
A survey on policy search algorithms
for learning robot controllers in a handful of trials

Konstantinos Chatzilygeroudis†, Vassilis Vassiliades†,
Freek Stulp‡, Sylvain Calinon� and Jean-Baptiste Mouret†

†Inria, CNRS, Université de Lorraine, LORIA, F-54000 Nancy, France
‡German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Wessling, Germany
�Idiap Research Institute, Rue Marconi 19, 1920 Martigny, Switzerland

Preprint – June 4, 2019

Most policy search algorithms require thousands of training
episodes to find an effective policy, which is often infeasible with a
physical robot. This survey article focuses on the extreme other end
of the spectrum: how can a robot adapt with only a handful of trials
(a dozen) and a few minutes? By analogy with the word “big-data”,
we refer to this challenge as “micro-data reinforcement learning”.
We show that a first strategy is to leverage prior knowledge on the
policy structure (e.g., dynamic movement primitives), on the policy
parameters (e.g., demonstrations), or on the dynamics (e.g., simula-
tors). A second strategy is to create data-driven surrogate models of
the expected reward (e.g., Bayesian optimization) or the dynamical
model (e.g., model-based policy search), so that the policy optimizer
queries the model instead of the real system. Overall, all success-
ful micro-data algorithms combine these two strategies by varying
the kind of model and prior knowledge. The current scientific chal-
lenges essentially revolve around scaling up to complex robots, de-
signing generic priors, and optimizing the computing time.

1 Introduction

Reinforcement learning (RL) [176] is a generic framework that
allows robots to learn and adapt by trial-and-error. There is
currently a renewed interest in RL owing to recent advances in
deep learning [107]. For example, RL-based agents can now
learn to play many of the Atari 2600 games directly from pix-
els [128, 129], that is, without explicit feature engineering, and
beat the world’s best players at Go and chess with minimal hu-
man knowledge [164]. Unfortunately, these impressive successes
are difficult to transfer to robotics because the algorithms behind
them are highly data-intensive: 4.8 million games were required
to learn to play Go from scratch [164], 38 days of play (real time)
for Atari 2600 games [128], and, for example, about 100 hours
of simulation time (much more for real time) for a 9-DOF man-
nequin that learns to walk [71].

By contrast, robots have to face the real world, which can-
not be accelerated by GPUs nor parallelized on large clusters.
And the real world will not become faster in a few years, con-
trary to computers so far (Moore’s law). In concrete terms, this
means that most of the experiments that are successful in simu-
lation cannot be replicated in the real world because they would
take too much time to be technically feasible. As an example,
Levine et al. [116] recently proposed a large-scale algorithm for
learning hand-eye coordination for robotic grasping using deep
learning. The algorithm required approximately 800000 grasps,
which were collected within a period of 2 months using 6-14
robotic manipulators running in parallel. Although the results
are promising, they were only possible because they could af-
ford having that many manipulators and because manipulators
are easy to automate: it’s hard to imagine doing the same with a
farm of humanoids.

What is more, online adaptation is much more useful when it
is fast than when it requires hours — or worse, days — of trial-
and-error. For instance, if a robot is stranded in a nuclear plant
and has to discover a new way to use its arm to open a door; or if
a walking robot encounters a new kind of terrain for which it is
required to alter its gait; or if a humanoid robot falls, damages its
knee, and needs to learn how to limp: in most cases, adaptation
has to occur in a few minutes or within a dozen trials to be of any
use.

By analogy with the word “big-data”, we refer to the challenge
of learning by trial-and-error in a handful of trials as “micro-data
reinforcement learning” [132]. This concept is close to “data-
efficient reinforcement learning” [47], but we think it captures a
slightly different meaning. The main difference is that efficiency
is a ratio between a cost and benefit, that is, data-efficiency is a
ratio between a quantity of data and, for instance, the complexity
of the task. In addition, efficiency is a relative term: a process is
more efficient than another; it is not simply “efficient”1. In that
sense, many deep learning algorithms are data-efficient because
they require fewer trials than the previous generation, regardless
of the fact that they might need millions of time-steps. By con-
trast, we propose the terminology “micro-data learning” to repre-
sent an absolute value, not a relative one: how can a robot learn in
a few minutes of interaction? or how can a robot learn in less than
20 trials2? Importantly, a micro-data algorithm might reduce the
number of trials by incorporating appropriate prior knowledge;
this does not necessarily make it more “data-efficient” than an-
other algorithm that would use more trials but less prior knowl-
edge: it simply makes them different because the two algorithms
solve a different challenge.

Among the different approaches for RL, most of the recent
work in robotics focuses on Policy Search (PS), that is, on view-
ing the RL problem as the optimization of the parameters of a
given policy [44] (see the problem formulation, Section 2). A
few PS algorithms are explicitly focused on requiring very little
interaction time with the robot, which often implies that they au-
thorize themselves to substantially increase the computing time
and the amount of prior knowledge. The purpose of this paper is
to survey such existing micro-data policy search techniques that
have been successfully used for robot control 3, and to identify

1In some rare cases, a process can be “optimally efficient”.
2It is challenging to put a precise limit for “micro-data learning” as each domain

has different experimental constraints, this is why we will refer in this article
to “a few minutes” or a “a few trials”. The commonly used word “big-data”
has a similar “fuzzy” limit that depends on the exact domain.

3Planning-based and model-predictive control [59] methods do not search for
policy parameters, this is why they do not fit into the scope of this paper. Al-
though trajectory-based policies and planning-based methods share the same
goal, they usually search in a different space: planning algorithms search in
the state-action space (e.g., joint positions/velocities), whereas policy meth-
ods will search for the optimal parameters of the policy, which can encode a

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 1

ar
X

iv
:1

80
7.

02
30

3v
4 

 [
cs

.R
O

] 
 3

1 
M

ay
 2

01
9



priors

models

dynamics policy expected return

model-based policy search Bayesian optimization

prior on dynamics prior on expected return

simulations, demonstrations, analytical models, experimenter's insights, ...

system

prior on 

parameters

e
.g

.,
 d

e
m

o
n

s
tr

a
tio

n
s

prior on

structure

e
.g

.,
 d

y
n

a
m

ic

m
o

v
e

m
e

n
t 
p

ri
m

iti
v
e

s

Fig. 1. Overview of possible strategies for Micro-Data Policy Search (MDPS). The first strategy (bottom) is to leverage prior knowledge
on the dynamics, on the policy parameters, on the structure of the policy, or on the expected return. A second strategy is to learn
surrogate models of the dynamics or of the expected return.

the challenges in this emerging field. In particular, we focus on
policy search approaches that have the explicit goal of reducing
the interaction time between the robot and the environment to a
few seconds or minutes .

Most published algorithms for micro-data policy search im-
plement and sometimes combine two main strategies (Fig. 1):
leveraging prior knowledge (Sections 3, 4.2, and 5.2) and build-
ing surrogate models (Sections 4 and 5).

Using prior knowledge requires balancing carefully between
what can be realistically known before learning and what is left
to be learnt. For instance, some experiments assume that demon-
strations can be provided, but that they are imperfect [95, 136];
some others assume that a damaged robot knows its model in
its intact form, but not the damaged model [26, 35, 142]. This
knowledge can be introduced at different places, typically in the
structure of the policy (e.g., dynamic movement primitives [77],
Section 3), in the reward function (e.g., reward shaping, Sec-
tion 4.2), or in the dynamical model [1, 26] (Section 5.2).

The second strategy is to create models from the data gath-
ered during learning and utilize them to make better decisions
about what to try next on the robot. We can further categorize
these methods into (a) algorithms that learn a surrogate model
of the expected return (i.e., long-term reward) from a starting
state [19, 161] (Section 4); and (b) algorithms that learn models
of the transition dynamics and/or the immediate reward function
(e.g., learning a controller for inverted helicopter flight by first
learning a model of the helicopter’s dynamics [136], Section 5).
The two strategies — priors and surrogates — are often com-
bined; for example, most works with a surrogate model impose a
policy structure and some of them use prior information to shape
the initial surrogate function, before acquiring any data.

This article surveys the literature along these three axes: pri-
ors on policy structure and parameters (Section 3), models of ex-
pected return (Section 4), and models of dynamics (Section 5).
Section 6 lists the few noteworthy approaches for micro-data
policy search that do not fit well into the previous sections. Fi-
nally, Section 7 sketches the challenges of the field and Section 8
proposes a few “precepts” and recommendations to guide future
work in this field.

subspace of the possible trajectories.

2 Problem formulation

We model the robots as discrete-time dynamical systems that can
be described by transition probabilities of the form:

p(xt+1|xt,ut) (1)

where the robot is at state xt ∈ RE at time t, takes control input
ut ∈ RF and ends up at state xt+1 at time t+ 1.

If we assume deterministic dynamics and Gaussian system
noise, this equation is often written as:

xt+1 = f(xt,ut) +w. (2)

Here, w is i.i.d. Gaussian system noise, and f is a function that
describes the unknown transition dynamics.

We assume that the system is controlled through a parameter-
ized policy π(u|x, t,θ) that is followed for T steps (θ are the
parameters of the policy). Throughout the paper we adopt the
episode-based, fixed time-horizon formulations for clarity and
pedagogical reasons, but also because most of the micro-data pol-
icy search approaches use this formulation.

In the general case, π(u|x, t,θ) outputs a distribution (e.g., a
Gaussian) that is sampled in order to get the action to apply; i.e.,
we have stochastic policies. Most algorithms utilize policies that
are not time-dependent (i.e., they drop t), but we include it here
for completeness. Several algorithms use deterministic policies;
a deterministic policy means that π(u|x, t,θ)⇒ u = π(x, t|θ).

When following a particular policy for T time-steps from an
initial state distribution p(x0), the system’s states and actions
jointly form trajectories τ = (x0,u0,x1,u1, . . . ,xT ), which
are often also called rollouts or paths. We assume that a scalar
performance system exists, R(τ ), that evaluates the performance
of the system given a trajectory τ . This long-term reward (or
return) is defined as the sum of the immediate rewards along the
trajectory τ :

R(τ ) =

T−1∑
t=0

rt+1 =

T−1∑
t=0

r(xt,ut,xt+1) (3)

where rt+1 = r(xt,ut,xt+1) ∈ R is the immediate reward of
being in state xt at time t, taking the action ut and reaching the
state xt+1 at time t+ 1. We define the expected return J(θ) as a

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 2



Algorithm 1 Generic policy search algorithm

1: Apply initialization strategy using INITSTRATEGY
2: Collect data,D0, with COLLECTSTRATEGY
3: for n = 1→ Niter do
4: Learn models using MODELSTRATEGY andDn−1

5: Calculate θn+1 using UPDATESTRATEGY
6: Apply policy πθn+1 on the system
7: Collect data,Dn, with COLLECTSTRATEGY
8: end for
9: return πθ∗ = SELECTBESTPOLICYSTRATEGY

function of the policy parameters:

J(θ) = E
[
R(τ )|θ

]
=

∫
R(τ )P (τ |θ) (4)

where P (τ |θ) is the distribution over trajectories τ for any given
policy parameters θ applied on the actual system:

P (τ |θ)︸ ︷︷ ︸
trajectories for θ

= p(x0)︸ ︷︷ ︸
initial state

∏
t

p(xt+1|xt,ut)︸ ︷︷ ︸
transition dynamics

π(ut|xt, t,θ)︸ ︷︷ ︸
policy

. (5)

The objective of a policy search algorithm is to find the param-
eters θ∗ that maximize the expected return J(θ) when following
the policy πθ∗ :

θ∗ = argmax
θ

J(θ). (6)

Most policy search algorithms can be described with a generic
algorithm (Algo. 1) and they: (1) start with an initialization strat-
egy (INITSTRATEGY), for instance using random actions, and
(2) collect data from the robot (COLLECTSTRATEGY), for in-
stance the states at each discrete time-steps or the reward at
the end of the episode; they then (3) enter a loop (for Niter it-
erations) that alternates between learning one or more models
(MODELSTRATEGY) with the data acquired so far, and select-
ing the next policy πθ∗ to try on the robot (UPDATESTRATEGY).
Finally, they return the “optimal” policy parameters using SE-
LECTBESTPOLICYSTRATEGY.

This generic outline allows us to describe direct (e.g., pol-
icy gradient algorithms [177]), surrogate-based (e.g., Bayesian
optimization [19]) and model-based policy search algorithms,
where each algorithm implements in a different way each of
INITSTRATEGY, COLLECTSTRATEGY, MODELSTRATEGY and
UPDATESTRATEGY. We will also see that in this outline we can
also fit policy search algorithms that utilize priors; coming from
simulators, demonstrations or any other source.

To better understand how policy search is performed, let us
use a gradient-free optimizer (UPDATESTRATEGY) and learn
directly on the system (i.e., MODELSTRATEGY = ∅). This
type of algorithms falls in the category of model-free or di-
rect policy search algorithms [99, 176]. INITSTRATEGY can
be defined as randomly choosing some policy parameters, θ1

(Algo. 2), and COLLECTSTRATEGY collects samples of the form
(θ,

∑N
i R(τ )i
N ) by runningN times the policy πθ. We execute the

same policy multiple times because we are interested in approxi-
mating the expected return (Eq. (3)). J̃θ =

∑N
i R(τ )i
N is then used

as the value for the sample θ in a regular optimization loop that
tries to maximize it (i.e., the UPDATESTRATEGY is optimizer-
dependent).

Algorithm 2 Gradient-free direct policy search algorithm

1: procedure INITSTRATEGY
2: Select θ1 randomly
3: end procedure
4: procedure COLLECTSTRATEGY

5: Collect samples of the form (θ,
∑N

i R(τ )i
N ) = (θ, J̃θ) by

running policy πθ N times.
6: end procedure

This straightforward approach to policy search typically re-
quires a large amount of interaction time with the system to find
a high-performing solution [176]. Many approaches have been
suggested to improve the sample efficiency of model-free ap-
proaches (e.g., [2, 31, 32, 40, 117, 129, 160, 163, 177, 185]).
Nevertheless, the objective of the present article is to describe al-
gorithms that require several orders of magnitude less interaction
time by leveraging priors and models.

