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Abstract

We propose a deep-learning approach for people detec-
tion on depth imagery. The approach is designed to be de-
ployed as an autonomous appliance for identifying people
attacks and intrusion in video surveillance scenarios. To
this end, we propose a fully-convolutional and sequential
network, named WatchNet, that localizes people in depth
images by predicting human body landmarks such as head
and shoulders. We use a large synthetic dataset to train the
network with abundant data and generate automatic anno-
tations. Adaptation to real data is performed via fine tuning
with real depth images.

The proposed method is validated in a novel and chal-
lenging database with about 29k top view images collected
from several sequences including different people assaults.
A comparative evaluation is given between our approach
and other standard methods, showing remarkable detection
results and efficiency. The network runs in 10 and 28 FPS
using CPU and GPU, respectively.

1. Introduction
In recent years we have seen a large deployment of com-

puter vision systems for people detection and counting in
video surveillance and analysis applications [2, 4, 15, 16].
These systems can be of primary necessity for security in
public and private places, e.g. banks, airports, and corporate
buildings. Specifically for restricted areas where the access
of people is monitored to prevent attacks and intruders.

In this paper, we study the problem of detecting intruders
in airlocks from monocular depth cameras. More precisely,
we focus on the detection of multiple people in restricted ar-
eas where one person is exclusively allowed at a time. This
is a difficult problem since the video surveillance system
must be able to detect people attacks and trickeries (such as
tailgating and piggybacking to fool the system). See Fig-
ure 1 for an example.

The performance of people detection systems that rely
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Figure 1. We propose an efficient depth-based network (called
WatchNet) for people detection in video surveillance applications.
The proposed method is able to identify people intrusion by detect-
ing human landmarks (i.e. head and shoulders) with high accuracy.

on monocular cameras may degrade given the occlusions
caused by scene elements or other people in the scene.
Blind regions makes the task even more challenging since
they can be potentially used to hide unallowed objects or
people from the camera. To solve this problem, the cam-
era is commonly placed in a zenithal position in such a way
that it is much harder to deceive the detection system when
people are exactly below the camera [5, 14, 18].

Another aspect related to surveillance systems is the pri-
vacy and data protection regulations imposed in many coun-
tries. Systems based on color cameras have to apply algo-
rithms and controls to maintain people’s privacy. This leads
to the use of other technologies such as depth cameras that
are a great source for people detection but when used alone
can avoid this legal inconvenience [1, 6, 8].

Thus, in this work, we introduce a deep-learning ap-
proach for people detection from top view depth cameras
(Figure 1). The approach is based on an efficient network,
called WatchNet, that predicts the location of head and
shoulders as well as the body center in order to estimate
the number of people in the airlock. This network is trained
with artificial and real samples to boost the performance on
detection. This approach results in a robust and discrimi-
native surveillance system able to detect people even under
attack or intrusion situations.



Related Work: To control the access of people to public
or private buildings, video surveillance systems are usu-
ally based on counting the number of people in the scene.
Techniques for this can be divided into two main categories:
feature-based and counting-by-detection methods.

Feature-based counting methods formulate the task as a
regression problem, avoiding people detection, where im-
age features are exploited to predict the number of people
in the scene. This approach is particularly convenient for
crowded scenarios such as public events or demonstrations
since the detection of people is very challenging due to the
high degree of occlusion [2, 12]. The second category relies
on visual detectors to localize each person in the image. To
cope with occlusions, the detectors are mainly focused on
localizing the head and shoulders of people [1, 6, 9, 15, 18].
This has shown good results especially for overhead and
depth cameras.

Approaches can also be divided according to whether
they are unsupervised or supervised. In both cases, a back-
ground segmentation technique is often exploited to facil-
itate the extraction of features and ease the detection pro-
cess. People detection approaches based on unsupervised
techniques have shown good efficiency in real world appli-
cations [1, 5, 8, 13, 16, 18], but their performance is com-
promised when people appear in static postures. In addition,
the performance is heaviliy subject to the quality of back-
ground subtraction.

