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Abstract—This paper focuses on the problem of query by
example spoken term detection (QbE-STD) in zero-resource
scenario. Current state-of-the-art approaches to tackle this prob-
lem rely on dynamic programming based template matching
techniques using phone posterior features extracted at the output
of a deep neural network (DNN). Previously, it has been shown
that the space of phone posteriors is highly structured, as a union
of low-dimensional subspaces. To exploit the temporal and sparse
structure of the speech data, we investigate here three different
QbE-STD systems based on sparse model recovery. More specif-
ically, we use query examples to model the query subspace using
dictionary for sparse coding. Reconstruction errors calculated
using sparse representation of feature vectors are then used
to characterize the underlying subspaces. The first approach
uses these reconstruction errors in a dynamic programming
framework to detect the spoken query, resulting in a much faster
search compared to standard template matching. The other two
methods aim at merging template matching and sparsity based
approaches to further improve the performance. The first one
proposes to regularize the template matching local distances
using sparse reconstruction errors. The second approach aims
at using the sparse reconstruction errors to rescore (improve)
the template matching likelihood. Experiments on two different
databases (AMI and MediaEval) show that the proposed hybrid
systems perform better than a highly competitive QbE-STD
baseline system.

Index Terms—Speech processing, spoken term detection, query
by example, deep neural network, posterior probabilities, sparse
recovery modeling, sparse representation, subspace detection,
subspace regularization.

I. INTRODUCTION

Query-by-example spoken term detection (QbE-STD) refers
to the task of finding a specific spoken query within an audio
archive. Typically, the user generates a spoken query, and
the search algorithm attempts to retrieve all audio documents
containing the query from the searched archive. In this sce-
nario, no training data is provided, making it a zero-resource
task. Thus, the data can be generated in any language with
no constraints on vocabulary, pronunciation lexicon, accents
etc. It is essentially a pattern matching problem in the context
of speech data where the targeted pattern is the information
encoded using speech signal and presented to the system as a
spoken query. The difference between keyword spotting and
QbE-STD is that the former deals with textual queries, whereas
the latter deals with spoken queries.

The solution to QbE-STD can be very useful in searching
through audio archives which consist of data from news
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channels, radio broadcasts, internet, social media etc. Most
search algorithms used in practice still depend on a textual
description of data which may not be always available or it
is insufficient for representing the complete content of data.
Therefore, text based retrieval algorithms gives very limited
search results. Moreover, it is desirable to search through those
contents using speech as a natural and generic medium of
communication, and not requiring any explicit transcript.

Traditionally, the spoken query detection is performed by
cascading an automatic speech recognition (ASR) system
with text based retrieval techniques [1], [2], [3], [4]. In this
approach, the spoken queries as well as the test utterances
are first converted into a sequence of words or symbols.
Information retrieval methods are then applied to detect the
queries. Recent approaches for keyword spotting have focused
on low-resource languages, exploiting unsupervised acoustic
models [5], language modeling with automatically retrieved
web documents [6], or multilingual bottleneck features [7].
However, this is still a language dependent system which is
unsuitable for detecting spoken queries from speech data of
unknown languages.

Current approaches for QbE-STD are largely dominated by
template matching techniques for their superior performance
to the statistical methods in zero-resource conditions [3], [8],
[9]. Such approaches mainly consist of two steps: feature
extraction and template matching. A Dynamic Time Warping
(DTW) algorithm [10] is generally used to find the degree
of similarity between a query and a test utterance. The goal
is to develop an unsupervised method so that the data can
be processed without any transcription. This alleviates the
problems associated with the ASR system for spoken term
detection. Currently, the best performing system uses a DTW
based template matching technique to find the queries [9].

The DTW-based approaches are able to consider the sequen-
tial information present in a spoken query. However, they do
not take into account the low-dimensional subspace structure
of the speech signal. This low-dimensional structure is the
result of the constrained articulatory mechanism of human
speech production [11], [12], which leads to the generation
of linguistic units (e.g., phones, senones) lying on non-linear
manifolds. As already shown in [13], [14], [15], these mani-
folds can be modeled as a union of low-dimensional subspaces
and sparse representation is found to be a promising technique
to model these subspaces. It is the goal of the present work
to investigate how this sparsity property can be exploited to
further improve state-of-the-art QbE-STD system.

The present work is motivated by the success of exemplar-
based sparse representation in detection and classification
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tasks [16], [17], which relies on the low-dimensional subspace
structure of the data. In the context of speech processing,
sparse recovery has already been studied for robust speech
recognition [18], [19], [20], enhanced acoustic modeling [14],
[15] as well as spoken query detection [13], [21], [22]. In our
earlier work [13], we cast the query detection problem as sub-
space detection between query and non-query speech where
the corresponding subspaces are modeled through dictionary
learning for sparse representation. Given these dictionaries,
detection of each frame is performed based on the ratio of the
two corresponding sparse representation reconstruction errors,
and the frame-level decisions are accumulated by counting the
continuous number of frames detected as the query. Although
this approach shows a promising direction, it lacks a proper
framework to capture the temporal information inherent to
speech signal. Also, it relies on the background dictionaries
to model non-query speech which is usually not available for
QbE-STD.

Building upon the above discussion, the present work
explores new systems designed to take advantage of both
temporal information and subspace structure of speech. The
primary contribution of this paper is to show the effectiveness
of subspace structure of speech data for finding a spoken query
in a test utterance. In this context, a query is modeled through
dictionary which can be built from single as well as multiple
query examples. We present three different ways to achieve
our goal, as discussed in the following:

1) Sparse Subspace Detection (Section V): This approach
relies on modeling the low-dimensional structure of
sub-phonetic components of the query. These subspaces
are modeled using dictionaries for sparse coding. The
dictionaries are used to obtain a frame level sparse
representation which quantifies the errors to reconstruct
those frames. We propose to use a dynamic programming
technique to obtain possible regions of occurrence of the
query in test utterances. This reduces the effect of errors
made by the sparse coding algorithm on frame level and
captures the sequential information present in the data.
It is a much faster technique compared to DTW based
methods.

2) Subspace Regularized DTW (Section VI-A): In this ap-
proach, we use both sparsity and DTW to make a better
system, instead of relying solely on either of them to
perform the same task. The idea is to consider the frame-
level reconstruction errors as subspace based distances.
We propose to regularize the distance matrix for DTW
using this subspace based distance and perform DTW to
detect the query. This regularization helps to take into
account the temporal information as well as the subspace
structure of speech signal.

3) Subspace-Based Rescoring of DTW (Section VI-B): In
another approach, we propose to rescore the hypothesized
regions obtained from the DTW system using sparsity
based system. This method aims at improving the likeli-
hood score for a hypothesized region using the subspace
structure of speech signal.