3 Using priors on the policy
parameters/representation

When designing the policy π(u|x, t,θ), the key design choices
are what the space of θ is, and how it maps states to actions. This
design is guided by a trade-off between having a representation
that is expressive, and one that provides a space that is efficiently
searchable.

Expressiveness can be defined in terms of the optimal policy
π∗ζ . For a given task ζ, there is theoretically always at least one
optimal policy π∗ζ . Here, we drop θ to express that we do not
mean a specific representation parameterized by θ. Rather π∗ζ
emphasizes that there is some policy (with some representation,
perhaps unknown to us) that cannot be outperformed by any other
policy (whatever its representation). We use Jζ(π∗ζ ) to denote
this highest possible expected reward.

A parameterized policy πθ should be expressive enough to
represent this optimal policy π∗ζ (or at least come close), i.e.,

Jζ(π
∗
ζ )−max

θ
Jζ(θ) < δ (7)

where δ is some acceptable margin of suboptimality. Note that
absolute optimality is rarely required in robotics; in many every-
day applications, small tracking errors may be acceptable, and
the quadratic command cost needs not be the absolute minimum.

On the other hand, the policy representation should be such
that it is easy (or at least feasible) to find θ∗, i.e., it should be
efficiently searchable4. In general, smaller values of dim(θ) lead
to more efficiently searchable spaces.

In the following subsections, we describe several common pol-
icy representations, which make different trade-offs between ex-
pressiveness and being efficiently searchable, and several com-
mon strategies to improve the generality and convergence of pol-
icy search algorithms.

3.1 Hand-designed policies
One approach to reducing the policy parameter space is to hand-
tailor it to the task ζ to be solved. In [55], for instance, a policy

4Analogously, the universal approximation theorem states that a feedforward
network with single hidden layer suffices to represent any continuous func-
tion, but it does not imply that the function is learnable from data.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 3



for ball acquisition is designed. The resulting policy only has
only four parameters, i.e., dim(θ) is 4. This low-dimensional
policy parameter space is easily searched, and only 672 trials are
required to optimize the policy. Thus, prior knowledge is used to
find a compact representation, and policy search is used to find
the optimal θ∗ for this representation.

One disadvantage of limiting dim(θ) to a very low dimension-
ality is that δ may become quite large, and we have no estimate
of how much more the reward could have been optimized with
a more expressive policy representation. Another disadvantage
is that the representation is very specific to the task ζ for which
it was designed. Thus, such a policy cannot be reused to learn
other tasks. It then greatly limits the transfer learning capabil-
ities of the approaches, since the learned policy can hardly be
re-used for any other task.

3.2 Policies as function approximators

Ideally, our policy representation Θ is expressive enough so that
we can apply it to many different tasks, i.e.,

argmin
Θ

N∑
n=1

Jζn(π∗ζn)−max
θ

Jζn(θ), with θ ∈ Θ, (8)

i.e., over a set of tasks, we minimize the sum of differences be-
tween the theoretically optimal policy π∗ for each task, and the
optimal policy given the representation πθ for each task5.

A few examples of such generally applicable policy represen-
tations are linear policies, radial basis function networks, and
neural networks. These more general policies can be used for
many tasks [62, 97]. However, prior knowledge is still required
to determine the appropriate number of basis functions and their
shape. Again, a lower number of basis functions will usually
lead to more efficient learning, but less expressive policies and
thus potentially higher δ.

One advantage of using a function approximator is that
demonstrations can often be used to determine the initial policy
parameters. The initial parameters θ1 can be obtained through
supervised learning or other machine learning techniques, by
providing the demonstration as training data (xi,ui)i=1:N . This
is discussed in more detail in Section 3.6.

The function approximator can be used to generate a single
estimate (corresponding to a first order moment in statistics), but
it can also be extended to higher order moments. Typically, ex-
tending it to second order moments allows the system to get in-
formation about the variations that we can exploit to fulfill a task,
as well as the synergies between the different policy parameters
in the form of covariances. This is typically more expensive
to learn—or it requires multiple demonstrations [125]—but the
learned representation can typically be more expressive, facili-
tating adaptation and generalization.

3.3 Trajectory-based Policies

Trajectory-based policy types have been widely used in the robot
learning literature [93, 166, 171, 183, 184], and especially within
the policy search problem for robotics [75, 76, 171]. This type
of policies are well-suited for several typical classes of tasks in
robotics, such as point-to-point movements or repetitive move-
ments. There exist basically two types of trajectory-based poli-

5Note that this optimization is never actually performed. It is a mathematical
description of what the policy representation designer is implicitly aiming for.

cies: (1) dynamical system based [76, 93], and (2) way-point
based policies [154].

Policies based on dynamical systems have been used more ex-
tensively within the robot learning literature as they combine the
generality of function approximators with the advantages of dy-
namical systems, such as robustness towards perturbations and
stability guarantees [75, 76, 93, 171], which are desirable prop-
erties of a robotic system.

One way of encoding trajectories is by defining the policy as a
sequence of way-points. In [154], the authors define the problem
of motion planning as a policy search problem where the param-
eters of the policy are the concatenated way-points, wi. They
were able to define an algorithm that outperforms several base-
lines including dynamic programming.

Perhaps the most widely used trajectory-based policy type
within the policy search framework is Dynamical Movement
Primitives (DMPs); we can categorize them into discrete DMPs
and rhythmic DMPs depending on the type of motion they are
describing (point-to-point or repetitive).

Discrete DMPs are summarized in Eq. 9. The canonical sys-
tem represents the movement phase s, which starts at 1, and con-
verges to 0 over time. The transformation systems combines a
spring-damper system with a function approximator fθ, which,
when integrated, generates accelerations ξ̈. Multi-dimensional
DMPs are achieved by coupling multiple transformation systems
with one canonical system. The vector ξ typically represents the
end-effector pose or the joint angles.

As the spring-damper system converges to ξg , and s (and thus
s fθ(s)) converges to 0, the overall system ξ is guaranteed to
converge to ξg . We have:

ωξ̈ = α(β(ξg − ξ)− ξ̇)︸ ︷︷ ︸
Spring-damper system

+ s fθ(s)︸ ︷︷ ︸
Forcing term

. (Transf.) (9)

ωṡ = −αss. (Canonical) (10)

This facilitates learning, because, whatever parameterization
θ of the function approximator we choose, a discrete DMP is
guaranteed to converge towards a goal ξg . Similarly, a rhythmic
DMP will always generate a repetitive motion, independent of
the values in θ. The movement can be made slower or faster by
changing the time constant ω.

Another advantage of DMPs is that only one function approx-
imator is learned for each dimension of the DMP, and that the in-
put of each function approximator is the phase variable s, which
is always 1D. Thus, whereas the overall DMP closes the loop
on the state ξ, the part of the DMP that is learned (fθ(s)) is an
open-loop system. This greatly facilitates learning, and simple
black-box optimization algorithms have been shown to outper-
form state-of-the-art RL algorithms for such policies [170]. Ap-
proaches for learning the goal ξg of a discrete movement have
also been proposed [172]. Since the goal is constant throughout
the movement, few trials are required to learn it.

The optimal parameters θ∗ for a certain DMP are specific
to one specific task ζ. Task-parameterized (dynamical) motion
primitives aim at generalizing them to variations of a task, which
are described with the task parameter vector q (e.g., the 3D pose
to place an object on a table [173] or the 3D pose of the end-
effector [183]). Learning a motion primitive that is optimal for
all variations of a task (i.e., all q within a range) is much more
challenging, because the curse of dimensionality applies to the
task parameter vector q just as it does for the state vector x in re-
inforcement learning. Task-parameterized representations based
on the use of multiple coordinate systems have been developed

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 4



to cope with this curse of dimensionality [23], but these models
have only been applied to learning from demonstration applica-
tions so far.

Another approach to avoid the curse of dimensionality is to
consider a hierarchical organization of the policy. In [38], Daniel
et al. propose the use of a hierarchical policy composed of a
gating network and multiple sub-policies, and introducing an
entropy-based constraint ensuring that the agent finds distinct so-
lutions with different sub-policies. These sub-policies are treated
as latent variables in an expectation-maximization procedure, al-
lowing the distribution of the update information between the
sub-policies. In Queisser and Steil [148], an upper-level policy is
used to interpolate between policy parameterizations for differ-
ent task variations. This substantially speeds up learning when
many variations of a task must be learned.

DMPs, nevertheless, are time-dependent and thus can produce
behaviors that are not desirable; for example, a policy that can-
not adapt to perturbations after some time. Stable Estimator of
Dynamical Systems (SEDS) [93] explores how to use dynamical
systems in order to define autonomous (i.e., time-independent)
controllers (or policies) that are asymptotically stable. The main
idea of the algorithm is to use a finite mixture of Gaussian func-
tions as the policy, ξ̇ = πseds(ξ), with specific properties that sat-
isfy some stability guarantees. SEDS, however, requires demon-
strated data in order to optimize the policy (i.e., data gathered
from experts), although similar ideas have been used within the
RL framework [62].

It is important to note that if ξ or w are not defined in joint
space (i.e., the control variables), then most of the approaches
assume the existence of a low-level controller that can take tar-
get accelerations, velocities or positions (in ξ or w) and pro-
duce the appropriate low-level control commands (e.g., torques)
to achieve these targets. Moreover, all the stability and conver-
gence guarantees mentioned in this section apply solely on the
behavior or policy dynamics (e.g., stability or convergence of the
desired velocity profile in the end-effector space) and not on the
robotic system as a whole6.

3.4 Learning the controller

If the policy generates a reference trajectory, a controller is re-
quired to map this trajectory (and the current state) to robot con-
trol commands (typically torques or joint angle velocity com-
mands). This can be done for instance with a proportional-
integral-derivative (PID) controller [21], or a linear quadratic
tracking (LQT) controller [25]. The parameters of this controller
can also be included in θ, so that both the reference trajectory
and controller parameters are learned at the same time. By do-
ing so, appropriate gains [21, 24] or forces [88] for the task can
be learned together with the movement required to reproduce the
task. Typically, such representation provides a way to coordinate
motor commands to react to perturbations, by rejecting perturba-
tions only in the directions that would affect task performance.

3.5 Learning the policy representation

So far we have described how the policy representation is de-
termined with prior knowledge, and the θ of this policy is then
optimized through policy search. Another approach is to learn
the policy representation and its parameters at the same time, as

6One would need to analyze the complete system of the policy, low-level con-
trollers, and robot dynamics to see if the whole system behavior is stable.

in NeuroEvolution of Augmenting Topologies (NEAT) [169]. It
is even possible, in simulation, to co-evolve an appropriate body
morphology and policy [16, 165]. These approaches, however,
require massive amounts of rollouts, and do not focus on learn-
ing in a handful of trials.

3.6 Initialization with demonstrations /
imitation learning

An advantage of using expressive policies is that they are able
to learn (close to) optimal policies for many different tasks. A
downside is that such policies are also able to represent many
suboptimal policies for a particular task, i.e., there will be many
local minima. To ensure convergence, it is important that the
initial policy parameters are close to the global optimum. In
robotics, this is possible through imitation [8, 13, 138], i.e., the
initialization of θ from a demonstrated trajectory. This is pos-
sible if we know the general movement a robot should make to
solve the task, and are able to demonstrate it by recording our
movement, or physically guiding the robot through kinesthetic
teaching. Starting with a θ that is close θ∗ greatly reduces the
number of samples to find θ∗, and the interplay between imi-
tation and policy search is therefore an important component in
micro-data learning.

Message 1: Using policy structures that are inspired or
derived by prior knowledge about the task or the robot at
hand is an effective way of creating a policy representa-
tion that is expressive enough but also efficiently search-
able. If it is further combined with learning from demon-
strations (or imitation learning), then it can lead to pow-
erful approaches that are able to learn in just a handful of
trials.
Recommended readings: [13, 138]

4 Learning models of the expected
return

With the appropriate policy representation (and/or initial policy
parameters) chosen, the policy search in Algorithm 1 is then exe-
cuted. The most important step is determining the next parameter
vector θn+1 to test on the physical robot.

In order to choose the next parameter vector θn+1 to test on
the physical robot, a strategy is to learn a model Ĵ(θ) of the ex-
pected return J(θ) (Eq. (4)) using the values collected during the
previous episodes, and then choose the optimal θn+1 according
to this model. Put differently, the main concept is to optimize
J(θ) by leveraging Ĵ(θ|R(τ |θ1), · · · , R(τ |θN )).

4.1 Bayesian optimization: active learning of
policy parameters

The most representative class of algorithms that falls in this cate-
gory is Bayesian optimization (BO) [19]. Bayesian optimization
consists of two main components: a model of the expected re-
turn, and an acquisition function, which uses the model to define
the utility of each point in the search space.

Bayesian optimization, for policy search, follows the generic
policy search algorithm (Algo. 1) and implements COL-
LECTSTRATEGY, MODELSTRATEGY and UPDATESTRATEGY

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 5



Algorithm 3 Policy search with Bayesian optimization

1: procedure COLLECTSTRATEGY
2: Collect samples of the form (θ, R(τ ))
3: end procedure
4: procedure MODELSTRATEGY
5: Learn model Ĵ : θ → J(θ)
6: end procedure
7: procedure UPDATESTRATEGY
8: θn+1 = argmaxθ ACQUISITIONFUNCTION(θ|Ĵ)
9: end procedure

(Algo. 3). More specifically, a surrogate model, Ĵ(θ), of the ex-
pected return is learned from the data, then the next policy to test
is selected by optimizing the ACQUISITIONFUNCTION. The AC-
QUISITIONFUNCTION tries to intelligently exploit the model and
its uncertainties in order to trade-off exploration and exploitation.

The main axes of variation are: (a) the way INITSTRATEGY is
defined (the most usual approaches are random policy parameters
or random actions), (b) the type of model used to learn J , (c)
which ACQUISITIONFUNCTION is used, and (d) the optimizer
used to optimize the ACQUISITIONFUNCTION.

