lower than with uni, but most
of this improvement is regained when lloyd is subsequently run (final MSE/σ2).
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4.4. Complexity and accelerations
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Figure 4.5 – The number of consecutive swap proposal rejections (evaluations) before
one is accepted (implementations), for simulated data (Section 4.3) with σ = 2−4.

true with clarans initialization, and find that the answer depends on how clarans is
implemented. clarans as presented in Ng and Han [1994] is O(N2) in computation
and memory, making it unusable for large datasets. To make clarans scalable, we have
investigated ways of implementing it in O(N) memory, and devised optimizations which
make its complexity equivalent to that of lloyd.

clarans consists of two main steps. The first is swap evaluation (line 6) and the second
is swap implementation (scope of if-statement at line 8). Proposing a good swap becomes
less probable as MSE decreases, thus as the number of swap implementations increases
the number of consecutive rejected proposals (nr) is likely to grow large, illustrated in
Figure 4.5. This results in a larger fraction of time being spent in the evaluation step.

We will now discuss optimizations in order of increasing algorithmic complexity, presenting
their computational complexities in terms of evaluation and implementation steps. The
explanations here are high level, with algorithmic details and pseudocode deferred to
Appendix D.4.

Level -2 To evaluate swaps (line 6), simply compute all KN distances.

Level -1 Keep track of nearest centers. Now to evaluate a swap, samples whose nearest
center is x(i−) need distances to all K samples indexed by C \ {i−} ∪ {i+} computed
in order to determine the new nearest. Samples whose nearest is not x(i−) only need
the distance to x(i+) computed to determine their nearest, as either, (1) their nearest is
unchanged, or (2) it is x(i+).

Level 0 Also keep track of second nearest centers, as in the implementation of Ng
and Han [1994], which recall is O(N2) in memory and computes all distances upfront.
Doing so, nearest centers can be determined for all samples by computing distances
to x(i+). If swap (i−, i+) is accepted, samples whose new nearest is x(i+) require K
distance calculations to recompute second nearests. Thus from level -1 to 0, computation
is transferred from evaluation to implementation, which is good, as implementation is
less frequently performed, as illustrated in Figure 4.5.

Level 1 Also keep track, for each cluster center, of the distance to the furthest cluster
member as well as the maximum, over all cluster members, of the minimum distance

55



Chapter 4. K-medoids For K-means Seeding

-2 -1 0 1 2
1 evaluation NK N N N

K +K N
K

1 implementation 1 1 N N N
K2 evaluations, K implementations K3N K2N K2N NK +K3 KN

memory N N N N N +K2

Table 4.1 – The complexities at different levels of optimization of evaluation and imple-
mentation, in terms of required distance calculations, and overall memory. We see at
level 2 that to perform K2 evaluations and K implementations is O(KN), equivalent to
lloyd.

-2 -1 0 1 2
log2(# dcs ) 44.1 36.5 35.5 29.4 26.7
time [s] - - 407 19.2 15.6

Table 4.2 – Total number of distance calcula-
tions (# dcs ) and time required by clarans
on simulation data of Section 4.3 with σ =
2−4 at different optimization levels.

to another center. Using the triangle inequality, one can then frequently eliminate
computation for clusters which are unchanged by proposed swaps with just a single
center-to-center distance calculation. Note that using the triangle inequality requires that
the K-medoids dissimilarity is metric based, as is the case in the K-means initialization
setting.

Level 2 Also keep track of center-to-center distances. This allows whole clusters to be
tagged as unchanged by a swap, without computing any distances in the evaluation step.

We have also considered optimizations which, unlike levels -2 to 2, do not result in
the exact same clustering as clarans, but provide additional acceleration. One such
optimization uses random sub-sampling to evaluate proposals, which helps significantly
when N/K is large. Another optimization which is effective during initial rounds is to
not implement the first MSE reducing swap found, but to rather continue searching
for approximately as long as swap implementation takes, thus balancing time between
searching (evaluation) and implementing swaps. Details can be found in Appendix D.4.3.

The computational complexities of these optimizations are in Table 4.1. Proofs of these
complexities rely on there being O(N/K) samples changing their nearest or second
nearest center during a swap. In other words, for any two clusters of sizes n1 and n2,
we assume n1 = Ω(n2). Using level 2 complexities, we see that if a fraction p(C) of
proposals reduce MSE, then the expected complexity is O(N(1 + 1/(p(C)K))). One
cannot marginalise C out of the expectation, as C may have no MSE reducing swaps, that
is p(C) = 0. If p(C) is O(K), we obtain complexity O(N) per swap, which is equivalent
to the O(KN) for K center updates of lloyd. In Table 4.2, we consider run times and
distance calculation counts on simulated data at the various levels of optimization.
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4.5. Results

dataset # N dim K TL [s]
a1 1 3000 2 40 1.94
a2 2 5250 2 70 1.37
a3 3 7500 2 100 1.69

birch1 4 100000 2 200 21.13
birch2 5 100000 2 200 15.29
birch3 6 100000 2 200 16.38

ConfLong 7 164860 3 22 30.74
dim032 8 1024 32 32 1.13
dim064 9 1024 64 32 1.19
dim1024 10 1024 1024 32 7.68
europe 11 169308 2 1000 166.08

dataset # N dim K TL [s]
housec8 12 34112 3 400 18.71
KDD∗ 13 145751 74 200 998.83
mnist 14 10000 784 300 233.48
Mopsi 15 13467 2 100 2.14
rna∗ 16 20000 8 200 6.84
s1 17 5000 2 30 1.20
s2 18 5000 2 30 1.50
s3 19 5000 2 30 1.39
s4 20 5000 2 30 1.44

song∗ 21 20000 90 200 71.10
susy∗ 22 20000 18 200 24.50
yeast 23 1484 8 40 1.23

Table 4.3 – The 23 datasets. Column ‘TL’ is time allocated to run with each initialization
scheme, so that no new runs start after TL elapsed seconds. The starred datasets are
those used in Bachem et al. [2016], the remainder are available at https://cs.joensuu.fi/
sipu/datasets.

Results

We first compare clarans with uni, km++, afk-mc2 and bf on the first 23 publicly
available datasets in Table 4.3 (datasets 1-23). As noted in Celebi et al. [2013], it is
common practice to run initialization+lloyd several time and retain the solution with
the lowest MSE. In Bachem et al. [2016] methods are run a fixed number of times, and
mean MSEs are compared. However, when comparing minimum MSEs over several runs,
one should take into account that methods vary in their time requirements.

Rather than run each method a fixed number of times, we therefore run each method
as many times as possible in a given time limit, ‘TL’. This dataset dependent time
limit, given by columns TL in Table 4.3, is taken as 80× the time of a single run of
km+++lloyd. The numbers of runs completed in time TL by each method are in columns
1-5 of Table 4.4. Recall that our stopping criterion for clarans is K2 consecutively
rejected swap proposals. We have also experimented with stopping criterion based on
run time and number of swaps implemented, but find that stopping based on number of
rejected swaps best guarantees convergence. We use K2 rejections for simplicity, although
have found that fewer than K2 are in general needed to obtain minimal MSEs.

We use the fast lloyd implementation accompanying Newling and Fleuret [2016a] with
the ‘auto’ flag set to select the best exact accelerated algorithm, and run until complete
convergence. For initializations, we use our own C++/Cython implementation of level 2
optimized clarans, the implementation of afk-mc2 of Bachem et al. [2016], and km++
and bf of Newling and Fleuret [2016a].
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Figure 4.6 – Initialization (above) and final (below) MSEs for km++ (left bars) and
clarans (right bars), with minumum (1), mean (2) and mean + standard deviation (3)
of MSE across all runs. For all initialization MSEs and most final MSEs, the lowest km++
MSE is several standard deviations higher than the mean clarans MSE.

The objective of Bachem et al. [2016] was to prove and experimentally validate that afk-mc2

produces initialization MSEs equivalent to those of km++, and as such lloyd was not run
during experiments. We consider both initialization MSE, as in Bachem et al. [2016],
and final MSE after lloyd has run. The latter is particularly important, as it is the
objective we wish to minimize in the K-means problem.

In addition to considering initialization and final MSEs, we also distinguish between mean
and minimum MSEs. We believe the latter is important as it captures the varying time
requirements, and as mentioned it is common to run lloyd several times and retain the
lowest MSE clustering. In Table 4.4 we consider two MSEs, namely mean initialization
MSE and minimum final MSE.

Baseline performance

We briefly discuss findings related to algorithms uni, bf, afk-mc2 and km++. Results in
Table 4.4 corroborate the previously established finding that uni is vastly outperformed
by km++, both in initialization and final MSEs. Table 4.4 results also agree with the
finding of Bachem et al. [2016] that initialization MSEs with afk-mc2 are indistinguishable
from those of km++, and moreover that final MSEs are indistinguishable. We observe in
our experiments that runs with km++ are faster than those with afk-mc2 (columns 1 and
2 of Table 4.4). We attribute this to the fast blas-based km++ implementation of Newling
and Fleuret [2016a].

Our final baseline finding is that MSEs obtained with bf are in general no better than
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runs completed mean initial mse minimum final mse
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1 135 65 138 8 29 1 0.97 2 0.63 0.59 0.58 0.59 0.61 0.57
2 81 24 85 5 7 1 0.99 1.96 0.62 0.6 0.59 0.61 0.63 0.58
3 82 21 87 6 4 1 0.99 2.07 0.63 0.6 0.61 0.62 0.63 0.59
4 79 27 95 28 5 1 0.99 1.54 0.69 0.66 0.66 0.66 0.66 0.66
5 85 22 137 27 6 1 1 3.8 0.62 0.62 0.62 0.64 0.63 0.59
6 68 22 77 23 4 1 0.98 2.35 0.67 0.64 0.64 0.68 0.68 0.63
7 84 66 75 38 46 1 1 1.17 0.73 0.64 0.64 0.64 0.64 0.64
8 84 29 88 5 19 1 0.98 43.1 0.65 0.65 0.65 0.66 0.66 0.63
9 81 29 90 5 16 1 1.01 >102 0.66 0.66 0.66 0.66 0.69 0.63
10 144 52 311 24 18 1 0.99 >102 0.72 0.62 0.61 0.62 0.62 0.59
11 70 25 28 15 4 1 1 20.2 0.72 0.67 0.67 2.25 2.4 0.64
12 80 27 81 21 4 1 0.99 2.09 0.77 0.7 0.7 0.73 0.74 0.69
13 102 74 65 56 5 1 1 4 0.77 0.69 0.69 0.75 0.75 0.69
14 88 43 276 83 4 1 1 1 0.87 0.6 0.6 0.6 0.61 0.6
15 91 23 52 7 4 1 1 25 0.6 0.57 0.57 3.71 3.62 0.51
16 107 28 86 28 4 1 0.99 24.5 0.62 0.62 0.61 2.18 2.42 0.56
17 84 31 85 5 25 1 1.01 2.79 0.7 0.66 0.65 0.67 0.69 0.65
18 100 39 100 7 30 1 0.99 2.24 0.69 0.65 0.65 0.66 0.66 0.64
19 88 36 83 6 24 1 1.05 1.55 0.71 0.65 0.65 0.66 0.67 0.65
20 88 36 87 6 24 1 1.01 1.65 0.71 0.65 0.64 0.64 0.65 0.64
21 96 52 98 67 4 1 1 1.14 0.8 0.67 0.66 0.71 0.7 0.65
22 116 48 134 67 4 1 1 1.04 0.81 0.69 0.69 0.69 0.69 0.69
23 82 31 81 5 6 1 1 1.18 0.74 0.65 0.65 0.65 0.67 0.64
gm 90 34 93 14 8 1 1 4.71 0.7 0.64 0.64 0.79 0.8 0.62

Table 4.4 – Summary of results on the 23 datasets (rows). Columns 1 to 5 contain the
number of initialization+lloyd runs completed in time limit TL. Columns 6 to 14 contain
MSEs relative to the mean initialization MSE of km++. Columns 6 to 9 are mean MSEs
after initialization but before lloyd, and columns 10 to 14 are minimum MSEs after
lloyd. The final row (gm) contains geometric means of all columns. clarans consistently
obtains the lowest across all MSE measurements, and has a 30% lower initialization MSE
than km++ and afk-mc2, and a 3% lower final minimum MSE.
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those with uni. This is not in strict agreement with the findings of Celebi et al. [2013].
We attribute this discrepancy to the fact that experiments in Celebi et al. [2013] are
in the low K regime (K < 50, N/K > 100). Note that Table 4.4 does not contain
initialization MSEs for bf, as bf does not initialize with data points but with means of
sub-samples, and it would thus not make sense to compare bf initialization with the 4
seeding methods.

clarans performance

Having established that the best baselines are km++ and afk-mc2, and that they provide
clusterings of indistinguishable quality, we now focus on the central comparison of this
chapter, that between km++ with clarans. In Figure 4.6 we present bar plots summarising
all runs on all 23 datasets. We observe a very low variance in the initialization MSEs
of clarans. We speculatively hypothesize that clarans often finds a globally minimal
initialization. Figure 4.6 shows that clarans provides significantly lower initialization
MSEs than km++.

The final MSEs are also significantly better when initialization is done with clarans,
although the gap in MSE between clarans and km++ is reduced when lloyd has run.
Note, as seen in Table 4.4, that all 5 initializations for dataset 7 result in equally good
clusterings.

As a final experiment, we have considered initialising with km++ and clarans in series,
thus using the three stage clustering km+++clarans+lloyd. We find that this can be
slightly faster than just clarans+lloyd with identical MSEs. The slight speed-up is
probably not significant enough to warrant the additional complexity. Results of this
experiment are presented in Appendix D.9.

Chapter conclusion and future works

In this chapter, we have demonstrated the effectiveness of the algorithm clarans at
solving the K-medoids problem. We have described techniques for accelerating clarans,
and shown that clarans works very effectively as an initializer for lloyd, outperforming
other initialization schemes, such as km++, on 23 datasets.

An interesting direction for future work might be to develop further optimizations
for clarans. One idea could be to use importance sampling to rapidly obtain good
estimates of post-swap energies. Another might be to propose two swaps simultaneously,
as considered in Kanungo et al. [2002a], which could potentially lead to even better
solutions, although we have hypothesized that clarans is already finding globally optimal
initializations.
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4.6. Chapter conclusion and future works

Connecting with Chapter 2, an important line of future research is incorporating this and
other initialization schemes into mini-batch K-means algorithms. The main challenge
will be to prevent good initializations from being washed out by noise inherent to the
mini-batch approach.

All source code is made available under a public license. It consists of generic C++ code
which can be extended to various data types and metrics, compiling to a shared library
with extensions in Cython for a Python interface. It can be found in the git repository
https://github.com/idiap/zentas.
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5 Conclusions and Future Works

The common theme running through this dissertation has been the application of the
triangle inequality to reduce the number of distance calculations in energy based clustering
algorithms. The special property that these algorithms have which enables the elimination
of certain center-sample distance calculations is that the energy depends only on the
distance from a sample to its nearest center: a small fraction of all center-sample distances.

We ask, what other machine learning algorithms have this special property, and may ben-
efit from similar techniques? Closely related to clustering is Gaussian Mixture Modeling,
where the core algorithm iterates between expectation (assignment) and minimization
(update) steps. However, in the expectation step, all center-sample Mahalanobis dis-
tances are required, suggesting that exact GMM cannot be accelerated through triangle
inequality bounding.

Another related algorithm is dictionary learning with matching pursuit. This can be
thought of as clustering, where each sample is assigned to a small number of clusters
simultaneously, and so it seems likely that triangle inequality bounding can be used in
this setting. Other situations where only partial distance information is required come
from neural networks; for example a max-pooling layer only propagates the largest inner
product, and the rectified linear unit (ReLU) layer sets negative values to zero.