In all three cases discussed above, we rely on the low-

dimensional subspace structure of speech signal for the task
of QbE-STD. The systems proposed in this paper indicate
different ways of utilizing this information. These systems
are evaluated on two different databases with challenging
conditions as we will see in Sections VIII and IX. The
performance improvements provided by the combination of
DTW and sparsity based systems show the importance of
subspace structure of speech to perform QbE-STD.

II. PRIOR WORKS

In this section, we briefly discuss the main approaches to
spoken query detection. The first set of approaches are referred
to as template matching, which consists of two steps. First, the
spoken query and test utterances are represented in terms of
feature vectors. Both spectral [23], [24] and class-conditional
posterior probabilities [9], [25] are used as features. The pos-
teriors probabilities can be estimated from Gaussian mixture
model (GMM) [25] as well as deep neural network (DNN) [9],
[26]. Once we have extracted the features from both query
and test utterance, a dynamic programming algorithm [10] is
used to detect the query in a test utterance. Standard DTW
algorithm finds a non-linear mapping between two sequences
of feature vectors. The similarity score is computed using the
optimal warping path between them. But, this is not exactly
applicable to spoken query search because, the query can occur
anywhere in the test audio as a sub-sequence. Thus, several
variants of DTW have been proposed for QbE-STD.

Segmental DTW [23], [25] is a constrained dynamic pro-
gramming technique used to detect a specific sub-sequence in a
test utterance matching the spoken query. The first constraint is
to keep the warping path in a pre-defined window to match the
query as a sub-sequence. The second constraint is the step size
of this window, which indicates the start of a matching sub-
sequence. This method cannot handle utterances with widely
varying speaking rate due to the restricted warping path. slope-
constrained DTW [27] is proposed to deal with this problem.
In this case, the slope of the warping path is constrained to
allow the mapping of a query frame to multiple test frames and
vice-versa, but not both at the same time. Also, it penalizes
the mapping of one frame to multiple frames by introducing a
slope factor to the similarity score. Another approach to find
queries in a test utterance is called sub-sequence DTW [28].
This algorithm enforces the cost of insertion at the beginning
and end points of the query to be equal to 0. It encourages the
warping path to start and end at any frame of the test utterance,
which gives us a sub-sequence matching the spoken query.
These DTW based approaches are computationally expensive.
Several methods [29], [30], [31], [32] have been proposed to
speed up the process. In [29], the authors proposed a DTW
technique to be used on graphical processing units for faster
computation. On the other hand, information retrieval-based
DTW [30] is proposed to index frames of speech using hashing
techniques to reduce the search space.

The template matching approaches discussed above are sen-
sitive to speaker and acoustic mismatch conditions. To over-
come these limitations, model-based approaches have been
investigated [24], [33], [34]. These approaches primarily rely
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Fig. 1. Posterior feature extraction using a deep neural network. First, Mel
Frequency Cepstral Coefficient (MFCC) based features are extracted over a
sliding window. These features, together with their acoustic context, are then
fed to a DNN to estimate phone conditional posterior probabilities.

on acoustic units discovered in an unsupervised manner. Those
units are then used to train hidden Markov models (HMM) for
the corresponding acoustic modeling. The resulting HMMs are
used to find symbolic representation for both query and test
utterance, and retrieval techniques are applied to perform QbE-
STD.

III. BASELINE SYSTEM

The posterior-based QbE-STD system proposed in [9], and
briefly discussed below, is used as our baseline system. It
was the best system in MediaEval challenge 2013 [35] for
the task of Spoken Web Search (SWS). The basic framework
of the system is presented in this section. It consists of two
blocks: posterior feature extraction and template matching as
discussed in the following.

A. Posterior Features

Posterior features (e.g. mono-phone, tri-phone) are typically
extracted at the output of a Deep Neural Network (DNN) [26]
with spectral features as input. This type of speech features
have been shown to be very effective for ASR systems which
motivated the researchers to use them for template matching
tasks.

Mono-phone based posterior probabilities are used as fea-
ture vectors in the baseline system. The setup for extracting
the posterior features is illustrated in Figure 1. In the first step,
mel frequency cepstral coefficient (MFCC) based features are
computed from the speech signal over a temporal sliding win-
dow. Those acoustic features, together with some acoustic (left
and right) context, are then fed to a DNN trained to estimate
output class conditional posterior probabilities. Alternatively,
Convolutional Neural Network (CNN) can also be used at the
first layer of the DNN to better capture correlation over time
(and frequency in the case of spectral features).

B. Query Template Construction

The posterior features of a query are used to construct
a template for DTW based matching. If there is only one
example provided for a query, the corresponding posteriors
are used as the reference template for performing DTW. If
multiple examples are provided for a query, we compute an
average template from posteriors of those examples using
DTW. In that case, we first select the example with highest
number of posteriors as reference. We then use traditional
DTW algorithm [36] to obtain posteriors-level alignment of

Fig. 2. Block diagram of the baseline system. After extracting phone posterior
features to calculate the normalized distance matrix between query and test
utterance, we apply DTW to obtain a sub-sequence matching the query. If the
length of the hypothesis is smaller than half the query length, it is discarded
to reduce false alarm rate. Otherwise, its score is compared to a threshold to
yield a final decision.

the rest of the examples with the reference. The mapped
posteriors are averaged together to generate the posteriors of
the reference template [9], [37]. Finally, this template is used
to find the query in test utterances as discussed in the following
section.

C. Template Matching

The template matching algorithm presented in [9] is similar
to the slope-constrained DTW [27] with some important
differences. First, a distance matrix is calculated between each
pair of frames of the query and test utterance using logarithm
of the cosine distance. The distances are then normalized to be
between 0 and 1. Dynamic programming is performed using
this distance matrix where the optimal cost at each step is
normalized by the corresponding partial path length. Also, it
imposes constraints such that the warping path can start and
end anywhere in the test utterance giving us a sub-sequence
which optimally matches the query. The resulting hypothesis is
then filtered depending on its length to reduce the false alarms.
If the length of a hypothesis is less than half of the query
length, it is discarded since small portions of the test utterance
can match well with query segments and produce a high
likelihood score. Finally, the score of a hypothesis is compared
with a pre-defined threshold to decide the occurrence of the
query. A block diagram of this system is presented in Figure 2
to find a spoken query in a test utterance.

IV. SUBSPACE MODELING

In this section, we describe the modeling of subspaces
of query exemplars for sparse representation. We start by
describing the sparse representation of posterior feature vectors
(as a sparse linear combination of an over-complete dictionary
posteriors) before discussing different methods to construct
dictionaries for query modeling.

