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This paper proposes a novel feature-extraction framework for inferring impressed personality traits, emergent
leadership skills, communicative competence and hiring decisions. The proposed framework extracts multi-
modal features, describing each participant’s nonverbal activities. It captures inter-modal and inter-person
relationships in interactions and captures how the target interactor generates nonverbal behavior when other
interactors also generate nonverbal behavior. The inter-modal and inter-person patterns are identified as
frequent co-occurring events based on clustering from multimodal sequences. The proposed framework is
applied to the SONVB corpus, which is an audio-visual dataset collected from dyadic job interviews, and the
ELEA audio-visual data corpus, which is a dataset collected from group meetings. We evaluate the framework
on a binary classification task involving 15 impression variables from the two data corpora. The experimental
results show that the model trained with co-occurrence features is more accurate than previous models for 14
out of 15 traits.
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1 INTRODUCTION
The automatic nonverbal analysis of various interaction types is a promising approach for many
types of applications. In recent years, one challenge in this research has been to infer the high-level
characteristics of participants as target variables, such as their roles, attitudes in conversation,
emerging leadership skills, personality traits, and communication skills, by combining audio and
visual information obtained from observations of individuals in various social settings, such as
monologues, dyadic interactions, and small-group interactions. A key factor to success is the
extraction of nonverbal features that can be used to infer the target variable. To extract effective
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Fig. 1. Overview of proposed framework

features, previous works have defined static features from audio and visual data based on knowledge
regarding social science. Audio cues, such as speaking and prosodic features, and visual cues, such
as body activity, head activity, hand activity, gaze and facial expression, are used to infer personality
traits. Statistics, such as the mean, standard deviation and percentile of these features, are calculated
by accumulating each event observed over an entire meeting or conversation. Conversational
nonverbal patterns occur on multiple timescales [15] that range from fine-grained features, such
as the presence of speech and head-gesture patterns, to contextual conversational patterns, in
which multiple events occur simultaneously. Therefore, (1) inter-modal (e.g., speaking with/without
gestures) and (2) inter-person (e.g., participant B is nodding while participant A is speaking) co-
occurrence features are important for capturing human-human multimodal interactions. From this
perspective, static features that are accumulated over an entire meeting do not capture inter-modal
and inter-person relationships.
In this paper, we propose a co-occurrence event-mining framework to explicitly extract the

inter-modal and inter-person features from multimodal interaction data. The goal of this study is to
analyze the effectiveness of the framework in inferring impression scores using multiple datasets
representing various social settings. For this purpose, we use the framework to carry out impression
inference in both dyadic interactions and group interactions and evaluate its applicability. Via
modeling and evaluations, we present guidelines for applying the framework to each type of
conversation. The use of co-occurrence patterns between modalities yields two main advantages
for modeling the impression scores. First, the inference accuracy of the impression variable can be
improved based on a rich feature set extracted by capturing the interactions between modalities
(inter-modality) and the interactions between participants (inter-person). Second, discovering key
contextual patterns linking personality traits allows understanding the conversational contexts
that can be used to predict the trait variables.

In this study, we use the SONVB corpus [31], which includes 62 dyadic interactions that occurred
within a real job interview setting. This dataset includes audio and visual data and impression
variables for hiring decisions. We also use the ELEA (Emerging LEadership Analysis) corpus, which
includes 27 group interactions involving groups of 3 or 4 people. This dataset includes audio
and visual data and personality-trait annotations, such as Big Five personality impressions and
perceived leadership, scored by group members and external observers [42]. The Big Five model
used in psychology is capable of capturing the main personality traits of individuals [22]. In our
experiments, we perform binary trait-level classifications to evaluate our approach and compare it
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with previous work. The main contributions of this paper are as follows.
(1) To capture inter-modal and inter-person relationships explicitly as features, we propose an
efficient co-occurrence mining method that can identify frequent co-occurrences from the combina-
tion of 2N (par ticipants) × M (modalit ies). Audio-visual features and the corresponding co-occurrence
features are extracted automatically by the proposed framework.
(2) We evaluate our approach on two datasets: a dyadic-interaction dataset (SONVB) and a group-
interaction dataset (ELEA). We show that the proposed approach is applicable to both dyadic
interactions and group interactions.
(3) To demonstrate the effectiveness of co-occurrence features, the well-designed multimodal fea-
tures proposed in previous studies [5, 31] are used to compare the inference performances. The
experimental results show that the use of co-occurring event features improved the accuracy for 9
out of 10 traits in the ELEA corpus and for all five impression indexes in the SONVB corpus.
We present related work in Section 2. Section 3 explains the data-mining framework. Section 4

presents the data corpora used to infer personality traits. Section 5 presents the multimodal features
extracted from the corpus. Section 6 and Section 7 present the experimental setting and the results,
respectively. Section 8 presents limitations and future works. In Section 9, we conclude the study.

2 RELATEDWORK
Our research is related to personality-trait modeling and interaction mining. This study focuses on
impression modeling in conversations.

2.1 Impression inferences in dyadic interactions
Several researchers have investigated computational behavior analyses in dyadic interactions for
the prediction of outcomes in speed dating [25], job interviews [29, 31], and negotiations[14, 37]
and for the identification of personality traits [8] and psychological disorder indicators [43].
To the knowledge, a number of works [29, 31] have used co-occurrence features to infer im-

pression variables. Nguyen et al. [31] extracted not only features from a single modality but also
multimodal and interaction (relational) features such as mutual gazing and speaking gestures, which
are predefined manually, to infer expert-coded hireability scores. However, the specific contribution
of the co-occurrence features to the entire feature set was not reported. Naim et al. [29] proposed a
hierarchical coupled hidden Markov model to capture the synchronization of the facial expressions
of two participants to infer conversation outcomes. The research shows that synchronized nonver-
bal templates contribute to the prediction of negotiation outcomes. Although mutual gazing and
synchronization of facial-expression patterns are recognized as effective co-occurrence features for
impression prediction in [31] and [29], whether other co-occurrence features are effective for such
predictions is not clear. The approach proposed in our study focuses on the mining and extraction of
various types of co-occurrence features rather than predefined ones (e.g., mutual gaze) to improve
prediction accuracy. Co-occurrence features do not have to be manually set, which is required by
the methods presented in [31] and [29]. Our approach identifies the co-occurrence patterns that
are frequently observed from all possible combinations of modalities.

2.2 Impression inference in groups
For multiparty interactions, different works included different variables: social roles [47, 52],
dominance[40], personality traits [5, 38] and leadership [42]. As a common approach of these
works, audio and visual features are calculated using the mean, medium, min, max, and X percentile
of various statistics (count and length) from each pattern observed throughout an entire meeting
or for a part of a meeting [5, 33, 42]. Although this approach can often fuse the total statistics of
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patterns observed within a specified duration, it cannot capture co-occurrence between multimodal
patterns for each time period. For example, extracting co-occurrence events between an utterance
and a body-motion pattern as a feature is useful if the utterance accompanying the body gesture
makes a stronger impression on the listener than that utterance without the gesture. Our mining
algorithm explicitly extracts such co-occurrence features.

2.3 Inter-modal modeling
Several other studies have focused on extracting the correlations between modalities. Song et
al. [44] proposed a multimodal technique that models explicit correlations among modalities via
canonical correlation analyses (CCAs) [19]. The algorithm was evaluated using a recognition task
for disagreement/agreement with a speaker in political debates [48]. Chatterjee et al. [13] proposed
an ensemble approach that combines a classifier based on inter-modality conditional independence
with a classifier based on dimension reduction via a multiview CCA. The model explicitly captures
the correlations between the modalities but does not focus on extracting co-occurrence patterns
that overlap between multiple modalities. These algorithms were applied to a dataset of monologues
by speakers presented via social media and spoken during political debates. Our research focuses
on extracting features that capture inter-modal and inter-person relationships in interactions but
not in monologues.
Feature co-occurrence is often adopted in computer vision [23, 39, 53] and visual search [49,

51, 54]. The idea is also successfully utilized in recommender systems [55]. Going beyond the
visual modality, our study shows that feature co-occurrence captures (audio-visual) inter-modal
and inter-person relationships to infer impression scores in both dyadic and group face-to-face
communication.

2.4 Unsupervised learning and mining for feature extraction
The work in [21] uses latent Dirichlet allocation (LDA)[11] to mine context features in groups.
In [21], group features called group looking (or speaking) cues are defined manually and used as
input for LDA. Context features are extracted as topics (clusters) generated by LDA. The work in
[7] models the influence of one member on other members by relating interactions of nonverbal
patterns between group members to transition between hidden states (e.g., one utterance starts
after an utterance by another member) in a Markovian formulation.

In [21] and [7], feature extraction is performed for each group to analyze these group nonverbal
patterns and group performance or group composition. Moreover, individuals belonging to different
groups must be compared within the same metric space. In our study, we propose a novel data-
representation method for applying a data-mining framework that separates the nonverbal patterns
of one member from those of other members.
A data-mining framework has also been applied for other types of multimodal datasets. The

study presented in [26] applied frequent sequence mining as a feature-extraction method for
predicting user states while playing games that involved the use of physiological signals, game-play
information, and user keystrokes. The study presented in [27] enhanced this framework as an
unsupervised feature-learning framework using convolutional neural networks (CNN) [24]. Rather
than studying users playing games, the research presented here is focused on multimodal multiparty
interactions and dyadic interactions. In general, the phenomena observed in human-to-human
conversation involves different issues than those observed for a single participant.