Another idea we have investigated in this dissertation which may have applications
beyond clustering is nesting mini-batches, the topic of Chapter 2. In any setting where
computation with recently seen samples is cheap, it might be possible to adapt the idea
of nesting batches. Besides reducing computation, preferentially using recently used data
can result in reduced memory I/O and improved cache memory use.

In summary, the number of innovative ways in which the triangle inequality can be used
to reduce computation for clustering and other tasks in machine learning appears vast,
and much remains to be explored. Finally, we list the main findings of this dissertation.
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Chapter 5. Conclusions and Future Works

1. The triangle inequality can be used in a large number of complex and complementary
ways to accelerate simple algorithms such K-means. We showed in the first chapter
that by storing historical centroid positions, one can greatly reduce the number
of distance calculations. We also showed that in low-dimensions, by grouping
centroids in concentric shells one can perform exact K-means with a greatly
reduced computational cost.

2. Nested mini-batch sampling, an alternative to random mini-batch sampling where
samples are preferentially reused, is very effective when the reuse of recently used
samples is cheap. We presented this idea in the nested mini-batch K-means
algorithm, where reuse of ‘hot’ samples is made cheap by the use of triangle
inequality bounding.

3. Computing the exact medoid of a set of N points has complexity O(N3/2), under
certain assumptions. We presented a simple algorithm which uses the triangle
inequality to do this. The complexity result is proved in Rd. Complexity grows
exponentially in d, and so the algorithm is most applicable in low dimensions.
We showed how the algorithm performs well for spatial network data, scaling as
O(N3/2).

4. We considered a family of clustering algorithms which proceed by swapping a center
with a non-center, and showed that this approach results in better minima than
the Voronoi clustering algorithms. We considered using the swap-based clarans
algorithm to initialize K-means, and showed that doing so results in lower energies
than when other schemes such as K-means++ are used. The triangle inequality
was used to accelerate the algorithm, with provable reductions in complexity and a
clear empirical speed-up.
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A Appendix for Chapter 1

Proofs

We will use subscripts to denote rounds of k-means, and B(x, r) to denote the closed
ball centered on x of radius r.

Proof of correctness of Elkan’s algorithm update

By the definition of the lower bound update,

lt0+1(i, j) = lt0(i, j)− pt0(j).

Using that lt0 is a valid bound, the definition of pt0 , and the triangle inequality,

≤ ‖x(i)− ct0(j)‖ − pt0(j),
≤ ‖x(i)− ct0(j)‖ − ‖ct0(j)− ct0+1(j)‖
≤ ‖x(i)− ct0+1(j)‖.

Thus the lower bound update is valid. Similarly for the upper bound,

ut0+1(i, j) = ut0(i) + pt0(a(i)),
≥ ‖x(i)− ct0(a(i))‖+ pt0(a(i)),
≥ ‖x(i)− ct0(a(i))‖+ ‖ct0(a(i))− ct0+1(a(i))‖,
≥ ‖x(i)− ct0+1(a(i))‖.

This proves that the upper bound update is valid.
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Appendix A. Appendix for Chapter 1

Proof of correctness of Elkan’s algorithm inter-centroid test

Suppose that,

cc(a(i), j)
2 > u(i).

Then, by the triangle inequality and previous definitions,

‖c(j)− x(i)‖ ≥ ‖c(j)− c(a(i))‖ − ‖c(a(i))− x(i)‖,
≥ cc(a(i), j)− u(i),
≥ 2u(i)− u(i),
≥ u(i).

Thus c(a(i)) is nearer to x(i) than c(j) is, and so j 6= n1(i).

Proof of correctness of Annular algorithm test

Recall the definition of R(i),

R(i) = max (u(i), ‖x(i)− c(b(i))‖) .

Following directly from this definition and the definition of u(i), we have c(a(i)), c(b(i)) ∈
B(x(i), R(i)). Therefore by the definitions of n1(i) and n2(i), we have that c(n1(i)), c(n2(i)) ∈
B(x(i), R(i)). The triangle inequality now provides

|‖c(j)‖ − ‖x(i)‖| > R(i) =⇒ ‖c(j)− x(i)‖ > R(i), (A.1)

Thus by the definition of J (i),

J (i) = {j : |‖c(j)‖ − ‖x(i)‖| ≤ R(i)},

we can say,

j 6∈ J (i) =⇒ j 6∈ {n1(i), n2(i)}.

Proof of correctness of Exponion algorithm test

Let nn(j) ∈ {1, . . . , k} \ {j} denote the index the cluster whose centroid is nearest to the
centroid of cluster j other than j, that is the centroid at distance s(j) from centroid j.
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A.1. Proofs

By definitions we have

c(a(i)) ∈ B(x(i), u(i)),
c(nn(a(i))) ∈ B(c(a(i)), s(a(i))).

Combining these we have

c(a(i)), c(nn(a(i))) ∈ B(x(i), u(i) + s(a(i))), (A.2)

Basic geometric arguments provide

B (x(i), u(i) + s(a(i))) ⊆ B(c(a(i)), 2u(i) + s(a(i))). (A.3)

From (A.2) we deduce that

c(n1(i)), c(n2(i)) ∈ B(x(i), u(i) + s(a(i))),

and hence by (A.3) we have

c(n1(i)), c(n2(i)) ∈ B(c(a(i)), 2u(i) + s(a(i))),

completing the proof.

Proof that ns upper-bound is tighter than sn upper-bound

unst0+δt(i) = ut0(i) +

∥∥∥∥∥∥
t0+δt−1∑
t′=t0

ct′+1(i)− ct′(i)

∥∥∥∥∥∥ ,
≤ ut0(i) +

t0+δt−1∑
t′=t0

‖ct′+1(i)− ct′(i)‖,

≤ usnt0+δt(i).
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Appendix A. Appendix for Chapter 1

Detailed descriptions

The inner Yinyang test

We need some temporary notation to present the test which the Yinyang algorithm
employs,

j1(i, f) = arg min
j∈G(f)

‖x(i)− c(j)‖,

j2(i, f) = arg min
j∈G(f)\{j1(f)}

‖x(i)− c(j)‖,

r2(i, f) = ‖x(i)− c(j2(f))‖.

The Yinyang test hinges on the fact that centroids in G(f) which lie beyond radius
r2(i, f) of x(i) do not affect the variable updates and can thus be ignored. Extending
this, suppose we have bounds r̃2(i, f) and l̃(i, j) for j ∈ G such that r̃2(i, f) > r2(f) and
l̃(i, j) < ‖x(i)− c(j)‖. Then r̃2(i, f) < l̃(i, j) means that centroid j can be ignored. It
remains to define relevant bounds r̃2(i, f) and l̃(i, j).

For r̃2(i, f), one keeps track of the second nearest centroid found thus far while looping
over the centroids in G(f). Then for l̃(i, j) we could take l(i, f), but a better choice is
l̃(i, j)− q(f) + p(j), which replaces the maximum group displacement in the last round
with the exact displacement of centroid j.

The Yinyang test to determine whether centroid j needs be considered is thus finally,

l(i,f)− q(f) + p(j) > r̃2(i, f) =⇒ (A.4)
centroid j lies beyond radius r2, can be ignored.

SMN, MSN, MNS

A lower bound to at time t0 + δt on the distance from x(i) to a group of centroids with
group index f can be computed in three different ways. Letting ∆t0,δt denote the update
term in

lt0+δt(i, f) = min
j∈G(i)

(‖x(i)− ct0(j)‖)−∆t0,δt ,
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A.3. Results tables

Data set d N

i birch 2 100,000
ii europe 2 169,300
iii urand2 2 1,000,000
iv ldfpads 3 164,850
v conflongdemo 3 164,860
vi skinseg 4 200,000
vii tsn 4 200,000
viii colormoments 9 68,040
ix mv 11 40,760
x wcomp 15 165,630
xi house16h 17 22,780
xii keggnet 28 65,550
xiii urand30 30 1,000,000
xiv mnist50 50 60,000
xv miniboone 50 130,060
xvi covtype 55 581,012
xvii uscensus 68 2,458,285
xviii kddcup04 74 145,750
xix stl10 108 1,000,000
xx gassensor 128 13,910
xxi kddcup98 310 95,000
xxii mnist784 784 60,000

Table A.1 – Full names of the 22 datasets used. All datasets are preprocessed such that
features have mean zero and variance 1.

the three possibilities are

∆SMN
t0,δt

=
t0+δt−1∑
t′=t0

max
j∈G(i)

(‖ct′+1(j)− ct′(j)‖),

∆MSN
t0,δt

= max
j∈G(i)

t0+δt−1∑
t′=t0

‖ct′+1(j)− ct′(j)‖

 ,
∆MNS
t0,δt

= max
j∈G(i)

(‖ct0+δt(j)− ct0(j)‖) .

The term ∆SMN
t0,δt

corresponds to the classic approach used in all previous works. The
term ∆MSN

t0,δt
corresponds to an intermendiate where improved bounds can be obtained

without storing centroids. The term ∆MNS
t0,δt

corresponds to the approach providing the
tightest bounds, and is the one we use throughout.

Results tables
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i 139 35.4 0.26 0.04 62.2 44.7 105 33.7 19.2 5.75 4.87 4.67 1.72 2.19 1.05 1.00 1.91 2.01 14.9 1.98 9.37 8.42 14.8 11.1 21.3 7.53 5.55
ii 335 132 1.69 0.25 38.2 28.1 60.3 21.5 10.3 6.44 5.00 5.05 1.71 1.99 1.07 1.00 3.05 3.13 14.6 2.96 6.08 5.60 10.8 8.70 15.9 6.94 6.70
iii 455 187 5.23 1.47 100 76.4 153 56.4 29.9 4.00 4.25 3.35 1.75 1.99 1.05 1.00 2.04 1.95 23.0 2.33 15.1 13.6 26.6 19.1 34.1 12.3 8.67
iv 270 96.3 2.17 0.48 29.0 17.9 37.7 15.2 6.79 3.99 2.90 2.51 2.03 1.64 1.04 1.00 1.02 1.06 6.78 1.09 3.66 3.30 7.09 6.68 11.0 4.54 3.80
v 277 73.6 2.35 0.48 27.5 18.1 35.7 14.4 6.80 4.07 3.06 2.55 2.05 1.66 1.04 1.00 1.01 1.05 6.48 1.08 3.47 3.14 6.72 6.57 10.5 4.31 3.63
vi 235 107 1.76 0.61 44.3 25.7 55.6 17.7 9.96 4.68 3.34 2.63 2.23 1.69 1.05 1.00 1.20 1.21 8.45 1.32 4.76 4.29 8.79 8.22 13.4 5.16 4.20
vii 117 25.2 1.32 0.18 28.9 15.9 34.2 11.7 5.85 4.29 2.83 2.42 2.61 1.76 1.25 1.19 1.02 1.00 5.95 1.06 3.24 2.89 5.72 4.90 8.82 3.19 2.60
viii 203 48.4 1.19 0.20 31.4 14.1 26.3 10.3 5.61 6.47 3.33 2.42 5.08 2.14 2.39 2.24 1.02 1.00 5.11 1.28 2.25 2.02 6.22 6.38 10.0 4.10 3.09
ix 127 35.4 0.49 0.07 32.6 14.7 25.5 12.0 5.02 7.80 4.02 2.66 7.99 2.75 2.63 2.51 1.02 1.00 4.83 1.32 2.12 1.89 6.12 6.12 9.77 3.43 2.37
x 130 27.2 2.16 0.46 38.7 17.2 29.2 12.0 5.11 10.7 5.21 2.97 4.90 1.83 1.23 1.21 1.00 1.03 4.56 1.39 1.89 1.67 3.29 3.28 5.46 2.00 1.67
xi 111 16.6 0.52 0.07 20.8 9.62 14.0 5.36 2.82 9.34 4.89 2.40 5.96 1.88 2.33 2.22 1.11 1.07 3.75 1.73 1.08 1.00 2.90 3.30 4.34 2.07 1.90
xii 113 33.4 0.92 0.14 53.3 23.3 30.2 10.3 4.86 12.0 4.21 2.11 5.58 1.47 1.82 1.75 1.00 1.00 4.36 1.74 1.66 1.46 5.26 3.64 4.84 1.95 1.60
xiii 2576 110 156 1.86 t t t t t 9.15 4.61 1.85 9.26 1.97 1.82 1.70 1.04 1.00 6.06 1.58 3.37 3.04 4.70 5.40 t 3.46 3.16
xiv 152 58.3 1.72 0.33 67.4 21.6 29.3 10.7 5.60 17.8 5.76 2.47 18.2 2.61 2.44 2.34 1.01 1.00 4.00 2.02 1.47 1.25 3.04 2.66 4.72 1.74 1.39
xv 376 90.1 7.18 1.13 87.5 27.2 37.9 13.7 6.97 25.4 7.84 3.40 15.3 2.44 3.27 3.09 1.00 1.06 4.53 2.05 1.54 1.38 4.20 4.22 5.72 2.84 2.76
xvi 127 35.0 8.45 0.94 120 38.9 51.4 20.3 10.8 18.1 6.34 2.67 15.2 2.51 1.92 1.85 1.00 1.04 4.72 2.05 1.85 1.60 3.38 4.01 5.73 2.01 1.58
xvii 102 38.6 43.9 6.73 t 28.3 m 14.0 6.09 19.5 6.11 2.55 17.5 2.47 2.34 2.26 1.00 1.00 m 2.29 1.37 m 3.27 3.44 4.77 1.83 m
xviii 334 118 13.5 3.46 63.9 18.7 26.0 9.58 4.85 23.8 6.90 2.89 22.3 2.90 2.86 2.81 1.14 1.12 4.63 2.75 1.13 1.00 2.51 1.91 3.51 1.31 1.16
xix 408 145 92.5 27.0 t t t t 7.18 t 5.77 2.29 t 2.38 2.16 2.10 1.05 1.10 4.35 2.92 1.14 1.00 2.59 2.74 3.85 1.58 1.60
xx 57.3 15.9 0.23 0.05 101 28.2 40.0 14.6 6.73 33.7 9.58 3.65 15.8 2.27 3.37 3.25 1.72 1.78 6.14 4.56 1.12 1.13 2.53 2.21 2.41 1.00 1.02
xxi 178 58.8 9.96 1.97 121 30.1 44.0 16.7 7.98 41.4 10.5 3.72 42.1 3.94 3.66 3.57 1.47 1.47 5.76 4.64 1.18 1.00 3.10 2.07 2.39 1.32 1.14
xxii 131 25.9 9.89 1.23 143 34.8 50.1 20.0 10.0 40.1 10.2 3.97 40.6 4.10 3.87 3.75 1.29 1.34 4.23 3.64 1.25 1.00 3.63 1.82 1.71 1.27 1.03