A. Sparse Representation

When speech is represented in terms of posterior proba-
bilities, the subspace corresponding to each sub-word class
is a low-dimensional space [14], [38]. Accordingly, a speech
utterance comprised of sub-word classes, can be modeled as a
union of low-dimensional subspaces. Any data point in a union
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of low-dimensional subspaces can be efficiently reconstructed
by a sparse combination of other points in that space, a
property referred to as the self-expressiveness [39] of data.

Let yt be a posterior feature vector for a speech frame
at time t. Each posterior vector yt is a K dimensional
feature vector where each dimension corresponds to a speech
unit. These speech units (associated with DNN outputs) can
be phones (context dependent or independent), senones, or
any other sub-word unit. Following the self-expressiveness
property of data, the feature vector yt can be represented as
a sparse linear combination of other feature vectors present in
the training set, {di}Ni=1 corresponding to the query subspace,
i.e.:

yt ≈ α1d1 + α2d2 + . . .+ αNdN

= [d1 d2 . . . dN ]︸ ︷︷ ︸
D

× [α1 α2 . . . αN ]>︸ ︷︷ ︸
αt

= Dαt

(1)

where N is the number of training samples (basis vectors) used
to model the query subspace, D is a matrix of size K × N
which consists of basis vectors di of the query subspace, and
αt is the weight vector indicating the significance of each
basis vector in construction of a test posterior. The matrix D
is called a dictionary matrix and the columns of this matrix
are called atoms. The weight vector αt is sparse, i.e., having
very few non-zero entries. The non-zero entries correspond
to the underlying low-dimensional subspaces which the test
posterior belongs to.

The framework of sparse representation introduced above in
(1) relies on construction of the dictionary matrix D. Given
this dictionary for characterizing the underlying subspaces, the
independent subspaces are guaranteed to be identified correctly
using sparse representation [39]. In the following section, we
explain how these subspaces can be modeled using dictionary
for sparse representation.

B. Dictionaries for Subspace Modeling

Dictionaries for sparse representation are constructed using
an over-complete set of basis vectors obtained from the
training examples of corresponding classes. These dictionaries
can be modeled primarily in the following two ways:

1) Concatenation of training examples: In this method, we
take the features of all available training examples for
a desired class and concatenate them to build the dictio-
nary [18], [19]. This method is more suitable in a scenario
when very few training examples are available for a
class. On the other hand, with huge number of training
examples, the size of the dictionary can grow very large.
This, in turn, can increase the computational complexity
of the sparse coding algorithm. A method to extract all the
information present in the training data without increasing
the size of the dictionary to an undesirable magnitude is
thus required.

2) Learning from training examples: Dictionary learning
refers to the task of learning an over-complete set of
basis vectors from the training exemplars such that each
training exemplar can be reconstructed as a sparse linear

combination of the dictionary vectors (atoms). These
dictionaries can be learned by solving an optimization
problem which gives the best approximation of training
vectors while keeping the degree of sparsity on desirable
level as discussed in the following.
Let us have a set of T training vectors with Y =
{y1, y2, ..., yT }, and their sparse representations using
dictionary D ∈ RK×M with A = {α1, α2, ..., αT },
where K is the dimension of exemplar vectors, and M
is the number of dictionary atoms, the objective function
for dictionary learning is defined as

arg min
D,A

1

T

T∑
t=1

(
1

2
‖yt −Dαt‖22 + λ‖αt‖1

)
(2)

where λ is the regularization parameter. The first term
in this expression, quantifies the reconstruction error.
The second term denotes the `1-norm of α defined as
‖α‖1 =

∑
i |αi| which quantifies the sparsity of αt. The

joint optimization of this objective function with respect
to both D and αt simultaneously is non-convex, it can
be solved as a convex objective by optimizing for one
while keeping the other fixed [40].

In case of QbE-STD, we represent each query as a class
to be modeled using dictionary. The training data for these
dictionaries is obtained by extracting posterior features from
the spoken instances of corresponding query as discussed in
Section III-A. These are the same posterior features used to
construct the query templates for DTW in the baseline system.
We consider two cases to construct a dictionary depending on
the number of examples available for a given query. If there
is only one example available per query, the corresponding
posterior feature vectors constitute the dictionary. Whereas
with multiple examples per query, we either concatenate the
posteriors of these examples to construct a dictionary or use
these posteriors to learn a dictionary. In case of learning a
dictionary, we initialize the dictionary with posteriors of the
example having highest number of frames. Posteriors from
rest of the examples are used to learn the dictionary according
to (2).

V. SPARSE SUBSPACE DETECTION (SSD)

Once the query subspaces are modeled, the QbE-STD
problem is cast as a subspace detection problem where the re-
construction errors of the respective sparse representations are
used to detect the underlying subspaces. Given a test posterior
feature vector yt and the query dictionary D, the test vector
can be represented as a sparse linear combination of dictionary
atoms characterizing the query. The sparse representation is
obtained by solving the following optimization problem:

αt = arg min
α

{
1

2
‖yt −Dα‖22 + λ‖α‖1

}
(3)

where λ is the regularization parameter. The first term in
this expression quantifies the reconstruction error. The second
term denotes the `1-norm of α defined as: ‖α‖1 =

∑
i |αi|

which quantifies the level of sparsity in the co-efficient vector,
αt. In order to exploit the temporal information inherent to
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Fig. 3. Frame-level probability and different thresholds for an utterance
containing “SO THAT CONCLUDES MY PRESENTATION”. The query
speech contains “PRESENTATION”

speech signal, a sequence of c posterior feature vectors are
concatenated to form a contextually rich vector for dictionary
construction as well as sparse representation as follows,

ỹt = [y>t−c . . .y
>
t . . .y

>
t+c]

> (4)

This mechanism is referred to as context appending which
is a typical approach to incorporate the dynamics of exem-
plars [19], [41]. This context is a system parameter to be
optimized using development queries.