Gaussian Processes Gaussian Process (GP) regression [150] is
the most popular choice for the model. A GP is an extension
of multivariate Gaussian distribution to an infinite-dimension
stochastic process for which any finite combination of dimen-
sions will be a Gaussian distribution [150]. More precisely, it is
a distribution over functions, completely specified by its mean
function, m(·) and covariance function, k(·, ·) and it is computed
as follows:

Ĵ(θ) ∼ GP(m(θ), k(θ,θ′)). (11)

Assuming D1:t = {R(τ |θ1), ..., R(τ |θt)} is a set of observa-
tions, we can query the GP at a new input point θ∗ as follows:

p(Ĵ(θ∗)|D1:t,θ∗) = N (µ(θ∗), σ
2(θ∗)). (12)

The mean and variance predictions of the GP are computed using
a kernel vector kkk = k(D1:t,θ∗), and a kernel matrix K, with
entries Kij = k(θi,θj):

µ(θ∗) = kkkTK−1D1:t,

σ2(θ∗) = k(θ∗,θ∗)− kkkTK−1kkk. (13)

For the acquisition function, most algorithms use the Expected
Improvement, the Upper Confidence Bound or the Probability of
Improvement [19, 72].

Probability of Improvement. One of the first acquisition
functions is the Probability of Improvement [106] (PI). PI de-
fines the probability that a new test point Ĵ(θ) will be better than
the best observation so far θ+; since we cannot directly get this
information from D1:t, in practice we query the approximated
model Ĵ on D1:t and get the best parameters. When using GPs
as the surrogate model, this can be analytically computed:

PI(θ) = p(Ĵ(θ) > Ĵ(θ+))

= Φ
(µ(θ)− Ĵ(θ+)

σ(θ)

)
(14)

where Φ(·) denotes the CDF of the standard normal distribution.
The main drawback of PI is that it basically performs pure ex-
ploitation; in practice, a slightly modified version of PI is used
where a trade-off parameter ξ is added [19].

Expected Improvement. The Expected Improvement [19]
(EI) acquisition function is an extension of PI, where the ex-
pected improvement (deviation) from the current maximum is
calculated. Again, when using GPs as the surrogate model, EI
can be analytically computed:

I(θ) = max{0, Ĵ(θ)− Ĵ(θ+)}
EI(θ) = E(I(θ))

=

{
(µ(θ)− Ĵ(θ+))Φ(Z) + σ(θ)φ(Z), if σ(θ) > 0.

0, otherwise.
(15)

Z =
µ(θ)− Ĵ(θ+)

σ(θ)

where φ(·) and Φ(·) denote the PDF and CDF of the standard
normal distribution respectively.

Upper Confidence Bound. The Upper Confidence Bound
(UCB) acquisition function is the easiest to grasp and works very
well in practice [72]. When using GPs as the surrogate model, it
is defined as follows:

UCB(θ) = µ(θ) + ασ(θ) (16)

where α is a user specified parameter. When using UCB as
the acquisition function, it might be difficult to choose α and
the initial hyper-parameters of the kernel (that affect σ) as the
range of J and θ plays a huge role on this. The GP-UCB algo-
rithm [19, 168] automatically adjusts α and provides some theo-
retical guarantees on the regret bounds of the algorithm.

Entropy Search. Entropy Search (ES) [72] selects policy pa-
rameters in order to maximally reduce the uncertainty about the
location of the maximum of J(θ) in each step. It quantifies this
uncertainty through the entropy of the distribution over the lo-
cation of the maximum, pmax(θ) = P(θ ∈ argminθ J(θ)). ES
basically defines a different ACQUISITIONFUNCTION for BO as
follows:

ES(θ) = argmax
θ

E[∆H(θ)] (17)

where ∆H(θ) is the change in entropy of pmax caused by retriev-
ing a new cost value at location θ.

A thorough experimental analysis [72] concluded that EI can
perform better than PI and UCB on artificial objective functions,
but more recent experiments on gait learning on a physical robot
suggested that UCB can outperform EI in real situations [22]. In
most cases, ES outperforms all other acquisition functions at a
bigger computation cost [72].

Martinez-Cantin et al. [124] were among the first to use BO as
a policy search algorithm; in particular, their approach was able
to learn a policy composed of way-points in order to control a
mobile robot that had to navigate in an uncertain environment.
Since BO is not modeling the dynamics of the system/robot,

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 6



it can be effective for learning policies for robots with com-
plex (e.g., locomotion tasks, because of the non-linearity created
by the contacts) or high-dimensional dynamics. For instance,
Bayesian optimization was successfully used to learn policies for
a quadruped robot [118] (around 100 trials with a well-chosen
15D policy space), a small biped “compass robot” [22] (around
100 trials with a finite state automata policy), and a pocket-sized,
vibrating soft tensegrity robot [152] (around 30 trials with di-
rectly controlling the motors). In all of these cases, BO was at
least an order of magnitude more data-efficient than competing
methods.

Unfortunately, BO scales badly with respect to the dimension-
ality of the policy space because modeling the objective function
(i.e., the expected return) becomes exponentially harder when the
dimension increases [11]. This is why all the aforementioned
studies employed low-dimensional policy spaces and very well
chosen policy structures (i.e., they all use a strong prior on the
policy structure). Scaling up BO is, however, an active field of
research and various promising approaches (e.g., random embed-
dings [190] and additive models [90, 153]) could be applied to
robotics in the future.

4.2 Bayesian optimization with priors: using
non-zero mean functions as a starting
point for the search process

One of the most interesting features of BO is that it can leverage
priors (e.g., from simulation or from previous tasks) to acceler-
ate learning on the actual task. Perhaps the most representative
algorithm in this area is the “Intelligent Trial & Error” (IT&E) al-
gorithm [35]. IT&E first uses MAP-Elites [35], an evolutionary
illumination [133, 187] (also known as quality-diversity [147])
algorithm, to create a repertoire of about 15000 high-performing
policies and stores them in a low-dimensional map (e.g., 6-
dimensional whereas the policy space is 36-dimensional). When
the robot needs to adapt, a BO algorithm searches for the best
policy in the low-dimensional map and uses the reward stored in
the map as the mean function of a GP. This algorithm allowed
a 6-legged walking robot to adapt to several damage conditions
(e.g., a missing or a shortened leg) in less than 2 minutes (less
than a dozen of trials), whereas it used a simulator of the intact
robot to generate the prior.

Gaussian processes with priors Assuming D1:t = {R(τ |θ1),
..., R(τ |θt)} is a set of observations and Rm(θ) being the re-
ward in the map, we can query the GP at a new input point θ∗ as
follows:

p(Ĵ(θ∗)|D1:t,θ∗) = N (µ(θ∗), σ
2(θ∗)). (18)

The mean and variance predictions of this GP are computed using
a kernel vector kkk = k(D1:t,θ∗), and a kernel matrix K, with
entries Kij = k(θi,θj) and where k(·, ·) is the kernel of the GP:

µ(θ∗) = Rm(θ∗) + kkkTK−1(D1:t −Rm(θ1:t)),

σ2(θ∗) = k(θ∗,θ∗)− kkkTK−1kkk. (19)

The formulation above allows us to combine observations from
the prior and the real-world smoothly. In areas where real-world
data is available, the prior’s prediction will be corrected to match
the real-world ones. On the contrary, in areas far from real-world
data, the predictions resort to the prior function [28, 35, 108].

Following a similar line of thought but implemented differ-
ently, a few recent works [6, 7] use a simulator to learn the kernel
function of a GP, instead of utilizing it to create a mean function
like in IT&E [35]. In particular, Antonova et al. [6] used do-
main knowledge for bipedal robots (i.e., Determinants of Gait
(DoG) [79]) to produce a kernel that encodes the differences in
walking gaits rather than the Euclidean distance of the policy pa-
rameters. In short, for each controller parameter θ a score sc(θ)
is computed by summing the 5 DoG and the kernel k(·, ·) is de-
fined as k(θi,θj) = k(sc(θi), sc(θj)). This proved to be ben-
eficial and their approach outperformed both traditional BO and
state-of-the-art black-box optimizers (Covariance Matrix Adap-
tation Evolution Strategies; CMA-ES [68]). Moreover, in their
follow-up work [7], the same authors use neural networks to
model this kernel instead of hand-specifying it. Their evaluation
shows that the learned kernels perform almost as good as hand-
tuned ones and outperform traditional BO. Lastly, in this work
they were able to make a physical humanoid robot (ATRIAS) to
walk in a handful of trials.

A similar but more general idea (i.e., no real assumption about
the underlying system) was introduced by [192]. The authors
propose a Behavior-Based Kernel (BBK) that utilizes trajectory
data to compare policies, instead of using the distance in param-
eters (as is usually done). More specifically, they define the be-
havior of a policy to be the associated trajectory density P (τ |θ)
and the kernel k(·, ·) is defined as k(θi,θj) = α expD(θi,θj),
where D(θi,θj) is defined as a sum of KL-divergences between
the trajectory densities of different policies. Their approach was
able to efficiently learn on several benchmarks; e.g., it required
on average less than 20 episodes on the mountain car, acrobot
and cartpole swing-up tasks. One could argue that this approach
does not utilize any prior information, but rather creates it on the
fly; nevertheless, the evaluation was only performed with low-
dimensional and well-chosen policy spaces.

Wilson et al. [192] proposed to learn models of the dynamics
and the immediate reward to compute an approximate mean func-
tion of the GP, which is then used in a traditional BO procedure.
They also combine this idea with the BBK kernel and follow a
regular BO procedure where at each iteration they re-compute
the mean function of the GP with the newly learned models. Al-
though, their approach successfully learned several tasks in less
than 10 episodes (e.g., mountain car, cartpole swing-up), there
is an issue that might not be visible at first sight: the authors
combine model learning, which scales badly with the state/action
space dimensionality (see Section 5), with Bayesian optimiza-
tion, which scales badly with the dimensionality of the policy
space. As such, their approach can only work with relatively
small state/action spaces and small policy spaces. Using priors
on the dynamics (see Section 5.2) and recent improvements on
BO (see Section 4.1) could make their approach more practical.

Lober et al. [119] use a BO procedure that selects parame-
terizations of a QP-based whole body controller [157, 166] in
order to control a humanoid robot. In particular, they formulate
a policy that includes the QP-based controller (that contains a
model of the system and an optimizer) and is parameterized by
way-points (and/or switching times). Their approach was able to
allow an iCub robot to move a heavy object while maintaining
body balance and avoid collisions [119, 120].

Multiple information sources Instead of using the simulator
to precompute priors, Alonso et al. [123] propose an approach
that has the ability to automatically decide whether it will gain

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 7



crucial information from a real sample or it can use the simu-
lator that is cheaper. More specifically, they present a BO al-
gorithm for multiple information sources. Their approach relies
on entropy search (see Eq. (17)) and they use entropy to mea-
sure the information content of simulations and real experiments.
Since this is an appropriate unit of measure for the utility of both
sources, the algorithm is able to compare physically meaning-
ful quantities in the same units, and trade off accuracy for cost.
As a result, the algorithm can automatically decide whether to
evaluate cheap, but inaccurate simulations or perform expensive
and precise real experiments. They applied their method, called
Multifidelity Entropy Search (MF-ES), to fine-tune the policy of
a cart-pole system and showed that their approach can speed up
the optimization process significantly compared to standard BO.

Pautrat et al. [142] also recently proposed to combine BO with
multiple information sources (or priors). They define a new AC-
QUISITIONFUNCTION function for BO, which they call Most
Likely Expected Improvement (MLEI). MLEI attempts to have
the right balance between the likelihood of the priors and the
potential for high-performing solutions. In other words, a good
expected improvement according to an unlikely model should be
ignored; conversely, a likely model with a low expected improve-
ment might be too pessimistic (“nothing works”) and not helpful.
A model that is “likely enough” and lets us expect some good im-
provement might be the most helpful to find the maximum of the
objective function. The MLEI acquisition function is defined as
follows:

EIP (θ,P) = EI(θ)× p(Ĵ(θ1..t) | θ1..t,P(θ1..t))

MLEI(θ,P1, · · · ,Pm) = max
p∈P1,··· ,Pm

EIP (θ,p) (20)

where Pi, i = 1 . . .m is the set of available priors (where each
Pi is defined similarly to Rm in Eq.(19)). They evaluated their
approach in a transfer learning scenario with a simulated arm and
in a damage recovery one with both a simulated and a physical
hexapod robot. Their approach demonstrates improved perfor-
mance relative to random trials or a hand-chosen prior (when
that prior does not correspond to the new task). Interestingly,
this method also is able to outperform the real prior in some cir-
cumstances.

Safety-Aware Approaches Another interesting direction of re-
search is using variants of BO for safety-aware learning; that is
learning that actively tries to avoid regions that might cause harm
to the robot. In [139] the authors proposed an extension of IT&E
that safely trades-off between exploration and exploitation in a
damage recovery scenario. To achieve this, (1) they generate,
through MAP-Elites, a diverse archive of estimations concern-
ing performance and safety criteria and (2) they use this as prior
knowledge in a constrained BO [60] procedure that guides the
search towards a compensatory behavior and with respect to the
safety beliefs. Their algorithm, sI&TE, allowed a simulated dam-
aged iCub to crawl again safely.

Similarly, in [12] Berkenkamp et al. introduced SafeOpt, a BO
procedure to automatically tune controller parameters by trading-
off between exploration and exploitation only within a safe zone
of the search space. Their approach requires minimal knowl-
edge, such as an initial, not optimal, safe controller to bootstrap
the search. Using this approach a quadrotor vehicle was able to
safely improve its performance over the initial sub-optimal pol-
icy.