Table A.2 – Results with k = 100 by dataset (rows). Columns 6 to the end contain mean times over the 10 initializations, relative to the fastest
algorithm, that is the algorithm with the lowest mean time, corresponding to the entry 1.00. The mean and standard deviation of the number of
iterations to convergence are given in columns 2 and 3. The mean and standard deviation of the time of the fastest algorithm are given in columns
4 and 5. ‘t’ and ‘m’ correspond to timeout (40 minutes) and memory (4 GB) failures respectively. The fastest implementation for all data sets is
always own. The fastest non-own implementation for each data set is underlined, where non-own implementations correspond to white columns.
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i 120 20.5 2.80 0.32 48.0 32.0 104 25.4 12.0 12.5 8.50 8.29 1.49 1.41 1.01 1.00 1.01 1.27 8.53 1.13 6.83 6.32 11.5 17.5 16.3 5.54 4.32
ii 533 66.7 12.1 1.22 82.6 56.0 t 43.7 21.6 19.0 13.0 12.5 2.05 1.76 1.01 1.00 1.62 2.10 15.2 1.90 11.6 11.1 19.9 36.2 26.6 13.0 11.9
iii 406 86.5 19.9 2.10 t t t t 56.5 15.6 11.1 10.6 2.22 2.13 1.02 1.00 3.05 2.48 28.5 3.33 m m m m m m m
iv 193 46.5 7.22 1.07 60.4 34.2 95.4 30.2 13.5 17.8 11.0 10.0 4.49 2.83 1.01 1.00 1.15 1.34 9.19 1.32 6.93 6.43 12.0 24.9 18.6 7.51 6.32
v 197 25.2 7.16 0.55 62.1 35.1 98.1 31.1 13.7 17.3 10.7 9.79 4.41 2.77 1.02 1.00 1.15 1.34 9.17 1.31 7.10 6.61 12.4 25.3 19.3 7.65 6.39
vi 287 87.0 10.6 2.04 87.0 43.8 132 33.4 15.1 21.7 12.3 10.5 4.39 2.46 1.03 1.00 1.24 1.39 10.4 1.43 8.42 7.78 14.7 30.7 23.2 9.13 7.45
vii 94.0 21.8 4.17 0.41 71.7 36.2 105 28.0 12.6 15.6 9.18 7.83 4.85 2.80 1.02 1.00 1.25 1.37 9.10 1.39 7.23 6.71 11.9 19.2 18.3 6.08 4.86
viii 87.9 17.1 3.10 0.33 50.8 20.9 50.3 16.3 6.43 25.0 11.5 8.33 15.1 5.10 5.18 4.90 1.16 1.00 6.69 1.45 3.24 3.09 7.17 16.5 11.8 5.40 4.23
ix 51.1 5.74 1.28 0.07 48.7 20.8 44.6 17.6 6.10 24.3 11.7 7.40 23.0 6.90 5.01 4.80 1.21 1.00 6.13 1.51 2.92 2.73 6.39 15.2 9.73 4.30 3.51
x 201 41.6 12.5 1.30 102 42.0 90.3 30.7 11.3 50.6 22.7 12.9 12.6 3.54 1.96 1.91 1.00 1.11 6.93 1.36 4.28 3.95 7.80 16.9 13.1 5.41 4.64
xi 46.6 8.49 1.17 0.07 37.7 15.7 29.1 9.82 3.79 29.2 14.2 7.16 17.8 4.42 5.75 5.61 1.23 1.00 4.97 1.72 1.73 1.66 5.48 9.12 6.47 3.32 2.77
xii 32.8 3.81 1.87 0.07 73.4 31.5 47.5 15.0 6.86 28.9 8.55 4.36 9.20 2.09 1.99 1.95 1.04 1.00 4.60 1.37 2.17 2.03 12.8 6.60 5.04 2.07 1.57
xiii 738 108 382 31.1 t t t t t t t t t t t t 1.14 1.00 t 1.87 m m m m m m m
xiv 58.9 7.76 5.05 0.21 88.2 26.8 43.5 14.0 5.87 55.6 16.9 8.14 57.4 8.18 7.97 7.67 1.36 1.00 5.15 2.47 1.75 1.46 5.77 5.68 6.33 3.05 1.96
xv 181 41.5 15.8 1.93 t 58.0 92.7 29.6 14.4 109 33.1 15.5 59.1 8.08 11.0 10.6 1.07 1.00 5.77 1.84 2.60 2.49 7.56 14.6 9.56 5.30 4.14
xvi 224 55.8 46.6 4.86 t t t t t t 29.0 13.9 t 9.61 2.98 2.88 1.03 1.00 6.18 1.55 m m m m m m m
xvii 145 32.9 249 11.2 t t m t t t t t t t t 7.87 1.00 m m 1.73 m m m m m m m
xviii 114 11.9 33.7 1.18 t 24.7 38.8 13.1 6.47 59.0 16.6 8.16 58.6 7.89 8.20 8.00 1.33 1.00 5.11 2.80 1.47 1.27 3.99 3.13 4.30 2.24 1.71
xix 612 160 587 76.3 t t t t t t t t t t t t 1.09 1.00 t 2.63 m m m m m m m
xx 18.0 1.00 0.71 0.03 98.1 27.1 42.4 15.6 10.2 61.6 16.7 7.37 20.8 2.65 2.13 2.17 1.29 1.24 4.47 2.17 1.00 1.06 8.31 3.50 2.32 1.35 1.38
xxi 76.1 14.4 31.7 2.73 t 39.9 t 23.1 7.92 t 26.0 10.0 t 10.1 9.98 9.63 1.75 1.38 6.41 4.85 1.39 1.00 5.51 3.44 2.90 1.92 1.37
xxii 54.8 11.0 23.0 1.90 t 64.5 t 38.1 13.8 t 42.4 15.3 t 14.8 14.6 14.2 2.10 1.52 6.49 5.53 1.82 1.00 9.85 3.56 2.61 2.04 1.22

Table A.3 – As per Table A.2, but with k = 1000
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B Appendix for Chapter 2

There are more first time visits than revisits in the first
epoch

Let the probability that a sample is not visited in an epoch be p, where recall that an
epoch consists of drawing N/b mini-batches, where we assume N mod b = 0. Denote by
q the probability that the visit of a sample is a revisit. We argue that q = p : the number
of samples not visited exactly corresponds to the number of revisits, as the number of
visits is the number of samples, by definition of an epoch. Clearly, p = (1 − b/N)N/b,
from which it can be shown that 1/4 ≤ p < 1/e. Thus q ≤ 1/e as we want. In other
words, there are at least 1.718 first time visits for 1 revisit.

Showing that two expectations are approximately the same

We wish to show that ‖ct+1(j|2bt)− ct+1(j|bt)‖2 and 1
2 σ̂

2
C are approximately the same

Recall thatMt(j) are the samples used to obtain cj(t), that is

ct(j) = 1
|Mt(j)|

∑
i∈Mt(j)

x(i).

The mean squared distance of samples inMt(j) to cj(t) we denote by σ̂2
S(j),

σ̂2
S(j) = 1

|Mt(j)|
∑

i∈Mt(j)
‖x(i)− ct(t)‖2.

We compute the expectation of ‖ct+1(j|2bt)− ct+1(j|bt)‖2, where the expectation is over
all possible shufflings of the data. Recall that ct+1(j|2bt) is centroid j at iteration t+ 1 if
the mini-batch at size t+ 1 is 2bt, where bt is the mini-batch size at iteration t. Recall
that we useMt(j) to denote samples assigned to ct(j). We will now denote byM2bt

t+1(j)
the sample indices assigned to ct+1(j|2bt) andMbt

t+1(j) the sample indices assigned to
ct+1(j|bt). Thus,
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Appendix B. Appendix for Chapter 2

E ( ‖ct+1(j|2bt)− ct+1(j|bt)‖2
)

=

= E

∥∥∥ 1
|M2bt

t+1(j)|
∑

i∈M2bt
t+1(j)

x(i)− 1
|Mbt

t+1(j)|
∑

i∈Mbt
t+1(j)

x(i)
∥∥∥2



= E

∥∥∥ 1
|M2bt

t+1(j)|
∑

i∈M2bt
t+1(j)\Mbt

t+1(j)

x(i) −

(
1

|Mbt
t+1(j)|

− 1
|M2bt

t+1(j)|

) ∑
i∈Mbt

t+1(j)

x(i)
∥∥∥2


We now assume that the number of samples per centroid does not change significantly
between iterations t and t + 1 for a fixed batch size, so that |Mbt

t+1(j)| ≈ |Mt(j)| and
|M2bt

t+1(j)| ≈ 2|Mt(j)|. Continuing we have,

≈ 1
4|Mt(j)|2

E

∥∥∥ ∑
i∈M2bt

t+1(j)\Mbt
t+1(j)

x(i)−
∑

i∈Mbt
t+1(j)

x(i)
∥∥∥2



≈ 1
4|Mt(j)|2

E

∥∥∥ ∑
i∈M2bt

t+1(j)\Mbt
t+1(j)

(x(i)− ct(j)) −

∑
i∈Mbt

t+1(j)

(x(i)− ct(j))
∥∥∥2


The two summation terms are independant and the second has expectation approximately
zero assuming the centroids do not move too much between rounds, so

≈ 1
4|Mt(j)|

E
 1
|Mt(j)|

∥∥∥ ∑
i∈M2bt

t+1(j)\Mbt
t+1(j)

(x(i)− ct(j))
∥∥∥2

+

E

 1
|Mt(j)|

∥∥∥ ∑
i∈Mbt

t+1(j)

(x(i)− ct(j))
∥∥∥2
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B.3. Time-energy curves with various doubling thresholds
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Figure B.1 – Time-energy curves for nmbatch with various ρ. The dotted vertical lines
correspond to the time slices presented in Figure 2. We see that large ρ works best, with
very little difference between ρ = 102 and ρ = 103.

Finally, each of the two expectation terms can be approximated by σ̂2
S(j). Approximating

the first term by σ̂2
S(j), may be an underestimation as the summation is over data which

was not used to obtain ct(j), whereas σ̂2
S(j) is obtained using data used by ct(j). Using

this estimation we get,

≈ 1
2|Mt(j)|

σ̂2
S(j),

= 1
2|Mt(j)|2

∑
i∈Mt(j)

‖x(i)− ct(t)‖2,

= 1
2 σ̂

2
C(j).

The final equality following from the definition of σ̂2
C(j).

Time-energy curves with various doubling thresholds

Figures B.1 and B.2 show the full time-energy curves for various values of the doubling
threshold ρ, for the cases where bounds are used and deactivated respectively.
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Figure B.2 – Time-energy curves for nmbatch with bounds disabled. The dotted vertical
lines correspond to the time slices presented in Figure 2, that is t = 2s and t = 10s. We
see that with bounds disabled, ρ = 101 in general outperforms ρ ∈ {102, 103}, providing
empirical support for the proposed doubling scheme.
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B.4. On algorithms intermediate to mbatch and nmbatch

On algorithms intermediate to mbatch and nmbatch

The primary argument presented in this paper for removing old assignments is to prevent a
biased use of samples in nmbatch. However, a second reason for removing old assignments
is that they can contaminate centroids if left unremoved. This second reason in favour
of removing old assignments is also applicable to mbatch, and so it is interesting to
see if mbatch can be improved by removing old assignments, without the inclusion of
triangle inequality based bounds. We call this algorithm mbatch.remove. In addition, it
is interesting to consider the performance of nmbatch without bound testing. We here
call nmbatch without bound testing nmbatch.deact.

In Figure B.3 we see that mbatch is indeed improved by removing old assignments:
mbatch.remove outperforms mbatch, especially at later iterations. We see that the
algorithm nmbatch.deact does not perform as well as nmbatch, as expected, however it is
comparable to mbatch.remove, if not slightly better. There is no algorithmic reason why
nmbatch.deact should be better than mbatch.remove, as nesting was proposed purely as
way to better harness bounds. One possible explanation for the good performance of
nmbatch.deact is better memory usage: when samples are reused there are fewer cache
memory misses.

Premature fine-tuning

The loss function being minimized changes when the mini-batch grows. With bt samples,
it is

E(C) = 1
bt

bt∑
i=1

arg min
j∈{1,...,k}

‖x(i)− c(j)‖2,

and then with 2bt it is

E(C) 1
2bt

2bt∑
i=1

arg min
j∈{1,...,k}

‖x(i)− c(j)‖2.

Minima of these two loss functions are different, although as bt gets large they approach
each each. Premature fine-tuning refers to putting a large amount of effort into getting
very close to a minimum with bt samples, when we know that as soon as we switch to 2bt
samples the minimum will move, undoing our effort to get very close to a mimumum.
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Figure B.3 – Performance of algorithms intermediate to nmbatch and mbatch. The
intermediate algorithms are : nmbatch.deact, which is nmbatch with the bound test
deactivated, and mbatch.remove, which is mbatch with the removal of old assignments.
nmbatch and nmbatch.deact are with ρ = 100 as usual. We observe that, as expected,
deactivation of the bound test results in a significant slow-down of nmbatch. We also
observe that the removal of old assignments significantly improves mbatch, especially at
later iterations.
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C Appendix for Chapter 3

On the difficulty of the medoid problem

We construct an example showing that no general purpose algorithm exists to solve
the medoid problem in o(N2). Consider an almost fully connected graph containing
N = 2m+ 1 nodes, where the graph is exactly m edges short of being fully connected:
one node has 2m edges and the others have 2m − 1 edges. The graph has 2m2 edges.
With the shortest path metric, it is easy to see that the node with 2m edges is the
medoid, hence the medoid problem is as difficult as finding the node with 2m edges.
But, supposing that the edges are provided as an unsorted adjacency list, it is clearly an
O(m2) task to determine which node has 2m edges as one must look at all edges until a
node with 2m edges is found. Thus determining the medoid is O(m2) which is O(N2).

medlloyd pseudocode

Alg. 9 presents the medlloyd algorithm of Park and Jun [2009], with the novel initialization
of medlloyd on line 1. medlloyd is essentially lloyd, with medoids instead of means.

Algorithm 9 medlloyd for clustering data {x(1), . . . , x(N)} around K medoids
1: Set all distances D(i, j)← ‖x(i)− x(j)‖ and sums S(i)←

∑
j∈{1,...,N}D(i, j)

2: Initialize medoid indices as K indices minimising f(i) =
∑
j∈{1,...,N}D(i, j)/S(j)

3: while Some convergence criterion has not been met do
4: Assign each element to the cluster whose medoid is nearest to the element
5: Update cluster medoids according to assignments made above
6: end while

RAND, TOPRANK and TOPRANK2 pseudocode

We present pseudocode for the RAND, TOPRANK and TOPRANK2 algorithms of Okamoto
et al. [2008], and discuss the explicit and implicit constants.
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On the number of anchor elements in TOPRANK

We consider the constant in Θ(N
2
3 (logN)

1
3 ). Note that the number of anchor points

used in TOPRANK does not affect the result that the medoid is w.h.p. returned. However,
Okamoto et al. [2008] show that by choosing the size of the anchor set to be q (logN)

1
3

for any q, the run time is guaranteed to be Õ(N5/3). They do not suggest a specific q,
the optimal q being dataset dependant. We choose q = 1.

Consider Figure 3.3 in Appendix 3.5.1 for example, where q = 1. Had q be chosen to
be less than 1, the line ncomputed = N2/3 log1/3N to which TOPRANK runs parallel for
large N would be shifted up or down by log q, however the N at which the transition
from ncomputed = N2/3 log1/3N to ncomputed = N2/3 log1/3N takes place would also
change.

On the parameter α′ in TOPRANK and TOPRANK2

The threshold τ in (3.2) is proportional to the parameter α′. In Okamoto et al. [2008],
it is stated that α′ should be some value greater than 1. Note that the smaller α′ is,
the lower the threshold is, and hence fewer the number of computed points is, thus
α′ = 1.00001 would be a fair choice. We use α′ = 1 in our experiments, and observe that
the correct medoid is returned in all experiments.

Personal correspondence with the authors of Okamoto et al. [2008] has brought into doubt
the proof of the result that the medoid is w.h.p. returned for any α′ where α′ > 1. In
our most recent correspondence, the authors suggest that the w.h.p. result can be proven
with the more conservative bound of α′ >

√
1.5. Moreover, we show in Appendix C.4

that α′ > 1 is good enough to return the medoid with probability N−(α′−1), a probability
which still tends to 0 as N grows large, but not a w.h.p. result. Please refer to Appendix
C.4 for further details on our correspondence with the authors.