The reconstructed vectors using the corresponding sparse
representations will be: ŷt = Dαt. The subspace which
can best represent a test vector yt corresponds to the least
reconstruction error [17], [21]. Hence, we use the Euclidean-
norm based reconstruction error to perform QbE-STD at a later
stage. The reconstruction errors are calculated as follows:

e(yt) =
1

2
‖yt − ŷt‖2 =

1

2
‖yt −Dαt‖2 (5)

We use these reconstruction errors to calculate frame-level
empirical probabilities of the query occurring in a test utter-
ance as: p(yt) = 1 − e(yt). These frame-level probabilities
constitute a probability curve indicating the possibility of the
query occurring in a test utterance. We perform a non-linear
smoothing to compensate for the potential errors made by the
sparse coding system. The probability curve for an example
utterance is shown in Figure 3. In order to identify a hypoth-
esized region of occurrence from this curve, we use Kadane’s
algorithm [42], a very simple dynamic programming technique
with linear time complexity to obtain a contiguous sub-array
within an one-dimensional array of numbers which has the
largest sum. In our case, we subtract a threshold value from the
probability curve to get an array of numbers. This threshold
provides a trade-off between the missed detection and false
alarm rate. Subsequently, we apply Kadane’s algorithm to
obtain a sub-array with the largest sum, which essentially
indicates the hypothesized region. The area under this segment
of the curve represents the likelihood score. We normalize
this score with the length of the hypothesized region. Later,
we compare the length of the hypothesized region with half
the length of the query and reject the ones having a smaller

Algorithm 1 Sparse Subspace Detection (SSD) (Fig. 4)
Input: Spoken query and posteriors of a test utterance
Output: Decision if the query occurs in the test utterance

1: Extract the posterior features from spoken query
2: Perform context appending according to (4) for both query

and test posteriors
3: Construct a dictionary by concatenating the posteriors

from different examples or learn a dictionary using (2)
4: Compute sparse representation of test posteriors using the

dictionary according to (3)
5: Compute reconstruction error using (5)
6: Use Kadane’s algorithm to find out a hypothesized region

and corresponding score
7: Use query length and score threshold to make a final

decision

length in order to reduce false alarms. A comprehensive block
diagram for the proposed system is presented in Figure 4. The
steps to implement the system is summarized in Algorithm 1.

The QbE-STD system developed in this section does not
use DTW to find a query speech in a test utterance. However,
the proposed system is not able to capture the temporal
information so well as compared to a DTW based system as
we will see in SectionVIII. Thus, we propose new approaches
to build hybrid systems in the following section which will be
able to combine the positive aspects of both systems.

VI. SPARSE-DTW HYBRID SYSTEMS

In this section we propose two different ways to incorporate
information coming from a DTW system and the sparsity
based system discussed above. The first method implements
a system-level fusion, whereas the second method performs
a re-scoring of the hypotheses from the DTW system using
sparsity. We describe these systems in the following.

A. Subspace Regularized DTW (SR-DTW)

The system presented here relies on the notion that the
reconstruction error for a test frame can be considered as
distance between the query subspace and the corresponding
test frame [22]. In this method, we propose to use the subspace
based distance to regularize the distance matrix for DTW as
shown in Figure 5. Let us consider, X = [ x1,x2, . . . ,xm ]
represent the posterior feature vectors corresponding to the
query speech and Y = [ y1,y2, . . . ,yn ] corresponding to
a test utterance. Here, m and n represent the number of
frames in the query speech and test utterance respectively. The
distance matrix (∆) used for DTW can then be calculated as
follows:

∆(i, j) = d(xi,yj) ∀ i = 1, 2, . . . ,m

and j = 1, 2, . . . , n
(6)

where d(., .) is a standard distance measure such euclidean,
cosine, etc.

On the other hand, the subspace based distance (reconstruc-
tion error e(j)) for a test frame yj can be calculated using
(3) and (5). We observe that each column of this distance
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Fig. 4. Block diagram of the sparse subspace system. We first extract posterior features from the query and use it to construct a dictionary. We employ this
dictionary to compute the sparse representation and corresponding reconstruction error for each frame of test audio. Exploiting these reconstruction errors, we
use Kadane’s algorithm [42] to hypothesize the region of occurrence of the query and calculate the likelihood score. If the length of the hypothesis is smaller
than half the query length, it is discarded to reduce false alarm rate. Otherwise, the hypothesis score is compared to a threshold to yield a final decision.

Fig. 5. Block diagram of the Subspace Regularized DTW system. We first extract posterior features from the query and use it to construct a dictionary and
a template. The dictionary is used to calculate reconstruction errors for each frame of test audio to generate the subspace based distance vector. The distance
matrix for DTW is computed using the query template and test posteriors. Each column of the distance matrix is then regularized using the errors from sparse
recovery. DTW is finally applied to obtain a hypothesis. If the length of the hypothesis is smaller than half the query length, it is discarded to reduce false
alarm. Otherwise, the hypothesis score is compared to a threshold to yield a final decision.

matrix corresponds to the frame-level distance between a test
frame and all frames of the query whereas we only have one
number representing the distance from a test frame to the
query subspace as a whole. The DTW distance matrix is then
regularized by replacing each of its columns by a weighted
average of each element in this column and the subspace based
distance obtained using the same test frame:

∆reg(i, j) = wd ×∆(i, j)+(1− wd)× e(j)
∀ i = 1, 2, . . . ,m

and j = 1, 2, . . . , n

(7)

where ∆reg is the regularized distance matrix and wd is a fixed
regularization weight parameter, which will be optimized on an
independent query development set. We then perform dynamic

programming on this regularized distance matrix of ∆reg(i, j)
in a similar manner as the baseline system [9] to obtain a
region of occurrence of the query and calculate the likelihood
of its occurrence. The whole procedure to implement this
system is presented in Algorithm 2.

The key idea behind the proposed method is that the frame-
level DTW exploits local similarities and properly models the
temporal information, while the subspace-based distance cap-
tures the similarity at the subspace-level, which considers all
frames present in the query for each test frame. A combination
of these two distances is then shown to provide better decision
likelihoods, resulting in performance improvement.

In principle, this approach is applicable to any variant
of DTW by regularizing the corresponding distance matrix.
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Fig. 6. Block diagram of the system for subspace based re-scoring of DTW. We first extract posterior features from the query and use it to construct a
dictionary and a template. The template is used in the baseline DTW system to hypothesize the region of occurrence of the query and obtain a likelihood
score. We obtain sparse representation of the hypothesized region and compute subspace score using corresponding reconstruction errors. The final score is
then calculated by taking a convex combination these two scores. If the length of the hypothesis is smaller than half the query length, it is discarded to reduce
false alarm. Otherwise, the hypothesis score is compared to a threshold to yield the final decision.

Algorithm 2 Subspace Regularized DTW (SR-DTW) (Fig. 5)
Input: Spoken query and posteriors of a test utterance
Output: Decision if the query occurs in the test utterance

1: Extract the posterior features from spoken query
2: Perform context appending according to (4) for both query

and test posteriors
3: Construct a dictionary by concatenating the posteriors

from different examples or learn a dictionary using (2)
4: Construct a template for DTW as discussed in Sec-

tion III-B
5: Compute sparse representation of test posteriors using (3)

and corresponding reconstruction errors using (5)
6: Construct a distance matrix by computing a normalized

cosine distance between each pair of posteriors from query
and test utterance as discussed in Section III-C.