Message 2: Bayesian optimization is an active learning
framework for micro-data reinforcement learning that is
effective when using uncertainty-based models and when
there exists some prior on the structure of the policy or
on the expected return. However, BO is limited to low-
dimensional policy spaces.
Recommended readings: [35, 118]

5 Learning models of the dynamics
Instead of learning a model of the expected long-term reward
(section 4.1), one can also learn a model of the dynamics of
the robot. By repeatedly querying this surrogate model, it is
then possible to make a prediction of the expected return. This
idea leads to model-based policy search algorithms [44, 146], in
which the trajectory data are used to learn the dynamics model,
then policy search is performed on the model [87, 175].

Put differently, the algorithms leverage the trajectories
τ1, · · · , τN observed so far to learn a function f̂(x,u) such that:

x̂t+1 = f̂(xt,ut). (21)

This function, f̂(xt,ut), is then used to compute an estimation
of the expected return, Ĵ(θ|τ1, · · · , τN ).

5.1 Model-based Policy Search: alternating
between updating the model and
learning a policy in the model

Let us consider that the actual dynamics f (and consequently the
transition probabilities) are approximated by a model f̂ and the
immediate reward function r is approximated by a model r̂. As
such, in model-based policy search we are alternating between
learning the models (f̂ and r̂) and maximizing the expected long-
term reward on the model:

Ĵ(θ) = E[R̂(τ )|θ] =

∫
R̂(τ )P̂ (τ |θ) (22)

where

P̂ (τ |θ) = p(x0)
∏
t

p̂(xt+1|xt,ut)πθ(ut|xt, t). (23)

R̂(τ ) =

T−1∑
t=0

r̂t+1 =

T−1∑
t=0

r̂(xt,ut,xt+1) (24)

This iterative scheme can be seen as follows:

τn ∼ P (τ |θn) (25)
Dn = Dn−1 ∪ {τn, R(τn)} (26)

θn+1 = argmax
θ

Ĵ(θ|Dn) (27)

where θ0 is randomly determined or initialized to some value,
D0 = ∅ and Ĵ(θ|D) means calculating Ĵ(θ) once the models f̂
and r̂ are learned using the dataset of trajectories and rewardsD.

Model-based policy search follows the generic policy search
algorithm (Algo. 1) and implements COLLECTSTRATEGY,
MODELSTRATEGY and UPDATESTRATEGY (Algo. 4). The
main axes of variation are: (a) the way INITSTRATEGY is de-
fined (the most usual approaches are random policy parameters
or random actions), (b) the type of models used to learn f̂ and

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 8



Algorithm 4 Model-based policy search

1: procedure COLLECTSTRATEGY
2: Collect samples of the form (xt,ut, rt+1)
3: end procedure
4: procedure MODELSTRATEGY
5: Learn model f̂ : (xt,ut)→ xt+1

6: Learn model r̂ : (xt,ut,xt+1)→ rt+1

7: end procedure
8: procedure UPDATESTRATEGY
9: θn+1 = argmaxθ Ĵ(θ|Dn)

10: end procedure

r̂, (c) the optimizer used to optimize Ĵ(θ|Dn), and (d) how are
the long-term predictions, given the models, performed (i.e., how
Eq. (22) is calculated or approximated).

Model-based policy search algorithms are usually more data-
efficient than both direct and surrogate-based policy search meth-
ods as they do not depend much on the dimensionality of the
policy space. On the other hand, since they are modeling the
transition dynamics, practical algorithms are available only for
relative small state-action spaces [44, 146].

5.1.1 Model Learning

There exist many approaches to learn the models f̂ and r̂ (for
model-based policy search) in the literature [47, 113, 179]. Most
algorithms assume a known reward function; otherwise they usu-
ally use the same technique to learn both models. We can cate-
gorize the learned models in deterministic (e.g., neural networks
or linear regression) and probabilistic ones (e.g., GPs).

Probabilistic models usually rely on Bayesian methods and are
typically non-parametric (and thus exhibit potentially infinite ca-
pacity), whereas deterministic models are typically parametric
(and thus do not have infinite capacity). Probabilistic models
are usually more effective than deterministic models in model-
based policy search [44, 140] because they provide uncertainty
information that can be incorporated into the long-term predic-
tions, thus giving the capability to the optimizer to find more ro-
bust controllers (and not over-exploit the model biases). Black-
DROPS [27] and PILCO [41] both utilize GPs to greatly re-
duce the interaction time to solve several tasks, although Black-
DROPS is not tied to them and any deterministic or probabilistic
model can be used.

Recently, the model-based Policy Gradients with Parameter-
based Exploration (M-PGPE) algorithm [179] suggested instead
of learning the model f̂ , to directly try to estimate the transition
probabilities p(xt+1|xt,ut) using least-squares conditional den-
sity estimation [174]. Using this formulation they were able to
bypass some drawbacks of GPs such as computation speed and
smoothness assumption (although choosing appropriate kernels
in the GPs can produce non-smooth predictions).

Another way of learning models of the dynamics is to use lo-
cal linear models [103, 113, 115]; i.e., models that are trained on
and are only correct in the regions where one controller/policy
can drive the system. Guided policy search with unknown dy-
namics utilizes this scheme and is able to learn efficiently even
in high-dimensional states and discontinuous dynamics, like 2D
walking and peg-in-the-hole tasks [113, 115] and even dexterous
manipulation tasks [103].

There has, also, recently been some work on using Bayesian
Neural Networks (BNNs) [57] to improve the scaling of model-
based policy search algorithms [58, 73]. Compared to GPs,

BNNs scale much better with the number of samples. Neverthe-
less, BNNs require more tedious hyper-parameter optimization
and there is no established, intuitive way to include prior knowl-
edge (apart from the structure). A combination of ensembles and
probabilistic neural networks has been recently proposed [30] for
learning probabilistic dynamics models of higher dimensional
systems; for example, state-of-the-art performance was obtained
in controlling the half-cheetah benchmark [191] by combining
these models with model-predictive control. Recent works show-
case that using BNNs with stochastic inputs (and the appropriate
policy search procedure) is beneficial when learning in scenar-
ios with multi-modality and heteroskedasticity [48]; traditional
model learning approaches (e.g., GPs) fail to properly model
these scenarios. Moreover, decomposing aleatoric (i.e., inher-
ent uncertainty of the underlying system) and epistemic (i.e., un-
certainty due to limited data) uncertainties in BNNs (with latent
input variables) can provide useful information on which points
to sample next [49].

Lastly, when performing model-based policy search under par-
tial observability, different model learning techniques should be
used. One interesting idea is to optimize the model with the ex-
plicit goal of explaining the already observed trajectories instead
of focusing on the step-by-step predictions. Doerr et al. [50] re-
cently proposed a principled approach to incorporate these ideas
into GP modeling and were able to outperform other robust mod-
els in long-term predictions and showcase improved performance
for model-based policy search on a real robot with noise and la-
tencies.

5.1.2 Long-term predictions

Traditionally, we would categorize the model-based policy
search algorithms in those that perform stochastic long-term pre-
dictions by means of samplings and those that perform deter-
ministic long-term predictions by deterministic inference tech-
niques [44]. Recently, an alternative way of computing the ex-
pected long-term reward was introduced by [27] (Policy Evalu-
ation as a Noisy Observation), where the trajectory generation
is combined with the optimization process in order to achieve
high-quality predictions with fewer Monte-Carlo rollouts.

Stochastic Long-Term Predictions The actual dynamics
of the system are approximated by the model f̂ , and the imme-
diate reward function by the model r̂. The model f̂ provides the
transition probabilities p̂(xt+1|xt,ut). Similarly, the model r̂
provides the immediate reward distribution p̂(r̂t+1|xt,ut,xt+1).
When applying a policy (with some parameters θ) on the model,
we get a rollout or trajectory:

τ = (x0,u0,x1,u1, . . . ,xT ) (28)
r = (r̂1, r̂2, . . . , r̂T ) (29)

where

x0 ∼ p(x0) (30)
r̂t+1 ∼ p̂(r̂t+1|xt,ut,xt+1) (31)
ut ∼ πθ(ut|xt, t) (32)

xt+1 ∼ p̂(xt+1|xt,ut). (33)

This is basically sampling the distribution over trajectories,
P̂ (τ |θ), which is feasible since the sampling is performed with
the models. When applying the same policy (i.e., a policy with
the same parameters θ), the trajectories τ (and consequently r)

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 9



can be different (i.e., stochastic) because (of at least one of the
following):

• The policy is stochastic. If the policy is deterministic, then
ut = πθ(xt, t);

• The models (f̂ and/or r̂) are probabilistic;

• Of the initial state distribution, p(x0).

Monte-Carlo & PEGASUS Policy Evaluation: Once we know
how to generate trajectories given some policy parameters, we
need to define the way to evaluate the performance of these pol-
icy parameters. Perhaps the most straightforward way of com-
puting the expected log-term reward of some policy parameters
is to generate m trajectories with the same policy along with
their long-term costs and then compute the average (i.e., perform
Monte-Carlo sampling):

˜̂
J(θ) =

1

m

m∑
i=1

R̂i(τ
i). (34)

One more efficient way of computing the expected long-term re-
ward with stochastic trajectories is the PEGASUS sampling pro-
cedure [135]. In the PEGASUS sampling procedure the random
seeds for each time step are fixed. As a result, repeating the
same experiment (i.e., the same sequence of control inputs and
the same initial state) would result into exactly the same trajecto-
ries. This significantly reduces the sampling variance compared
to pure Monte-Carlo sampling and can be shown that optimizing
this semi-stochastic version of the model is equivalent to opti-
mizing the actual model.

The advantages of the sampling-based policy evaluations
schemes are that each rollout can be performed in parallel and
that they require much less implementation effort than the deter-
ministic long-term predictions (see Section 5.1.2). Nevertheless,
these sampling-based procedures can experience big variances in
the predictions that can negatively affect the optimization pro-
cess.

Model-based contextual REPS [105] heavily uses sampling-
based policy evaluations and showed that when using enough
sample trajectories, you can get better approximations than de-
terministic long-term predictions (see Section 5.1.2); another re-
cent work also strongly justifies the usage of sampling-based pol-
icy/action evaluations over deterministic inference methods [30]
(especially in higher dimensional systems). They were also able
to greatly reduce the computation time by exploiting the paral-
lelization capabilities of modern GPUs. In their paper, model-
based contextual REPS is able to learn policies for controlling
robots that play table tennis and hockey, where different goal po-
sitions are handled as different contexts.

Probabilistic Inference for Particle-based Policy Search
(PIPPS): Recently, Parmas et al. [140] proposed the PIPPS algo-
rithm which effectively combines the Reparameterization gradi-
ents (RP) and the Likelihood ratio gradients (LR); they call them
Total Propagation (TP). Their paper showcases that LR gradients
(and their combined TP gradients) do not suffer from the curse
of chaos (or exploding gradients), whereas RP gradients require
a very large number of rollouts to accurately estimate the gradi-
ents, even for simple problems.

Deterministic Long-Term Predictions Instead of sam-
pling trajectories τ , the probability distribution P̂ (τ |θ) can be

computed with deterministic approximations, such as lineariza-
tion [4], sigma-point methods [86] or moment matching [47]. All
these inference methods attempt to approximate the original dis-
tribution with a Gaussian.

Assuming a joint probability distribution p̂(xt,ut) =
N (µt,Σt), the distribution P̂ (τ |θ) can be computed by suc-
cessively computing the distribution of p̂(xt+1) given p̂(xt,ut).
Computing p̂(xt+1) corresponds to solving the integral:

p̂(xt+1) =

∫∫∫
p̂(xt+1|xt,ut)p̂(xt,ut)dxtdutdw. (35)

This integral can be computed analytically only if the transition
dynamics f̂ are linear (in that case p̂(xt+1) is Gaussian). This
is rarely the case and as such, approximate inference techniques
are used. Usually, we approximate p̂(xt+1) as a Gaussian; this
can be done either by linearization [4], sigma-point methods [86]
or moment matching [47]. The PILCO algorithm [41] uses mo-
ment matching, which is the best unimodal approximation of
the predictive distribution in the sense that it minimizes the KL-
divergence between the true predictive distribution and the uni-
modal approximation [44].

One big advantage of using deterministic inference techniques
for long-term predictions is the low-variance they exhibit in the
predictions. In addition, using these inference techniques allows
for analytic gradient computation and as such we can exploit ef-
ficient gradient-based optimization. However, each of these in-
ference techniques has its own disadvantages; for example, exact
moments (for moment matching) can be computed only in spe-
cial cases since the required integrals might be intractable, which
limits the overall approach (e.g., PILCO requires that the reward
function is known and differentiable).

The PILCO algorithm [47] uses this type of long-term predic-
tions and it was the first algorithm that showed remarkable data-
efficiency on several benchmark tasks (e.g., less than 20 seconds
of interaction time to solve the cart-pole swing-up task) [41]. It
was also able to learn on a physical low-cost manipulator [42]
and simulated walking tasks [43] among the many successful ap-
plications of the algorithm [47].

Policy Evaluation as a Noisy Observation This ap-
proach [27] exploits the implicit averaging property [84, 127,
182] of population, rank-based optimizers, like CMA-ES [66], in
order to perform sampling-based evaluation of the trajectories ef-
ficiently (i.e., reducing the computation time of the policy search
on the model). The key idea is that when using this type of opti-
mizers, the problem can be transformed into a noisy optimization
one, thus, there is no need to (fully) compute the expected long-
term reward, as this expectation can be implicitly computed by
the optimizer.

The Black-DROPS [27] algorithm, is one of the first purely
black-box, flexible and data-efficient model-based policy search
methods, that uses this approach. More specifically, instead
of performing deterministic long-term predictions, like PILCO,
or Monte-Carlo evaluation, like PEGASUS, Black-DROPS
stochastically generates trajectories, but considers that each of
these trajectories (or rollouts) is a measurement of a function
G(θ) that is the actual function Ĵ(θ) perturbed by a noise N(θ):

G(θ) = Ĵ(θ) +N(θ). (36)

It is easy to verify that maximizing E
[
G(θ)

]
is equivalent to

maximizing Ĵ(θ), when E
[
N(θ)

]
= constant.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 10



Implicit Averaging and Noisy Functions: Seeing the maxi-
mization of Ĵ(θ) as the optimization of a noisy function allows
to maximize it without computing or estimating it explicitly. The
Black-DROPS algorithm ulitizes a recent variant of CMA-ES
(i.e., one of the most successful algorithms for optimizing noisy
and black-box functions [67, 69, 84]) that combines random per-
turbations with re-evaluation for uncertainty handling [69] along
with restart strategies for better exploration [10].