Preliminary works [30, 35, 36] have been performed using co-occurrence pattern mining similar
to the proposed approach. Okada et al.[36] used a co-occurrence pattern-mining algorithm, which
is a modified version of the algorithm in [46], to extract features to infer the performance level
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of storytelling in a group interaction. The main difference with respect to our work is that the
research focuses on the modeling of group performance and not individual performance and that
nonverbal features are extracted manually. The main limitation of these research works [30, 36] is
that only binary event (on/off) features are used for mining. We proposed an approach to convert
time-series signals into binary events by using a clustering algorithm in [35]. Using this approach,
a time-series event, such as increasing pitch level, could also be extracted. We previously proposed
an approach to converting time-series signals into binary events via a clustering algorithm in [35].
In the current study, we reduce the limitations of the framework proposed in [35]. We summarize
the main contributions of this paper in the following.
• This study significantly expands upon [35] by adding a second case of use (dyadic interactions)

and demonstrates that the techniques improve classification performance for all the variables in
the dyadic-interaction dataset. The application of inter-modal and inter-person feature extraction
in impression recognition tasks involving dyadic interactions has not been explored in previous
works. We show the versatility of inter-modal and inter-person feature extraction by studying a
dyadic-interaction dataset and a group-interaction dataset.
• Via the analysis of co-occurrence features, we clarify which type of co-occurrence feature
set contributes to the classification performance for each variable in SONVB, for the dyadic
interaction case.
• In [35], the early fusion of different types of co-occurrence feature sets occasionally fails because

of the unbalanced number of binary event features, such as on/off speech, and categorical features
To avoid this problem, a late (score) fusion method is used to fuse these feature sets. The co-
occurrence feature set obtained from each event sequence is projected into low-dimensional
space using principle component analysis (PCA). We show that combining these techniques with
the proposed framework can result in the extraction of effective inter-person and inter-modal
features for both datasets, even if the hyperparameters of the model have the same values for
both datasets.
• In the appendix, we conduct a sensitivity analysis of the main parameters and evaluate the

area under the receiver operator characteristic (ROC) curve for binary classification accuracy to
clarify the effectiveness of co-occurrence features. The sensitivity analysis presents a guideline
for adopting the proposed framework for other tasks related to dyadic and group interactions.

3 CO-OCCURRENCE MULTIMODAL PATTERN MINING
In this section, we present our mining algorithm to identify the co-occurrence patterns between
modalities. The goal of this algorithm is to find the frequently co-occurring features in the feature
sets presented in Section 3.1.

3.1 Multimodal feature representation
We propose a feature representation method for capturing the co-occurrence of the nonverbal
patterns observed for each participant. We define co-occurrence patterns as multimodal events
that overlap in time. Each event has a time length and corresponds to a segment denoted by “ON”
in Figure 1. We define an event as a segment in which the feature is active. Multimodal features are
represented as follows. First, the feature representation for a dyadic interaction is described. Let
Fdyadic be the feature set for a dyadic interaction:

Fdyadic = {Fm , Fn}, Fm = { fm,1, . . . , fm,i , . . . , f1,Nm }. (1)

F∗ denotes one specific feature (e.g., speaking status); Fm is the feature representation for one
specific person, who is the subject for which the impression is inferred; and Fn is the feature
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representation for the member n who is sitting opposite member m. In SONVB, member m is
the applicant, and member n is the interviewer. Fm and Fn represent the time-series binary data
composed of fm,i and fn,i , respectively, where fm,i is the ith event observed for memberm. The
ith event is composed of the binary value for a specific nonverbal feature. We defined an event
as a segment in which the feature is active. Nm is the number of nonverbal patterns observed
throughout an entire meeting. Fn is defined in the same manner as Fm . Examples of {Fm , Fn} are
presented in Figure 1.
Second, the feature representation for a group interaction is described. We propose a feature

representation for comparing nonverbal patterns that are observed for each participant in a group.
The representation captures how a participant acts when other members execute any nonverbal
activity by simultaneously observing the nonverbal activities of both the individual participant and
the other group members. Let Fдroup be the feature set for a group interaction:

Fдroup = {Fm , Fд}. (2)

Fm is the feature representation for one specific person in a group, and Fд is the feature representa-
tion for a group composed of the other members withoutm. An example of {Fm , Fд} is shown in
Figure 1. The co-occurrence pattern mining requires conversion of the time-series signal data into
a sequence of events (fm,i ) with a finite time length as a preprocessing step.

Multimodal behavior is inherently observed as time-series signals in a session. The binarization
or discretization of continuous time-series data is described in Section 5. The modified audio-visual
features f in Fdyadic and Fдroup are also described at the bottom of Table 1 and Table 2, respectively.

3.2 Co-occurrence pattern-mining procedure
We adopt the star algorithm proposed in [6] to efficiently identify co-occurring patterns in time
series from continuous time-series data. Figure 2 shows an example of the mining algorithm. To
input the multimodal feature set F extracted from all participants into the mining algorithm, Fdyadic
and Fдroup , when each participant is the target, member m is concatenated along the time-series
dimension. For example, on SONVB, Fdyadic , which is extracted from nonverbal behavior of the
applicant in session 2, is concatenated after the end frame (end of session) of Fdyadic in session 1.

3.2.1 Notation. Themultidimensional time-series binary data are represented as F = { f1, . . . , fm},
which are extracted from all modalities and all participants in the interaction. Each f is composed
of events in which the feature is active (e.g., speaking status is “on”). An index pair that includes the
start frame and end frame of each event is defined as f i = {s, e}, and the index set of feature fm is
defined as FIm = (f im,1 . . . f im,Nm ), where Nm is the number of events. The co-occurrence pattern
set is defined as CF L = {c f1, . . . , c fNL }. c f denotes a co-occurrence pattern, which is represented
as a subset of F (e.g., c f1 = { f1, f5} when L = 2). L denotes the number of features in a subset. Note
that CF 1 equals to F because c f∗ = f∗.

3.2.2 Mining algorithm. The co-occurrence mining is performed via Algorithm 1 . The data
input into the algorithm are multimodal feature sets F and threshold hyperparameter α , while the
data output are the co-occurrence feature sets CF . The goal of the algorithm is to find co-occurrence
patterns, which are often observed in all interactions of a data corpus. The pattern-mining process
is iterated until the set of co-occurrence patterns CFL is empty set (row 3 in Algorithm 1). In
each iteration, similarity based clustering (Algorithm 3) is conducted to find a co-occurrence pair
between the co-occurrence pattern set CFL and the feature set in row 4 of Algorithm 1.

Algorithm 3 is utilized to find pairs of the following: a co-occurrence pattern c f and feature
f . The pairs are merged when more than α ∗ 100[%] of the total events of c f are temporally
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ALGORITHM 1: Co-occurrence Pattern Mining
Input :Multimodal feature set: F ; Threshold: α
Output :Co-occurrence pattern set: CF ;

Frame index of CF : FI
1 Set initial pattern set: CF1 ← F
2 Initialization: L← 1
3 while CPL , ∅ do
4 [CFL+1, FIL+1] =

FindinдClusters(CFL , F, FIL , FIF ,α)
5 Reject equivalent co-occurrence patterns
6 L← L + 1
7 end
8 CF = {CF1, . . . ,CFL}, FI = {FI1, . . . , FIL}

ALGORITHM 2: CountOverlap
Input :Frame index: FIa , FIb
Output :Number of count: N ;

Co-occurrence frame index: FIab
1 FIab = ∅, N ← 0
2 for f ia ∈ FIa do
3 for f ib ∈ FIb do
4 if (sa <= eb ) ∩ (sb <= ea ) then
5 f iab = {sa , ea }

6 FIab ← {FIab , f iab }

7 N ← N + 1
8 end
9 end

10 end

ALGORITHM 3: FindingClusters
Input :Pattern set: CFa , Fb ;

Frame index: FIa , FIb ;
Threshold:α

Output :Merged pattern set: CF ∗;
Frame index of CF ∗: FI∗

1 Nab ← 0
2 for c fa ∈ CFa do
3 for fb ∈ Fb ∩ fb < c fa do
4 [Count , f i] =

CountOverlap(FIcfa , FIfb )

5 w = Count/Ncfa
6 if w > α then
7 Nab ← Nab + 1
8 c f ∗Nab

← {c fa , fb }

9 f iNab ← f i

10 end
11 end
12 end
13 CF ∗ = {c f ∗1 . . . , c f

∗
Nab
}

14 FI∗ = { f i1 . . . , f iNab }3004 SpeechHead MBody MGaze Speech Head M Body M GazeSpeech * 0 1 1 -Head M 0 * 0.5 0.5 -Body M 1 0.5 * 1 -Gaze 0.66 0.33 0.66 * -- - - - *(2) Coincidence Matrix(1)Multimodal  feature set Each value  is  (4) Co-occurrence pattern setdiscovered  by clustering }} }}Name with bold type is "seed feature”(3) Clustering  ( 9)denotes edges  where >SpeechBody M Head MGaze (5) Modality based PCA and Classification… …… … … 1 2 3 42 4 0 13 3 0 08 0 4 6PCA PCA …Modality based PCA Calculate frequency of per personP1P2 Impressionscore4.5 (Low)8.5 (High)4.6 (Low)X YClassification…
Fig. 2. Example of multimodal pattern mining and representations of features and learning

overlapped with that of f (rows 5, 6 in Algorithm 3). The overlap frequency is calculated as
CountOverlap(FIa , FIb ) (Algorithm 2).Algorithm 2 outputs the overlap frequency and the frame
index set in which the patterns are temporally overlapped. Here, the ratio of the overlap frequency
N to the total number of events Ncf is defined as the co-occurrence ratio w in Algorithm 3.
α (0 < α < 1) in Algorithm 1, 3 is the threshold of the co-occurrence ratio for the merging of
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patterns. α is the hyperparameter in this mining algorithm. If we set α to a small value, the features
are merged even if the co-occurrence ratio is low and a large number of co-occurrence features are
discovered. If we set α to a large value, the features are merged only when the co-occurrence ratio
is high. The dependency of the number of features on the value of α is discussed in Section A.3.1 as
an appendix.

Similarity based clustering (Algorithm 3) is conducted to find the co-occurrence features in each
iteration. After clustering, equivalent co-occurrence patterns are removed (e.g., cp1 = {F1, F3, F5}
and cp2 = {F1, F5, F3}) from CPi+1 to speed up the process. The frame index FI1 of c f in CF1(= F )
is transferred as that of the co-occurrence featureCFL . (row 9 of Algorithm 3). The feature f in F ,
as a seed of the co-occurrence feature, is defined as the seed feature fo ((4) in Figure 2). Finally, the
co-occurrence feature set is output as CF = {CF1, . . . ,CFL}.