On the parameters specific to TOPRANK2

In addition to α′, TOPRANK2 requires two parameters to be set. The first is l0, the starting
anchor set size, and the second is q, the amount by which l should be incremented at
each iteration. Okamoto et al. [2008] suggest taking l0 to be the number of top ranked
nodes required, which in our case would be l0 = k = 1. However, in our experience this is
too small as all nodes lie well within the threshold and thus when l increases there is no
change to number below threshold, which makes the algorithm break out of the search
for the optimal l too early. Indeed, l0 needs to be chosen so that at least some points
have energies greater than the threshold, which in our experiments is already quite large.
We choose l0 =

√
N , as any value larger than N2/3 would make TOPRANK2 redundant to

TOPRANK. The parameter q we take to be logN as suggested by Okamoto et al. [2008].
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C.3. RAND, TOPRANK and TOPRANK2 pseudocode

Algorithm 10 RAND for estimating energies of elements of set S [Eppstein and Wang,
2004].
I ← random uniform sample from {1, . . . , N}
// Compute all distances from anchor elements (I), using Dijkstra’s algorithm on
graphs
for i ∈ I do

for j ∈ {1, . . . , N} do
d(i, j)← ‖x(i)− x(j)‖,

end for
end for
// Estimate energies as mean distances to anchor elements
for j ∈ {1, . . . , N} do

Ê(j)← 1
|I|
∑
i∈I d(i, j)

end forreturn Ê

Algorithm 11 TOPRANK for obtaining top k ranked elements of S [Okamoto et al., 2008].

l ← N
2
3 (logN)

1
3 // Okamoto et al. [2008] state that l should be Θ((logN)

1
3 ), the

choice of 1 as the constant is arbitrary (see comments in the text of Appendix C.3.1).
Run RAND with uniform random I of size l to get Ê(i) for i ∈ {1, . . . , N}.
Sort Ê so that Ê[1] ≤ Ê[2] ≤ . . . ≤ Ê[N ]
∆̂← 2 mini∈I maxj∈{1,...,N} ‖x(i)− x(j)‖ // where ‖x(i)− x(j)‖ computed in RAND

Q←
{
i ∈ {1, . . . , N} | Ê(i) ≤ Ê[k] + 2α′∆

√
log(n)
l

}
.

Compute exact energies of all elements in Q and return the element with the lowest
energy.
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Algorithm 12 TOPRANK2 for obtaining top k ranked elements of S [Okamoto et al.,
2008].

// In Okamoto et al. [2008], it is suggested that l0 be taken as k, which in the case
of the medoid problem is 1. We have experimented with several choices for l0, as
discussed in the text.
l← l0
Run RAND with uniform random I of size l to get Ê(i) for i ∈ {1, . . . , N}.
∆̂← 2 mini∈I maxj∈{1,...,N} ‖x(i)− x(j)‖ // where ‖x(i)− x(j)‖ computed in RAND
Sort Ê so that Ê[1] ≤ Ê[2] ≤ . . . ≤ Ê[N ]
Q←

{
i ∈ {1, . . . , N} | Ê(i) ≤ Ê[k] + 2α′∆

√
log(n)
l

}
.

g ← 1
while g is 1 do

p← |Q|
// The recommendation for q in Okamoto et al. [2008] is log(n), we follow the

suggestion
Increment I with q new anchor points
Update Ê for all data according to new anchor points
l← |I|
∆̂← 2 mini∈I maxj∈{1,...,N} ‖x(i)− x(j)‖
Sort Ê so that Ê[1] ≤ Ê[2] ≤ . . . ≤ Ê[N ]
Q←

{
i ∈ {1, . . . , N} | Ê(i) ≤ Ê[k] + 2α′∆

√
log(n)
l

}
p′ ← |Q|
if p− p′ < log (n) then

g ← 0
end if

end while
Compute exact energies of all elements in Q and return the element with the lowest
energy
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C.4. On the proof that TOPRANK returns the medoid with high probability

On the proof that TOPRANK returns the medoid with high
probability

Through correspondence with the authors of Okamoto et al. [2008], we have located a
small problem in the proof that the medoid is returned w.h.p. for α′ > 1, the problem
lying in the second inequality of Lemma 1. To arrive at this inequality, the authors have
used the fact that for all i,

P(E(i) ≥ Ê(i) + f(l) ·∆) ≥ 1− 1
2N2 , (C.1)

which is a simple consequence of the Hoeffding inequality as shown in Eppstein and Wang
[2004]. Essentially (C.1) says that, for a fixed node i, from which the mean distance to
other nodes is E(i), if one uniformly samples l distances to i and computes the mean
Ê(i), the probability that Ê(i) is less than E(i) + f(l) is greater than 1− 1

2N2 .

The inequality (C.1) is true for a fixed node i. However, it no longer holds if i is selected
to be the node with the lowest Ê(i). To illustrate this, suppose that E(i) = 1 for all i,
and compute Ê(i) for all i. Let Ê∗ = arg mini Ê(i). Now, we have a strong prior on Ê∗

being significantly less than 1, and (C.1) no longer holds as a statement made about Ê∗.

In personal correspondence, the authors show that the problem can be fixed by the use of
an additional layer of union bounding, with a correction to be published (if not already
done so at time of writing). However, the additional layer of union bound requires a
more conservative constraint on α′, which is α′ > 2, although the authors propose that
the w.h.p. result can be proven with α′ >

√
1.5 for N sufficiently large. We now present

a small proof proving the w.h.p. result for α′ >
√

2 for N sufficiently large, with at the
same time α′ > 1 guaranteeing that the medoid is returned with probability O(Nα′−1).

Probability that the medoid is returned

We show that the medoid is returned with high probability holds for α′ >
√

2 and that
with vanishing probability it is returned for α′ > 1 Recall that we have N nodes with
energies E(1), . . . , E(n). We wish to find the k lowest energy nodes (the original setting
of Okamoto et al. [2008]). From Hoeffding’s inequality we have,

P(|E(i)− Ê(i)| ≥ ε∆) ≤ 2 exp
(
−lε2

)
. (C.2)

Set the probability on the right hand side of C.2 to be 2/N1+β, that is,

2 exp
(
−lε2

)
= 2/N1+β,

which corresponds to

ε =
√(1 + β

l

)
log (N) := f̃(l).
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Clearly
√

1 + β corresponds to α′. With this notation we have,

P(|E(i)− Ê(i)| ≥ f̃(l)∆) ≤ 2
N1+β . (C.3)

Applying the union bound to (C.3) we have,

P
(
¬
(
∧i∈{1,...,N}|E(i)− Ê(i)| ≤ f̃(l)∆

))
≤ 2
Nβ

. (C.4)

Recall that we wish to obtain the k nodes with lowest energy. Denote by r(j) the index
of the node with the j’th lowest energy, so that

E(r(1)) ≤ . . . ≤ E(r(j)) ≤ . . . ≤ E(r(N)).

Denote by r̂(j) the index of the node with the j’th lowest estimated energy, so that

Ê(r̂(1)) ≤ . . . ≤ Ê(r̂(j)) ≤ . . . ≤ Ê(r̂(N)).

Now assume that for all i, it is true that |E(i)− Ê(i)| ≤ f̃(l). Then consider, for j ≤ k,

Ê(r̂(k))−Ê(r(j)) =(
Ê(r̂(k))− E(r(k))

)
︸ ︷︷ ︸

≥−f̃(l)∆

+
(
E(r(k))− E(r(j))

)
︸ ︷︷ ︸

≥0

+
(
E(r(j))− Ê(r(j))

)
︸ ︷︷ ︸

≥−f̃(l)∆

,

(C.5)

≥ −2f̃(l)∆.

The first bound in (C.5) is obtained by considering the most extreme case possible under
the assumption, which is Ê(i) = a(E)− f̃(l) for all i. The second bound follows from
j ≤ k, and the third bound follows directly from the assumption. We thus have that,
under the assumption,

Ê(r(j)) ≤ Ê(r̂(k)) + 2f̃(l)∆,

which says that all nodes of rank less than or equal to k have approximate energy less
than Ê(r̂(k)) + 2f̃(l)∆. As the assumption holds with probability greater than 1− 2/Nβ

by (C.4), we are done. Take β = 1 if you want the statement with high probability, that is

ε =

√
2 log(n)

l
,

but for any β > 0, which corresponds to α′ > 1, the probability of failing to return the k
lowest energy nodes tends to 0 as N grows.
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C.5. On the initialization of Park and Jun [2009]

K = 10 K =
⌈√

N
⌉

K =
⌈
N
10

⌉
Dataset N d µu/µpark σu/µpark µu/µpark σu/µpark µu/µpark σu/µpark

gassensor 256 128 1.09 0.08 0.90 0.03 0.83 0.01
house16H 1927 17 1.01 0.02 0.97 0.01 0.93 0.01

S1 5000 2 1.05 0.05 0.75 0.01 0.32 0.01
S2 5000 2 1.04 0.07 0.68 0.01 0.34 0.00
S3 5000 2 1.03 0.05 0.76 0.01 0.35 0.00
S4 5000 2 1.02 0.03 0.75 0.01 0.41 0.01
A1 3000 2 0.82 0.03 0.43 0.01 0.19 0.00
A2 5250 2 0.98 0.03 0.47 0.01 0.25 0.00
A3 7500 2 0.96 0.02 0.42 0.02 0.22 0.00

thyroid 215 5 0.95 0.08 0.97 0.04 0.93 0.04
yeast 1484 8 1.00 0.02 0.96 0.02 0.91 0.02
wine 178 14 1.01 0.02 1.02 0.01 0.98 0.02
breast 699 9 0.79 0.03 0.77 0.02 0.68 0.02
spiral 312 3 1.03 0.03 0.99 0.02 0.82 0.03

Table C.1 – Comparing the initialization scheme proposed in Park and Jun [2009] with
random uniform initialization for the medlloyd algorithm. The final energy using the
deterministic scheme proposed in Park and Jun [2009] is µpark. The mean over 10 random
uniform initializations is µu, and the corresponding standard deviation is σu. For small
K (K = 10), the performances using the two schemes are comparable, while for larger K,
it is clear that uniform initialization performs much better on the majority of datasets.

On the initialization of Park and Jun [2009]

In Table C.1 we present the full results of the 48 experiments comparing the initialization
proposed in Park and Jun [2009] with simple uniform initialization. The 14 datasets are
all available from https://cs.joensuu.fi/sipu/datasets/.

Scaling with α, N , and dimension d

We perform more experiments to provide further validation of Theorem 3.3.2. In particular,
we check how the number of computed elements scales with N , d and α. We generate
data from a unit ball in various dimensions, according to two density functions with
different strong convexity constants α. The first density function is uniform, so that the
density everywhere in the ball is uniform. To sample from this distribution, we generate
two random variables, X1 ∼ Nd(0, 1) and X2 ∼ U(0, 1) and use

X3 = X1/‖X1‖ ·X
1
d
2 , (C.6)

as a sample from the unit ball Bd(0, 1) with uniform distribution. The second distribution
we consider has a higher density beyond radius (1/2)1/d. Specifically, within this radius
the density is 19× lower than beyond this radius. To sample from this distribution, we
sample X3 according to (C.6), and then points lying within radius (1/2)1/d are with
probability 1/10 re-sampled uniformly beyond this radius.
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Figure C.1 – Number of points computed on simulated data. Points are drawn from
Bd(0, 1), for d ∈ {2, 3, 4, 5}. On the left, points are drawn uniformly, while on the right,
the density in Bd(0, (1/2)1/d) is 19× lower that in Ad(0, (1/2)1/2, 1), where recall that
Ad(x, r1, r2) denotes an annulus centred at x of inner radius r1 and outer radius r2. We
observe a near perfect fit of the number of computed points to ξ

√
N where the constant ξ

depends on the dimension and the distribution (left and right). The number of computed
points increases with dimension. The strong convexity constant of the distribution on the
right is larger, corresponding to fewer distance calculations as predicted by Theorem 3.3.2.

The second distribution has a larger strong convexity constant α. To see this, note that
the strong convexity constant at the center of the ball depends only on the density of
the ball on its surface, that is at radius 1, as can be shown using an argument based on
cancelling energies of internal points. As the density at the surface under distribution
2 is approximately twice that of under distribution 1, the change in energy caused by
a small shift in the medoid is twice as large under distribution 2. Thus, according to
Theorem 3.3.2, we expect the number of computed points to be larger under distribution
1 than under distribution 2. This is what we observe, as shown in Figure C.1, where
distribution 1 is on the left and distribution 2 is on the right.

In Figure C.1 we observe a near perfect N1/2 scaling of number of computed points.
Dashed curves are exact N1/2 relationships, while the coloured points are the observed
number of computed points.

Proof of Theorem 3.3.2 (See page 42)

Theorem 3.3.2. Let S = {x(1), . . . , x(N)} be a set of N elements in Rd, drawn inde-
pendently from probability distribution function fX . Let the medoid of S be x(m∗), and
let E(m∗) = E∗. Suppose that there exist strictly positive constants ρ, δ0 and δ1 such that
for any set size N with probability 1−O(1/N)

x ∈ Bd(x(m∗), ρ) =⇒ δ0 ≤ fX(x) ≤ δ1, (3.6)
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C.7. Proof of The Main Theorem

x(m∗)

E − E∗

Figure C.2 – A sum of uniformly distributed cones is approximately quadratic.

where Bd(x, r) = {x′ ∈ Rd : ‖x′ − x‖ ≤ r}. Let α > 0 be a constant (independent of N)
such that with probability 1−O(1/N) all i ∈ {1, . . . , N} satisfy,

x(i) ∈ Bd(x(m∗), ρ) =⇒ (3.7)
E(i)− E∗ ≥ α‖x(i)− x(m∗)‖2.

Then, the expected number of elements computed by trimed is O
((

Vd[1]δ1 + d
(

4
α

)d)
N

1
2

)
,

where Vd[1] = π
d
2 /(Γ(d2 + 1)) is the volume of Bd(0, 1).

Proof. We show that the assumptions made in Th. 3.3.2 validate the assumptions
required in Thm C.7.1. Firstly, if e(i) > ρ then e(i) ≥ αρ2e(i) > ρ, which follows from
the convexity of the loss function and. Secondly, the existance of β follows from continuity
of the gradient of the distance, combined with the existence of δ1 (non-exploding).

Theorem C.7.1 (Main Theorem Expanded). Let S = {x(1), . . . , x(N)} ⊂ Rd have
medoid x(m∗) with minimum energy E(m∗) = E∗, where elements in S are drawn
independently from probability distribution function fX . Let e(i) = ‖x(i) − x(m∗)‖.
Suppose that for fX there exist strictly positive constants α, β, ρ, δ0 and δ1 satisfying,

x ∈ Bd(x(m∗), ρ) =⇒ δ0 ≤ fX(x) ≤ δ1, (C.7)

where Bd(x, r) = {x′ ∈ Rd : ‖x′ − x‖ ≤ r}, and that for any set size N , w.h.p. all
i ∈ {1, . . . , N} satisfy,

E(i)− E∗ ≥

αe(i)2 if e(i) ≤ ρ,
αρ2 if e(i) > ρ,

(C.8)

and,

E(i)− E∗ ≤ βe(i)2 if e(i) ≤ ρ. (C.9)

Then the expected number of elements computed, which is to say not eliminated on line 4
of trimed, is O

((
Vd[1]δ1 + d

(
4
α

)d)
N

1
2

)
, where Vd[1] = π

d
2 /(Γ(d2 + 1)) is the volume

of Bd(0, 1).