7: Regularize the distance matrix using the reconstruction
error according to (7)

8: Perform DTW to make a decision as described in Sec-
tion III-C.

However, in this work, and to provide us with strong reference
points, we implemented the system presented in [9] and
perform the proposed regularization over the distance matrix
followed by dynamic programming to obtain the detection
regions along with their likelihood scores.

B. Subspace Based Rescoring of DTW (SRS-DTW)

In this section, we investigate another approach to integrate
information from sparsity into DTW based systems. Instead
of regularizing the distance matrix, we propose to re-score the
hypothesized region obtained from DTW using sparse coding.

Considering the spoken query X and the test audio Y,
we apply the modified DTW algorithm (as explained in
Section III-C) to obtain a hypothesized region denoted as
Yhyp = [ ya,ya+1, . . . ,yb−1,yb ] and the corresponding

normalized similarity score is SDTW . Then we construct a
dictionary for the query using one of the methods discussed in
Section IV-B. We use this dictionary in (3) to generate sparse
representation for each frame of the query and employ those
representations in (5) to calculate the reconstruction errors for
each frame yi of the hypothesized region. The resulting error
vector is represented as ea,b = [ ea, ea+1, . . . , eb−1, eb ], which
is used to calculate another score for the hypothesized region,
Yhyp as follows,

SSubspace = 1− 1

b− a+ 1

b∑
i=a

ei (8)

We call it subspace based score which represents average
similarity between the hypothesized region and the spoken
query using subspace structure of speech. Once we have scores
from both systems, we take a weighted average as follows:

S = ws × SDTW + (1− ws)× SSubspace (9)

where S is the final similarity score between the hypothesized
region and the spoken query, and ws represents the associated
weight. A block diagram of this proposed re-scoring mecha-
nism is presented in Figure 6. Also, a step-by-step summary
for implementing the system is described in Algorithm 3.

VII. EXPERIMENTAL SET-UP

We use two different databases to evaluate and analyze the
proposed approaches: the AMI meeting corpus [43] and the
MediaEval 2013 spoken web search (SWS 2013) corpus [35].
A brief description of these two databases is presented in
this section, before discussing the posterior feature extraction
and the pre-processing steps involved. Finally, we describe
different evaluation metrics used for our experiments.

A. AMI Meeting Corpus

The AMI meeting corpus [43] is used for the experiments
where the training, development and evaluation sets are as
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Algorithm 3 Subspace Based DTW Rescoring (SRS-
DTW) (Fig. 6)
Input: Spoken query and posteriors of a test utterance
Output: Decision if the query occurs in the test utterance

1: Extract the posterior features from spoken query
2: Perform context appending according to (4) for both query

and test posteriors
3: Construct a dictionary by concatenating the posteriors

from different examples or learn a dictionary using (2)
4: Construct a template for DTW as discussed in Sec-

tion III-B
5: Perform DTW using the template to obtain a hypothesized

region and corresponding score, SDTW as described in
Section III-C

6: Compute sparse representation of test posteriors of the
hypothesized region using (3)

7: Compute corresponding reconstruction errors according
to (5) and use it to obtain the subspace based score,
SSubspace according to (8)

8: Compute the final score using SDTW and SSubspace

according to (9)
9: Use query length and score threshold to make a final

decision

described in [44]. This database contains meeting recordings
in English where many participants were non-native speakers,
and provides us with about 81 hours for DNN training and
about 9 hours for each of the development and test data. Also,
the headset recordings contain considerable amount of over-
lapping speech (competing speakers) which makes the QbE-
STD task even more challenging. There are approximately 12k
words in the training, out of which we extracted 200 more
frequent words (excluding functional words) for our detection
experiments including very short words such as ‘ADD’ to
long words such as ‘TECHNOLOGY’. Later, these queries
are divided into two groups in a random manner to obtain sets
of 100 queries each. One set is used as development queries
to optimize the parameters of different systems whereas the
other set is used to evaluate the performance of corresponding
system. We use the test set of AMI as the search database for
QbE-STD evaluation which contains 12612 utterances.

B. MediaEval 2013 Spoken Web Search (SWS 2013)

This database is part of the MediaEval benchmarking
initiative [35] for evaluating spoken query detection sys-
tems. It consists of audio recordings from 9 different low-
resourced languages: Albanian, Basque, Czech, non-native
English, Isixhosa, Isizulu, Romanian, Sepedi and Setswana.
These recordings were collected from many different sources
with varying acoustic conditions and different amounts of
data corresponding to different languages. The variety of data
reduces the possibility of over-fitting on the development and
evaluation query sets. There are 505 queries in the develop-
ment set and 503 queries in the evaluation set. These sets are
mutually exclusive. There are 3 types of queries depending
on the number of examples available per query. The number

TABLE I
NUMBER OF DIFFERENT TYPES OF QUERIES AVAILABLE IN DEVELOPMENT

AND EVALUATION SETS WHICH ARE PARTITIONED ACCORDING TO THE
NUMBER OF EXAMPLES PER QUERY.

Query Set Examples per query
1 3 10

Development 311 100 94
Evaluation 310 100 93

of queries available in each category is shown in Table I.
The search space consists of 20 hours of audio with 10762
utterances.

C. Feature Extraction and Pre-processing

We have used the setup presented in Section III-A to extract
phone posterior features for our detection experiments. The
setup corresponding to different databases is implemented
separately as described below.

1) AMI Phone Recognizer: The posterior features are ex-
tracted from a DNN with Mel Frequency Cepstral Coeffi-
cients (MFCC) based spectral features as input. These spectral
features are computed from small segments of speech signal
obtained by applying triangular overlapping temporal windows
of 25ms with an overlap of 15ms on a speech utterance. Ad-
ditionally, ‘delta’ and ‘delta-delta’ coefficients are calculated
to account for the dynamics of each segment and appended
to the MFCCs to obtain 39 dimensional feature vectors. To
add contextual information, 4 frames of left and right acoustic
contexts are appended (total 9 frames) to have a 351 dimen-
sional input vector to the DNN. The DNN consists of 3 hidden
layers of 1024 neurons each, to estimate 43 dimensional phone
posteriors at the output. There are 39 phones obtained from
CMU pronunciation dictionary∗ for lexical modeling. The
remaining 4 phones are used to model silence and non-speech
sounds. The training labels for the DNN are generated using a
GMM-HMM based speech recognizer [26]. The recognizer is
used to force align the training data to obtain the corresponding
phonetic transcription. This whole setup is implemented using
the Kaldi toolkit [45].