Supervised approaches to detect people have shown re-
markable results. They normally require higher computa-
tional costs for both training and testing as well as a rep-
resentative dataset with annotations for supervised learn-
ing. These approaches make use of machine learning al-
gorithms, such as SVM or Boosting, to compute discrimi-
native classifiers [14, 17, 19].

Recently, the use of deep networks has also shown
impressive results for people detection using color cam-
eras [3]. However, these methods have a high computa-
tional cost that makes them unfeasible for deployment in
many real-world applications.
Contributions: In this paper we propose a counting-by-
detection method for identifying attacks and intrusion in
building entrances using a top view sensor. Specifically, we
present a fully-convolutional and sequential network that
detects people by predicting the location of head, shoulders,
and the body centers (see Figure 1).

The proposed network, called WatchNet, is inspired by
the Convolutional Pose Machines (CPM) for people pose
estimation in color images [3]. However, WatchNet is a
lightweight and efficient version of CPM thanks to the use
of depth data rather than color, allowing to reduce the num-
ber of convolutional layers and parameters, and includes
other network characteristics like skip connections useful
for multi-resolution analysis. As a result, WatchNet is per-

fectly suited to video surveillance systems where real-time
performance is a crucial requirement. Our network runs in
10 and 28 FPS using CPU and GPU cards, respectively.

To train the network with a large amount of data and re-
duce the human annotation effort, we make use of a syn-
thetic dataset with its corresponding annotations generated
automatically, observe Figure 2. This dataset has about 80k
artificial depth images.

In contrast to earlier methods, WatchNet does not use
any technique for background subtraction and temporal
consistency. Yet, we consider that these techniques may be
helpful to enhance our detection results, especially for those
cases where people are not fully visible in the scene.

2. Method
In this section we describe the contributions of the pa-

per: the proposed network (Section 2.2) and the synthetic
database for training this network (Section 2.1).

2.1. Synthetic Dataset
The supervised learning of deep network models re-

quires to have a large and diverse enough dataset to boost
the network performance and prevent overfitting. Yet,
the data is sometimes scarce for scenarios with task-based
specifications. In addition, generating the images’ annota-
tions for supervised learning presents another inconvenient.
This process is usually done manually and requires large
amounts of human effort. An attractive alternative is to
work with synthetic data. The benefits of this approach are
twofold: 1) synthetic data can be generated according to a
given scenario for a specific problem, and 2) high quality
annotations are generated at no cost.

Thus, to overcome the need for annotated training data,
we present a systematic way to generate artificial depth
images displaying people inside an airlock and the corre-
sponding annotations (ground truth). We introduce a Syn-
thetic Data Generator (SDG) built on Blender1 to render
people performing multiple behaviors inside a virtual air-
lock by motion simulation (Figure 2). The airlock was de-
signed following the specifications mentioned in the Unic-
ity database [7]. Specifically, the airlock has an area of 2×2
meters and the camera is placed at the center of the airlock
at two different heights: 2.1 and 2.5 meters.

A challenge in generating synthetic data is to introduce
enough variability. We achieve this point by considering
different body shapes and as many body pose configura-
tions as possible. First, we use 24 3D human characters
created with the modeling software Makehuman2. The dif-
ferent characters show variations in physical features, such
as height and weight, and have been dressed with different
clothing outfits to increase shape variation.

1http://www.blender.org
2http://www.makehuman.org/



Figure 2. Synthetic Data Generator (SDG). Left: SDG creates a virtual airlock with one or two people performing different actions to
reproduce similar depth images to the Unicity database [7]. Right: Some image examples generated by SDG for training WatchNet.

We add variability in body pose configurations by rely-
ing on the publicly available motion capture database from
CMU labs3. We selected motion captures sequences of peo-
ple performing diverse actions, such as walking or jumping.

To synthesize depth images along with the required an-
notations, our SDG works as follows. At each iteration,
we randomly select up to two 3D characters along with the
corresponding number of mocap sequences, randomly se-
lected. The 3D characters are randomly placed inside the
airlock, in such a way that there is no collision between
them. Subsequently, SDG samples one every 15 frames
from the mocap sequence, performs motion retargeting and
generates the corresponding synthetic depth image along
with annotations. This is illustrated in Figure 2 (left). As
a result, the synthetic database has more than 80k images
containing up to two people, observe Figure 2 (right).