Proof. We first show that the expected number of computed elements in Bd(x(m∗), N−
1

2d )

87



Appendix C. Appendix for Chapter 3

0.4 −ρ 0.0 ρ 0.4

‖x(i)− x(m∗)‖

αρ2

0.06

0.12

E
(i

)
−
E
∗

Figure C.3 – Illustrating the parameters α, β and ρ of Theorem 3.3.2. Here we draw
N = 101 samples uniformly from [−1, 1] and compute their energies, plotted here as the
series of points. Theorem 3.3.2 states that their exists α, β and ρ such that irrespective
of N , all energies (points) will lie in the envelope (non-hatched region).

is O(Vd[1]δ1N
1
2 ). When N is sufficiently large, fX(x) ≤ δ1 within Bd(x(m∗), N−

1
2d ). The

expected number of samples in Bd(x(m∗), N−
1

2d ) is thus upper bounded by δ1 multiplied
by the volume of the ball. But the volume of a ball of radius N−

1
2d in Rd is Vd[1]N−

1
2 .

In Lemma C.7.2 we use a packing argument to show that the number of computed
elements in the annulus Ad(x(m∗), N−

1
2d ,∞) is O

(
d
(

4
α

)d
N

1
2

)
, but we there assume

that the medoid index m∗ is the first element in shuffle({1, . . . , N}) on line 3 of trimed
and thus that the medoid energy is known from the first iteration (Ecl = E∗). We now
extend Lemma C.7.2 to the case where the medoid is not the first element processed.
We do this by showing that w.h.p. an element with energy very close to E∗ has been
computed after N−

1
2 iterations of trimed, and thus that the bounds on numbers of

computed elements obtained using the packing arguments underlying Lemma C.7.2 are
all correct to within some small factor after N−

1
2 iterations.

The probability of a sample lying within radius N−
2

3d of x(m∗) is Ω(δ0N
− 2

3 ), and so the
probability that none of the firstN

1
2 samples lies within radiusN−

2
3d is O((1−δ0N

− 2
3d )N

1
2 )

which is O( 1
N ). Thus w.h.p. after N

1
2 iterations of trimed, Ecl is within βN−

4
3d of E∗,

which means that the radii of the balls used in the packing argument are overestimated
by at most a factor N−

1
3d . Thus w.h.p. the upper bounds obtained with the packing

argument are correct to within a factor 1 + N−
1
3 . The remaining O( 1

N ) cases do not
affect the expectation, as we know that no more than N elements can be computed.

Lemma C.7.2 (Packing beyond the vanishing radius). If we assume (C.8) from Theo-
rem 3.3.2 and that the medoid index m∗ is the first element processed by trimed, then
the number of elements computed in Ad(x(m∗), N−

1
2d ,∞) is O

(
d
(

4
α

)d
N

1
2

)
.

Proof. Follows from Lemmas C.7.3 and C.7.4.

Lemma C.7.3 (Packing from the vanishing radius N−
1
d to ρ). If we assume (C.8) from

Theorem 3.3.2 and that the medoid index m∗ is the first element processed in trimed,
then the number of computed elements in A(x(m∗), N−

1
2d , ρ) is O(d

(
4
α

)d
N

1
2 ).
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Proof. According to Assumption C.8, an element at radius r < ρ has surplus energy at
least αr2. This means that, assuming that the medoid has already been computed, an
element computed at radius r will be surrounded by an exclusion zone of radius αr2 in
which no element will subsequently be computed. We will use this fact to upper bound
the number of computed elements in A(x(m∗), N−

1
2d , ρ), firstly by bounding the number

in an annulus of inner radius r and width αr2, that is the annulus Ad(x(m∗), r, r + αr2),
and then summing over concentric rings of this form which cover A(x(m∗), N−

1
2d , ρ).

Recall that the number of computed elements in Ad(x(m∗), r, r + αr2) is denoted by
Nc(x(m∗), r, r + αr2).

We use Lemma C.7.5 to bound Nc(x(m∗), r, r + αr2),

Nc(x(m∗), r, r + αr2) ≤ (d+ 1)2
( 4√

3

)d αr2(r + αr2)d−1

(αr2)d

≤ (d+ 1)2
( 4√

3

)d (
1 + 1

αr

)d−1

≤ (d+ 1)2
( 4√

3

)d (
max

(
2, 2
αr

))d−1

≤ (d+ 1)2
( 4√

3

)d(
max

(
2d−1,

( 2
αr

)d−1
))

≤ (d+ 1)2
( 4√

3

)d(
2d−1 +

( 2
αr

)d−1
)

≤ (d+ 1)2
( 8√

3

)d
+ (d+ 1)2

( 8√
3

)d ( 1
αr

)d−1

Let r0 = N−
1

2d and ri+1 = ri + αr2
i , and let T be the smallest index i such that ri ≤ ρ.

With this notation in hand, we have

Nc(x(m∗), N−
1

2d , ρ) ≤
T∑
i=0

Nc(x(m∗), ri, αri + r2
i ).

The summation on the right-hand side can be upper-bounded by an integral. Using that
the difference between ri and ri+1 is αr2

i , we need to divide terms in the sum by αr2
i

when converting to an integral. Doing this, we obtain,

Nc(x(m∗), N−
1

2d , ρ) ≤
∫ ρ+αρ2

N
− 1

2d

Nc(x(m∗), r, αr2)dr

≤ const + (d+ 1)2
( 8√

3

)d ( 1
α

)d ∫ ∞
N
− 1

2d

r−(1+d)dr

≤ const + (d+ 1)
( 4
α

)d
N

1
2 .

This completes the proof, and provides the hidden constant of complexity as (d+ 1)
(

4
α

)d
.

Thus larger values for α should result in fewer computed elements in the annulus
Ad(x(m∗), r, r+αr2), which makes sense given that large values of α imply larger surplus
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energies and thus larger elimination zones.

Lemma C.7.4 (Packing beyond ρ). If we assume (C.8) from Theorem 3.3.2 and that the
medoid index m∗ is the first element processed by trimed, then the number of computed
elements in Ad(x(m∗), ρ,∞) is less than (1 + 4E∗/(αρ2))d.

Proof. Recall that we at assuming m∗ = 1, that is that the medoid is the first element
processed in trimed. All elements beyond radius 2E∗ are eliminated by type 1 eliminations
(Figure 3.1), which provides the first inequality below. Then, as the excess energy is at
least ε = αρ2 for all elements beyond radius ρ of x(m∗), we apply Lemma C.7.8 with
ε = αρ2/2 to obtain the second inequality below,

Nc(m(x), ρ,∞) ≤ Nc(m(x), ρ, 2E∗)

≤
(2E∗ + 1

2αρ
2)d

(1
2αρ

2)d

≤
(

1 + 4E∗

αρ2

)d
.

Lemma C.7.5 (Annulus packing). For 0 ≤ r and 0 < ε ≤ w. If

X ⊂ Ad(0, r, r + w),

where

∀x ∈ X ,Bd(x, ε) ∪ X = {x}, (C.10)

then,

|X | ≤ (d+ 1)2
( 4√

3

)d w (r + w)d−1

εd
.

Proof. The condition (C.10) implies,

∀x, x′ ∈ X × X ,B
(
x,
ε

2

)
∪ B

(
x′,

ε

2

)
= ∅. (C.11)

Using that ε ∈ (0, w] and Lemma C.7.6, one can show that for all x ∈ A(0, r, r + w),

volume
(
B
(
x,
ε

2

)
∩ A(0, r, r + w)

)
>

1
d+ 1

(3
4

) d
2
Vd

[
ε

2

]
(C.12)

Combining (C.11) with (C.12) we have,

volume
( ⋃
x∈X
B
(
x,
ε

2

)
∩ A(0, r, r + w)

)
>
Vd [1]
d+ 1

(√
3

4

)d
|X |εd. (C.13)
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Letting Sd [ε] denote the surface area of a B(0, ε), it is easy to see that

volume (A(0, r, r + w)) < Sd [1]w (r + w)d−1 . (C.14)

Combining (C.13) with (C.14) we get,

Vd [1]
d+ 1

(√
3

4

)d
|X |εd < Sd [1]w (r + w)d−1 .

which combined with the fact that

Sd [1]
Vd [1] =

(
dVd
dr

Vd

)
r=1

= d,

provides us with,

|X | ≤ (d+ 1)2
( 4√

3

)d w (r + w)d−1

εd
.

Lemma C.7.6 (Volume of ball intersection). For x0, x1 ∈ Rd with ‖x0 − x1‖ = 1,

volume (Bd (x0, 1) ∩ Bd (x1, 1))
volume (Bd (x0, 1)) ≥ 1

d+ 1

(3
4

) d
2
.

Proof. Let Vd [r] denote the volume of Bd(0, r). It is easy to see that,

volume (Bd (x0, 1) ∩ Bd (x1, 1)) = 2
∫ 1

2

0
Vd−1

[√
x(2− x)

]
dx

≥ 2
∫ 1

2

0
Vd−1

[√
3
2x
]
dx

≥ 2Vd−1 [1]
∫ 1

2

0

(3
2x
) d−1

2
dx

≥ 2Vd−1 [1]
(3

2

) d−1
2
( 2
d+ 1

)(1
2

) d+1
2

≥ Vd−1 [1]
(3

2

) d−1
2
( 2
d+ 1

)(1
2

) d−1
2

≥ Vd−1 [1]
(3

4

) d−1
2
( 2
d+ 1

)
.
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Using that Vd−1 [1]
Vd [1] >

1√
π

, we divide the intersection volume through by Vd [1] to obtain,

volume (Bd (x0, 1) ∩ Bd (x1, 1))
volume (Bd (x0, 1)) ≥

(3
4

) d−1
2
( 2√

π(d+ 1)

)

≥ 1
d+ 1

(3
4

) d
2

Lemma C.7.7 (Packing balls in a ball). The number of non-intersecting balls of radius
ε which can be packed into a ball of radius r in Rd is less than

(
r
ε

)d
Proof. The technique used here is a loose version of that used in proving Lemma C.7.5.
The volume of Bd(0, ε) is a factor (r/ε)d smaller than that of Bd(0, r). As the balls of
radius ε are non-overlapping, the volume of their union is simply the sum of their volumes.
The result follow from the fact that the union of the balls of radius ε is contained within
the ball of radius r.

Lemma C.7.8 (Packing points in a ball). Given X ⊂ Bd(0, r) such that no two elements
of X lie within a distance of ε of each other, |X | <

(
2r+ε
ε

)d
.

Proof. As no two elements lie within distance ε of each other, balls of radius ε/2 centred
at elements are non-intersecting. As each of the balls of radius ε/2 centred at elements
of X lies entirely within Bd(0, r + ε/2), we can apply Lemma (C.7.7), arriving at the
result.

Pseudocode for trikmeds

In Alg. (13) we present trikmeds. It is decomposed into algorithms for initialization (14),
updating medoids (15), assigning data to clusters (16) and updating bounds on the
trimed derived bounds (17). Table C.2 summarised all of the variables used in trikmeds.

When there are no distance bounds, the location of the bottleneck in terms of distance
calculations depends on N/K2. If N/K � K, the bottleneck lies in updating medoids,
which can be improved through the strategy used in trimed. If N/K � K, the bottleneck
lies in assigning elements to clusters, which is effectively handled through the approach
of Elkan [2003].

Algorithm 13 trikmeds
initialize()
while not converged do

update-medoids()
assign-to-clusters()
update-sum-bounds()

end while
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Algorithm 14 initialize
// Initialize medoid indices, uniform random sample without replacement (or otherwise)
{m(1), . . . ,m(K)} ← uniform-no-replacement({1, . . . , N})
for k = 1 : K do

// Initialize medoid and set cluster count to zero
c(k)← x(m(k))
v(k)← 0
// Set sum of in-cluster distances to medoid to zero
s(k)← 0

end for
for i = 1 : N do

for k = 1 : K do
// Tightly initialize lower bounds on data-to-medoid distances
lc(i, k)← ‖x(i)− c(k)‖

end for
// Set assignments and distances to nearest (assigned) medoid
a(i)← arg mink∈{1,...,K} lc(i, k)
d(i)← lc(i, a(i))
// Update cluster count
v(a(i))← v(a(i)) + 1
// Update sum of distances to medoid
s(a(i))← s(a(i)) + d(i)
// Initialize lower bound on sum of in-cluster distances to x(i) to zero
ls(i)← 0

end for
V (0)← 0
for k = 1 : K do

// Set cumulative cluster count
V (k)← V (k − 1) + v(k)
// Initialize lower bound on in-cluster sum of distances to be tight for medoids
ls(m(k))← s(k)

end for
// Make clusters contiguous
contiguate()
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Algorithm 15 update-medoids
for k = 1 : K do

for i = V (k − 1) : V (k)− 1 do
// If the bound test cannot exclude i as m(k)
if ls(i) < s(k) then

// Make ls(i) tight by computing and cumulating all in-cluster distances to
x(i),

ls(i)← 0
for i′ = V (k − 1) : V (k)− 1 do

d̃(i′)← ‖x(i)− x(i′)‖
ls(i)← ls(i) + d̃(i′)

end for
// Re-perform the test for i as candidate for m(k), now with exact sums. If

i is the new best candidate, update some cluster information
if ls(i) < s(k) then

s(k)← ls(i)
m(k)← i
for i′ = V (k − 1) : V (k)− 1 do

d(i′)← ‖x(i)− x(i′)‖
end for

end if
// Use computed distances to i to improve lower bounds on sums for all

samples in cluster k (see Figure X)
for i′ = V (k − 1) : V (k)− 1 do

ls(i′)← max (ls(i′), |d̃(i′)v(k)− ls(i)|)
end for

end if
end for
// If the medoid of cluster k has changed, update cluster information
if m(k) 6= V (k − 1) then

p(k)← ‖c(k)− x(m(k))‖
c(k)← x(m(k))

end if
end for
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Algorithm 16 assign-to-clusters
// Reset variables monitoring cluster fluxes,
for k = 1 : K do

// the number of arrivals to cluster k,
∆n−in(k)← 0
// the number of departures from cluster k,
∆n−out(k)← 0
// the sum of distances to medoid k of samples which leave cluster k
∆s−out(k)← 0
// the sum of distances to medoid k of samples which arrive in cluster k
∆s−in(k)← 0

end for
for i = 1 : N do

// Update lower bounds on distances to medoids based on distances moved by
medoids

for k = 1 : K do
l(i, k) = l(i, k)− p(k)

end for
// Use the exact distance of current assignment to keep bound tight (might save

future calcs)
l(i, a(i)) = d(i)
// Record current assignment and distance
aold = a(i)
dold = d(i)
// Determine nearest medoid, using bounds to eliminate distance calculations
for k = 1 : K do

if l(i, k) < d(i) then
l(i, k)← ‖x(i)− c(k)‖
if l(i, k) < d(i) then

a(i) = k
d(i) = l(i, k)

end if
end if

end for
// If the assignment has changed, update statistics
if aold 6= a(i) then

v(aold) = v(aold)− 1
v(a(i)) = v(a(i)) + 1
ls(i) = 0
∆n−in(a(i)) = ∆n−in(a(i)) + 1
∆n−out(aold) = ∆n−out(aold) + 1
∆s−in(a(i)) = ∆s−in(a(i)) + d(i)
∆s−out(aold) = ∆s−out(aold) + dold

end if
end for
// Update cumulative cluster counts
for k = 1 : K do

V (k)← V (k − 1) + v(k)
end for
contiguate()
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Table C.2 – Table Of Notation For trikmeds

N : number of training samples
i : index of a sample, i ∈ {1, . . . , N}

x(i) : sample i
K : number of clusters
k : index of a cluster, k ∈ {1, . . . ,K}

m(k) : index of current medoid of cluster k, m(k) ∈ {1, . . . , N}
c(k) : current medoid of cluster k, that is c(k) = x(m(k))
n1(i) : cluster index of centroid nearest to x(i)
a(i) : cluster to which x(i) is currently assigned
d(i) : distance from x(i) to c(a(i))
v(k) : number of samples assigned to cluster k
V (k) : number of samples assigned to a cluster of index less than k + 1

lc(i, k) : lowerbound on distance from x(i) to m(k)
ls(i) : lowerbound on

∑
i′:a(i′)=a(i) ‖x(i′)− x(i)‖

p(k) : distance moved (teleported) by m(k) in last update
s(k) : sum of distances of samples in cluster k to medoid k

Algorithm 17 update-sum-bounds
for k = 1 : K do

// Obtain absolute and net fluxes of energy and count, for cluster k
J abss (k) = ∆s−in(k) + ∆s−out(k)
J nets (k) = ∆s−in(k)−∆s−out(k)
J absn (k) = ∆n−in(k) + ∆n−out(k)
J netn (k) = ∆n−in(k)−∆n−out(k)
for i = V (k − 1) : V (k)− 1 do

// Update the lower bound on the sum of distances
ls(i)← ls(i)−min(J abss (k)− J netn (k)d(i),J absn (k)d(i)− J nets (k))

end for
end for

Algorithm 18 contiguate
// This function performs an in place rearrangement over of variables a, d, l, x and m
// The permutation applied to a, d, l and x has as result a sorting by cluster,
// a(i) = k if i ∈ {V (k − 1), V (k)} for k ∈ {1, . . . ,K}
// and moreover that the first element of each cluster is the medoid,
// m(k) = V (k − 1) for k ∈ {1, . . . ,K}
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C.9. Datasets

Datasets

• Birch1, Birch2 : Synthetic 2-D datasets available from https://cs.joensuu.fi/sipu/
datasets/

• Europe : Border map of Europe available from https://cs.joensuu.fi/sipu/datasets/

• U-Sensor Net : Undirected 2-D graph data. Points drawn uniformly from unit
square, with an undirected edge connecting points when the distance between them
is less than 1.25

√
N

• D-Sensor Net : Directed 2-D graph data. Points drawn uniformly from unit square,
with directed edge connecting points when the distance between them is less than
1.45
√
N , direction chosen at random.