2) BUT Phone Recognizer: There is no data available
for training a phone posterior extractor for the SWS 2013
database. Thus, we use the same phone recognizers as used
in [46] to estimate phone posteriors. The phone recognizers
were developed at Brno University of Technology (BUT) for
three different languages: Czech, Hungarian and Russian [47].
These recognizers were trained using SpeechDAT(E) [48]
database which contains 12, 10 and 18 hours of speech for
the respective languages. There are 43, 59 and 50 phones for
the respective languages. In all cases, 3 additional units were
considered to model silence and non-speech sounds.

Once we have calculated the phone posteriors for both
databases, we perform speech activity detection (SAD) to
remove the noisy frames from test utterances as well as
queries. The SAD relies on the output of the phone recognizers
to perform this task. It calculates the probability of no voice
activity by summing up the probabilities corresponding to

∗http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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silence and non-speech units in the posterior vector. If for any
frame, this probability is highest, the frame is considered noisy
and rejected from the corresponding audio. Also, if there are
less than 10 frames in an audio file, it is not considered for the
experiments to reduce the false alarm rate and computational
complexity. Finally, the dimensions corresponding to silence
and non-speech units are removed from the posterior vectors
as these are unlikely to help in the query matching task [46].

We use these posterior features to perform query detection
experiment and obtain a likelihood score for each pair of
spoken query and test utterance. Following the score nor-
malization technique used in [46], we normalize the scores
to have zero-mean and unit-variance per query. This reduces
the variability in scores across different queries and make
them comparable for final evaluation. We have also tried sum-
to-1 (STO) normalization and keyword-specific thresholds
(KST) [49], [50]. However they did not perform better than
the mean-variance normalization. Thus the results presented
in this work utilize the mean-variance normalization.

D. Evaluation Metric

Several metrics were used to evaluate the performance
of different systems. Maximum Term Weighted Value
(MTWV ) [46] is considered as the primary metric which
is used to optimize the parameters of different systems.
MTWV is the maximum value of Actual Term Weighted
Value (ATWV ) which can be achieved with a well calibrated
system. ATWV is a measure based on system hard decision
which takes into account the miss and false alarm rate as
well as the corresponding costs. It also considers the prior
probability of occurrence (Ptarget) of a query in the test
utterances which is 4×10−3 and 8×10−4 for AMI and SWS
2013 respectively. For our experiments, we consider cost of
false alarm (Cfa) to be 1, cost of missed detection (Cm) to
be 100 resulting in the weight factor (β) of 2.49 and 12.49
for AMI and SWS 2013 respectively.

Minimum normalized cross entropy (minCnxe) [46] is
reported for these systems as a secondary evaluation metric.
The normalized cross entropy quantifies the knowledge that a
QbE-STD system has on the ground truth. More specifically,
it computes the information that is not provided by the scores
of a given system. minCnxe is the minimum normalized
cross entropy that can be attained by calibrating the system.
A perfect system will give minCnxe ≈ 0, whereas a non-
informative system will give minCnxe = 1. In addition
to these two measures, we also use detection error trade-
off (DET) curves to analyze the performance of different
systems and compare them for a given range of false alarm
probabilities.

To compare the computational efficiency of different ap-
proaches, we report the Searching Speed Factor (SSF ) [46],
which indicates the amount of CPU effort required to search
a query in an audio document. Let the duration of a query
and a test audio be tq and ta units of time, respectively. If
an algorithm takes t units of time to search the query, the
SSF is defined as: t

tq×ta . The total CPU time is reported
as if it was computed on a single CPU. If multiple examples

are used to search a given query, we use average duration of
those examples as the query duration. Lower value of SSF
corresponds to a faster system.

E. Test of Statistical Significance

We have also performed Student’s t-test to measure sta-
tistical significance of the improvements obtained in both
MTWV and minCnxe scores by our proposed systems. To
perform this test, we compute the scores (MTWV or minCnxe
whichever applicable) per query and these scores are consid-
ered as samples for a paired-samples t-test. In order to indicate
improvement by our systems, the test is one-tailed t-test and
the corresponding p-values are indicated with the results.

VIII. EXPERIMENTAL ANALYSIS

We conducted extensive experiments on AMI meeting cor-
pus to analyze the performance of different systems proposed
in this paper. The experiments are performed in two chal-
lenging scenarios when very few examples (10 examples) or
just one query example is provided for QbE-STD, and the
test utterances are conversational spontaneous speech with
competitive speakers.

A. Baseline System

The DTW based QbE-STD system discussed in Section III
is used as a highly competitive baseline system [8]. The
performance of this system using evaluation queries is shown
in Table II. We observe that the performance with multiple
example per query is significantly better than its one example
counterpart. This indicates that template averaging is able to
incorporate variations from multiple examples of the same
query which is similar to the observations presented in [9].

B. Sparse Subspace Detection (SSD)

In this section, we evaluate the sparse subspace detection
system presented in Section V. This is a sparsity based system
which completely relies on the subspace structure of speech
data. The purpose of developing this system is to quantify the
contribution of subspace structure of speech for the task of
QbE-STD. We follow the steps presented in Algorithm 1 to
implement this system. As discussed in Section V, in case
of one example per query context appended posterior feature
vectors of the example constitute the dictionary. On the other
hand, with multiple examples for each query, we construct the
dictionary in two ways: (i) concatenation of context appended
posteriors and, (ii) learning from the context appended pos-
teriors of different examples of the query. The size of these
dictionaries vary depending on the length of query examples,
context size and the dictionary construction method being used
(concatenation or learning). The number of rows equals the
length of context appended posterior feature vector whereas
the the number of columns (atoms) depend on the number of
frames in the query examples and the dictionary construction
method. Dictionary construction is followed by the rest of the
steps in Algorithm 1 to find the region of occurrence and
likelihood score of the query in the test utterance. Context size
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TABLE II
PERFORMANCE OF THE BASELINE SYSTEM AND THREE DIFFERENT SYSTEMS PROPOSED IN THIS WORK. EACH SYSTEM IS EVALUATED USING DIFFERENT

NUMBER OF EXAMPLES FOR EACH QUERY. MTWV (HIGHER IS BETTER) AND MINCNXE (LOWER IS BETTER) IS USED AS EVALUATION METRIC.
COMPUTATIONAL EFFICENCY IS SHOWN USING SSF (LOWER IS BETTER)

System 1 Example 10 Examples (Concatenation) 10 Examples (Learning)
MTWV minCnxe SSF MTWV minCnxe SSF MTWV minCnxe SSF

Baseline DTW† 0.4758 0.6526 0.1778 0.6028 0.5014 0.2070 0.6028 0.5014 0.2070
Sparse Subspace Detection 0.3030 0.7874 0.0367 0.4117 0.6613 0.1109 0.3992 0.6897 0.0406