2.2. WatchNet
In this section we describe our design choices for the ar-

chitecture of WatchNet. It can be seen as a lightweight ver-
sion of the Convolutional Pose Machines (CPM) network
designed for human pose estimation [3]. Similar to CPM,
the WatchNet network can be thought of as comprising a
feature extraction sub-network and a series of prediction
stages that progressively refine the localization of human
body landmarks in the image. Figure 3 shows a general
view of the proposed network architecture.
Feature Extraction sub-network: This sub-network com-
putes discriminative features for body landmark prediction
that will be shared among the prediction stages. Since we
use depth images as input, the complexity of this stage can
be reduced compared to [3], and we can therefore deploy
a smaller and more efficient feature extractor sub-network,
contrary to the original CPM framework that relied on a
very deep network to compute features (VGG-19).

3http://mocap.cs.cmu.edu/

We propose to use a sub-network composed of 7 convo-
lutional layers with filters’ size of 3× 3, three max-pooling
operations, and one up-sampling operation (see Figure 3).
Furthermore, all our convolutional layers use 64 filters to
reduce the number of parameters in the network and speed
up the forward pass.

A major design choice we follow and which differs from
[3], is the use of skip connections [11] to combine features
from different resolutions. Specifically, while the layer C4
with filters’ size of 1× 1 computes features at a quarter of
the resolution of the input image, the convolutional layer
C5 computes features at an eighth of the resolution. Then,
features from C5 are upsampled and combined with C4 via
concatenation. The output is fed to layers C6 and C7 to
compute the features F for people prediction. See Figure 3.

The main reason for this configuration is to increase the
robustness and accuracy of the network to detect people at
multiple scales. This is an important aspect in video surveil-
lance systems since the height at which the camera is lo-
cated varies depending on the room, and depth measures
have a different semantic nature than color images.
Prediction sub-networks: Every prediction stage is com-
posed by four convolutional layers with filters of different
sizes, keeping low the numbers of filters. The final layer
provides prediction maps (W/4×H/4× 4) for three body
landmarks and their center. In this work, we consider the
head, left and right shoulder as body landmarks.

The first convolutional layer has filters of size of 5× 5 in
order to capture larger image spatial context and to encode
the spatial relationships among the body landmarks. This
spatial/feature co-occurrence has been shown to play an im-
portant role to refine the network output predictions [3].
General Settings: All our convolutional layers are com-
puted in combination to batch normalization and Rectified
Linear Units (ReLU), showing good experimental results
and faster training.
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Figure 3. General scheme of the proposed network for people detection. WatchNet consists of a feature extraction module and a series of
prediction stages that sequentially refine the prediction maps for human body landmarks (head and shoulders).

Training and Ground Truth: The training loss for
WatchNet is calculated as a linear combination of partial
losses across the network. We define the global loss by
L = 1

N

∑N
i=1 Li, where N is the number of prediction

stages and Li is the loss for the prediction stage Pi. Specif-
ically, the partial loss for a prediction stage i is defined as
the mean squared distance between the prediction maps pro-
vided by stage i and the dataset’s ground truth. Ground
truth is computed by Gaussian blobs placed on annotated
landmarks locations. We use Adam [10] as optimizer.
Counting People in Images: At test time, our learned
WatchNet is applied to each image to compute predictions.
We remove predictions whose confidence level is below a
threshold β. The choice of β is done accordingly to the user
needs (e.g. high recall vs high precision).

We use the number of predicted body centers to count
the number of people inside the airlock. We observed this
selection to be robust in cases when other landmarks lie out-
side the scene.

3. Experiments
This section evaluates WatchNet for the task of detecting

attacks in building access rooms.
Real Dataset: For evaluation we use the Unicity database4

introduced in [7]. It is composed of 65 recorded sequences
of people passing through an airlock giving access to a re-
stricted area. The sequences are organized according to
three different scenarios: the first one is a normal scenario
with a single person walking and accessing the restricted
area; the second scenario comprises two people trying to
fool the surveillance system (e.g. tailgating); in the third
scenario, two people enter, and one of them attacks and
forces the other to get into the restricted area (see Figure 1).