• Europe rail : The European rail network, the shapefile is available at http://www.
mapcruzin.com/free-europe-arcgis-maps-shapefiles.htm. We extracted edges from
the shapefile using networkx available at https://networkx.github.io/.

• Pennsylvania road The road network of Pennsylvania, the edge list is available
directly from https://snap.stanford.edu/data/

• Gnutella Peer-to-peer network data, available from https://snap.stanford.edu/data/

• MNIST (0) The ‘0’s in the MNIST training dataset.

• Conflong The conflongdemo data is available from https://cs.joensuu.fi/sipu/
datasets/

• Colormo The colormoments data is available at http://archive.ics.uci.edu/ml/
datasets/Corel+Image+Features

• MNIST50 The MNIST dataset, projected into 50-dimensions using a random
projection matrix where each of the 784×50 elements in the matrix is i.i.d. N (0, 1).

• S1, S2, S3, S4, A1, A2, A3 All of these synthetic datasets are available from
https://cs.joensuu.fi/sipu/datasets/.

• thyroid, yeast, wine, breast, spiral All of these real world datasets are available
from https://cs.joensuu.fi/sipu/datasets/.

Scaling with dimension of TOPRANK and TOPRANK2

Recall the assumption (3.3) made for the TOPRANK and TOPRANK2 algorithms. The
assumption states that as one approaches the minimum energy E∗ from above, the
density of elements decreases. In other words, the lowest energy elements stand out from
the rest and are not bunched up with very similar energies.

Consider the case where elements are points in Rd. Suppose that the density fX of
points around the medoid is bounded by 0 < ρ0 ≤ fX ≤ ρ1, and that the energy grows
quadratically in radius about the medoid. Then, as the number of points at radius ε is
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O(εd−1), the density (by energy) of points at radius ε is O(εd−2). Thus for d = 1 the
assumption for TOPRANK and TOPRANK does not hold, which results in poor performance
for d = 1. For d = 2, the assumption holds, as the density (by energy) of points is
constant. For d ≥ 2, as d increases the energy distribution becomes more and more
favourable for TOPRANK and TOPRANK2, as the low ranking elements become more and
more distinct with low energies becoming less probable. This explains the observation
that TOPRANK scales well with dimension in Figure 3.3.

Example where geometric median is a poor approximation
of medoid

There is no guarantee that the geometric median is close to the set medoid. Moreover,
the element in S which is nearest to g(S) is not necessarily the medoid, as illustrated
in the following example. Suppose S = {x(1), . . . , x(20)} ⊂ R2, with x(i) = (0, 1) for
i ∈ {1, . . . , 9}, x(i) = (0,−1) for i ∈ {10, . . . , 18}, x(19) = (1/2, 0) and x(20) = (−1/2, 0).
The geometric median is (0, 0) and the nearest points to the geometric median, x(19) and
x(20) have energy 1 + 18

√
3/2 ≈ 16.6. However, points {x(1), . . . , x(18)} have energy

2
√

3/2 + 9 = 10.7. Thus by choosing a point in S which is nearest to the geometric
median, one is choosing the element with the highest energy, the opposite of the medoid.

Note the above example appears to violate the assumptions required for O(N3/2) con-
vergence of trimed, as it requires that the probability density function vanishes at the
distribution median. Indeed, in Rd it is the case that if the O(N3/2) assumptions are
satisfied, the set medoid converges to the geometric median, and so the geometric median
is a good approximation. We stress however that the geometric median is only relevant
in vector spaces.

Miscellaneous

Figure C.4 illustrates the idea behind algorithm trimed, comments in the caption.
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N = 1

medoid
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N = 4 N = 16 N = 64 N = 256
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N

Figure C.4 – Eliminating samples as potential medoids using only type 1 elimination,
where we assume that the medoid and its energy E∗ are known, and so the radius of the
exclusion ball of an element x is E(x)− E∗. Uniformly sampling from [−1, 1]× [−1, 1],
energies are computed only if the sample drawn does not lie in the exclusion zone (union
of balls). If the energy at x is computed, the exclusion zone is augmented by adding
Bd(x,E(x)−E∗). Top left to right: the distribution of samples which are computed and
excluded. Bottom: the times at which samples are computed. We prove that probability
of computation at time n is O(n−

1
2 ).
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Generalised K-medoids results

The potential uses of clarans as a K-medoids algorithm go well beyond K-Means
initialization. In this Appendix, we wish to demonstrate that clarans should be chosen
as a default K-medoids algorithm, rather than medlloyd. In its most general form, the
K-medoids problem is to minimize,

E(C) = 1
N

N∑
i=1

arg min
i′∈C

f(x(i), x(i′)). (D.1)

We assume that f is of the form,

f(x(i), x(i′)) = ψ(dist(x(i), x(i′))), (D.2)

where ψ is non-decreasing, and samples belong to a metric space with metric dist(·, ·).
Constraint D.2 allows us to use the triangle inequality to eliminate certain distance
calculations. We now present examples comparing clarans and medlloyd in various
settings, showing the effectiveness of clarans. Table D.1 describes artificial problems,
with results in Figure D.1. Table D.2 describes real-world problems, with results in
Figure D.2.

The task

We state precisely the K-medoids task in the setting where dissimilarity is an increasing
function of a distance function. Given a set of N elements, {x(i) : i ∈ {1, . . . , N}}, with
a distance defined between elements,

dist(x(i), x(i′)) ≥ 0,
dist(x(i), x(i)) = 0,
dist(x(i), x(i′)) = dist(x(i′), x(i)),
dist(x(i), x(i′′)) ≤ dist(x(i), x(i′)) + dist(x(i′), x(i′′)),
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N K type metric ψ(d)
syn-1 2000 40 sequence Levenshtein d
syn-2 20000 100 sparse-v l2 d2

syn-3 28800 144 dense-v l1 ed

syn-4 20000 100 dense-v l∞ Id>0.05

Table D.1 – Synthetic datasets used for comparing K-medoids algorithms (Figure D.1).
syn-1: Each of the cluster centers is a random binary sequence of 16 bits (0/1). In each
of the clusters, 50 elements are generated by applying 2 mutations (insert/delete/re-
placement) to the center, at random locations. syn-2: Each of the centers is a vector
in R106 , non-zero at exactly 5 indices, with the 5 non-zero values drawn from N(0, 1).
Each sample is a linear combination of two centers, with coefficients 1 and Q respectively,
where Q ∼ U [−0.5, 0.5]. syn-3: Centers are integer co-ordinates of an 12× 12 grid. For
each center, 50 samples are generated, each sample being the center plus Gaussian noise
of identity covariance, as in the simulation data in the main text. syn-4: Data are
points drawn uniformly from [0, 1]2. We attempt cover a unit square with 100 squares of
diameter 0.1, a task with a unique lattice solution. Points not covered have energy 1,
while covered points have energy 0.

N K type metric ψ(d)
rcv1 23149 400 sparse-v l2 d2

genome 400000 1000 sequence n-Levensh. d2

mnist 10000 400 dense-v l2 d2

words 354983 1000 sequence Levenshtein d2

Table D.2 – Real datasets used for comparing K-medoids algorithms (Figure D.2), with
data urls in D.5. rcv1: The Reuters Corpus Volume I training set of Lewis et al.
[2004], a sparse datasets containing news article categorization annotation. genome:
Nucleotide subsequences of lengths 10,11 or 12, randomly selected from chromosome 10
of a Homo Sapiens. Note that the normalised Levenshtein metric [Yujian and Bo, 2007]
is used. mnist: The test images of the MNIST hand-written digit dataset. words: A
comprehensive English language word list.
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Figure D.1 – Results on synthetic datasets. Algorithms clarans and medlloyd are run
four times with random seedings. Each experiment is run with a time limit of 64 seconds.
The vertical axis is mean energy (dissimilarity) across samples. In all experiments,
medlloyd gets trapped in local minima before 64 seconds have elapsed, and clarans
always obtains significantly lower energies than medlloyd.
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Figure D.2 – Results on real datasets. Vertical axes are energies relative to the lowest
energy found. We observe that medlloyd performs very poorly on sequence datasets
(right), failing to find clusterings significantly better than the random initializations.
While an improvement over the initial seeding is obtained using vik on the vector datasets
(left), the energies obtained using clarans are significantly lower. Runs with clarans
appear to converge to a common energy solution, even though initial energies vary greatly,
as is the case in on dataset rcv1. The majority of runs with medlloyd converge to a local
minimum before the allotted time limit of 210 seconds.
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and given an energy function ψ : R+ → R+ satisfying,

ψ(0) = 0,
v1 ≤ v2 ⇐⇒ ψ(v1) ≤ ψ(v2),

The task is to find indices {c(k) : k ∈ {1, . . . ,K}} ⊂ {1, . . . , N}, to minimize,

N∑
i=1

min
k∈{1,...,K}

ψ(dist(x(i), x(c(k))).

The pam algorithm

Algorithm 19 The pam algorithm of Kaufman and Rousseeuw [1990] is a computationally
inefficient predecessor of clarans. At lines 4 and 5, one loops over all possible (medoid,
non-medoid) swaps, recording the energy obtained with each swap. At line 9, the best of
all possible swaps is chosen. At line 10, if the best found swap results in a decrease in
energy, proceed, otherwise stop.

1: t← 0
2: Initialize C0 ⊂ {1, . . . , N}.
3: while true do
4: for ip ∈ {1, . . . , N} \ Ct do
5: for kp ∈ {1, . . . ,K} do

6: ψpt+1(ip, kp)←
N∑
i=1

min
i′∈Ct\{ct(kp)}∪{ip}

ψ(dist(x(i), x(i′)))

7: end for
8: end for
9: i∗p, k

∗
p ← arg min

ip,kp

ψpt+1(ip, kp)

10: if ψpt+1(i∗p, k∗p) < 0 then
11: Ct+1 ← Ct \ {ct(k∗p)} ∪ {i∗p}
12: else
13: break
14: end if
15: t← t+ 1
16: end while

clarans In detail with accelerations

We start by presenting modified notation, required to describe our optimizations of
clarans [Ng and Han, 1994] in full pseudocode. As before, we will let the N samples
which we want to partition into K clusters be x(1), . . . , x(N). Let t ∈ {1, . . . ,∞} denote
the current round of the algorithm. Let ct(k) ∈ {1, . . . , N} be the index of the sample
chosen as the center of cluster k ∈ {1, . . . ,K} at iteration t, so that x(ct(k)) is the center
of cluster k at iteration t. Let Ct = {ct(k) | k ∈ {1, . . . ,K}} ⊂ {1, . . . , N} denote all such
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center indices. We let a1
t (i) be the cluster of sample i, that is

a1
t (i) = arg min

k∈{1,...,K}
f(x(i), x(ct(k))). (D.3)

Let ψt(k) denote the sum of the dissimilarities of elements in cluster k at iteration t, also
referred to as the energy of cluster k, so that

ψt(k) =
∑

i:a1
t (i)=k

f(x(i), x(ct(k))).

Let ψt =
∑
k ψt(k) be the total energy, the quantity which we ultimately wish to minimize.

We assume here that dissimilarity can be decomposed as in Eqn. (D.2), which will enable
the use of the triangle inequality.

Let d1
t (i) be the distance at iteration t of sample i to its nearest center, that is

d1
t (i) = min

i′∈Ct

dist(x(i), x(i′)).

Under assumption (D.2), we now have (D.3) taking the form,

a1
t (i) = arg min

k∈{1,...,K}
dist(x(i), x(ct(k))),

so that d1
t (i) = dist(x(i), x(ct(a1

t (i)))). In the same way as we use a1
t (i) and d1

t (i) for the
nearest center, we will use a2

t (i) and d2
t (i) for the second nearest center, that is

d2
t (i) = min

i′∈Ct\{ct(a1
t (i))}

dist(x(i), x(i′)),

a2
t (i) = arg min

k∈{1,...,K}\{a1
t (i)}

dist(x(i), x(ct(k))),

so that d2
t (i) = dist(x(i), x(ct(a2

t (i)))). The energy of a sample is now defined as the
energy of the distance to its nearest center, so that at iteration t the energy of sample x(i)
is ψ(d1

t (i)). Finally, let the margin of sample i be defined as mt(i) = ψ(d2
t (i))− ψ(d1

t (i)).
Some cluster specific quantities which are required in the accelerated algorithm are,

Nt(k) = |{i : a1
t (i) = k}|,

D1
t (k) = max

i:a1
t (i)=k

d1
t (i),

D2
t (k) = max

i:a1
t (i)=k

d2
t (i),

M∗t (k) = 1
Nt(k)

∑
i:a1

t (i)=k
mt(i).

(D.4)

The key triangle inequality results used to accelerate clarans evaluations are now
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presented, with proofs in Appendix refapp::accelerating. Firstly,

dist(x(ip), x(ct(kp))) ≥ D1
t (kp) +D2

t (kp) =⇒
change in energy of cluster kp is Nt(kp)M∗t (kp),

which says that if the new center x(ip) of cluster kp is sufficiently far from the old center
x(ct(kp)), then all old elements of cluster kp will migrate to their old second nearest
clusters, and so their change in energies will simply be their margins, which have already
been computed. The second inequality used is,

k 6= kp ∧ dist(x(ct(k)), x(ip)) ≥ 2D1
t (k) =⇒

no change in energy of cluster k,

which states that if cluster k is sufficiently far from the new center of kp, there is no
change in its energy as the indices of samples assigned to it do not change.