3.2.3 Feature set developed from CF . The co-occurrence features are converted into the feature
of each participant as follows. The total number CFIn,m of times that co-occurrence feature CFn,m
is observed in the meeting is used as a feature value (table of (5) in Figure 2). We define the co-
occurrence feature-vector set as CFI ∈ RM×N , where M is the number of participants and N is
the number of co-occurrence features. CFI still includes nearly equivalent vectors because the
value is composed of similar co-occurrence sets (e.g., {F1, F3, F5} and {F1, F3, F5, F7}). We reduce
the number of dimensions of CFI using PCA for co-occurring features (a group) with each type of
seed feature fo ((4) in Figure 2). If CFI is rewritten as a combination of feature sets with different
seed features, then CFI = {CFI (1), . . . , CFI (o), . . . , CFI (O)}. After performing the dimension-
reduction process for each group via PCA, the co-occurrence feature set CFI (o) of the oth group
is projected onto the low-dimensional vector set CF∗(o). Finally, the feature set is defined as
CF ∗ = {CF∗(1), . . . , CF∗(o), . . . , CF∗(O)}. CF ∗ is used to develop the classification model.

4 DATA CORPUS
4.1 SONVB: Dyadic-interaction dataset
SONVB is a dyadic-interaction dataset that is used for analyzing impressions related to hiring
decisions by the interviewer and the communication skills utilized in a job interview [31]. The corpus
includes 62 real employment interviews. More female than male job applicants (45 females, 17 males)
were included. The interview structure and hireability annotations followed the same sequence
of questions to ensure that comparisons could be made between candidates. In total, the dataset
is composed of 670 minutes of recordings (average interview duration: 11 minutes). In this study,
five hireability scores were defined: “ hiring decision (HirDecision)”, “ communicative competence
(Communication)”, “ persuasion skill (Persuasion)”, “ work conscientiousness (Conscience)”, and “
stress resistance (StressRes)”. The hireability score ranged from 1 to 5 except for hiring decisions,
which ranged from 1 to 10. The hireability measures were primarily annotated by two professionals
in organizational psychology, who are trained in recruiting applicants. Additional details on the
SONVB corpus can be found in [31].

4.2 ELEA group-interaction dataset
We used a subset of the ELEA corpus [42] for this study. The subset consists of audio-visual (AV)
recordings of 27 meetings in which the participants performed a winter survival task with no roles
assigned. The participants in the task played the role of survivors of an airplane crash and were
asked to rank 12 items to take with them to survive as a group. Participants first ranked the items
individually and then as a group. Participants engaged in a discussion while seated around a table.
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To sense the infrastructure, Dev-Audio Microcone 1, a commercial portable microphone array (the
green square in the bottom-left picture in Figure 1), was used to collect the audio. Two wide-angle
web cameras (the blue squares in the bottom-left picture in Figure 1) were used for the video setup.
A total of 102 participants were included (six meetings with three participants and 21 meetings
with four participants). Each meeting lasted approximately 15 minutes. The synchronization of
audio and video was performed manually by aligning the streams according to the clapping activity.
Additional details on the ELEA AV corpus can be found in [41].

Big Five trait impressions from external observers: Personality impressions of the partici-
pants according to the external observers were collected in [5]. These annotations include scores
for the Big Five traits: “Extraversion”, “Agreeableness”, “Conscientiousness”, “Emotional Stability”,
and “Openness to Experience”. Additional details regarding the Big Five traits can be found in [22].
The Ten-Item Personality Inventory (TIPI) was used to measure the Big Five personality traits of
the participants [16]. The TIPI includes two questions per trait, answered on a 7-point Likert scale.
Additional details can be found in [5].

Leadership impressions from group members: The ELEA corpus also includes scores for
traits of individuals with respect to dominance and leadership. After the meeting task, the par-
ticipants completed a Perceived Interaction Score, which captures perceptions from participants
during the interaction, in which they scored every participant in the group based on four items
related to the following concepts: “Perceived Leadership (Leadership)”, “Perceived Dominance
(Dominance)”, “Perceived Competence (Cometence)” and “Perceived Liking (Likeness)”. Afterwards,
the “Dominance Ranking (Ranked Dominance)”. Leadership captures whether a person directs the
group and imposes his or her opinion. Dominance captures whether a person dominates or is in a
position of power. Participants were asked to rank the group, assigning 1 to the most dominant
participant and 3 or 4 to the less dominant participants. Additional details can be found in [42].

5 MULTIMODAL FEATURES
Multimodal features are extracted automatically from audio and visual cues in this study. The
feature sets of the SONVB and ELEA used in this study are summarized in Table 1 and Table
2, respectively. We extract co-occurrence features from the feature set in [5, 31] to model the
impressions in SONVB/ELEA. First, we explain the audio and visual features in Section 5.1 and
Section 5.2, respectively. Then, we present specific features of the SONVB and ELEA in Section 5.3
and Section 5.4, respectively.

Note that different multimodal feature sets for different datasets (Table 1 and Table 2) are used in
this study because the original feature sets used for SONVB in [31] and for ELEA in [5] are different.
The main difference is that the gaze features are used only in the ELEA corpus and not used in the
SONVB corpus. While the original SONVB feature sets [31] include manually coded gaze features,
they are coded only as an aggregate for the whole interaction and not as time series data. Because
our current study requires input features in the form of time series data, gaze features are not used
for SONVB in this study.
Because the ELEA dataset is provided with gaze features and our proposed framework is able

to use those features, it is better to use all of these features for comparison with the feature set
proposed in[5], which also includes gaze features.
Our specific goal was not to perform a direct comparison between the two datasets, but rather

to compare our proposed features with those from previously reported works ([31] and [5]), each
of which uses a separate feature set. Thus, our feature set is aligned with those used in the original
works [5, 31] to enable a proper comparison of classification accuracy.
1 Microcone: Intelligent microphone array for groups (now discontinued): http://www.dev-audio.com/
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Table 1. Multimodal feature set for the impression index inferred via dyadic interactions: SONVB (Feature
set corresponds to Fdyadic )

ID Feature Symbol Descriptions
Binary features (on/off)

F1 speaking LST long speech segments of the target person;
status LSA long speech segments of another person;
(ST ) LSsil silent long speech segment;

SST short speech segments of the target;
SSA short speech segments of another person;
SSsil silent short segments;
SilT all silent segments of the target;
SilA all silent segments of another person;
SilAll silent all segments;

F2 Head HNT head-nod segments of target person;
nod HNA another person nods;
(HN ) HNsil still nod segment;

Categorical and time-series features
Prosody features

F3 Pitch PU , PD, PN ∗U (up), ∗D (down), ∗N (no change):
(PI ) PL, PM , PH magnitude relationship of the statistics in

F4 Energy EU , ED, EN (t − 1) and (t)th utterance or motion segment
(EN ) EL, EM , EH

F5 Voice rate VU , VD, VN ∗L (Low), ∗M (Medium), ∗H (High):
(VR) VL, VM , VH magnitude level of the statistics
Motion of upper body

F6 wMEI MU ,MD,MN Weighted Motion Energy Images (wMEI)
(MT ) ML,MM ,MH used in [4]

Head motion
F7 OPT Mag. OMU , OMD, OMN OPT: optical flow [9]

(OM) OML, OMM , OMH
F8 OPT Vel. OVU , OVD, OVN

(OV ) OVL, OVM , OVH
F9 OPT Acc. OAU , OAD, OAN

(OA) OAL, OAM , OAH
Feature set: Fdyadic in Equation 1
Features from target person:Fm LST , SST , SilT in F1, HMT in F2, F3, F4, F5, F6, F7, F8, F9
Features from another person: Fn ∗A, ∗sil, SilAll in F1 and F2

5.1 Audio feature baseline
5.1.1 Speaking status. Binary segmentation is performed to capture the speaking status (ST ) of

each participant. This binary segmentation is provided by the microphone array, and all speaking
activity cues are based on the speaker segmentations obtained using the Microcone, which is used
for the audio recordings and speaker diarization in [5, 42] and [31]. We define a set of segments in
which the speech status is “on” as the speaking-turn set ST .

5.1.2 Prosodic features. Prosodic features are extracted for each individual member. Based on
the binary speaker segmentation, we obtain the speech signal for each participant. Overlapping
speech segments are discarded, only the segments in which the participant is the sole speaker are
considered for further processing. Three prosodic speech features (energy, pitch and voice-rate) are
determined based on the signal.
We calculate the sign of the difference between the statistics of utterance j and utterance j + 1.

Prosodic features are assumed to change for various reasons. For example, when a participant is
likely excited, the energy of his/her utterance may increase after hearing an utterance of another
participant. Let pi j denote the pitch samples extracted from utterance j. We define three types
of relationships between feature magnitudes; U , D, and N which indicates up, down, no change,
respectively.
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Table 2. Multimodal feature set for the impression index used to infer group interactions: ELEA (feature set
corresponds to Fдroup .)

ID Feature Symbol Descriptions
Binary features (on/off)

F1 Speaking ST speech segments of the target person;
status SO1 one person other than the target speaks;
(ST ) SO2 more than two people speak;

Ssil silent segment;
F2 Head HMT motion segments of the target person;

Motion HMO1 one person other than the target moves;
(H ) HMO2 more than two people move;

HMsil still motion segment;
F3 Body BMT motion segments of the target person;

Motion BMO1 one person other than the target moves;
(B) BMO2 more than two people move;

BMsil still motion segment;
F4 Gaze GT target person looks at person;

(G) GTSp target person looks at speaker;
GOT 1 one person looks at the target;
GOT 2 more than two people look at the target;
MGT mutual gaze between target and another person;
MGO mutual gaze between two people other than the target;

Categorical and time-series features
Prosody features

F5 Pitch PU , PD, PN ∗U (up), ∗D (down), ∗N (no change):
(PI ) PL, PM , PH magnitude relationships of the statistics in

F6 Energy EU , ED, EN (t − 1)th and (t)th utterance or motion segment
(EN ) EL, EM , EH

Motion of upper body ∗L (Low), ∗M (Medium), ∗H (High):
F7 wMEI MU ,MD,MN magnitude level of the statistics

(MT ) ML,MM ,MH Weighted Motion Energy Images (wMEI) used in [4]
Feature set: Fдroup in Equation 2
Features from target person: Fm ST , HMT in F2, BMT in F3, GT , GTSp in F4, F5, F6, F7
Features from group: Fд ∗O1(O2), ∗O2, ∗sil in F1, F2, F3

GOT1, GOT2, MGT , MGO in F4

We perform a statistical t-test between pi j and pi j+1 to determine whether there is the difference
between the mean of pi j+1 and the mean of pi j with p < 0.05. We categorize utterance j + 1 into the
set PU of utterance segments for which the pitch of the current utterance is larger than that of the
previous utterance via the t-test. A similar method is applied to significant decreasing differences,
and the set PD of utterance segments for which the pitch of the current utterance is smaller than
that of the previous utterance is generated. If the difference is not significant, then the utterance
j + 1 is added to the set PN . For the energy samples, ED, EU , and EN are calculated in the same
manner. Voice-rate samples vs per second are calculated as the number of voiced segments per
second and we calculate a sample set of vs in utterance j. VD, VU , and VN are calculated in the
same manner using the t-test.