While Black-DROPS has the same data-efficiency as PILCO,
it has the added benefit of being able to exploit multi-core ar-
chitectures, thus, greatly reducing the computation time [27]. In
addition, it is one of the first purely black-box model-based pol-
icy search algorithms; i.e., one can swap the model types, re-
ward functions and/or initialization procedure with minimal ef-
fort. This is an important feature as it allows us to more easily
exploit good sources of prior information [26]. Black-DROPS
was able to learn in less than 20 seconds of interaction time to
solve the cartpole swing-up task as well as to control a physical
4-DOF physical manipulator in less than 5-6 episodes.

5.2 Using priors on the dynamics
Reducing the interaction time in model-based policy search can
be achieved by using priors on the models [14, 26, 36, 46, 108,
158, 193]; i.e., starting with an initial guess of the dynam-
ics (and/or the reward function) and then learning the residual
model. This type of algorithms follow the general model-based
policy search framework (Algo. 4) and usually implement dif-
ferent types of INITSTRATEGY. Notably, the most successful
approaches rely on GPs to model the dynamics, as priors can be
very elegantly incorporated.

Gaussian Processes with priors for dynamical models As-
suming D1:t = {f(x̃1), ..., f(x̃t)} is a set of observations,
x̃t = (xt,ut) ∈ RE+F and M(x̃) being the simulator func-
tion (i.e., the initial guess of the dynamics), we can query the GP
at a new input point x̃∗ similar to Eq. (18)-(19) (we provide only
the mean prediction for notation):

µ(x̃∗) = M(x̃∗) + kkkTK−1(D1:t −M(x̃1:t)) (37)

Of course, we have E independent GPs; one for each output di-
mension [27, 41].

A few approaches [14, 94] use simple analytic and fast simula-
tors to create a GP prior of the dynamics (and assume the reward
function to be known). PILCO with priors [36] uses simulated
data (from running PILCO in the simulator) to create a GP prior
for the dynamics and then performs policy search with PILCO.
It was able to increase the data-efficiency of PILCO in a real in-
verted pendulum using a very simple model as a prior. A similar
approach, PI-REM [158], utilizes analytic equations for the dy-
namics prior and tries to actively bring the real trials as close
as possible to the simulated ones (i.e., reference trajectory) us-
ing a slightly modified PILCO policy search procedure. PI-REM
was also able to increase the data-efficiency of PILCO in a real
inverted pendulum (with variable stiffness actuators) using a sim-
ple model as a prior.

Black-DROPS with priors [26] proposes a new GP learning
scheme that combines model identification and non-parametric
model learning (called GP-MI) and then performs policy search
with Black-DROPS. The main idea of GP-MI is to use simula-
tors with tunable parameters, i.e., mean functions of the form
M(x̃,φM ) where each vector φM ∈ RnM corresponds to a dif-
ferent prior model of the system (e.g., different lengths of links).

Searching for the φM that best matches the observations can be
seen as a model identification procedure, which could be solved
via minimizing the mean squared error; nevertheless, the authors
formulate it in a way so that they can exploit the GP framework
to jointly optimize for the kernel hyper-parameters and the mean
parameters, which allows the modeling procedure to balance be-
tween non-parametric and parametric modeling.

Black-DROPS with GP-MI was able to robustly learn con-
trollers for a pendubot swing-up task [167] even when the pri-
ors were misleading. More precisely, it was able to outperform
Black-DROPS, PILCO, PILCO with priors, Black-DROPS with
fixed priors (i.e., this should be similar to PI-REM) and IT&E.
Moreover, Black-DROPS with GP-MI was able to find high-
performing walking policies for a physical damaged hexapod
robot (48D state and 18D action space) in less than 1 minute
of interaction time and outperformed IT&E that excels in this
setting [26, 35].

Following a similar rationale, VGMI [196], uses a Bayesian
optimization procedure to find the simulator’s mechanical pa-
rameters so as to match the real-world trajectories (i.e., it per-
forms model identification) and then performs policy search on
the updated simulator. In particular, VGMI was able to learn poli-
cies for a physical dual-arm collaborative task and out-performed
PILCO.

Finally, an approach that splits the self-modeling process
from the policy search is presented in [15]. The authors were
among the first ones to combine a self-modeling procedure (close
to model identification [162]) with policy search. The self-
modeling part of their approach consists of 3 steps: (a) action
executing and data-collection, (b) synthesization of 15 candidate
self-models that explain the sensory data and (c) active selection
of the action that will elicit the most information from the robot.
After a few cycles of these steps (i.e., around 15), the most accu-
rate model is selected and policy search is performed to produce
a desired behavior. Their approach was able to control in less
than 20 episodes a four-legged robot and it was also able to adapt
to damages in a few trials (by re-running the self-modeling pro-
cedure).

Message 3: Model-based policy search algorithms are
the most data-efficient algorithms, especially when they
take into account the uncertainty of the model. While
they typically suffer from the curse of dimensionality
(state/action space), endowing them with prior knowl-
edge on the dynamics can reduce their interaction time
requirements even when learning with high-dimensional
or complicated systems. The main challenge in this di-
rection is to overcome the computational complexity of
the approaches.
Recommended readings: [26, 27, 47]

6 Other approaches

6.1 Guided policy search

Guided policy search (GPS) with unknown dynamics [113, 115]
is a somewhat hybrid approach that combines local trajectory op-
timization (that happens directly on the real system), learning lo-
cal models of the dynamics (see Section 5.1.1) and indirect pol-
icy search where it attempts to approximate the local controllers
with one big neural network policy (using supervised learning).

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 11



In more detail, GPS consists of two loops: an outer loop that
executes the local linear-Gaussian policies on the real system,
records data and fits the dynamics models and an inner loop
where it alternates between optimizing the local linear-Gaussian
policies (using trajectory optimization and the fitted dynamics
models) and optimizing the global policy to match all the local
policies (via supervised learning and without utilizing the learned
models) [115].

The results of GPS show that it is less data-efficient than
model-based policy search approaches, but more data-efficient
than traditional direct policy search. Moreover, GPS is able to
handle bigger state-action spaces (i.e., it has also been used with
image observations [115]) than traditional model-based policy
search approaches as it reduces the final policy optimization step
in a supervised one that can be efficiently tackled with all the
recent deep learning methods [107]. GPS was able to learn in
less than 100 episodes even in high-dimensional states and dis-
continuous dynamics like 2D walking, peg-in-the-hole task and
controlling an octopus robot [113, 115] among the many success-
ful applications of the algorithm [114, 130].

6.2 Transferability approaches

The main hypothesis of the transferability approach [101, 102]
is that physics simulators are accurate for some policies, e.g.,
static gaits, and inaccurate for some others, e.g., highly dynamic
gaits. As a consequence, it is possible to learn in simulation
if the search is constrained to policies that are simulated accu-
rately. As no simulator currently comes with an estimate of its
accuracy, the key idea of the transferability approach is to learn a
model of a transferability function, which predicts the accuracy
of a simulator given policy parameters or a trajectory in simula-
tion. This function is often easier to learn than the expected re-
turn because this is essentially a classification problem (instead
of regression). In addition, small errors in the model have of-
ten little consequences, because the search is mainly driven by
the expected return in simulation (and not by the transferability
optimization).

The resulting learning process requires only a handful trials
on the physical robot (in most of the experiments, less than 25);
however, the main drawback is that it can only find policies that
perform similarly in simulation and in reality (e.g., static gaits
versus highly dynamic gaits). These type of algorithms were able
to efficiently learn policies for mobile robots that have to navigate
in mazes [102] (15 trials on the robot), for a walking quadruped
robot [100, 102] (about 10 trials) and for a 6-legged robot that
had to learn how to walk in spite of a damaged leg without up-
dating the simulator [101] (25 trials). Similar ideas were recently
developed for humanoid robots with QP-based controllers [166].

6.3 Simulation-to-Reality & Meta-Learning
approaches

The main idea behind meta-learning and SimToReal approaches
is to find a policy that is robust to a distribution of tasks (or en-
vironments). SimToReal approaches exploit parameterized sim-
ulators in order to learn a policy that can effectively transfer
on the real system. SimToReal algorithms can be categorized
into ones that find policies that are robust: (1) to visual differ-
ences [81, 82, 83, 155] (domain randomization), and (2) to dif-
ferent dynamics properties [29, 143, 178] (dynamics randomiza-
tion).

James et al. [81] use a rather simple controller, sample differ-
ent goal targets and visual conditions (e.g., lighting, textures) and
collect 1 million state-action trajectories of completing different
goals. Once this dataset is collected, a convolutional neural net-
work (CNN), that will later serve as the policy, is trained in a
supervised manner to find a mapping between image observa-
tions and the appropriate actions to take. Finally, they deploy
this policy in the real world. Astonishingly, they were able to get
100% success rate in the real world scenarios despite the fact that
their task involved contacts and anticipating dynamic effects (i.e.,
picking and placing objects in a basket). Peng et al. [143] use
the Hindsight Experience Replay (HER) [5] algorithm in order
to maximize the expected long-term reward across a distribution
of dynamics models. The dynamics parameters include masses
and lengths of the links, damping and friction coefficients among
others. Using their algorithm a 7-DOF manipulator learned how
to push a puck on a desired location and directly transfered from
simulation to reality.

However, these approaches do not provide any online adapta-
tion capabilities; this basically means that if for some reason the
policy does not generalize to the real world instance, the robot
cannot improve its performance. SimOpt [29] tries to close the
loop by using real experience in order to find the distribution of
the dynamics models to optimize on, but this type of approaches
is very similar to model-based policy search with priors on the
dynamics models (see Sec. 5.2). We can draw a parallel here and
argue that model-based policy search with probabilistic models
is performing something similar to dynamics randomization. If
we think about it a bit more, performing policy search under an
uncertain model is equivalent to finding a “robust” policy that
can perform well under various dynamics models: the ones de-
fined by the mean predictions and the uncertainty of the model.
In particular, the policy returned by a policy search procedure
under uncertain dynamics is not performing well with only some
specific dynamics parameters, but with a set of them.

Similarly, meta-learning approaches [33, 54, 56, 156] do not
only try to find a robust policy but also a learning rule that can
allow for fast adaptation (i.e., good performance with few gradi-
ent steps). Model-Agnostic Meta-Learning (MAML) [56] learns
a good set of initial policy parameters, θ0, such that every task
can be solved within few gradient steps.

A few applications of meta-learning target fast robot adapta-
tion with promising results [33, 156]. For example, Sæmundsson
et al. [156] model the distribution over systems using a latent em-
bedding and model the dynamics using a global function (with
GPs) conditioned on the latent embedding. They were able to
learn control policies for the cartpole swing-up and the double
pendulum tasks in less than 30 s of interaction time including
the meta-training time. Clavera et al. [33] use MAML to train
a dynamics model prior such that, when combined with recent
data, this prior can be rapidly adapted to the local context. They
were able to combine their dynamics model with MPC in order
to control a six-legged miniature physical robot in unknown/new
situations (e.g., payload or different terrains), but still required
30 minutes of interaction time for the meta-training process.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 12



Message 4: Simulation-to-reality or meta-learning ap-
proaches can produce robust and adaptive policies that
offer fast adaptation at test time. While they typically re-
quire expensive interaction time before the mission (e.g.,
in simulation), this should not be feared, as they can pos-
sibly produce the right prior for the task at hand. If they
are combined with some on-line adaptation or model-
learning [74], they can learn effectively.
Recommended readings: [29] [33] [156]

7 Challenges and Frontiers

7.1 Scalability

Most of the works we described so far have been demonstrated
with simple robots and simple tasks, such as the cartpole swing-
up task (4D state space, 1D action space) [41] or simple ma-
nipulators (4D state space, 4D action space) [27]. By contrast,
humanoid robots have orders of magnitude larger state-action
spaces; for example, the 53-DOF iCub robot [181] has a state
space of more than 100 dimensions (not counting tactile and vi-
sual sensors [121]). Most of the current micro-data approaches
are unable to learn with such complex robots.

On the one hand, model-based policy search algorithms (Sec-
tion 5.1) generalize well to new tasks (since the model does not
depend on the task) and learn high-dimensional policies with lit-
tle interaction time (since the policy search happens within the
model and not in interaction with the robot); but they do not
scale well with the size of the state space: in the general case,
the quantity of data to learn a good approximation of the forward
model scales exponentially with the dimensionality of the state-
space (this is the curse of dimensionality, see [11]). A factored
state representation may provide the means to tackle such com-
plexity, for example, by using dynamic Bayesian networks [39]
to represent the forward model [17], but we are not aware of any
recent work in this direction.

On the other hand, direct policy search algorithms (Sec-
tions 3.6 and 4) can be effective in learning control policies for
high-dimensional robots, because the complexity of the learning
problem mostly depends on the number of parameters of the pol-
icy, and not on the dimensionality of the state-space; however,
they do not generalize well to new tasks (when there is a model,
it is specific to the reward) and they require a low-dimensional
policy. Such a low-dimensional policy is an important, task-
specific prior that constrains what can be learnt. For example,
central pattern generators can be used for rhythmic tasks such as
locomotion [78], but they are unlikely to work well for a manip-
ulation task; similarly, quadratic programming-based controllers
(and in general model-based controllers) can facilitate learning
whole body controllers for humanoid robots [104, 166], but they
impose the control strategy and the model.