These implications allow changes in energies of entire clusters to be determined in a
single comparison. Clusters likely to benefit from these tests are those lying far from the
new proposed center x(ip). The above tests involve the use of dist(x(ct(k)), x(ip)), but
the computation of this quantity can sometimes be avoided by using the inequality,

dist(x(ct(k)), x(ip)) ≥ cct(a1
t (ip), k)−D1

t (ip),

where cct is the K ×K matrix of inter-medoid distances at iteration t. To accelerate the
update step of clarans, the following bound test is used,

min(dist(x(ct(kp)), x(ct(k))),dist(x(ip), x(ct(k))))
> D1

t (k) +D2
t (k) =⇒ no change in cluster k.

We also use a per-sample version of the above inequality for the case of failure to eliminate
the entire cluster. Full proofs, descriptions, and algorithms incorporating these triangle
inequalities can be found in D.4.2.

Review of notation and ideas

Consider a proposed update for centers at iteration t+ 1, where the center of cluster kp
is replaced by x(ip). Let δt(i | kp C ip) denote the change in energy of sample i under
such an update, that is

δt(i | kp C ip) = energy after swap − energy before swap
= min

i′∈Ct\{ct(kp)}∪{ip}
ψ(dist(x(i), x(i′)))− ψ(d1

t (i)).
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We choose subscript ‘p’ for kp and ip, as together they define a proposed swap. We will
write a12d12

t (i) = {a1
t (i), a2

t (i), d1
t (i), d2

t (i)} throughout for brevity. Finally, let

D1
t (k) = max

i:a1
t (i)=k

d1
t (i),

D2
t (k) = max

i:a1
t (i)=k

d2
t (i).

Algorithm 20 One round of clarans. The potential bottlenecks are the proposal
evaluation at line 2 and the update at line 6. The cost of proposal evaluation, if all
distances are pre-computed, is O(N), while if distances are not pre-computed it is O(dN)
where d is the cost of a distance computation. As for the update step, there is no cost if
∆t ≥ 0 as nothing changes, however if the proposal is accepted then Ct+1 6= Ct, and all
data whose nearest or second nearest center change needs updating.

1: Make proposal kp ∈ {1, . . .K} and ip ∈ {1, . . . , N} \ Ct.
2: ∆t(kp C ip)← 1

N

∑N
i=1 δt(i | kp C ip) . The assignment evaluation step, see Alg. 21

3: if ∆t < 0 then
4: Ct+1 ← Ct \ {ct(kp)} ∪ {ip}
5: for i ∈ {1, . . . , N} do
6: Set a12d12

t+1(i) . The update step, see Alg. 22
7: end for
8: else
9: Ct+1 ← Ct

10: for i ∈ {1, . . . , N} do
11: a12d12

t+1(i)← a12d12
t (i)

12: end for
13: end if

Algorithm 21 Standard approach (level 0) with clarans for computing δt(i | kp C ip)
at iteration t, as described in Ng and Han [1994]. Note however that here we do not
store all N2 distances, as in Ng and Han [1994].

1: d ← dist(x(i), x(ip))
2: if a1

t (i) = kp then
3: if d ≥ d2

t (i) then
4: δt(i | kp C ip)← ψ(d2

t (i))− ψ(d1
t (i))

5: else
6: δt(i | kp C ip)← ψ(d)− ψ(d1

t (i))
7: end if
8: else
9: if d ≥ d1

t (i) then
10: δt(i | kp C ip)← 0
11: else
12: δt(i | kp C ip)← ψ(d)− ψ(d1

t (i))
13: end if
14: end if
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Algorithm 22 Simple approach (level 0) with clarans for computing a12d12
t+1(i)

1: // If the center which moves is nearest or second nearest, complete update required
2: if a1

t (i) = kp or a2
t (i) = kp then

3: Get dist(x(i), x(ct+1(k))) for all k ∈ {1, . . . ,K}
4: Use above k distances to set a12d12

t+1(i)
5: else
6: // d1

t (i) and d2
t (i) are still valid distances, so need only check new candidate

center kp
7: d ← dist(x(i), x(ip))
8: Use the fact that {d1

t+1(i), d2
t+1(i)} ⊂ {d1

t (i), d2
t (i), d} to set a12d12

t (i)
9: end if

Accelerating clarans

We now discuss in detail how to accelerate the proposal evaluation and the cluster update.
We split our proposed accelerations into 3 levels. At levels 1 and 2, triangle inequality
bounding techniques are used to eliminate distance calculations. At level 3, an early
breaking scheme is used to quickly reject unpromising swaps.

Basic triangle inequalities bounds

We show how δt(i | kp C ip) can be bounded, with the final bounding illustrated in
Figure D.3. There are four bounds to consider : upper and lower bounds for each of the
two cases kp = a1

t (i) (the center being replaced is the center of element i) and kp 6= a1
t (i)

(the center being replaced is not the center of element i). We will derive a lower bound
for the two cases simultaneously, thus we will derive 3 bounds. First, consider the upper
bound for the case kp 6= a1

t (i),

δt(i | kp C ip) = min
i′∈Ct\{ct(kp)}∪{ip}

ψ(dist(x(i), x(i′)))− ψ(d1
t (i)),

= min
i′∈{ct(a1

t (i)),ip}
ψ(dist(x(i), x(i′)))− ψ(d1

t (i)),

≤ ψ(dist(x(i), x(ct(a1
t (i)))))− ψ(d1

t (i)),
= 0.

and thus we have

kp 6= a1
t (i) =⇒ δt(i | kp C ip) ≤ 0. (D.5)

Implication D.5 simply states the obvious fact that the energy of element i cannot increase
when a center other than that of cluster a1

t (i) is replaced. The other upper bound case
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to consider is kp = a1
t (i), which is similar,

δt(i | kp C ip) = min
i′∈Ct\{ct(kp)}∪{ip}

ψ(dist(x(i), x(i′)))− ψ(d1
t (i)),

= min
i′∈{ct(a2

t (i)),ip}
ψ(dist(x(i), x(i′)))− ψ(d1

t (i)),

≤ ψ(dist(x(i), x(ct(a2
t (i)))))− ψ(d1

t (i)),
= ψ(d2

t (i))− ψ(d1
t (i)),

= mt(i),
≤Mt(kp).

and thus we have

kp = a1
t (i) =⇒ δt(i | kp C ip) ≤Mt(i). (D.6)

Implication D.6 simply states the energy of element i cannot increase by more than
the maximum margin in the cluster of i when it is the center of cluster a1

t (i) which is
replaced. We now consider lower bounding δt(i | kp C ip) for both the cases a1

t (i) = kp
and a1

t (i) 6= kp simultaneously. We choose to bound them simultaneously as doing so
separately arrives at the same bound.

δt(i | kp C ip) = min
i′∈Ct\{ct(kp)}∪{ip}

ψ(dist(x(i), x(i′)))− ψ(d1
t (i)),

≥ min
i′∈Ct∪{ip}

ψ(dist(x(i), x(i′)))− ψ(d1
t (i)),

= min
i′∈{ct(a1

t (i)),ip}
ψ(dist(x(i), x(i′)))− ψ(d1

t (i)),

= min
(
0, ψ(dist(x(i), x(ip)))− ψ(d1

t (i))
)
,

≥ min
(
0, ψ(dist(x(i), x(ip)))− ψ(D1

t (a1
t (i)))

)
. (D.7)

Let dp(k) denote the distance between the elements in the proposed swap,

dp(k) = dist(x(ct(k)), x(ip)).

The triangle inequality guarantees that,

dist(x(i), x(ip)) ≥

0 if dp(a1
t (i)) ≤ D1

t (a1
t (i)),

dp(a1
t (i))−D1

t (a1
t (i)) if D1

t (a1
t (i)) < dp(a1

t (i)).
(D.8)

Using (D.8) in (D.7) we obtain,

δt(i | kpCip) ≥


−ψ(D1

t (a1
t (i))) if dp(a1

t (i)) ≤ D1
t (a1

t (i))
ψ(dp(a1

t (i))−D1
t (a1

t (i)))− ψ(D1
t (a1

t (i))) if D1
t (a1

t (i)) < dp(a1
t (i)) ≤ 2D1

t (a1
t (i))

0 if 2D1
t (a1

t (i)) < dp(a1
t (i)).

(D.9)
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R1
t (k) 2R1

t (k)R1
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−ψ(R1
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Figure D.3 – Illustrating the bounds. Dark gray regions denote possible changes in energy
of elements. On the left, the case k = kp, where the solid line segment is the average
change in element energy in the case where dp exceeds a certain radius. On the right,
the case k 6= kp, where sample energies can only decrease.

These are the lower bounds illustrated in Figure D.3. Define ∆(k | kp C ip) to be the
average change in energy for cluster k resulting from a proposed swap, that is,

∆t(k | kp C ip) = 1
Nt(k)

∑
i:a1

t (i)=kp

δt(i | kp C ip).

Let the average of the change in energy over all data resulting from a proposed swap be
∆t(kp C ip), that is

∆t(kp C ip) =
∑
k

pt(k)∆t(k | kp C ip).

One can show that for k = kp,

dp(kp) ≥ D1
t (kp) +D2

t (kp) =⇒ ∆t(k | kp C ip) = M∗t (kp). (D.10)

The equality (D.10) corresponds to a case where the proposed center x(ip) is further from
every point in cluster kp than is the second nearest center, in which case the increase
in energy of cluster kp is simply the sum of margins. It corresponds to the solid red
horizontal line in Figure D.3, left.

Level 1 proposal evaluation accelerations

What we wish to evaluate when considering a proposal is the mean change in energy,
that is,

1
N

N∑
i=1

δt(i | kpCip) = 1
N

( ∑
k:k 6=kp

∑
i:a1

t (i)=k
δt(i | kp C ip)

︸ ︷︷ ︸
(N−Nt(kp))∆−t (kpC ip)

+
∑

i:a1
t (i)=kp

δt(i | kp C ip)

︸ ︷︷ ︸
Nt(kp)∆(kp|kpC ip)

)
. (D.11)

Where in (D.11) we define ∆−t (kp C ip) as,

∆−t (kp C ip) = 1
N −Nt(kp)

∑
k:k 6=kp

∑
i:a1

t (i)=k
δt(i | kp C ip).
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From D.4.2 we have the result, corresponding to the solid line in Figure D.3, that

a1
t (i) = k ∧ k 6= kp ∧ dist(x(ct(k)), x(ip)) ≥ 2D1

t (k) =⇒ δt(i | kp C ip) = 0. (D.12)

We use this result to eliminate entire clusters in the proposal evaluation step: a cluster k
whose center lies sufficiently far from x(ip) will not contribute, as long as k 6= kp,

∆−t (kp C ip) = 1
N −Nt(kp)

∑
k:k 6=kp∧

dist(x(ip),x(ct(k)))<2D1
t (k)

∑
i:a1

t (i)=k
δt(i | kp C ip).

Implication D.10, corresponding to the solid line in Figure D.3, left, can be used in
the case k = kp to rapidly obtain the second term in (D.11) if dist(x(ct(kp)), x(ip)) ≥
D1
t (k) +D2

t (k).

The level 1 techniques for obtaining whole cluster sums require the distances from x(ip)
to all cluster centers, although in Appendix D.4.2 (level 2) we show how even these
distance calculations can sometimes be avoided. A second layer of element-wise triangle
inequality tests is included for the case where the test on an entire cluster fails.

These level 1 techniques for accelerating the proposal are presented in Alg. 23.

Algorithm 23 CLARANS-1-EVAL : proposal evaluation using level 1 accelerations. We
call subroutines for processing the cluster kp (CLARANS-12-EVAL-P) and all other clusters
(CLARANS-1-EVAL-N-P). The expected complexity for the full evaluation is O(d(K +
N/K)). The expected complexity for CLARANS-12-EVAL-P assumes that the probability
that cluster kp is not processed using (D.10) is O(1/K).

1: // Set distances from proposed center x(ip) to all current centers Ct . O(dK)
2: for k ∈ {1, . . . ,K} do
3: dc(k)← dist(x(ip), x(ct(k)))
4: end for
5: dpp ← dc(kp)
6: // Process cluster kp . O(dN/K2)
7: CLARANS-12-EVAL-P()
8: // Process all other clusters . O(dN/K)
9: CLARANS-1-EVAL-N-P()

Level 1 cluster update accelerations

If a proposal is accepted, the standard CLARANS uses Alg. (22) to obtain a12d12
t+1(i), where

every element i requires at least 1 distance calculation, with those elements for which
cluster kp is the nearest or second nearest at t require K distance calculations. Here at
level 1, we show how many samples requiring 1 distance calculation can be set without any
distance calculations, and even better: how entire clusters can sometimes be processed in
constant time.
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Algorithm 24 CLARANS-12-EVAL-P : adding the contribution of cluster kp to ∆t(kpCip).
The key inequality here is (D.10), which states that if ip is sufficiently far from the center
of cluster kp, then elements in cluster kp will go to their current second nearest center if
the center of kp is removed.

1: // Try to use (D.10) to quickly process cluster kp
2: if dpp ≥ D1

t (kp) +D2
t (kp) then

3: ∆t(kp C ip) = ∆t(kp C ip) + pt(kp)M∗t (kp)
4: else
5: // Test (D.10) failed, enter element-wise loop for cluster kp
6: for i ∈ {i′ : a1

t (t′) = kp} do
7: // Try tighter element-wise version of (D.10) to prevent computing a distance
8: if dpp ≥ d1

t (i) + d2
t (i) then

9: ∆t(kp C ip) = ∆t(kp C ip) +mt(i)/N
10: else
11: // Test failed, need to compute distance
12: d← dist(x(ip), x(i))
13: ∆t(kp C ip) = ∆t(kp C ip) + min(d,mt(i))/N
14: end if
15: end for
16: end if

Algorithm 25 CLARANS-1-EVAL-N-P : adding contributions of all clusters k 6= kp to
∆t(kp C ip). The key inequality used is (D.12), which states that if the distance between
x(ip) and the center of cluster k is large relative to the distance from the center of cluster
k to its most distant member, then there is no change in energy in cluster k.

1: for k ∈ {1, . . . ,K} \ {kp} do
2: // Try to use (D.12) to quickly process cluster k
3: if dc(k) < 2D1

t (k) then
4: // Test (D.12) failed, enter element-wise loop for cluster k
5: for i ∈ {i′ : a1

t (t′) = k} do
6: // Try tighter element-wise version of (D.12) to prevent computing a

distance
7: if dc(k) < 2d1

t (i) then
8: // Test failed, need to compute distance
9: d← dist(x(ip), x(i))

10: if d < d1
t (i) then

11: ∆t(kp C ip) = ∆t(kp C ip) + (d− d1
t (i))/N

12: end if
13: end if
14: end for
15: end if
16: end for
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x(ct(k))

x(ip)

x(ct(kp))

D1
t (k)

D2
t (k)

Figure D.4 – Illustrating test D.13. Consider an element x(i) with a1
t (i) = k, so that x(i)

lies in the inner gray circle, and k 6= kp. Firstly, dist(x(ct(kp)), x(ct(k))) > D1
t (k) +D2

t (k)
means that a2

t (i) 6= kp, thus both d1
t (i) and d2

t (i) will be valid distances at iteration t+ 1.
Then, as dist(x(ip), x(ct(k))) > D1

t (k) +D2
t (k), we have dist(x(ip), x(i)) > D2

t (k) ≥ d2
t (i),

so a2
t+1(i) = a2

t (i).

The inequality to eliminate an entire cluster is,

min(dist(x(ct(kp)), x(ct(k))), dist(x(ip), x(ct(k)))) > D1
t (k) +D2

t (k)
=⇒ no change in cluster k.