Next, we perform clustering to convert energy and pitch signals into categorical data. Clustering
of the utterances ST of all participants is performed. The clustering procedure is as follows.

(1) Calculate the statistics (max, min, average) of prosodic values in each utterance as input
samples for clustering.

(2) Perform K-means clustering using the data samples obtained from all participants to assign
each utterance into a cluster.

Three clusters corresponding to low-level (L), medium-level (M) and high-level (H ) utterances
are set. Utterance segments clustered by pitch value are added into the feature sets PL, PM , and
PH . The segments clustered by energy value are added into the feature sets EL, EM , and EH . The
segments clustered by voice-rate value are added into the feature sets VL, VM , and VH .
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5.2 Visual features baseline
Visual activity features characterize the bodily activities of each participant. These features are
composed of binary features and categorical features extracted from continuous activity.

5.2.1 Binary activity status. Binary features capture the “on/off” state of the modality.
Body activity: Body activity is measured based on simple motion differences with respect to a
stationary background. Hence, all the moving pixels outside the tracked head area are considered
to belong to the body area. Each frame is converted to a grayscale image, Ft , and the difference
image, Dt = Ft − Ft−1, is calculated. The difference image is thresholded to identify the moving
pixels, and then the total number of moving pixels in each frame is recorded. Binary segmentation
is performed using the recorded time-series data, and an activity-state set is extracted for body
motion. We define a set of segments in which the body status is “on” as the body-activity set B.
Head activity: As performed for the speech states, binary segmentation based on head tracking
and optical flow is performed, and an activity-state set is extracted for the head motion. We define
a set of segments as the head-activity set H . The details of the procedure can be found in [42].
Head nod activity: Head nods are defined as vertical movements of the head in which the head is
rhythmically raised and lowered. The method proposed in [32] is used to automatically extract
head nods. This method calculates the Fourier transform of the optical flow in the head region and
inputs it into a support vector machine (SVM) classifier. Framewise classification is performed to
detect the nodding state. We define a set of segments as the head-nod set HN .

5.2.2 Continuous activity features. The amount and the time-series changes of motion activity
capture more informative nonverbal characteristics of the participant than binary features. The
features are extracted in the same manner as used for the prosodic features (Section 5.1.2).
Motion template [4] of upper body: After the difference images are calculated between consec-
utive frames, weighted motion energy images (wMEIs) are obtained by integrating each difference
image from the whole video clip. In this study, a wMEI is calculated from a window of 1 second, and
a time-series wMEI is calculated using a sliding-window method. We sum the values of all pixels in
the nth wMEI and define the summed value as the amount of activitymtn in the nth window. As a
result, we obtain time-series activity dataMT = {mt1, . . . ,mtN }.
Optical flow in head region: The optical flow (OPT) [9] in the head region quantifies the amount
of head motion displayed by a person, and it is based on the parametric optical-flow estimation
method described in [34]. The overall optical flow between two consecutive frames is calculated
inside the face-bounding box using a parametric affine model. The estimated model is then used to
calculate the motion at three predefined points within the bounding box that correspond to the
eyes and mouth of the person under analysis. We then determine the average motion of these three
points, extract the absolute magnitude ofOM of the vertical velocity components, and calculate the
velocity magnitude OV and the acceleration magnitude OA as the change in velocity. We calculate
these features from one-second windows, and the same sliding-window method used for the wMEI
is used to obtain the time-series head-activity features.
We segment continuous time-series data wMEI (MT ) and OPT (OM, OV and OA) into finite-

length patterns by peak detection. The patterns are clustered in the same manner as that used for
the prosodic features (Section 5.1.2). We summarize the feature set for the motion template as MT
= MU, MD, ML, MM, MH. The feature set MT is calculated for each individual participant. We
calculate the feature set for head activity using optical-flow statistics and summarize the feature
set for magnitude values as OM = {OMU , OMD, OMN , OML, OMM, OMH };
the feature set for velocity magnitude as OV = {OMU , OVD, OVN , OVL, OVM, OVH };
and the feature set for acceleration magnitude as OA = {OAU , OAD, OAN , OAL, OAM, OAH }.
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5.3 Features for SONVB
We extract multimodal features individually from both participants in a dyadic setting (correspond-
ing to the applicant and interviewer in the SONVB setting). This feature description is available
for dyadic interactions, including those in the SONVB dataset. In this section, we define the target
participant, who is the subject of the inference of the impression, as Pa (the applicant in SONVB).
We define the other participant as Pi (the interviewer in SONVB).

5.3.1 Audio features. We define features from the speaking-status set ST . We define three types
of utterance-segment sets, i.e., LST , LSA, and LSsil, for both participants. LST is a set of utterance
segments of Pa . LSA is a set of utterance segments of Pi . We explicitly extract non-individual-level
features LSA from another person Pi to capture what the target person Pa does (e.g., moves his/her
body or head) when Pi is speaking to capture the listening behavior of the target participant.
LSsil is a set of segments for which the utterance state of both participants is “off”. Short

utterances are defined as speaking segments with durations of less than 2 seconds. We define three
types of short-utterance-segment sets, i.e., SST , SSA, and SSsil , in the same manner as used for
LST , LSA, and LSsil , respectively. The aforementioned non-speaking (silent) segments are defined
as having the “pause” status. We define three types of pause statuses, i.e., SilT , SilA, and SilAll ,
in the same manner as used for LST , LSA, and LSsil , respectively. We define LST , LSA, LSsil, SST ,
SSA, SSsil , SilT , SilA, and SilAll as speaking status F1 in Table 1. The prosodic features defined in
Section 5.1.2 are the pitch (P ) (F3 in Table 1), energy (E) (F4 in Table 1), and voice rate (VR) (F5 in
Table 1), which are used in [31].

5.3.2 Visual features. Head nod (HN ) was defined as nodding segments in which the nod state
is “on”. We define three types of head-nod segment sets: HNT , HNA, and HNsil (F2 in Table 1) ,
which are defined in the same manner as used for LST , LSA, and LSsil , respectively. For the body
motion, feature setMT in Section 5.2.2 is used. For the head motion, optical flow features are used.
The categorical feature sets MT (F6 in Table 1), OM , OV , and OA (F7, F8, and F9 in Table 1) are
extracted from the target participant.

5.3.3 Non-individual-level features. In dyadic interactions, the non-individual-level features of
an applicant Pa (LSA) are equivalent to the individual-level features of interviewer Pi (LST ). For
SONVB, we extract LST , LST , SST , SilT in F1, and HMT in F2, F3, F4, F5, F6, F7, F8, and F9 as features
corresponding to the target person Fm . We extracted ∗A, ∗sil, and SilAll as non-individual features
in F1 and F2 from another person: Fn in Table 1.

5.4 Features for ELEA
In this section, we define the target participant, who is the subject of the inference task, as Pt .

5.4.1 Audio features. The speaking-turn set (F1 in Table 2) of Pt in the group is denoted as ST .
We define three types of features, i.e., SO1, SO2, and Ssil , as group speaking-turn features. SO1
is a set of segments in which the speech state of a member who is not Pt is “on”. SO2 is a set of
segments in which the speech states of more than two members, not including Pt , are “on”. Ssil is
a set of segments in which the speech states of all members are “off”. Pitch (P ) and energy (E) are
used as prosodic features; they were also used in [5] (F5,6 in Table 2).

5.4.2 Visual features. Head-activity set H (F2 in Table 2) and body-activity set B (F3 in Table
2) are extracted. We also define the features HMO1, HMO2, and HMsil as group head-activity
features H and the features BMO1, BMO2, and BMsil as group body-activity features in the
same manner as used for ST . Feature set MT in Section 5.2.2 (F7 in Table 2) is used as a visual
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feature. We define a set of segments GT (F4 in Table 2) in which the target participant looks at
the other participants during the meeting. We also define a set of segments GTSp in which the
target participant looks at the speaker. We further define two features, GOT 1 and GOT 2, as group
attention features.GOT 1 andGOT 2 are sets of segments in which one member and more than two
members, respectively, look at Pt . We define the segment set for mutual gazing (although mutual
gazing is defined as a co-occurrence pattern withGT andGOT 1, 2). We prepare two group features
for mutual gazing. MGT is a set of segments in which one member x looks at Pt and vice versa.
MGO is a set of segments in which two members y and z, who are not Pt , look at each other.

5.4.3 Non-individual-level features. Other people’s features (except those of the target person)
are aggregated as group-level features composed of some people’s features. For example, consider
the case where the target person G1-A is moving his/her body while person G1-B is speaking
within time interval T. In this case, the speech segment from person G1-B is aggregated into the
group-level feature of SO1 or SO2 (if the other person is also speaking). The group-level features
are different depending on the behavior of the other person (G1-C, G1, D).