In summary, model-based policy search algorithms scale well
with the dimensionality of the policy, but they do not scale with
the dimensionality of the state space; and direct policy search al-
gorithms scale well with the dimensionality of the state-space,
but not with the dimensionality of the policy. None of these
two approaches will perform well on every task: future work
should focus on either scaling model-based policy search algo-
rithms so that they can learn in high-dimensional state spaces,
or scaling direct policy search algorithms so that they can use

more learning

more prior

planning

no prior

le
a

rn
in

g
p

ri
o

r

Fig. 2. The trade-off between prior knowledge and learning: for
any task, there is an infinity of combinations between the amount
of prior knowledge and the amount of learning required (picture
based on a slide by Oliver Brock, 2017).

higher-dimensional policies.
The dimensionality of the sensory observations is also an im-

portant challenge for micro-data learning: to our knowledge, no
micro-data approach can perform “end-to-end learning”, that is,
learning with a raw data stream like a camera. Deep RL has re-
cently made possible to learn policies from raw pixel input [128],
largely because of the prior provided by convolutional networks.
However, deep RL algorithms typically require a very large in-
teraction time with the environment (e.g., 38 days of play for
Atari 2600 games [128]), which is not compatible with most
robotics experiments and applications. To address this challenge,
a potential starting point is to use unsupervised learning to learn
low-dimensional features, which can then be used as inputs for
policies. Interestingly, it is possible to leverage priors to learn
such state representations from raw observations in a reasonable
interaction time [85, 112]. It is also possible to create forward
models in image space, that is, predicting the next image know-
ing the current one and the actions, which would allow to design
model-based policy search algorithms that work with an image
stream [9, 52, 63, 137].

7.2 Priors

Evolution has endowed animals and humans with substantial
prior knowledge. For instance, hatchling turtles are prewired to
run towards the sea [134]; or marine iguanas are able to run and
jump within moments of their birth in order to avoid being eaten
by snakes7. These species cannot rely on online learning mech-
anisms for mastering these behaviors: without such priors they
would simply cease to exist.

Similarly to priors obtained from nature, artificial agents or
robots can learn very quickly when provided with the right priors,
as we presented in Sections 3, 4.2, and 5.2. In other words, priors
play a catalytic role in reducing the interaction time of policy
search methods. Thus, the following questions naturally arise
(Fig. 2): what should be innate and what should be learned? and
how should the innate part be designed?

Most of the existing methodologies use task-specific priors
(e.g., demonstrations). Such priors can greatly accelerate pol-
icy search, but have the disadvantage of requiring an expert
to provide them for all the different tasks the robots might
face. More generic or task-agnostic priors (e.g., properties of
the physical world) could relax these assumptions while still
providing a learning speedup. Some steps have been made
into identifying such task-agnostic priors for robotics, and us-
ing them for state representation [85, 111]. We believe this is
an important direction that requires more investigation. Meta-
learning [33, 54, 56, 156], that is, “learning to learn”, is a related

7As portrayed in the recent documentary “Planet Earth 2” from BBC.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 13



line of work that can provide a principled and potentially auto-
matic way of designing priors.

Physical simulations can also be used to automatically gener-
ate priors while being a very generic tool [6, 7, 35, 142]. By
essence, physical simulations can run in parallel and take ad-
vantage of faster computing hardware (from clusters of CPUs to
GPUs): learning priors in simulation could be an analog of the
billions of years of evolution that shaped the learning systems of
all the current lifeforms.

While priors can bootstrap policy search, they can also be mis-
leading when a new task is encountered. Thus, an important re-
search avenue is to design policy search algorithms that can not
only incorporate well-chosen priors, but also ignore those that
are irrelevant for the current task [26]. Following this line of
thought, a promising idea is to design algorithms that actively
select among a variety of priors [142].

7.3 Generalization and robustness

The majority of aforementioned articles are not much concerned
with the generalization abilities and the robustness of the learned
policy: they are designed to solve a single task, in a single con-
text, with often little evaluation of the abilities to reject pertur-
bations. For example, IT&E [35] focused on a repertoire of for-
ward walking gaits for a hexapod robot on flat ground, rather than
on various surfaces (e.g., incline surface or stairs) or various di-
rections [28]; PILCO was applied for stacking a tower of foam
blocks with a robotic manipulator [47], but the task remained
fixed over the course of learning (e.g., the size of the cubes did
not vary) and there were no external perturbations (e.g., a wind
gust). Put differently, in most of the reported experiments, the
algorithms are very likely to have “overfitted” the robot and the
task.

This situation could appear surprising because generalization
and robustness are two of the most important questions in ma-
chine learning and control theory [162]. Its source is, however,
straightforward: assessing the robustness or the generalization
abilities of a policy typically requires a significant additional in-
teraction time. For example, a typical approach to measure the
robustness of a control policy is to evaluate it with many different
starting conditions and perturbations; a similar technique is often
used to test the generalization abilities. Nevertheless, such an
approach multiplies the interaction time by the number of tested
conditions, which is likely to make the algorithm very quickly
intractable on a real robot. In addition, this problem is amplified
when the dimension of the state space increases, since there exist
many more ways of perturbing a high-dimensional system than a
low-dimensional one.

A potential remedy is to use policies that are intrinsically ro-
bust to some perturbations, that is, designing the policy space
such that a change in the parameter space keeps the policy ro-
bust. For instance, the learning algorithm could search for a
trajectory and a controller could be designed to follow it in a
robust way: this corresponds to traditional trajectory optimiza-
tion (or planning) in robotics8 [162]. This is one of the ideas
behind dynamic movement primitives (see Section 3), which act
like “attractors” towards a trajectory of a fixed point. Similarly, it
is possible to learn waypoints [119] or “repulsors” [166] to mix
learning with advanced, closed-loop “whole-body” controllers.
It is, also, possible to incorporate optimization layers (e.g., a QP

8Please note that most of the planning methods require to know an accurate
model of the robot — which is not assumed by many learning methods.

program [144]) in a neural network in order to take advantage of
the structure they provide. Lastly, one can learn distinct soft poli-
cies for simpler tasks and then compose them in order to achieve
a more complicated task [65].

It is also conceivable to learn models of the generalization abil-
ities [145], although it has, to our knowledge, never been tested
with real robots. In that case, a model is trained to distinguish
between behaviors (or trajectories) that are likely to overfit from
those that are likely to be robust. This model can then be used
in a policy search algorithm (e.g., in a constrained Bayesian op-
timization scheme).

Ultimately, we would like to have robots that can learn to exe-
cute various tasks quickly under varying conditions. This means
that they need to be able to generalize from their previous ex-
perience without requiring much interaction time when the task
changes. Having a policy that generalizes well offers the bene-
fit of very fast execution, as opposed to algorithms that perform
planning [28] or model identification [26]. This challenge of
micro-data multitask learning can be decomposed into two chal-
lenges. The first is about learning quickly to achieve different
goals (i.e., only the reward function changes between tasks, for
example, a robot that needs to throw a dart at different specified
targets), while the second challenge is about adapting quickly
to changes in the dynamics (i.e., the reward function does not
change, for example, a robot that needs to cover as much distance
forward as possible while walking on grass and transitioning on
slippery ground).

Learning to achieve multiple goals has been tackled by a va-
riety of methods, from using goal-conditioned policies, both in
model-free (e.g., see [3, 5, 37, 53, 56, 61, 64, 92, 96, 122, 151,
159, 197]) and model-based settings (e.g., see [45, 105]), to
creating behavioral repertoires (e.g., see [28, 35, 187]). Fast
adaptation to changing dynamics could be addressed through
Bayesian optimization (e.g., [141, 142]), meta-learning (e.g.,
[33, 70, 156, 186, 188]), model identification (e.g., [26, 194]),
or generally policies that are robust to changes in the dynamics
(e.g., [143, 149]). While in all cases simulation is important,
a challenge is how to reduce this offline computation time (see
Sec. 7.5).

7.4 Interplay between planning,
model-predictive control and policy
search

The data-efficiency of policy search algorithms like PILCO or
Black-DROPS rises from the fact that they learn and use dy-
namical models (Section 5.1). However, if we assume that the
dynamical model is known or can be learnt, there is a large liter-
ature on control methods that can be used. So, is policy search
the right approach in such a case?

A fundamental controller from control theory is the linear-
quadratic regulator (LQR) [89], which is optimal when the the
dynamics are linear and the cost function is quadratic. Sys-
tems with nonlinear dynamics can be tackled with LQR by
linearizing them around the current state and action, however,
other approaches can be used such as differential dynamic pro-
gramming [80, 126] and its simpler variant, the iterative linear-
quadratic Gaussian algorithm [180] (iLQG). Generally, these
methods can be used for optimal control with a large horizon
lookahead, however, doing so can be computationally costly. For
this reason, they are mostly employed to calculate trajectories of-
fline; for example, GPS uses iLQG as the trajectory optimization

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 14



procedure.
A way to permit online trajectory optimization is by reducing

the horizon lookahead, thus, gaining in computational efficiency.
This is known as model-predictive control (MPC) [59]. Using
shorter horizons, MPC is no longer optimal with respect to the
overall, high-level task. This means that MPC can be used for
short-term tasks, such as tracking a trajectory, which can be pro-
duced offline. The advantage of MPC is that it can get feedback
from the real system and replan at every step. Such a control
scheme can be very effective and has, for example, recently al-
lowed real-time whole-body control of humanoid robots [98].

Although MPC can replan at every step, it still has the dis-
advantage of relying on models. Models can be inaccurate or
wrong (especially in the first episodes of learning), therefore,
there needs to be a mechanism that corrects the mismatch. A
potential solution could be to combine iterative learning con-
trol [18, 131] with MPC (e.g., see [9, 109, 110, 189]). MPC
additionally has the disadvantage of requiring full knowledge
of the system state. A way to mitigate this problem is to com-
bine MPC with a policy search algorithm, such as guided policy
search. This can be realized by using MPC with full state in-
formation in some training phase, to learn neural network (NN)
policies that take the raw observations as input, thus, not requir-
ing full state information at test time [195]. The execution of
the policy can be parallelized and can thus run faster than MPC
online.

Should we then learn a big NN policy for complex high-level
tasks, such as a humanoid robot helping with the house chores?
Firstly, we need to consider that such complex tasks require long
planning horizons. Secondly, as the task becomes more complex,
so could potentially the policy space. Even if we do not consider
memory requirements, learning such tasks from scratch would be
intractable, even in simulation. One way of addressing such com-
plexity is by decomposing the high-level task into a hierarchy of
subtasks. Sampling-based planners [20, 91] could operate at the
high to mid levels of the hierarchy, whereas MPC could operate
at the mid to low levels. Furthermore, policy search (or other
algorithms for optimal control) can be used to discover primi-
tives which themselves are used as components of a higher-level
policy (e.g., see [51]) or a planning algorithm (e.g., see [28, 34]).

7.5 Computation time

Micro-data learning focuses on the desirable property of reduc-
ing the interaction time. However, most articles purposefully ne-
glect computation time because they assume that it will be tack-
led automatically with faster hardware in the future. Although
this is possible, it is worth investigating how different algorithms
can potentially be sped up for near real-time execution with to-
day’s hardware.

For illustration, PILCO (see Section 5.1) is a very success-
ful and data-efficient algorithm, but can be very computationally
expensive when the state-action or policy space dimensionality
increases [27, 192] (e.g., Wilson et al. [192] report that PILCO
required 3 weeks of computation time for 20 episodes on a 3-
link planar arm task) and cannot take advantage of multi-core ar-
chitectures. Black-DROPS and Black-DROPS with GP-MI (see
Section 5.2) can greatly reduce the interaction time and take ad-
vantage of multi-core architectures, but they still require a con-
siderable amount of computation time (e.g., Black-DROPS with
GP-MI required 24 hours on a modern 16-core computer for 26
episodes of the pendubot task [26]). Both approaches use GP
models which have a complexity that is quadratic to the number

of points when queried; this is clearly inefficient when millions of
such GP queries (e.g., Black-DROPS performs around 64M [27])
are performed in each episode.

On the other hand, IT&E [35] and “robust policies” (e.g.,
see [143], [194], [141], [149]) can practically run in real-time be-
cause the prior is pre-computed offline. This “recipe” is shared
by recent meta-learning methodologies, such as [56], that aim to
learn an expressive policy that can be optimized online using a
single gradient update.

This does not mean that the offline precomputation time
should not be optimized. Algorithms such as IT&E or the work
in [143] use a form of directed exploration to create such a prior9.
If, for example, random search were used, it would probably need
orders of magnitude more computation time to create a prior of
the same quality.

8 Conclusions
Thanks to recent advances in priors, policy representations, re-
ward modeling, and dynamical models, it is now possible to
learn policies on robots in a few minutes of interaction time.
These micro-data learning algorithms considerably expand the
usefulness of learning on robots: with these algorithms, we can
envision robots that adapt “in front of our eyes”. These al-
gorithms, nonetheless, face critical challenges, most notably to
scale-up simultaneously to high-dimensional state spaces and
high-dimensional policy spaces.

As guidelines for future work in the field, we propose 5 pre-
cepts that summarize the “generic rules” that govern most of the
work published so far about micro-data learning:

1. Leveraging prior knowledge is key for micro-data learn-
ing: it should not be feared. However, the prior knowledge
should be as explicit and as generic as possible.

2. Use as much data as possible from each trial (e.g., trajectory
data, not only reward value): when data is scarce, every bit
matters.

3. Take the time to choose what to test next (active learning):
computers are likely to become faster in the future, but
physics will not accelerate; it is therefore a sensible strat-
egy to trade data resources for computational resources. It
is still desirable, but less critical on the long term, to design
algorithms that are fast enough to run on embedded systems.

4. Every estimate (or model) should come with a measure of its
uncertainty: when very little data is available, models will
never have enough data to be “right” for the whole search
space; algorithms must take this fact into account and reason
with this uncertainty.

5. If needed, use expensive algorithms before the mission:
since we mostly care about online adaptation, we can have
access to time and resources before the mission (access to
computing clusters, GPUs, etc.)

Finally, we would like to give a few recommendations for prac-
tical usage of micro-data algorithms:

• Low-DOF robots: For robots with less than 10 DOFs,
model-based policy search algorithms should be the choice

9IT&E uses an evolutionary illumination algorithm (MAP-Elites [133, 187]) to
discover solutions to thousands of problems in a single run; the work by [143]
uses a related approach (hindsight experience replay [5]).