Subspace Regularized DTW 0.4914∗∗ 0.6376∗∗ 0.1889 0.6332∗∗∗ 0.4797∗∗ 0.2415 0.6231∗∗∗ 0.4847∗∗ 0.2220
Subspace based Re-scoring of DTW 0.4875∗∗ 0.6399∗ 0.1831 0.6374∗∗∗ 0.4610∗∗∗ 0.2242 0.6323∗∗∗ 0.4674∗∗∗ 0.2123

†the baseline system uses template averaging in case of 10-examples
∗ significant at p < 0.05; ∗∗ significant at p < 0.001; ∗∗∗ significant at p < 0.00001;

(c), the level of sparsity (λ) and a single threshold parameter
used in Kadane’s algorithm of this system are optimized using
development queries to have the best detection performance.
The parameters are optimized for all development queries,
and these are not dependent on individual queries. The final
results using evaluation queries are presented in Table II. The
performance of this system is not as good as the baseline
system. However, this is a much faster technique compared to
the baseline system as indicated by the lower value of SSF.
Also, it shows the subspace structure of speech can be used to
perform QbE-STD with reasonable accuracy. The performance
degradation can be attributed to the absence of a framework
to incorporate temporal information.

C. Subspace Regularized DTW (SR-DTW)

The subspace regularized DTW system is proposed to
include the temporal information from the spoken utterance,
as discussed in Section VI-A. To evaluate this system, we
construct a dictionary for each query as discussed in previous
section and follow the steps shown in Algorithm 2 to obtain
the likelihood score for a query occurring in a test utterance.
The parameters (Context, λ and wd) are optimized using
the development queries and the results on evaluation queries
are shown in Table II. The optimization is done by varying
all the parameters in their respective ranges and maximizing
the MTWV. Clearly, this system gives improvement over the
baseline system which shows the importance of exploiting the
subspace structure of speech while developing a QbE-STD
system.

D. Subspace Based Rescoring of DTW (SRS-DTW)

Another approach to take advantage of both DTW and
sparsity based system, is to combine their respective scores
as discussed in Section VI-B. In this case also, we construct
different dictionaries depending on the number of examples
provided for each query and perform corresponding detection
experiment. We follow the procedure described in Algorithm 3
to obtain the likelihood score for a query occurring in a test
utterance. For this system, the Context and λ parameter are
optimized by keeping ws equal to 0. This essentially means
that we are trying to obtain the best set of scores using only
the sparsity based errors, irrespective of the scores generated
by the baseline system. Once the context and λ have been so
optimized , we vary ws in a given range to obtain the best
value.
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Fig. 7. DET curves showing the performance of the Sparse-DTW hybrid
systems compared to the baseline DTW system using 1 example per query.
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Fig. 8. DET curves showing the performance of the Sparse-DTW hybrid
systems compared to the baseline DTW system using 10 examples per query.

The resulting performance is summarized in Table II. Simi-
lar to the SR-DTW system, this system also gives improvement
over the baseline system, once again indicating the importance
of subspace structure of speech for the problem at hand.
The performance of these systems are also shown using DET
curves in Figures 7 and 8 corresponding to 1-example and
10-examples case respectively. The curves show that the per-
formance improvement is consistent over all operating points
in the DET curve.

E. Concatenated vs Learned Dictionary

We have performed two sets of experiments for all systems
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proposed in this work when multiple examples per query are
provided. They differ in the way corresponding query dictio-
naries are constructed. When we compare the performance
in these cases for all three systems, we can see that the
performance is worse when the dictionary is learned from the
given examples compared to concatenating them to form the
dictionary. This indicates that the dictionary learning algorithm
has not been able to capture all the information from the query
examples provided. However, the performance difference is
small, indicating the validity of dictionary learning when con-
catenating the examples of a query increases the computational
cost significantly.

F. Effect of Context and λ

In this section, we discuss the effect of acoustic context (as
discussed in Section IV-B) and λ on different systems. The
optimal value of these parameters to obtain best MTWV using
development queries is presented in Table III. The context
size depends on the average query length to capture longer
temporal dependency. As we add more examples to generate
query templates, the optimal context size increases. On the
other hand, the value of λ indicates the desired level of
sparsity. It is dependent on the number of atoms present in
the dictionary for sparse representation. Bigger dictionaries
require higher λ to achieve good reconstruction of the test
frames. Thus we require higher λ for the 10-examples case
compared to the 1-example case. However, the number of
atoms in case of 10-examples (Learning) is higher than 1-
example case, but lower than 10-examples (Concatenation)
case. This leads to the optimal value of λ for 10-examples
(Learning) case being higher than 1-example case but lower
than 10-examples (Concatenation) case. We also observe that
optimal context size in case of SR-DTW is smaller compared
to other two systems. The reason is, in SR-DTW system,
we are not only trying to obtain better reconstruction of test
frames, but also want to hypothesize the regions representing
queries. Higher context produces better reconstruction for
smaller regions, effectively reducing the length of the hypoth-
esized regions. Thus the system makes a trade-off between
quality of reconstruction and length of the detected region
and the optimal context size is smaller than other systems.
As an example of this optimization, we present in Figure 9
the variation of MTWV score with respect to context size
and different values of λ for 10-examples (Concatenation)
case. The scores are generated using SRS-DTW system on
development queries while keeping the weight parameter,
ws = 0. Clearly, Context = 7 and λ = 0.5 gives the best
performance, which is later used to optimize the value of ws.

G. Effect of Fusion Weight

We have proposed two ways of fusing the baseline DTW
and sparsity based system as discussed in Section VI. Param-
eters wd and ws indicate the fusion weights for SR-DTW
and SRS-DTW system, respectively. In both cases, (1 − w)
represent the contribution of information obtained by relying
on the subspace structure of speech. Thus, higher w corre-
sponds to lower contribution from sparsity. We have optimized

TABLE III
OPTIMIZED VALUES OF CONTEXT AND λ GIVING THE HIGHEST MTWV
SCORE ON DEVELOPMENT QUERIES FOR DIFFERENT SYSTEMS PROPOSED

IN THIS WORK

Systems
1 Example 10 Examples

Concatenation Learning
Context λ Context λ Context λ

SSD 4 0.01 9 0.6 8 0.1
SR-DTW 1 0.1 2 0.3 2 0.2

SRS-DTW 4 0.01 7 0.5 8 0.1
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Fig. 9. Variation of MTWV with changing context for different values of
λ. The experiments are performed using SRS-DTW system on development
queries with 10 examples (Concatenation) per query, while keeping ws =
0. It corresponds to the scenario when we obtain the scores from sparse
reconstruction errors by using boundaries from the baseline system

these fusion weights on development queries for both systems.
As an example, we show the performance variation of SRS-
DTW system with corresponding weight, ws in Table IV,
while keeping the other parameters (Context and λ) fixed.
We also present the corresponding baseline performance for
comparison. We observe that, ws = 0.7, 0.8, 0.9 gives very
similar results for 1-example case and ws = 0.6, 0.7, 0.8 for
10-examples (Concatenation) case. This indicates a range of
values of ws to obtain similar results which are better than the
baseline. The optimal values of ws (to obtain best MTWV)
are 0.8 and 0.7 corresponding to the cases of 1-example and
10-examples (Concatenation). So, the effective weights for
sparsity based scores are 0.2 and 0.3 respectively. It shows
that the sparsity based scores provide better discrimination
with more examples for each query. This is in conformity
with the idea of subspace modeling where many examples are
needed for better modeling of a class [40].