This event is also observed from the point of view of person G1-B within the same time interval
T. Consider the case where target person G1-B is speaking while G1-A is moving his/her body. In
this case, the body movement segment of person G1-B is aggregated into the group-level feature of
BMO1 or BMO2. For ELEA, we extract ST and HMT of F2, and BMT of F3, and GT and GTSp of F4,
F5, F6, and F7 as features from target person Fm . We also extract ∗O1 (O2), ∗O2, and ∗sil of F1, F2,
and F3 and GOT1, GOT2, MGT , andMGO of F4 from group: Fд in Table 2.

6 EXPERIMENTS
To evaluate the effectiveness of the proposed co-occurrence features, we evaluate the inference
accuracies of the impression variables in the SONVB corpus and ELEA corpus. The impression
variables include the 5 variables described in Section 4.1 that are used for capturing hireability in
the SONVB corpus and the 5 variables used for capturing personality traits and the 5 variables used
for capturing leadership in the ELEA corpus described in Section 4.2.

6.1 Inference tasks and classification model
The inference tasks on the two interaction settings we study have been either binary classification
or regression in previous work. For the SONVB dyadic interaction, the inference task was regression
in [31]. For the ELEA group interaction, the inference tasks were classification and regression in
[5], and then further studied as classification in [35]. In this paper, we decided to focus only on
the binary classification task for the two interaction settings. This is a deliberate choice guided
by brevity. To evaluate the effectiveness of co-occurrence features, we classify binary levels of
the impression index. In the classification task, impression values are converted to binary values
(high or low) by thresholding using the median value. For example, this method is performed to
represent people scoring high/low in terms of extraversion. The trained model is evaluated based
on the classification accuracy of the test data.
We follow the evaluation procedure in [5] and use the ridge regression model (Ridge), linear

SVM (L-SVM) and random forest [12] (RF) as classification models. The ridge regression model
and linear SVM are used in [5]. We add RF as a classifier, which has different characteristics from
those of ridge regression and the SVM in terms of the machine learning mechanism, because it is
an ensemble learning method with tree-based classifiers. To train a ridge regression classifier, the
original personality-impression scores are used, while the median score is used as the threshold for
predictions (this method is called RSCR in [5]).
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In the experiments presented below, we use leave-one-out cross-validation and report the average
accuracy over all folds. We normalize the data such that each feature has a zero mean and one
standard deviation. The ridge parameter in the ridge regression model is optimized using a cross-
validation scheme, with values in the range of [2, 150]. The parameters of L-SVM are optimized
similarly using a nested cross-validation scheme, with C parameter values selected from [0, 0.01,
0.1, 1]. The parameters of RF are optimized similarly using a nested cross-validation scheme, with
the numbers of trees per forest selected from [10, 50,100]. The number of random samples per tree
is set as the square root of the training sample set. The maximum tree depth is set to 10.

6.2 Late fusion method for co-occurrence features
We use an ensemble-classification technique to fuse the two types of feature sets. The ensemble
classier is a linear weighted combination of two classifiers: fb (x) is trained using the binary co-
occurrence feature set, and fc (x) is trained using category co-occurrence features. The binary
co-occurrence feature set includes co-occurrence features for which the seed event is the binary
feature (F1 , F2 in Table 1 and F1−4 in Table 2). The co-occurrence features are discovered from
combinations of only binary features via co-occurrence mining.
The categorical co-occurrence feature set includes co-occurrence features for which the seed

event is the categorical feature ((F3−9 in Table 1 and F5−7 in Table 2)). The co-occurrence features
are discovered from combinations of all features. For the task of classification, we calculate the
posterior probability for x as follows: Score(x) = β fb (x) + (1 − β)fc (x), where β is a weighting
parameter. The parameter β is also optimized using a nested cross-validation scheme from [0, 0.25,
0.5, 0.75, 1].

6.3 Feature sets for SONVB
We identify co-occurrence patterns in multimodal feature sets from both the applicant and in-
terviewer, as [31] reports that multimodal features from both enable the effective inference of
traits. The total number of combinations of category co-occurrence features (CP∗), is calculated
as (212 × 314) (category) + 212 (binary)= 19591045120 (almost 19 billion) in the SONVB. In total,
247242 co-occurrence patterns are identified after mining the SONVB corpus. After performing
PCA, the number of features is reduced to 297. We prepare five types of feature sets to compare the
contributions to the classification performance as follows.
Baseline feature set (1): The original feature set used in [31] was kindly shared for comparison
purposes. This feature set has 143 dimensions and is composed of audio and visual features which
are extracted automatically.
All feature set (2-1): This feature set is composed of all co-occurrence features (297 dimensions),
including the inter-modal features, which are observed from the co-occurrence relationships be-
tween modalities, and inter-person features, which are observed from interactions between the
applicant and the interviewer. The feature set also includes corresponding co-occurrence features
as viewed by both the applicant and the interviewer.
Binary feature set (2-2): The binary co-occurrence feature set (22 dimensions) is composed of
only “on/off” features: F1 and F2 in Table 1. This feature set is calculated by performing PCA after
subtracting the co-occurrence patterns in which the seed event is a categorical pattern. We set
β = 1 as the weight of fc (x) in Section 6.2.
Applicant self-feature set (2-3): The applicant self-feature set (142 dimensions) contains co-
occurrence patterns that comprise a combination of modalities of the applicant in the job interview.
This corresponds to the specific feature set by subtracting the patterns observed from the interac-
tions with the interviewer.
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Table 3. Classification accuracy for 5 impression traits in the SONVB for various types of co-occurrence
features vs. the baseline features [31] (“Ridge”, “L-SVM” and “RF” denote the ridge regression-based classifier,
the linear SVM and random forest, respectively). The bold values indicate accuracies that are higher than the
baseline accuracy.

[%] HirDecision Communication Persuasion Conscience StressRes
(1) Baseline [31] Ridge 70.97 62.90 56.45 75.81 66.13

L-SVM 59.68 53.23 54.84 79.03 50.00
RF 66.13 61.29 54.84 69.35 72.58

(2-1) Co-occurrence Ridge 77.42 66.13 46.77 62.90 61.29
features all L-SVM 56.45 66.13 51.61 58.06 61.29

RF 59.68 62.90 54.84 72.58 72.58
(2-2) Co-occurrence Ridge 62.90 64.52 61.29 72.58 64.52
features binary L-SVM 48.39 64.52 48.39 85.48 69.35

RF 56.45 56.45 59.68 77.42 61.29
(2-3) Co-occurrence Ridge 66.13 50.00 48.39 43.55 58.06
features applicant self L-SVM 64.52 56.45 62.90 46.77 56.45

RF 67.74 62.90 59.68 53.23 69.35
(2-4) Co-occurrence Ridge 58.06 69.35 66.13 67.74 58.06
features interviewer self L-SVM 61.29 72.58 51.61 67.74 48.39

RF 51.61 64.52 58.06 70.97 74.19

Interviewer self-feature set (2-4): The interviewer self-feature set (173 dimensions) contains
co-occurrence patterns that comprise a combination of modalities of the interviewer in the job
interview. It is calculated in the same manner as set (2-3).

6.4 Feature sets for ELEA
We conduct the co-occurrence pattern mining for the multimodal feature set, whose members are
constructed by concatenating target and group features in the ELEA corpus. The total number of
combinations of category co-occurrence features, CFc , is calculated as 36 × 218 + 218 = 191365120
(almost 0.19 billion). In total, 124639 co-occurrence patterns are identified after mining the ELEA
corpus. After performing PCA, the number of features are reduced from 124639 to 80. We prepare
four types of feature sets to compare the contributions to the classification performance as follows.
Baseline feature set (1): The original feature set used in [5] was shared for comparison purposes.
This feature set has 37 dimensions and is composed of audio and visual features.
All feature set (2-1): This feature set is composed of all co-occurrence features (80 dimensions),
including the inter-modal and inter-person features.
Binary feature set (2-2): The binary co-occurrence feature set (28 dimensions) is composed of
only “on/off” features: F1−4 in Table 2.
Target self-feature set (2-3): The target co-occurrence self-feature set (19 dimensions) is com-
posed of co-occurrence patterns that include a combination of modalities of the subject (target)
participant.

7 RESULTS
7.1 Classification accuracy for SONVB
Table 3 shows the classification accuracies. The bold values indicate the accuracies that are higher
than the baseline accuracy (1). The underlined bold values indicate the best accuracies of all models.
Only accuracies above 65.8% are considered significantly better (with a 99% confidence level) than
the 50% random-assignment baseline.

7.1.1 Baseline features vs. co-occurrence features. In this section, we compare the accuracy of the
model with all co-occurrence features (2-1) with that of the model with baseline features (1). Table
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3 shows that the best classification accuracy is obtained by the proposed model with co-occurrence
features in the classification task for 2 impression values: hiring decision and communication. For
the hiring decision, we obtain accuracies as high as 77.4% using the ridge regression classifier with
all co-occurrence features (2-1), whereas the accuracy with the baseline features is 70.9%. The model
trained with co-occurrence features achieves an increase in accuracy of approximately 7% relative
to the accuracy of the feature set proposed in [31]. The hiring decision is the target variable in [31],
and the total score of the impression is based on the performance during a job interview. For the
communication-competence trait, the model with co-occurrence features achieves an accuracy of
66.1% for both classifiers; this result is significantly different and better than the random baseline.

7.1.2 Contribution of specific feature set. In this section, we analyze the contributions of specific
co-occurrence features to the classification of the impression trait. Rows 2-5 in Table 3 show the
classification results of specific co-occurrence features for hireability impressions. Each column
corresponds to an impression variable, and the rows correspond to feature sets and classification
methods. In each feature set, “Co-occurrence features” denotes our proposal, and “Baseline” denotes
the feature set defined in [31].