(D.13)

While the inequality used to eliminate the distance calculation for a single sample is,

min(dist(x(ct(kp)), x(ct(k))), dist(x(ip), x(ct(k)))) > d1
t (i) + d2

t (i)
=⇒ no change for sample i.

(D.14)

Note that the inequalities need to be strict, ‘≥’ would not work. The test (D.13) is
illustrated in Figure D.4, left. These bound tests are used in Alg. (26). The time required
to update cluster related quantities (D1, Dt,M

∗) is negligible as compared to updating
sample assignments, and we do not do anything clever to accelerate it, other than to note
that only clusters which fail to be eliminated by (D.13) potentially require updating.

Level 2 proposal evaluation accelerations

We now discuss level 2 accelerations. Note that these accelerations come at the cost
of an increase of O(K2) to the memory footprint. The key idea is to maintain all
K2 inter-center distances, denoting by cct(k, k′) = dist(x(ct(k)), x(ct(k′))) the distance
between centers of clusters k and k′. At level 1, all distances dist(x(ip), x(ct(k))) for
k ∈ {1, . . . ,K} are computed up-front for proposal evaluation, but here at level 2 we use,

dist(x(ip), x(ct(k))) ≥ cct(a1
t (ip), k)− d1

t (ip), (D.15)
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Algorithm 26 CLARANS-1-UPDATE : cluster update using level 1 accelerations. In-
equalities (D.13) and (D.14) are used to accelerate the updating of a12d12

t+1(i) for
i : a1(i) 6= kp ∧ a2(i) 6= kp. Essentially these inequalities say that if neither the old center
of cluster kp nor its new center x(ip) are near to an element (or all elements in a cluster),
then the nearest and second element of that element (or all elements on a cluster) will
not change.

1: // Set distance from centers to the nearer of new and old cluster center kp . O(dK)
2: for k ∈ {1, . . . ,K} do
3: dc(k)← min(dist(x(ct(kp)), x(ct(k))),dist(x(ip), x(ct(k))))
4: ( = min(dist(x(ct(kp)), x(ct(k))),dist(x(ct+1(kp)), x(ct(k)))))
5: end for
6: // Process elements in cluster kp from scratch
7: for i ∈ {i′ : a1

t (t′) = kp} do
8: Obtain a12d12

t+1(i) from scratch
9: end for

10: // Process all other clusters
11: for k ∈ {1, . . . ,K} \ {kp} do
12: // Try to use (D.13) to quickly process cluster k
13: if dc(k) ≤ D1

t (k) +D2
t (k) then

14: for i ∈ {i′ : a1
t (t′) = k} do

15: // Try to use (D.14) to quickly process element i
16: if dc(k) ≤ d1

t (k) + d2
t (k) then

17: if a2
t (i) = kp then

18: Obtain a12d12
t+1(i) from scratch

19: else
20: d← dist(x(i), x(ip))
21: Use {d1

t+1(i), d2
t+1(i)} ⊂ {d1

t (i), d2
t (i), d} as in (22)

22: end if
23: else
24: a12d12

t+1(i)← a12d12
t (i)

25: end if
26: end for
27: end if
28: end for
29: Update cluster statistics for t+ 1 where necessary
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to eliminate the need for certain of these distances. Combining (D.15) with (D.12) gives,

a1
t (i) = k ∧ k 6= kp ∧ cct(a1

t (ip), k)− d1
t (ip) ≥ 2D1

t (k) =⇒ δt(i | kpC ip) = 0. (D.16)

Algorithm 27 CLARANS-2-EVAL-N-P : add contribution of all clusters k 6= kp to ∆t(kpC
ip). In addition to the bound tests used at level 1, inequality (D.16) is used to test if a
center-center distance needs to be calculated.

1: for k ∈ {1, . . . ,K} \ {kp} do
2: // Try to use (D.16) to quickly process cluster k
3: if cct(a1

t (ip), k)− 2D1
t (k) < d1

t (ip) then
4: // Test (D.16) failed, computing dc(k) and resorting to level 1 accelerations...
5: dpk ← dist(x(ip), x(ct(k)))
6: if dpk < 2D1

t (k) then
7: // Test (D.10) failed, enter element-wise loop for cluster k
8: for i ∈ {i′ : a1

t (t′) = k} do
9: // Try tighter element-wise version of (D.12) to prevent computing a

distance
10: if dpk < 2d1

t (i) then
11: // Test failed, need to compute distance
12: d← dist(x(ip), x(i))
13: if d < d1

t (i) then
14: ∆t(kp C ip)← ∆t(kp C ip) + (d− d1

t (i))/N
15: end if
16: end if
17: end for
18: end if
19: end if
20: end for

Algorithm 28 CLARANS-2-EVAL : Proposal evaluation using level 2 accelerations. Unlike
at level 1, not all distances from x(ip) to centers need to be computed up front.

1: dpp ← dist(x(ip), x(ct(kp)))
2: // Process cluster kp . O(dN/K2)
3: CLARANS-12-EVAL-P()
4: // Process all other clusters . O(dN/K)
5: CLARANS-2-EVAL-N-P()

Level 2 cluster update accelerations

The only acceleration added at level 2 for the cluster update is for the case kp ∈
{a1

t (i), a2
t (i)}, where at level 1, a12d12

t+1 is set from scratch, requiring all K distances to
centers to be computed. At level 2, we use cct to eliminate certain of these distances
using WARMSTART, which takes in the distances to 2 of the K centers and uses the larger
of these as a threshold beyond which any distance to a center can be ignored.
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Algorithm 29 CLARANS-2-UPDATE : update using level 2 accelerations. The only addition
to level 1 accelerations is the use of WARMSTART to avoid computing all k sample-center
distances for elements whose nearest or second nearest is kp.

1: For k ∈ {1, . . . ,K}\{kp}: compute dist(x(ip), x(ct(k))) ( = dist(x(ct+1(kp)), x(ct+1(k)))
and set cct+1 accordingly (in practice we don’t need to store cct and cct+1 simultane-
ously as they are very similar).

2: for k ∈ {1, . . . ,K} do
3: dc(k)← min(cct(kp, k), cct+1(kp, k))
4: end for
5: // Process elements in cluster kp from scratch
6: for i ∈ {i′ : a1

t (t′) = kp} do
7: d← dist(x(i), ct+1(kp))
8: Obtain a12d12

t+1(i), using WARMSTART with d and d2
t (i).

9: end for
10: // Process all other clusters
11: for k ∈ {1, . . . ,K} \ {kp} do
12: // Try to use (D.13) to quickly process cluster k
13: if dc(k) ≤ D1

t (k) +D2
t (k) then

14: for i ∈ {i′ : a1
t (t′) = k} do

15: // Try to use (D.14) to quickly process element i
16: if dc(k) ≤ d1

t (k) + d2
t (k) then

17: d← dist(x(i), ct+1(kp))
18: if a2

t (i) = kp then
19: Obtain a12d12

t+1(i), using WARMSTART with d and d1
t (i).

20: else
21: Use {d1

t+1(i), d2
t+1(i)} ⊂ {d1

t (i), d2
t (i), d} as in (22)

22: end if
23: else
24: a12d12

t+1(i)← a12d12
t (i)

25: end if
26: end for
27: end if
28: end for
29: Update cluster statistics for t+ 1 where necessary
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Level 3

At levels 1 and 2, we showed how clarans can be accelerated using the triangle inequality.
The accelerations were exact, in the sense that for a given initialization, the clustering
obtained using clarans is unchanged whether or not one uses the triangle inequality.

Here at level 3 we diverge from exact acceleration. In particular, we will occasionally
reject good proposals. However, the proposals which are accepted are still only going to
be good ones, so that the energy strictly decreases. In this sense, it is not like stochastic
gradient descent, where the loss is allowed to increase.

The idea is to the following. Given a proposal swap : replace the center of cluster kp
with the element indexed by ip, use a small sample of data to estimate the quality of
the swap, and if the estimate is bad (increase in energy) then immediately abandon the
proposal and generate a new proposal. If the estimate is good, obtain a more accurate
estimate using more (2×) elements. Repeat this until all the elements have been used
and the exact energy under the proposed swap is known : if the exact energy is lower,
implement the swap otherwise reject it.

The level 1 and 2 accelerations can be used in parallel with the acceleration here. The
elements sub sampled at level 3 are chosen to belong to clusters which are not eliminated
using level 1 and 2 cluster-wise bound tests. Suppose that there are K̃ clusters which are
not eliminated at level 2, we choose the number of elements chosen in the smallest sub
sample to be 30K̃. Thereafter the number of elements used to estimate the post-swap
energy doubles.

Let the number of elements in the K̃ non-eliminated clusters by nA and the number
sampled be nS , so that nS = 30K̃. Supposing that nA/nS is a power of 2. Then, one can
show that the probability that a good swap is rejected is bounded above by 1− nS/nA.
Consider the case nA/nS = 2, so that the sample is exactly half of the total. Suppose
that the swap is good. Then, if the sum over the sample is positive, the sum over its
complement must be negative, as the total sum is negative. Thus there at least as many
ways to draw nS samples whose sum is negative as positive.

If nA/nS = 4, then consider what happens if one randomly assign another quarter to the
sample. With probability one half the sum is negative, thus by the same reasoning with
probability at least 1/2× 1/2 = 1/4 the sum over the original nS samples is negative.

Links to datasets

The rcv1 dataset : http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a13-vector-files/
lyrl2004_vectors_train.dat.gz

Chromosone 10 : http://ftp.ensembl.org/pub/release-77/fasta/homo_sapiens/dna/Homo_
sapiens.GRCh38.dna.chromosome.10.fa

English word list : https://github.com/dwyl/english-words.git
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Algorithm 30 Level 3: Schemata of using sub sampling to quickly eliminate unpromising
proposals without computing an exact energy. This allows for more rapid proposal
evaluation.

1: Determine which clusters are not eliminated at level 2, define to be U .
2: K̃ ← |U |.
3: NT ←

∑
k∈U Nt(k)

4: NS ← 30K̃
5: S ← uniform sample of indices of size NS from clusters U
6: ∆̂t(kp C ip)←∞
7: while NS < NT and ∆̂t(kp C ip) < 0 do
8: ∆̂t(kp C ip)← 1

NS

∑
i∈S δt(i | kp C ip)

9: NS ← min(NT , 2NS)
10: S ← S ∪ uniform sample of indices so that |S| = NS .
11: end while
12: if NS < NT then return reject
13: else
14: Compute ∆t(kp C ip)
15: if ∆t(kp C ip) < 0 then return accept
16: else return reject
17: end if
18: end if

Local minima formalism

Theorem D.6.1. A local minimum of clarans is always a local minimum of vik.
However, there exist local minima of vik which are not local minima of clarans.

Proof. The second statement is proven by the existence of example in the Introduction.
For the first statement, suppose that a configuration is a local minimum of clarans, so
that none of the K(N −K) possible swaps results in a decrease in energy. Then, each
center must be the medoid of its cluster, as otherwise we could swap the center with the
medoid and obtain an energy reduction. Therefore the configuration is a minimum of
clarans.

Efficient Levenshtein distance calculation

The algorithm we have developed relies heavily on the triangle inequality to eliminate
distances. However, it is also possible to abort distance calculations once started if they
exceed a certain threshold of interest. When we wish to determine the 2 nearest centers
to a sample for example, we can abort a distance calculation as soon as we know the
distance being calculated is greater than at least two other centers.

For vectorial data, this generally does not result in significant gains. However, when
computing the Levenshtein distance it can help enormously. Indeed, for a sequence of
length l, without a threshold on the distance the computation cost of the distance is
O(l2). With a threshold m it becomes (lm). Essentially, only the diagonal of is searched
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Figure D.5 – Comparing
km+++clarans+lloyd and km+++lloyd,
over ten runs, on the complete rna
dataset at https://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/binary.html#
cod-rna with dimensions N = 488, 565, d
= 8, and K = 2, 000. We ignore here the
time to run km++, so that at t = 0 km++
has finished. Running clarans before
lloyd results in mean final MSE of 0.76, a
significant improvement over 0.83 obtained
without clarans. With clarans+lloyd,
that is without pre-initializing with km++,
the mean MSE is also 0.76, although
clarans runs for 28 seconds, as opposed
to 18 seconds with km+++clarans+lloyd.

while running the dynamic Needleman-Wunsch algorithm. We use this idea at all levels
of acceleration.

A comment on similarities used in bioinformatics

A very popular similarity measure in bioinformatics is that of Smith-Waterman. The idea
is that similarity should be computed based on the most similar regions of sequences, and
not on the entire sequences. Consider for example, the sequences a = 123123898989, b =
454545898989, c = 123123012012. According to Smith-Waterman, these should have
sim(a, b) = sim(a, c)� sim(b, c). This is not possible to turn into a proper distance, as
one would need dist(a, b) = dist(a, c) � dist(b, c), which is going to break the triangle
inequality. Thus, the triangle inequality accelerations introduced cannot be applied to
similarities of the Smith-Waterman type.

Pre-initializing with km++

In Figure D.5, we compare km+++clarans+lloyd and km+++lloyd.

Comapring the different optimizations levels, and kmlocal

We briefly present results of the optimizations at each of the levels, as well as compare
to the clarans implementation accompanying Kanungo et al. [2002a], an algorithm
which they call ‘Swap’. The source code of Kanungo et al. [2002a] can be found at
https://www.cs.umd.edu/~mount/Projects/KMeans/ and is called ‘kmlocal’, and our
code is currently at https://github.com/anonymous1331/km4kminit. To the best of our
knowledge, we compiled kmlocal correctly, and used the default -O3 flag in the Makefile.
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Figure D.6 – Comparing the different optimization levels and the implementation of
clarans of Kanungo et al. [2002a], kmlocal at https://www.cs.umd.edu/~mount/Projects/
KMeans/. Left and right are the same but for a logarithmic scale for the time-axis on
the right. The data being clustered here is N = 500, 000 elements in d = 4, drawn from
a Gaussian distribution with identity covariance, and K = 500. We see that the various
levels of optimization provide significant accelerations, and that the implementation in
kmlocal is 2 orders of magnitude slower than our level 3 optimized implementation.

The only modification we made to it was to output the elapsed time after each iteration,
which has negligible effect on performance.

The data consists in this experiment is N = 500, 000 data points in d = 4, drawn i.i.d
from a Gaussian with identity covariance, and K = 500. With all optimizations (level 3)
convergence is obtained within 20 seconds. We notice that each optimization provides a
significant boost to convergence speed. The faster initialization at levels 2 and 3 is due
to the fact that using inter-center distances allows nearests and second nearests to be
determined with fewer distances and comparisons.

Finally we note that the implementation of Kanungo et al. [2002a], kmlocal, is about
100× slower than our level 3 implememtation on this data. We have not run any other
experiments comparing performance.
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Figure D.7 – Improvement obtained using clarans for different values of K (horizontal
axis). The experimental setup is as follows. N = 20, 000 points are drawn from a 3-D
Gaussian with identity covariance. Then for each of 40 values of K on the horizontal
axis, (1) km++ is run for fixed seed, and the time it takes to run is recorded (call it T++).
clarans is then run for a mulitple ‘itok’ of T++, where ‘itok’ is one of {0, 1, 2, 4}. ‘itok’
of 0 corresponds to no clarans. After clarans has completed, lloyd is run. For ‘itok’
in 1, 2, 4 the ratio of the final MSE with ‘itok’ 0 (no clarans) is plotted. This value is
the fraction of the MSE without running clarans. We see that the dependence of the
improvement on K is significant, with larger K values benefitting more from clarans.
Also, as expected, larger ‘itok’ results in lower MSE.
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