H. Computational Efficiency

The computational efficiency of different systems is shown
in Table II using SSF metric. It can be observed that sparse
subspace detection (SSD) is the most efficient system among
all in both cases of using different number of examples. The
price for this efficiency is paid by degradation in detection
performance. On the other hand, the hybrid approaches need
more computation than the baseline system, because in both
systems, we perform DTW as in the baseline system while
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TABLE IV
VARIATION OF MTWV AND MINCNXE FOR DIFFERENT VALUES OF
FUSION WEIGHT (ws). THE EXPERIMENTS ARE PERFORMED USING

SRS-DTW SYSTEM ON DEVELOPMENT QUERIES.

weight (ws) 1 Example 10 Examples (Concat.)
MTWV minCnxe MTWV minCnxe

0.6 0.4638 0.6394 0.6043 0.4757
0.7 0.4761 0.6345 0.6051 0.4765
0.8 0.4795 0.6355 0.6015 0.4828
0.9 0.4767 0.6414 0.5890 0.4965

Baseline 0.4646 0.6558 0.5684 0.5192

performing additional computation for obtaining the sparse
representation to complete the hybridization. Also, SRS-DTW
system is computationally more efficient than the SR-DTW
system because in the case of SRS-DTW system, we perform
sparse coding only for a sub-sequence (hypothesized region
from baseline) of the test utterance, whereas for SR-DTW sys-
tem, we need the sparse representation for the whole utterance
to obtain the regularized distance matrix for DTW. We further
observe that, dictionary learning approach is faster than the
concatenation of examples of a query. This difference in speed
is due to the smaller size of dictionary used for sparse coding
when we have learned a dictionary from different examples
of a query. Thus in all cases, there is a trade-off between
performance enhancement and computational efficiency of the
systems and we can choose a system to perform QbE-STD
depending on our requirements.

IX. EXPERIMENTS ON SWS 2013

We conducted another set of experiments on SWS 2013
database to show the validity of proposed approach in real life
scenarios. As discussed in Section VII-C, we use 3 different
BUT phone recognizers to extract the posterior features. In [9],
the authors concatenate the feature vectors obtained from
different phone recognizers to perform query detection, which
was their best individual system. Thus, we implemented it as
our baseline system.

Out of the three proposed systems, we use the SRS-DTW
system due to its ease of parameter optimization and superior
performance compared to other systems. We perform sepa-
rate experiments for queries with different number examples
available per query. In case of multiple examples per query,
we concatenate them to construct the corresponding dictionary
as it gives better performance compared to dictionary learning
experiments on AMI corpus. The parameters of our system
are optimized using development queries and the results using
evaluation queries are presented in Table V. The difference
in performance in three sets of queries can be attributed to
the corresponding quality of recordings. Clearly, our system
performs better than the baseline system in all three cases. We
observe that the performance gain increases with increasing
number of examples per query. This is similar to the results
obtained on AMI database. To analyze the effect of additional
examples per query (for queries with 3 or 10 examples),
we conduct another set of experiments where we add one
example at a time to each query and obtain the corresponding
detection performance. The resulting MTWV values are

TABLE V
PERFORMANCE OF THE BASELINE SYSTEM AND SUBSPACE BASED

RE-SCORING OF DTW SYSTEM PROPOSED IN THIS WORK. EACH SYSTEM
IS EVALUATED FOR THREE DIFFERENT CASES WHERE DIFFERENT NUMBER

OF EXAMPLES PER QUERY IS AVAILABLE. MTWV (HIGHER IS BETTER)
AND MINCNXE (LOWER IS BETTER) IS USED AS EVALUATION METRIC.

Examples
per query

Baseline System Proposed System
MTWV minCnxe MTWV minCnxe

1 0.4287 0.6183 0.4362∗ 0.6071∗∗
3 0.3007 0.6682 0.3204∗∗∗ 0.6571∗∗
10 0.2740 0.6893 0.3020∗∗∗ 0.6703∗∗∗

∗ significant at p < 0.05; ∗∗ significant at p < 0.001; ∗∗∗ significant at
p < 0.00001;

Fig. 10. Comparison of improvements in MTWV score with additional
examples per query for baseline DTW and proposed SRS-DTW system. The
performance gain is higher with the proposed system.

presented as a function of the number of examples per query
in Figure 10. Clearly, the performance improvement is higher
with additional examples for SRS-DTW system compared to
the baseline. The overall performance gain indicates that the
proposed methods are generalizable to real-world scenario and
shows the importance of low-dimensional subspace structure
of speech for the task of QbE-STD.

X. CONCLUSION

In this paper, we have proposed three different systems ex-
ploiting on the low-dimensional subspace structure of speech.
The performance of these systems indicate the usefulness of
this structure for QbE-STD. The sparse subspace detection
system is shown to be faster than the baseline template
matching system with reasonable accuracy. On the other hand,
the hybrid systems relying on sparse representation as well
as template matching approach yield better performance. The
improvement is higher in case of multiple examples per query,
which indicates the capability of the proposed approaches to
exploit the information from multiple examples better than
the baseline system. The performance gain in MediaEval
challenge database validates our approach in challenging real-
world scenarios.

It has also been shown that the proposed systems benefit
from multiple examples of a query. In the future, we plan
to obtain these examples from the best scoring hypotheses
generated by a QbE-STD system or by user driven feedback.
These examples will then be used to learn the query dictionary
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to keep the computational cost to an acceptable level. In
another approach, the low-dimensional subspace structure of
speech can also be used to find repetitive patterns in speech
signal, which will help in identifying phone-like units in a
data driven manner. A DNN trained using these units predicts
new posterior feature vectors which can benefit all the systems
proposed in this paper as well as the baseline system.
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