For hiring decisions, the other models (2-2, 2-3, 2-4) do not improve the accuracy of the baseline,
which means that use of the complete co-occurrence feature set results in effective prediction of
the hiring decision. For the communication-competence trait, we obtain accuracies as high as 72.5%
using a fusion of the SVM classifier (L-SVM) with the interviewer co-occurrence features (2-4).
The model (2-4) improves the best accuracy of the baseline (65.8%) by approximately 7%. For the
persuasion impression, the best accuracy (66.1%) is achieved by the ridge regression classifier with
the interviewer co-occurrence features (2-4). For resistance to stress, the best accuracy (74.1%) is
achieved by the RF with (2-4). For conscientiousness, the best accuracy (85.4%) is achieved using
the SVM model with binary features.
In summary, the proposed co-occurrence features yield the best results for all 5 traits, and the

results for all impression variables are significantly different from the random baseline feature
accuracy of 65.8%. In particular, both the model with binary co-occurrence features (2-2) and the
interviewer’s co-occurrence features (2-4) improve the accuracy of the baseline [31] for 3 traits. The
best accuracy for hiring decisions is achieved by the ridge regression model with all co-occurrence
features (2-1), that for communication is achieved by the SVM model with the interviewer’s co-
occurrence features (2-4), that for persuasion is achieved by the ridge regression model (2-4), that
for conscientiousness is achieved by the SVM model with binary co-occurrence features (2-2), and
that for resistance to stress is achieved by the RF model (2-4).

7.2 Classification accuracy for ELEA
Table 4 shows the classification accuracies for the ELEA dataset. The bold values indicate the
accuracies that are higher than the baseline values in [5]. The underlined bold values indicate the
best accuracies of all models. Only accuracies above 62.7% are considered significantly better (with
a 99% confidence level) than the 50% random baseline.

Columns 1-5 in Table 4 show the classification results for the Big Five impressions, and columns
6-10 in Table 4 show the results for the leadership and the dominance. Each row corresponds to a
type of feature set, and each column corresponds to a type of personality trait. In each feature set,
“Co-occurrence features” (2-1,2,3) denotes our proposed feature set and “Baseline” (1) denotes the
feature set defined in [5]2.
2 The accuracy of “Baseline” (1) in Table 4 is different from those in [5] (“WM/WM”of Figure 4 (a) and (b)). [5] reported only
the best classification accuracy for “extraversion” and “openness to experience” using most effective feature group and the
classification accuracy using all multimodal features (setting in this study) was not reported in [5].
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Table 4. Classification accuracy for 10 personality traits in ELEA for various types of co-occurrence features vs.
the baseline features [5]. The bold values indicate accuracies that are higher than the baseline accuracy. The
underlined bold values indicate the accuracies that are highest among the models considered for comparison.

[%] Extra- Agree- Conscien- Emotional Openness to Leader- Domi- Compet- Like- Ranked
version ableness tiousness stability Experience ship nance ence ness Dominance

(1) [5] Ridge 66.67 58.82 51.96 51.96 54.90 72.55 65.69 52.94 60.78 51.96
Baseline L-SVM 63.44 52.94 52.94 53.92 61.76 67.65 60.78 52.94 64.71 48.04

RF 61.76 49.02 46.08 50.98 49.02 72.55 58.82 50.98 59.80 59.80
(2-1) Ridge 70.59 66.67 53.92 52.94 60.78 68.63 55.88 56.86 53.92 57.84
Co-occurrence L-SVM 58.82 64.71 52.94 52.94 65.69 73.53 50.00 49.02 65.69 61.76
features all RF 62.75 63.73 53.92 56.86 55.88 62.75 57.84 55.88 54.90 60.78
(2-2) Ridge 67.65 64.71 57.84 56.86 54.90 75.49 58.82 60.78 56.86 57.84
Co-occurrence L-SVM 61.76 64.71 54.90 52.94 51.96 73.53 54.90 51.96 62.75 64.71
features binary RF 60.78 61.76 51.96 58.82 49.02 59.80 51.96 50.98 51.96 55.88
(2-3) Ridge 72.55 58.82 55.88 58.82 58.82 59.80 52.94 59.80 46.08 53.92
Co-occurrence L-SVM 71.57 57.84 44.12 57.84 55.88 64.71 58.82 60.78 54.90 56.86
features self RF 62.75 58.82 50.98 47.06 54.90 52.94 51.96 55.88 58.82 50.00

Table 5. Comparison between accuracies of the model in [35] and the proposed model (late fusion of co-
occurrence features (proposed) vs. early fusion of co-occurrence features ([35]) VS. best of baseline [5]). The
bold values indicate the accuracies that are highest among the models considered for comparison.

[%] Extra- Agree- Conscien- Emotional Openness to Leader- Domi- Compet- Like- Ranked
version ableness tiousness stability Experience ship nance ence ness Dominance

Best of late fusion
((2-1) in Table 4)

70.59 66.67 53.92 56.86 65.69 73.53 55.88 56.86 65.69 61.76

Best of early fu-
sion in [35]

67.65 68.63 53.92 53.92 57.84 72.55 61.76 64.71 53.92 64.71

Best of baseline
[5]

66.67 58.82 52.94 53.92 61.76 72.55 65.69 52.94 64.71 51.96

7.2.1 Baseline features vs. proposed co-occurrence features. Table 4 indicates that the best clas-
sification accuracies for 9 traits are achieved by the model (2-1) using all co-occurrence features.
Our proposed features do not improve the accuracies for perceived dominance. For extraversion,
agreeableness and openness to experience of the Big Five, the best results are obtained with the
co-occurence features. For extraversion, the best accuracy is as high as 70.5% obtained with ridge
regression. For agreeableness, an accuracy of 66.7% is achieved using the ridge regression model,
and 65.6% is achieved for openness to experience using the SVM with co-occurrence features. The
baseline feature set [5] generates significantly better accuracy for only extraversion compared
with the random baseline accuracy. In particular, the model trained with co-occurrence features
improves the accuracy for agreeableness by approximately 8% compared with the accuracy of the
feature set proposed in [5]. However, the results for conscientiousness and emotional stability are
not significantly different than the random baseline for both methods.
For perceived leadership, perceived competence, perceived likability and ranked dominance,

better results are obtained with the proposed model than with the feature set [5], with the accuracies
being as high as 73.5%, 56.8%, 65.6% and 61.7%, respectively. The proposed model with all co-
occurrence features (2-1) yields, for 5 traits, results that are significantly better than the random
baseline, and the results for 9 traits are better than those of the feature set in [5].

7.2.2 Contribution of specific co-occurrence features in group. In this section, we analyze the
contributions of specific co-occurrence features to the classification performance of three models
(2- 1, 2-2, 2-3). Rows 2-4 in Table 4 show the comparison between specific features. The underlined
bold value indicates the best accuracy; the results reveal that the proposed model with all features
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(2-1) achieves the best accuracy for agreeableness, openness to experience, and perceived likeness.
The proposed model with on/off features (2-2) achieves the best accuracies for conscientiousness,
perceived leadership, perceived competence and ranked dominance. In particular, the accuracy
for leadership is 75.4%, which is the best accuracy among all classification tasks for the ELEA
corpus. The accuracy for ranked dominance (64.7%) is significantly better than the random baseline.
Although the on/off features are simple, they capture both inter-modal and inter-person properties.
For the co-occurrence self-feature set (2-3), the table shows that the best classification model is
that with features extracted from the “Self-Context” features, with an accuracy of 72.5% achieved
for extraversion and 58.8% achieved for emotional stability.
In summary, the proposed co-occurrence features with all features, on/off features and self-

context features yielded equally good or better results than the baseline feature set for 9, 7, and 5
traits, respectively, out of 10 traits. These results show the potential of our approach to improve the
inference accuracy of personality traits compared with well-designed feature sets developed from
the accumulated statistics of nonverbal patterns observed over an entire meeting. For nine traits,
the models (2-1, 2-2) yielded better results than the feature set in [5] (in 6 of these traits, the results
are significantly better than the random baseline). These results also show that the inter-modal
and inter-person features are common features for many traits.

7.3 Contribution of late fusion
This section compares the model presented in our previous work [35] and the model proposed
here. A unimodal event with a long duration frequently co-occurs with many types of events. The
inherent characteristics result in an imbalance in the number of features between modalities. In
the ELEA dataset, the number of co-occurrence features based on categorical events tends to be
larger than the number of that based on binary events.

To avoid an imbalance of features, PCA is performed for only co-occurring features with categor-
ical features, such as pitch, energy and wMEI in our previous work [35]. The early fusion method
is adapted to fuse co-occurrence features with binary events and features with categorical events,
which are projected to low-dimensional space via PCA. However, the ad hoc method does not
always work well because the number of co-occurrence features varies for different modalities. In
the proposed method, PCA is adapted for each co-occurrence feature set, using each seed feature
to balance the number of features between the modalities and dimensions. In addition, we use the
late-fusion method to fuse features co-occurring with the events and binary events. Table 5 shows
a comparison of the best accuracies among those of the model in [35], the proposed model and
the baseline feature set in[5]. According to [35], the threshold parameter for the mining was set
as α = 0.8. Normalized features for individual participants are included in the feature set. In this
study, the threshold parameter in the mining is set as α = 0.9, and normalized features are not
used. We report only results that are significantly better than the random baseline results. The
table shows that the best classification model is obtained using the proposed late-fusion method,
which presents accuracies of 70.5% for extraversion, 65.6% for openness to experience, 73.5% for
perceived leadership, and 65.6% for perceived likability.

The table also shows that the early fusionmethod ([35]) achieves the best accuracies for agreeable-
ness (68.6%), perceived competence (66.6%) and ranked dominance (64.7%). The baseline features in
[5] result in the best accuracy for perceived dominance (65.6%). The results show that the proposed
late-fusion method exhibits the best performance for most of the 4-trait prediction tasks. Moreover,
an equivalent approach to fusion and feature extraction is used for SONVB and ELEA, with the
accuracy being almost better than the baseline. We conclude that reducing the features mined via
PCA for each modality combined with late fusion is a stable method for impression modeling.
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7.4 Sensitivity analysis of classification results
The robustness with respect to binary classification is determined by the discriminativeness of
the trained models. We discuss the robustness of models with the proposed features for binary
classification by calculating the area under the ROC curve in Section A.1. The binary classification
accuracy is influenced by the hyperparameters of the model. To analyze the relationship between
the classification accuracy and the hyperparameters, we conduct a sensitivity analysis of the
hyperparameters: (1) weighting-parameter β on late fusion in Section A.2 and (2) mining-parameter
α in Section A.3. The contributions of each modality are discussed in Section A.4.