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 15



of the researcher. Algorithms like Black-DROPS [27] and
PILCO [41] will operate within reasonable computation
time and will learn in very few trials.

• High-DOF robots: For robots with higher dimensional
state/action space but with low dimensional policy spaces,
Bayesian optimization approaches will provide the best
trade-off between computation time and learning conver-
gence. If a prior model or simulator is available, algorithms
like IT&E [35] and MF-ES [123] should be on the front line
of learning in just a few trials.

• Complex robots: For robots with higher dimensional
state/action space and high dimensional policy spaces,
model-based policy search with priors on the dynamics will
provide the most data-efficient results at the expense of in-
creased computation cost. Algorithms like Black-DROPS
with GP-MI [26] and VGMI [196] effectively exploit pa-
rameterized simulators and should be able to learn in a hand-
ful of trials even for complex robots.

• Raw observations: When the observation (or state) space is
very high dimensional (e.g., visual input), SimToReal meth-
ods combined with online adaptation (e.g., SimOpt [29])
should provide the best results.

In all cases, a good policy space and initialization of the policy
parameters (e.g., from demonstrations [13]) will accelerate learn-
ing.

9 Acknowledgements

KC, VV and JBM received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (GA no. 637972, project
“ResiBots”). JBM and FS received funding from the Euro-
pean Commission through the project H2020 AnDy (GA no.
731540). FS was partially funded by the Helmholtz Association
in the project “Reduced Complexity Models”. SC received fund-
ing from the European Commission through the H2020 project
MEMMO (GA no. 780684). SC and JBM received funding from
the CHIST-ERA project “HEAP”.

References
[1] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using

inaccurate models in reinforcement learning. In Proc. of
ICML, 2006.

[2] Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno
Lau, Luis Pualo Reis, and Gerhard Neumann. Model-
based relative entropy stochastic search. In NIPS, 2015.

[3] Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis,
and Gerhard Neumann. Contextual covariance matrix
adaptation evolutionary strategies. In Proc. of IJCAI, 2017.

[4] Brian DO Anderson and John B Moore. Optimal filtering.
Englewood Cliffs, 21:22–95, 1979.

[5] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. In Proc. of NIPS, 2017.

[6] Rika Antonova, Akshara Rai, and Christopher G Atkeson.
Sample efficient optimization for learning controllers for
bipedal locomotion. In Proc. of Humanoids, 2016.

[7] Rika Antonova, Akshara Rai, and Christopher G Atkeson.
Deep Kernels for Optimizing Locomotion Controllers. In
Proc. of CoRL, 2017.

[8] Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from demonstra-
tion. Robotics and Autonomous Systems, 57(5):469–483,
2009.

[9] J.-A. M Assael, N. Wahlström, T. B. Schön, and M. P.
Deisenroth. Data-efficient learning of feedback policies
from image pixels using deep dynamical models. NIPS
Deep Reinforcement Learning Workshop, 2015.

[10] Anne Auger and Nikolaus Hansen. A restart cma evolution
strategy with increasing population size. In Evolutionary
Computation, volume 2, pages 1769–1776. IEEE, 2005.

[11] Richard Ernest Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[12] Felix Berkenkamp, Angela P. Schoellig, and Andreas
Krause. Safe Controller Optimization for Quadrotors with
Gaussian Processes. In Proc. of ICRA, 2016.

[13] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and
Stefan Schaal. Robot programming by demonstration.
In Springer handbook of robotics, pages 1371–1394.
Springer, 2008.

[14] B. Bischoff, D. Nguyen-Tuong, Herke van Hoof,
A. McHutchon, Carl Edward Rasmussen, Aaron Knoll,
Jochen Peters, and Marc Peter Deisenroth. Policy search
for learning robot control using sparse data. In Proc. of
ICRA, 2014.

[15] Josh Bongard, Victor Zykov, and Hod Lipson. Resilient
machines through continuous self-modeling. Science, 314
(5802):1118–1121, 2006.

[16] Josh C. Bongard and Rolf Pfeifer. Evolving Complete
Agents using Artificial Ontogeny. In Proc. of Morpho-
functional Machines: The New Species, 2003.

[17] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt.
Stochastic dynamic programming with factored representa-
tions. Artificial Intelligence, 121(1-2):49–107, 2000.

[18] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne.
A survey of iterative learning control. IEEE Control Sys-
tems, 26(3):96–114, 2006.

[19] Eric Brochu, Vlad M. Cora, and Nando De Freitas. A tutorial
on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical rein-
forcement learning. arXiv preprint arXiv:1012.2599, 2010.

[20] Cameron B Browne, Edward Powley, Daniel Whitehouse,
Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis, and
Simon Colton. A survey of monte carlo tree search meth-
ods. IEEE Transactions on Computational Intelligence and
AI in Games, 4:1–43, 2012.

[21] Jonas Buchli, Freek Stulp, Evangelos Theodorou, and Ste-
fan Schaal. Learning Variable Impedance Control. IJRR,
30(7):820–833, 2011.

[22] R. Calandra, A. Seyfarth, J. Peters, and M.P. Deisenroth.
Bayesian optimization for learning gaits under uncertainty.
Annals of Mathematics and Artificial Intelligence (AMAI),
2015.

[23] S. Calinon. A tutorial on task-parameterized move-
ment learning and retrieval. Intelligent Service Robotics,
9(1):1–29, 2016. ISSN 1861-2776. doi: 10.1007/
s11370-015-0187-9.

[24] S. Calinon, P. Kormushev, and D. G. Caldwell. Compliant
skills acquisition and multi-optima policy search with EM-
based reinforcement learning. Robotics and Autonomous
Systems, 61(4):369–379, 2013.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 16



[25] S. Calinon, D. Bruno, and D. G. Caldwell. A task-
parameterized probabilistic model with minimal intervention
control. In Proc. of ICRA, 2014.

[26] Konstantinos Chatzilygeroudis and Jean-Baptiste Mouret.
Using Parameterized Black-Box Priors to Scale Up Model-
Based Policy Search for Robotics. In Proc. of ICRA, 2018.

[27] Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj
Kaushik, Dorian Goepp, Vassilis Vassiliades, and Jean-
Baptiste Mouret. Black-Box Data-efficient Policy Search for
Robotics. In Proc. of IROS, 2017.

[28] Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and
Jean-Baptiste Mouret. Reset-free Trial-and-Error Learning
for Robot Damage Recovery. Robotics and Autonomous
Systems, 100:236–250, 2018.

[29] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles
Macklin, Jan Issac, Nathan Ratliff, and Dieter Fox. Clos-
ing the Sim-to-Real Loop: Adapting Simulation Ran-
domization with Real World Experience. arXiv preprint
arXiv:1810.05687, 2018.

[30] Kurtland Chua, Roberto Calandra, Rowan McAllister, and
Sergey Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In NIPS, 2018.

[31] Kamil Ciosek and Shimon Whiteson. Expected policy gra-
dients. In Thirty-Second AAAI Conference on Artificial In-
telligence (AAAI), 2018.

[32] Kamil Ciosek and Shimon Whiteson. Expected Policy
Gradients for Reinforcement Learning. arXiv preprint
arXiv:1801.03326, 2018.

[33] Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing,
Pieter Abbeel, Sergey Levine, and Chelsea Finn. Learn-
ing to Adapt in Dynamic, Real-World Environments through
Meta-Reinforcement Learning. In Proc. of ICLR, 2019.

[34] Debora Clever, Monika Harant, Katja Mombaur, Maximilien
Naveau, Olivier Stasse, and Dominik Endres. Cocomopl: A
novel approach for humanoid walking generation combin-
ing optimal control, movement primitives and learning and
its transfer to the real robot hrp-2. IEEE Robotics and Au-
tomation Letters, 2(2):977–984, 2017.

[35] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-
Baptiste Mouret. Robots that can adapt like animals. Na-
ture, 521(7553):503–507, 2015.

[36] Mark Cutler and Jonathan P How. Efficient reinforcement
learning for robots using informative simulated priors. In
Proc. of ICRA, 2015.

[37] Bruno Castro Da Silva, George Konidaris, and Andrew G
Barto. Learning parameterized skills. In Proc. of ICML,
2012.

[38] C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hier-
archical relative entropy policy search. JMLR, pages 1–50,
2016.

[39] Thomas Dean and Keiji Kanazawa. A model for reasoning
about persistence and causation. Comput. Intell., 5:142–
150, 1989.

[40] Thomas Degris, Martha White, and Richard S Sutton. Lin-
ear off-policy actor-critic. In Proc. of ICML, 2012.

[41] Marc P Deisenroth and Carl Edward Rasmussen. PILCO: A
model-based and data-efficient approach to policy search.
In Proc. of ICML, 2011.

[42] Marc P. Deisenroth, Carl Edward Rasmussen, and Dieter
Fox. Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning. In Proc. of RSS,
2011.

[43] Marc Peter Deisenroth, Roberto Calandra, André Seyfarth,
and Jan Peters. Toward fast policy search for learning
legged locomotion. In Proc. of IROS, 2012.

[44] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters.
A Survey on Policy Search for Robotics. Foundations and
Trends in Robotics, 2(1):1–142, 2013.

[45] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Di-
eter Fox. Multi-task policy search for robotics. In Proc. of
ICRA, 2014.

[46] Marc Peter Deisenroth, Peter Englert, Jochen Peters, and
Dieter Fox. Multi-task policy search for robotics. In Proc. of
ICRA, 2014.

[47] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Ras-
mussen. Gaussian processes for data-efficient learning in
robotics and control. IEEE Trans. Pattern Anal. Mach. In-
tell., 37(2):408–423, 2015.

[48] Stefan Depeweg, José Miguel Hernández-Lobato, Finale
Doshi-Velez, and Steffen Udluft. Learning and policy
search in stochastic dynamical systems with bayesian neu-
ral networks. In Proc. of ICLR, 2017.

[49] Stefan Depeweg, José Miguel Hernández-Lobato, Finale
Doshi-Velez, and Steffen Udluft. Decomposition of un-
certainty in bayesian deep learning for efficient and risk-
sensitive learning. In Proc. of ICML, 2018.

[50] Andreas Doerr et al. Optimizing long-term predictions for
model-based policy search. In Proc. of CoRL, 2017.

[51] Miguel Duarte, Jorge Gomes, Sancho Moura Oliveira, and
Anders Lyhne Christensen. Evolution of repertoire-based
control for robots with complex locomotor systems. IEEE
Transactions on Evolutionary Computation, 2017.

[52] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,
Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Rud-
erman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al.
Neural scene representation and rendering. Science, 360
(6394):1204–1210, 2018.

[53] Alexander Fabisch and Jan Hendrik Metzen. Active contex-
tual policy search. JMLR, 15(1):3371–3399, 2014.

[54] Matthias Feurer, Jost Tobias Springenberg, and Frank Hut-
ter. Initializing bayesian hyperparameter optimization via
meta-learning. In Proc. of AAAI, 2015.

[55] Peggy Fidelman and Peter Stone. Learning ball acquisition
on a physical robot. In Proc. of ISRA, 2004.

[56] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In Proc. of ICML, 2017.

[57] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In Proc. of ICML, 2016.

[58] Yarin Gal, Rowan Thomas McAllister, and Carl Edward
Rasmussen. Improving PILCO with Bayesian neural net-
work dynamics models. In Data-Efficient Machine Learning
workshop, 2016.

[59] Carlos E Garcia, David M Prett, and Manfred Morari. Model
predictive control: theory and practice—a survey. Automat-
ica, 25(3):335–348, 1989.

[60] Jacob R Gardner et al. Bayesian Optimization with Inequal-
ity Constraints. In Proc. of ICML, 2014.

[61] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Ku-
mar, and Sergey Levine. Divide-and-conquer reinforcement
learning. arXiv preprint arXiv:1711.09874, 2017.

[62] F. Guenter, M. Hersch, S. Calinon, and A. Billard. Rein-
forcement learning for imitating constrained reaching move-
ments. Advanced Robotics, Special Issue on Imitative
Robots, 21(13):1521–1544, 2007.

[63] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 17



[64] Sehoon Ha and C Karen Liu. Evolutionary optimization for
parameterized whole-body dynamic motor skills. In Proc.
of ICRA, 2016.

[65] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza
Dalal, Pieter Abbeel, and Sergey Levine. Composable
Deep Reinforcement Learning for Robotic Manipulation. In
Proc. of ICRA, 2018.

[66] Nikolaus Hansen. The CMA Evolution Strategy: A Com-
paring Review. Springer, 2006. ISBN 978-3-540-32494-2.
doi: 10.1007/3-540-32494-1 4.

[67] Nikolaus Hansen. Benchmarking a BI-population CMA-ES
on the BBOB-2009 noisy testbed. In Proc. of GECCO,
2009.

[68] Nikolaus Hansen and Andreas Ostermeier. Completely de-
randomized self-adaptation in evolution strategies. Evolu-
tionary computation, 9(2):159–195, 2001.

[69] Nikolaus Hansen, André SP Niederberger, Lino Guzzella,
and Petros Koumoutsakos. A method for handling uncer-
tainty in evolutionary optimization with an application to
feedback control of combustion. IEEE Trans. on Evolution-
ary Computation, 13(1):180–197, 2009.

[70] James Harrison, Apoorva Sharma, Roberto Calandra, and
Marco Pavone. Control Adaptation via Meta-Learning Dy-
namics. In Workshop on Meta-Learning at NeurIPS 2018,
2018.

[71] Nicolas Heess et al. Emergence of locomotion behaviours
in rich environments. arXiv preprint arXiv:1707.02286,
2017.

[72] Philipp Hennig and Christian J Schuler. Entropy search for
information-efficient global optimization. JMLR, 13:1809–
1837, 2012.

[73] Juan Camilo Gamboa Higuera, David Meger, and Gregory
Dudek. Synthesizing neural network controllers with prob-
abilistic model based reinforcement learning. arXiv preprint
arXiv:1803.02291, 2018.