4https://www.idiap.ch/dataset/unicity

For training and evaluation, the dataset was split into 33
and 32 sequences, respectively. In total, the dataset has
29, 045 images (11,372 images for testing) acquired by an
industrial depth sensor with a resolution of 120 × 160 pix-
els. All sequences were recorded at two different camera
heights: 2.1 and 2.5 meters.

The Unicity dataset uses four levels for evaluation de-
fined according to the degree of visibility of people in the
airlock. So, for example, level 1 comprises all images where
people’s landmarks are full visible (head and shoulders). In
level 2 at least one body landmark is visible (level 1 is thus
a subset of level 2). Similarly, level 3 contains level 2 plus
all those images where a portion of people is visible but not
their landmarks. Finally, level 4 is all the images in the test
set including hard cases (e.g. a leg is visible only). All lev-
els also have empty room images which act also as negative
samples (positive samples being attacks, i.e. images with
two people) during evaluation [7].
Default Parameters: Unless otherwise stated, WatchNet is
trained with the synthetic dataset for 50k iterations and is
fine tuned with the real training data for 5k iterations. We
use three prediction stages and a batch of five samples. To
remove noise from depth maps, we resort to inpainting with
a filter size of 5.

To select β, we run the network in the training set for
varying detection thresholds and take the one that achieves
the highest F-measure score, being the operation point with
the best compromise between recall and precision.
Training Data: Table 1 shows the detection rates given by
WatchNet according to the training data. We can see that
the use of synthetic and real images (i.e. fine tuning) signif-
icantly improves the results, especially the recall rate that
corresponds to the detection of attacks and intrusion.

Besides, the table reports the scores for the four evalu-
ation levels mentioned above. Note that the proposed net-



R P F A TP TN FN FP R P F A TP TN FN FP
Synthetic Data Synthetic+Real Data

Level 1 0.92 1.00 0.96 0.99 531 4098 49 0 0.99 1.00 1.00 1.00 576 4097 4 1
Level 2 0.83 0.98 0.90 0.95 1367 4867 274 34 0.96 1.00 0.98 0.99 1574 4894 67 7
Level 3 0.64 0.97 0.77 0.90 1512 6649 865 48 0.82 1.00 0.90 0.95 1953 6688 424 9
Level 4 0.48 0.97 0.64 0.85 1543 8083 1698 48 0.63 1.00 0.77 0.89 2050 8122 1191 9
Average 0.72 0.98 0.82 0.92 1238 5924 721 32 0.85 1.00 0.91 0.96 1538 5950 421 6

Table 1. Alarm detection rates provided by WatchNet in the Unicity database according to the training data: synthetic images or synthetic
plus real images (i.e. fine tuning). The evaluation is done using the recall (R), precision (P), F-measure (F) and accuracy (A) rates, and the
numbers of true positives (TP), true negatives (TN), false negatives (FN) and false positives (FP).

Figure 4. Some image examples with the output of the proposed system for people detection in depth images. The system predicts the
location of head and shoulders as well as the body center, all depicted by blue, green, red and yellow spots respectively. The system also
estimates the number of people (P) inside the airlock based on counting the number of body centers.

work achieves almost perfect rates for levels 1 and 2 which
contain at least one visible body landmark. The scores de-
grade for levels 3 and 4 since people are not fully visible.
Some examples are shown in Figure 4.
Detection Approaches: We compare WatchNet against
other approaches in Table 2. The first approach is the base-
line provided with the dataset [7]. It is a clever background
subtraction method which thresholds the estimated volume
inside the airlock: when the volume is larger than a pre-
defined threshold, the method classifies the frame as an at-
tack. The volume is estimated by simply summing up all
the pixels of B − I , where B is the depth map of the empty
airlock, and I the current image. The second approach is a
Fully-Convolutional Network (FCN) consisting of 7 con-
volutional layers, two max-pooling operations and a sin-
gle final layer for prediction. As a third approach we have
the WatchNet without using the layers C4 and C5 (i.e. not
multi-resolution features).