8 LIMITATIONS AND FUTUREWORK
We now discuss three limitations of our work and research directions to address them.

8.1 Improved extraction of behavioral features
As discussed earlier, gaze features for the dyadic setting were neither extracted nor used. Future
work should investigate them, as well as other features that are amenable for similar treatment as
we propose here, like facial expressions, which have been shown to be informative of some traits
like extraversion [10][45]. A second related issue is the analysis of the time-series structure of the
co-occurrence patterns (e.g., a group head gesture is observed after (or before) the target’s utterance),
the intervals between patterns, and their possible causal relations. This structure might reveal the
individual patterns that influence (or are influenced by) the group activity or other participants.
Therefore, a future direction is to adopt time-series reasoning algorithms [3] and a method of
searching for structural temporal multimodal data [28] to the proposed mining framework.

8.2 Feature extraction with deep learning
The results of consequent experiments show that the proposed inter-modal and inter-person
feature representation and extraction is effective for improving accuracy. Based on this finding,
more effective feature-extraction methods for inter-modal and inter-person representation (column:
N (people) ×M (modalities), row: T (time length of interaction)) should be explored in the future.
Along this line, the deep learning family will be a good candidate for replacing the proposed
method. Future work could investigate the most useful ways of using deep learning to make a
comparisonwith the proposed approach. Although deep learning techniques promise discriminating
performance when a large amount of data is available for training models, the dataset used in
this study includes a maximum of 102 samples, and the data size is too small to directly adopt the
deep learning approach for this task. For future work, a guideline for applying the deep learning
algorithm to the impression recognition task is as follows.
The autoencoder and stacked autoencoder [17], as unsupervised deep learning methods, are

effective for reducing the feature space dimensionality. First, a sparse autoencoder can be used in-
stead of PCA in the proposed framework. Second, an approach exists that can extract co-occurrence
features directly from multimodal time-series data (Section 3.1) using an autoencoder. In this
method, an input vector is concatenated from (N ×M) × X f rames , and the sampling is conducted
in the time-series dimension by adopting a sliding-window method to input the network of the
autoencoder.
Third, a convolution neural network (CNN) [24] can be used for supervised feature extraction

from time-series data in [50]. In our study, prosody time-series data and motion time-series data
were discretized into three levels via clustering or a statistical t-test. The process can be replaced
with a CNN. A CNN is used to extract discriminative features from time-series data obtained from
participants with a binary label (higher trait or lower trait score). In this case, we need to define
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the convolution and pooling operators in the time-series dimension by adopting a sliding-window
method to segment the time-series signal into a collection of short portions of the signal. The
CNN can be replaced with a recurrent neural network (RNN) or long short-term memory (LSTM)
networks [18] as the feature extractor for time-series data.

8.3 Toward impression recognition in other types of conversations
In recent years, some studies [2, 20] have focused on the analysis of participants interacting
naturally in organized free-standing conversations because of the availability of several wearable
and ubiquitous sensing devices to the general public. The feature extraction becomes more complex
for free-standing conversations in comparison with face-to-face interactions. More preprocessing
of the audio and video (e.g., visual person tracking and group identification, audio separation and
speaker identification) or the use of ubiquitous or wearable sensors is required to extract the audio
and visual features of each individual participant. After extracting individual audio/visual features,
the inter-modal and inter-person feature representation can be developed, and co-occurrence events
can be detected in the same manner. Based on the above, we believe that the proposed approach
can be used for free-standing interactions. A multimodal dataset [1] collected from free-standing
conversational groups in unstructured social settings is publicly available. Adapting the proposed
framework to this dataset is another direction for future work.

9 CONCLUSIONS
We presented a novel feature-extraction framework for multimodal conversations to infer person-
ality traits. Our framework represents multimodal features as combinations of each participant’s
nonverbal activities and the activities of others. Frequently co-occurring events are identified via
co-occurrence clustering. We applied the framework to infer 5 hireability impressions for the
SONVB corpus and 10 personality-trait impressions for the ELEA corpus. The experimental results
showed that classifiers trained with co-occurring features were more accurate than those trained
with other features proposed in recent works [5, 31] for all the impressions in the SONVB data and
9 of the impressions in the ELEA data. Moreover, these classifiers were shown to be statistically
better than random classifiers for all the impressions in SONVB and 6 personality traits in ELEA.
In addition, the co-occurrence features were shown to improve the classification accuracy from
3% to 13%. Our feature representation captures the interplay between the nonverbal behavior of
an individual and her/his interactions, and it can be used for feature extraction for other types of
conversations (e.g., negotiations, counseling, and group-learning settings).

To validate the versatility of the proposed framework, we plan to extend this framework by using
time-series structure mining, and to apply the proposed framework for impression recognition in
other types of conversations. To improve the classification accuracy, the discriminative-feature
extraction with deep learning will be implemented in future work.

A ADDITIONAL EXPERIMENTAL RESULTS
In this section, we focus on the analysis of the classification results of the main impression traits
in the SONVB and ELEA corpora. The target traits of the two corpora are hiring decision and
leadership, respectively. In addition to these two traits, extraversion and agreeableness from the
Big Five, which are annotated in [5], are the subject of the analysis, as annotations of the two
traits have higher agreement between annotators than the other three traits. Thus, a total of four
traits serve as the subject of this analysis. From a comparison of the experimental results for each
classifier, RF achieved the best accuracy in terms of only “resistance to stress” in SONVB. RF is thus
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Table 6. Area under the curve (AUC) calculated from
ROC curve based on output scores from models for
HirDecision in SONVB

[AUC] HirDecision
(1) Baseline [31] Ridge 0.719

L-SVM 0.637
(2-1) Co-occurrence Ridge 0.815
features all L-SVM 0.662
(2-2) Co-occurrence Ridge 0.701
features binary L-SVM 0.533
(2-3) Co-occurrence Ridge 0.696
features applicant self L-SVM 0.744
(2-4) Co-occurrence Ridge 0.576
features interviewer self L-SVM 0.637

Table 7. Area under the curve calculated from output
scores of models for extraversion, agreeableness, and
leadership in ELEA

[AUC] Extra- Agree- Leader-
version ableness ship

(1) Baseline [5] Ridge 0.745 0.596 0.759
L-SVM 0.660 0.562 0.732

(2-1) Co-occurrence Ridge 0.754 0.732 0.705
features all L-SVM 0.620 0.719 0.807
(2-2) Co-occurrence Ridge 0.722 0.708 0.789
features binary L-SVM 0.644 0.719 0.807
(2-3) Co-occurrence Ridge 0.787 0.629 0.627
features self L-SVM 0.741 0.618 0.631

neglected in the following experiments, as the best accuracies are achieved by the ridge regression
classifier or linear SVM regarding the four main traits.

A.1 Analysis of robustness against binary classification
An ROC curve is used to display the performance of a binary classification algorithm. To validate
the classification accuracy of models with co-occurrence features, the ROC curve is plotted, and
the area under the curve (AUC) is calculated. The AUC is commonly used to compare different
classification algorithms for a given dataset. It is well known that the value of the AUC denotes the
discriminativeness of a model.

Table 6 shows the AUCs calculated from the ROC curve based on the output scores of the models
for HirDecision in SONVB. As in Section 7, the AUC of the models with the proposed co-occurrence
features and that of the model with baseline features are compared. The proposed model (ridge
regression) with all co-occurrence features (2-1) yielded the best AUC for hiring decision. The AUC
was 0.81, which is better than the AUC (0.71) of the best result of the baseline model [31] (ridge
regression) by 0.1 point. This result agrees with the result of the classification rate presented in
Table 3. In addition to the result, the twomodels (2-3) with features extracted from the “Self-Context”
features of applicants also yielded better AUCs than that of the baseline. The AUC of the SVM
were 0.74, respectively, though the classification accuracies of these models were worse than the
best accuracy of the baseline. The results show that the co-occurrence features contribute to the
development of a robust binary classification model.
Table 7 shows the AUCs for the ROC curves for extraversion, agreeableness, and leadership in

ELEA. The proposed model (2-1) with all co-occurrence features yielded a better AUC for extraver-
sion, agreeableness, and leadership than that of the baseline [5]. The best AUC for extraversion
was yielded by the ridge regression model (2-3) with the “Self-Context” feature, while that for
agreeableness was obtained by the ridge regression model (2-1) with all co-occurrence features and
SVM models (2-1 and 2-2) with either binary features or all features. The AUCs were 0.78, 0.73,
and 0.80, respectively. Co-occurrence features improved the best AUC of the baseline (0.74, 0.59,
and 0.75) by approximately 0.04, 0.14, and 0.05 points, respectively. In particular, six models with
co-occurrence features resulted in better AUCs for agreeableness than that of the baseline. Based on
these experimental evaluations involving both classification accuracy and the AUC, co-occurrence
features contribute not only to improve the binary classification accuracy but also to develop a
robust model for the binary classification of impressions.

A.2 Weighting parameter β when fusing binary and category features
In the late fusion, the weighting parameter is used to control the trade-off between the output scores
of both models and the binary and category features. In this section, we analyze the dependency of
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(c) Agreeableness
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Fig. 3. Dependency of classification accuracy on the weighting parameter (β)

the classification accuracy on the weighting parameter (β) to clarify the contribution of binary and
category features. From equation 6.2, when β = 0, the model is trained with only category features.
When β = 1, the model is trained with only binary features, and the model is equal to the model
with the binary co-occurrence feature set (2-2).

Figure 3a, 3b, 3c, and 3d show the dependency of classification accuracy on the weighting
parameter (β) for hiring decision, extraversion, agreeableness and leadership. In these figures, the
yellow line denotes the best classification accuracy of the baseline, and the black line denotes the
significance level of a random baseline. The blue and red lines denote the classification accuracies
of the ridge regression models with all co-occurrence features (2-1) and the SVM models with all
co-occurrence features. In Figure 3a, the best accuracy (79.0 %) for hiring decision is achieved when
β = 0.5. This means that both feature sets make equal contributions to the classification task. In
this case, the fusing of features is an effective way to improve the accuracy for hiring decision.

In Figure 3b, the best accuracy (71.5 %) for extraversion is achieved when β = 0.6. The accuracies
of the fused models are better than that of the baseline when β = [0.3 − 1.0]. These results indicate
that binary features contribute to the improvement of the classification accuracy more than the
category features, as the accuracy degrades as the weight value of the category feature increases
(β = [0.0 − 0.2]). From 3c, the dependency of the accuracy for agreeableness is similar to that for
extraversion. The best accuracy is 67.6% when β = [0.7, 0.8].

In Figure 3d, the dependency of leadership is different from that of the other three traits. The best
accuracy (75.4 %) is obtained when β = 1 (only binary features). This means that category features
are unnecessary to improve the classification accuracy for this trait, The effective weighting rate
is different among the four traits. In our method, the grid search for the weighting parameter is
conducted by applying cross-validation to the training dataset. The grid search is effective when
determining the optimal weighting ratio for the classification of each trait.

A.3 Threshold parameter α on co-occurrence mining
In this section, we analyze the dependency of the classification accuracy on the threshold parameter
α when finding co-occurrence features via mining.
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Table 8. Number of co-occurrence features and dependency of α on the number of co-occurrence features in
the ELEA corpus (the mining process (iteration) was stopped if the number of features increases to more than
105. The case is marked with ∗.)

α 0.9 0.8 0.7
binary category binary category binary category

After Mining 59 124580 407 *302523 *146601 *263552
After PCA (99%) 28 52 57 127 155 184
Total dimensions 80 184 339
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Fig. 4. Number of co-occurrence features per α
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Fig. 5. Classification accuracy based on the change in the
threshold parameter to merge features as a co-occurrence
feature

A.3.1 Number of co-occurrence features per hyperparameter α . In this section, by analyzing the
number of co-occurrence features by varying α from among [0.7, 0.8, 0.9] for the ELEA corpus,
we show that α = 0.9 is reasonable. The total number of combinations of binary co-occurrence
features, CFb , is calculated as 218 = 262144, as 18 kinds of binary features are extracted from the
ELEA corpus, as shown in Table 2. The total number of combinations of category co-occurrence
features, CFc , is calculated as 191102976.
The co-occurrence mining in Section 3.2 was conducted to extract a feature set from the ELEA

corpus by changing α . During the process of pattern mining, the change in the number of features
in each step is as shown in Figure 4. Figure 4 shows the dependency of the number of binary
co-occurrence features CFb and category co-occurrence features CFc . The plot with the dotted line
and square shapes denotes the number of category co-occurrence features, while the plot with the
circle shapes denotes the number of binary features.

For binary co-occurrence features CFb , when we set α to 0.9 and 0.8, the iteration of the mining
algorithm is terminated after 4 iterations and 11 iterations, respectively. When we set α to 0.7,
the number of binary co-occurrence features increases exponentially, and the number exceeds
0.1 million (105) after 4 iterations, at which point we stop the mining process. For category co-
occurrence featuresCFc , when we set α to 0.9, the number of binary co-occurrence features becomes
124580 after 11 iterations. When we set α to 0.8 and 0.7, the number of binary co-occurrence features
increases exponentially and exceeds that when α = 0.9 after 6 and 5 iterations, respectively.

From the results, when we set α to a low value, too many features are extracted, and it becomes
difficult to handle the feature set. We summarize the number of features before/after conducting
co-occurrence mining and PCA in Table 8. When we set α to 0.8 or 0.7, we stop the mining process if
the number of features exceeds the number of features when α = 0.9 (more than 105). The number
at which we stop the mining process is denoted by ∗.

Co-occurrence features discovered after mining still include irrelevant features. PCA is conducted
to remove these irrelevant features. The final total numbers of dimensions of features are 80, 184,
and 339 for α = {0.9, 0.8, 0.7}, respectively. Based on the preliminary experiments, we set α to 0.9
in the following experiments.
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Table 9. Contribution of each modal feature group for hiring decisions, extraversion, and leadership (tables
show the classification accuracies of the models trained using co-occurrence feature sets excluding a specific
modal feature (e.g. F∗ ()). Acc. denotes the accuracy of the test data. Diff. denotes the difference of accuracy
for cases in which a specific modality is removed. Bold values indicate that the difference is more than 2.0,
and underlined bold values indicate that the difference is less than −2.0.)

[%] HirDecision
(2-1) Ridge L-SVM
in Table 3 77.42 56.45
Removed Acc. Diff. Acc. Diff.
modality
F1 (ST) 59.68 +17.74 38.71 +17.74
F2 (PI) 69.35 +8.07 59.68 -3.23
F3 (EN) 70.97 +6.45 58.06 -1.61
F4 (VR) 75.81 +1.61 59.68 -3.23
F5 (H) 70.97 +6.45 62.90 -6.45
F6 (MT) 72.58 +4.84 64.52 -8.07
F7 (OPM) 67.74 +9.68 50.00 +6.45
F8 (OPV) 66.13 +11.29 62.90 -6.45
F9 (OPA) 67.74 +9.68 70.97 -14.52

[%] Extraversion Perceived Leadership
(2-1) Ridge L-SVM Ridge L-SVM
in Table 4 70.59 58.82 68.63 73.53
Removed Acc. Diff. Acc. Diff. Acc. Diff. Acc. Diff.
modality
F1 (ST) 65.69 +4.90 58.82 0.00 53.92 +14.71 65.69 +7.84
F2 (PI) 72.55 -1.96 62.75 -3.93 67.65 +0.98 73.53 0.00
F3 (EN) 71.57 -0.98 62.75 -3.93 69.61 -0.98 73.53 0.00
F4 (H) 65.69 +4.90 64.71 -5.88 72.55 -3.92 80.39 -6.86
F5 (B) 66.67 +3.92 58.82 0.00 65.69 +2.94 69.61 +3.92
F6 (MT) 67.65 +2.94 57.84 +0.98 67.65 +0.98 73.53 0.00
F7 (G) 76.47 -5.88 61.76 -2.94 67.65 +0.98 63.73 +9.80

A.3.2 Classification performance for each hyperparameter α . The classification accuracy of the
model with all co-occurrence features ((2-1) in Table 4) is considered in this section. Table 8 shows
the dependency of the classification accuracy of models with co-occurrence features extracted via
mining when α = {0.7, 0.8, 0.9}. The dependency is analyzed based on Table 5. The best accuracies
for all traits are achieved by the model with co-occurrence features extracted when α = 0.9. The
second best accuracies for hiring decision, agreeableness, and leadership are achieved by these
features extracted when α = 0.8. The accuracies are 58.8%, 61.7%, 68.6% and 67.7% for hiring
decision, extraversion, agreeableness and leadership.
The accuracies achieved by models with α = 0.9 are better than those of models with α = 0.8,

with an improvement in accuracy from 5% to 11%. These results show that the extraction of
co-occurrence features when the value of the threshold parameter α is lower (less than 0.9) is
not effective for improving the classification accuracy. Setting α to lower values did not improve
the accuracy for the other traits, only for the four traits. The experimental results show that the
parameter α = 0.9 is optimal for all traits and that we do not need to optimize the parameter for
each trait in the ELEA and SONVB datasets.

A.4 Analysis of the contributions of each modality
In this section, we analyze the contribution of each modality in the audio-visual features to
classify personality impressions. The classification model is trained using co-occurrence patterns
by removing features of specific modalities, and it is evaluated in the same manner as Section 6.1.
The contributions of specific modalities are identified by comparing the classification accuracy of
the model with all co-occurrence features ((2-1) in Table 4) with the accuracy of feature sets that
exclude specific modalities.
If the accuracy is degraded, then the removed feature set is effective, whereas if the accuracy

is improved, then the removed feature set is unnecessary. This analysis is performed for hiring
decision in SONVB and extraversion and leadership in ELEA as the representative impression
variables. Table 9 shows the classification accuracies of the model using co-occurrence feature sets
that exclude specific features (e.g., F∗()) for hiring decisions, extraversion, and leadership. In these
tables, Acc. denotes the accuracy of the test data, and Diff. denotes the difference of accuracy for
cases in which the modal feature set is removed. Bolded values indicate that the difference is more
than 2.0, and underlined values indicate that the difference is less than −2.0.
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A.4.1 Hiring Decision. From Table 9, all modalities contribute to improving the classification
accuracy of the ridge regression model. In particular, the three most effective features are speech
status (Diff. is +17.7%), magnitude of the vertical activity of optical flow (Diff. is +9.6%) and
acceleration of the vertical activity of optical flow (Diff. is +9.6%). Many non-effective feature
sets are included in the SVM because the baseline accuracy is low (56.4%). We observe that all
co-occurrence features observed from both the applicant and interviewer are effective for inferring
the hiring-decision score.

A.4.2 Extraversion. From Table 9, speech status (F1 (ST )), body activity (F5 (B)), and the wMEI
feature set (F5 (MT )) are effective for classifying the extraversion level because the difference
of accuracy (Diff.) is positive or zero (i.e., not negative) in both the ridge regression model and
SVM. This finding is consistent with the results in [5]. In the ridge regression model, the most
effective features are speech status (F1 (ST )) and head activity (F4 (H )), and the difference of accuracy
is +4.90%. However, pitch (F2 (PI )), energy (F3 (EN )), and gaze activity (VFOA) (F7 (G)) are not
effective features for classifying extraversion because the difference of accuracy (Diff.) is negative.
In particular, the model with the co-occurrence feature set that excluded gaze modality obtained an
accuracy of 76.4% for extraversion, which is the best result for this trait.

A.4.3 Leadership. From Table 9, speech status, body activity, pitch, gaze activity, and wMEI are
effective in classifying leadership level because the difference of accuracy (Diff.) are positive or
zero for both the ridge regression model and SVM. The result for the gaze feature is inconsistent
with the result obtained for extraversion. The most effective features are speech status in the
ridge regression model (Diff. is +14.7%) and gaze activity in the SVM (Diff. is +9.8%). The results
indicate that the best performance for perceived leadership was obtained using “co-occurrence
features binary,” which includes the gaze features in Table 4. Head activity is not effective for the
classification of leadership (Diff. is −6.8% in SVM). The model with the feature set excluding head
activity obtained an accuracy of 80.39%, which is the best result for leadership.
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