The baseline method achieves high precision and accu-
racy rates, but it does not provide the localization of people
in the scene. On the other hand, FCN does detect people but
obtains lower results than WatchNet because it does not in-
clude the proposed multi-resolution features scheme nor the
refinement given by using several prediction stages. Similar
case occurs with the third approach, proving again that the

proposed network is more robust to detect people at multi-
ple scales. Please compare the recall scores.

Prediction Stages: The detection scores in terms of the
number of prediction stages is shown in Table 3. We found
that with three stages the method attains the best rates.

Counting People: In Table 4, we evaluate the detection per-
formance of WatchNet using different landmarks for count-
ing the number of people: body center (default), head, and
the combination of head and shoulders. Looking at the re-
sults we see that the body center attains better results than
the landmarks because it is more robust to cases when the
person is partially visible.

Use of Synthetic Data: To measure the benefit of using
synthetic data, Table 5 shows the alarm detection scores of
WatchNet using only real data for training. Table reports
scores for different training iterations. For 10K iterations,
the network achieves good rates, but they decrease along
with the training iterations indicating overfitting. With syn-
thetic data, we perform data augmentation and prevent over-
fitting, obtaining better results.

People Prediction: Figure 5 shows the confusion matrix
for predicting the number of people in the scene. This was
computed for evaluation level 1. We see that WatchNet per-
forms remarkably well for people detection.



Baseline FCN WatchNet [Not multi-scale] WatchNet
R P F A R P F A R P F A R P F A

Level 1 0.97 0.55 0.70 0.90 0.92 0.99 0.96 0.99 0.95 0.99 0.97 0.99 0.99 1.00 1.00 1.00
Level 2 0.96 0.74 0.84 0.91 0.87 0.98 0.92 0.96 0.89 0.99 0.94 0.97 0.96 1.00 0.98 0.99
Level 3 0.88 0.79 0.83 0.91 0.74 0.98 0.84 0.93 0.78 0.99 0.87 0.94 0.82 1.00 0.90 0.95
Level 4 0.72 0.81 0.76 0.87 0.56 0.98 0.71 0.87 0.59 0.99 0.74 0.88 0.63 1.00 0.77 0.89
Average 0.88 0.72 0.78 0.90 0.77 0.99 0.86 0.94 0.80 0.99 0.88 0.95 0.85 1.00 0.91 0.96

Table 2. Evaluation of WatchNet against a baseline method and other standard networks (FCN).

1 Stage 3 Stages 5 Stages
F A F A F A

Level 1 0.97 0.99 1.00 1.00 0.97 0.99
Level 2 0.95 0.98 0.98 0.99 0.96 0.98
Level 3 0.86 0.94 0.90 0.95 0.88 0.94
Level 4 0.72 0.87 0.77 0.89 0.74 0.88
Average 0.88 0.95 0.91 0.96 0.89 0.95

Table 3. Detection performance evaluation in terms of the number
of prediction stages.

Body Center Head Head & Shld
F A F A F A

Level 1 1.00 1.00 1.00 1.00 0.93 0.98
Level 2 0.98 0.99 0.93 0.97 0.96 0.98
Level 3 0.90 0.95 0.81 0.92 0.89 0.95
Level 4 0.77 0.89 0.67 0.86 0.76 0.89
Average 0.91 0.96 0.85 0.94 0.88 0.95

Table 4. Alarm detection scores provided by WatchNet according
to the body lardmarks used for counting people.

10K 20K 50K
F A F A F A

Level 1 0.96 0.99 0.97 0.99 0.96 0.99
Level 2 0.95 0.98 0.95 0.97 0.92 0.96
Level 3 0.90 0.95 0.89 0.95 0.86 0.93
Level 4 0.77 0.89 0.77 0.89 0.74 0.88
Average 0.89 0.95 0.89 0.95 0.87 0.94

Table 5. Detection rates of WatchNet trained with real data only.

4. Conclusion
In this paper we presented an access surveillance sys-

tem based on deep learning to deal with security breaches
such as tailgating and piggybacking and to detect attacks
on people. Our system demonstrated very good results in a
new database created for this problem. Our system is based
on an efficient and robust network that sequentially locates
parts of people such as head and shoulders in depth images.
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