[74] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for legged
robots. Science Robotics, 4(26), 2019. doi: 10.1126/
scirobotics.aau5872.

[75] A. Ijspeert, J. Nakanishi, P Pastor, H. Hoffmann, and
S. Schaal. Dynamical Movement Primitives: Learning at-
tractor models for motor behaviors. Neural Computation,
25(2):328–373, 2013.

[76] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imita-
tion with nonlinear dynamical systems in humanoid robots.
In Proc. of ICRA, 2002.

[77] Auke J Ijspeert, Jun Nakanishi, and Stefan Schaal. Learn-
ing attractor landscapes for learning motor primitives. In
NIPS, 2003.

[78] Auke Jan Ijspeert. Central pattern generators for locomo-
tion control in animals and robots: a review. Neural net-
works, 21(4):642–653, 2008.

[79] Verne T Inman, Howard D Eberhart, et al. The major de-
terminants in normal and pathological gait. JBJS, 35(3):
543–558, 1953.

[80] David H Jacobson and David Q Mayne. Differential dy-
namic programming. 1970.

[81] Stephen James, Andrew J Davison, and Edward Johns.
Transferring end-to-end visuomotor control from simulation
to real world for a multi-stage task. In Proc. of CoRL, 2017.

[82] Stephen James, Michael Bloesch, and Andrew J Davison.
Task-Embedded Control Networks for Few-Shot Imitation
Learning. In Conference on Robot Learning (CoRL), 2018.

[83] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan,
Dmitry Kalashnikov, Alex Irpan, Julian Ibarz, Sergey
Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-
to-Real via Sim-to-Sim: Data-efficient Robotic Grasping
via Randomized-to-Canonical Adaptation Networks. arXiv
preprint arXiv:1812.07252, 2018.

[84] Yaochu Jin and Jürgen Branke. Evolutionary optimization
in uncertain environments - a survey. IEEE Trans. on Evo-
lutionary Computation, 9(3):303–317, 2005.

[85] Rico Jonschkowski and Oliver Brock. Learning state repre-
sentations with robotic priors. Autonomous Robots, 39(3):
407–428, 2015.

[86] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering
and nonlinear estimation. Proceedings of the IEEE, 92(3):
401–422, 2004.

[87] Leslie Pack Kaelbling, Michael L Littman, and Andrew W
Moore. Reinforcement learning: A survey. JAIR, 4:237–
285, 1996.

[88] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal.
Learning force control policies for compliant manipulation.
In Proc. of IROS, 2011.

[89] Rudolph Emil Kalman. A new approach to linear filtering
and prediction problems. J. Basic. Eng., 82:35–45, 1960.

[90] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás
Póczos. High dimensional Bayesian optimisation and ban-
dits via additive models. In Proc. of ICML, 2015.

[91] Sertac Karaman and Emilio Frazzoli. Sampling-based algo-
rithms for optimal motion planning. IJRR, 30(7):846–894,
2011.

[92] Peter Karkus, Andras Kupcsik, David Hsu, and Wee Sun
Lee. Factored Contextual Policy Search with Bayesian Op-
timization. In BayesOpt’16: Proceedings of the Interna-
tional Workshop “Bayesian Optimization: Black-box Opti-
mization and Beyond” at NIPS, 2016.

[93] S Mohammad Khansari-Zadeh and Aude Billard. Learning
stable nonlinear dynamical systems with gaussian mixture
models. IEEE Transactions on Robotics, 27(5):943–957,
2011.

[94] Jonathan Ko, Daniel J Klein, Dieter Fox, and Dirk Haehnel.
Gaussian processes and reinforcement learning for identi-
fication and control of an autonomous blimp. In Proc. of
ICRA, 2007.

[95] Jens Kober and Jan Peters. Learning motor primitives for
robotics. In Proc. of ICRA, 2009.

[96] Jens Kober, Andreas Wilhelm, Erhan Oztop, and Jan Pe-
ters. Reinforcement learning to adjust parametrized motor
primitives to new situations. Autonomous Robots, 33(4):
361–379, 2012.

[97] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforce-
ment learning in robotics: A survey. IJRR, 32(11):1238–
1274, 2013. doi: 10.1177/0278364913495721.

[98] Jonas Koenemann, Andrea Del Prete, Yuval Tassa,
Emanuel Todorov, Olivier Stasse, Maren Bennewitz, and
Nicolas Mansard. Whole-body model-predictive control ap-
plied to the HRP-2 humanoid. In Proc. of IROS, 2015.

[99] Nate Kohl and Peter Stone. Policy gradient reinforcement
learning for fast quadrupedal locomotion. In Proc. of ICRA,
2004.

[100] Sylvain Koos and Jean-Baptiste Mouret. Online discov-
ery of locomotion modes for wheel-legged hybrid robots: A
transferability-based approach. In Proc. of CLAWAR. 2012.

[101] Sylvain Koos, Antoine Cully, and Jean-Baptiste Mouret.
Fast damage recovery in robotics with the t-resilience al-
gorithm. IJRR, 32(14):1700–1723, 2013.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 18



[102] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Don-
cieux. The transferability approach: Crossing the reality
gap in evolutionary robotics. IEEE Transactions on Evolu-
tionary Computation, 17(1):122–145, 2013.

[103] Vikash Kumar, Emanuel Todorov, and Sergey Levine. Op-
timal control with learned local models: Application to dex-
terous manipulation. In Proc. of ICRA, 2016.

[104] Visak C.V. Kumar, Sehoon Ha, and Katsu Yamane. Improv-
ing Model-Based Balance Controllers using Reinforcement
Learning and Adaptive Sampling. In Proc. of ICRA, 2018.

[105] Andras Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh
Loh, Prahlad Vadakkepat, and Gerhard Neumann. Model-
based contextual policy search for data-efficient general-
ization of robot skills. Artificial Intelligence, 247:415–439,
2017.

[106] Harold J Kushner. A new method of locating the maxi-
mum point of an arbitrary multipeak curve in the presence
of noise. J. Basic. Eng., 86:97–106, 1964.

[107] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

[108] Gilwoo Lee, Siddhartha S Srinivasa, and Matthew T Ma-
son. GP-ILQG: Data-driven Robust Optimal Control for
Uncertain Nonlinear Dynamical Systems. arXiv preprint
arXiv:1705.05344, 2017.

[109] Jay H Lee, Kwang S Lee, and Won C Kim. Model-based
iterative learning control with a quadratic criterion for time-
varying linear systems. Automatica, 36(5):641–657, 2000.

[110] Kwang S Lee, In-Shik Chin, Hyuk J Lee, and Jay H Lee.
Model predictive control technique combined with iterative
learning for batch processes. AIChE Journal, 45(10):2175–
2187, 1999.

[111] Timothée Lesort, Mathieu Seurin, Xinrui Li, Natalia Dı́az
Rodrı́guez, and David Filliat. Unsupervised state represen-
tation learning with robotic priors: a robustness benchmark.
arXiv preprint arXiv:1709.05185, 2017.

[112] Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-François
Goudou, and David Filliat. State representation learning
for control: An overview. arXiv preprint arXiv:1802.04181,
2018.

[113] Sergey Levine and Pieter Abbeel. Learning neural network
policies with guided policy search under unknown dynam-
ics. In NIPS, 2014.

[114] Sergey Levine and Vladlen Koltun. Guided policy search.
In Proc. of ICML, 2013.

[115] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
JMLR, 17(39):1–40, 2016.

[116] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,
and Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. IJRR, 37(4-5):421–436, 2018.

[117] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. In Proc. of ICLR, 2016.

[118] D. J. Lizotte, T. Wang, M. H Bowling, and D. Schuurmans.
Automatic gait optimization with gaussian process regres-
sion. In Proc. of IJCAI, 2007.

[119] Ryan Lober, Vincent Padois, and Olivier Sigaud. Efficient
reinforcement learning for humanoid whole-body control. In
Proc. of Humanoids, 2016.

[120] Ryan Lober, Jorhabib Eljaik, Gabriele Nava, Stefano Da-
farra, Francesco Romano, Daniele Pucci, Silvio Traversaro,

Francesco Nori, Olivier Sigaud, and Vincent Padois. Op-
timizing task feasibility using model-free policy search and
model-based whole-body control. 2017.

[121] Perla Maiolino, Marco Maggiali, Giorgio Cannata, Giorgio
Metta, and Lorenzo Natale. A flexible and robust large scale
capacitive tactile system for robots. IEEE Sensors Journal,
13(10):3910–3917, 2013.

[122] Daniel J Mankowitz, Augustin Žı́dek, André Barreto, Dan
Horgan, Matteo Hessel, John Quan, Junhyuk Oh, Hado van
Hasselt, David Silver, and Tom Schaul. Unicorn: Continual
learning with a universal, off-policy agent. arXiv preprint
arXiv:1802.08294, 2018.

[123] Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P.
Schoellig, Andreas Krause, Stefan Schaal, and Sebastian
Trimpe. Virtual vs. Real: Trading Off Simulations and Phys-
ical Experiments in Reinforcement Learning with Bayesian
Optimization. In Proc. of ICRA, 2017.

[124] Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet,
and José A Castellanos. Active Policy Learning for Robot
Planning and Exploration under Uncertainty. In Proc. of
RSS, 2007.

[125] Takamitsu Matsubara, Sang-Ho Hyon, and Jun Morimoto.
Learning parametric dynamic movement primitives from
multiple demonstrations. Neural Networks, 24(5):493–500,
2011. doi: 10.1016/j.neunet.2011.02.004.

[126] David Mayne. A second-order gradient method for deter-
mining optimal trajectories of non-linear discrete-time sys-
tems. International Journal of Control, 3(1):85–95, 1966.

[127] Brad L Miller and David E Goldberg. Genetic algorithms,
selection schemes, and the varying effects of noise. Evolu-
tionary Computation, 4(2):113–131, 1996.

[128] Volodymyr Mnih et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[129] Volodymyr Mnih et al. Asynchronous methods for deep re-
inforcement learning. In Proc. of ICML, 2016.

[130] William Montgomery, Anurag Ajay, Chelsea Finn, Pieter
Abbeel, and Sergey Levine. Reset-free guided policy
search: efficient deep reinforcement learning with stochas-
tic initial states. In Proc. of ICRA, 2017.

[131] Kevin L Moore, Mohammed Dahleh, and SP Bhat-
tacharyya. Iterative learning control: A survey and new
results. Journal of Field Robotics, 9(5):563–594, 1992.

[132] Jean-Baptiste Mouret. Micro-data learning: The other end
of the spectrum. ERCIM News, (107):2, 2016.

[133] Jean-Baptiste Mouret and Jeff Clune. Illuminating search
spaces by mapping elites. arXiv preprint arXiv:1504.04909,
2015.

[134] John A Musick and Colin J Limpus. Habitat utilization and
migration in juvenile sea turtles. The biology of sea turtles,
1:137–163, 1997.

[135] Andrew Y Ng and Michael Jordan. PEGASUS: a policy
search method for large MDPs and POMDPs. In Proc. of
UAI, 2000.

[136] Andrew Y Ng et al. Autonomous inverted helicopter flight
via reinforcement learning. In Experimental Robotics IX,
pages 363–372. 2006.

[137] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis,
and Satinder Singh. Action-conditional video prediction us-
ing deep networks in atari games. In Proc. of NIPS, 2015.

[138] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J An-
drew Bagnell, Pieter Abbeel, Jan Peters, et al. An algo-
rithmic perspective on imitation learning. Foundations and
Trends R© in Robotics, 7(1-2):1–179, 2018.

[139] Vaios Papaspyros, Konstantinos Chatzilygeroudis, Vas-
silis Vassiliades, and Jean-Baptiste Mouret. Safety-Aware

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 19



Robot Damage Recovery Using Constrained Bayesian Op-
timization and Simulated Priors. In Proc. of the International
Workshop “Bayesian Optimization: Black-box Optimization
and Beyond” at NIPS, 2016.

[140] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and
Kenji Doya. PIPPS: Flexible Model-Based Policy Search
Robust to the Curse of Chaos. In Proc. of ICML, 2018.

[141] Supratik Paul, Konstantinos Chatzilygeroudis, Kamil
Ciosek, Jean-Baptiste Mouret, Michael A. Osborne, and
Shimon Whiteson. Alternating Optimisation and Quadra-
ture for Robust Control. In Proc. of AAAI, 2018.

[142] Rémi Pautrat, Konstantinos Chatzilygeroudis, and Jean-
Baptiste Mouret. Bayesian Optimization with Automatic
Prior Selection for Data-Efficient Direct Policy Search. In
Proc. of ICRA, 2018.

[143] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Sim-to-real transfer of robotic control
with dynamics randomization. In Proc. of ICRA, 2018.

[144] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki
Tachibana. OptLayer-Practical Constrained Optimization
for Deep Reinforcement Learning in the Real World. In
Proc. of ICRA, 2018.

[145] Tony Pinville, Sylvain Koos, Jean-Baptiste Mouret, and
Stéphane Doncieux. How to promote generalisation in
evolutionary robotics: the progab approach. In Proc. of
GECCO, 2011.

[146] Athanasios S Polydoros and Lazaros Nalpantidis. Survey
of Model-Based Reinforcement Learning: Applications on
Robotics. Journal of Intelligent & Robotic Systems, pages
1–21, 2017.

[147] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Qual-
ity diversity: A new frontier for evolutionary computation.
Frontiers in Robotics and AI, 3:40, 2016.

[148] Jeffrey Queisser and Jochen Steil. Bootstrapping of Pa-
rameterized Skills Through Hybrid Optimization in Task and
Policy Spaces. Frontiers in Robotics and AI, 2018.

[149] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravin-
dran, and Sergey Levine. Epopt: Learning robust neural
network policies using model ensembles. arXiv preprint
arXiv:1610.01283, 2016.

[150] Carl Edward Rasmussen and Christopher KI Williams.
Gaussian processes for machine learning, volume 1. MIT
press Cambridge, 2006.

[151] Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and
Juergen Schmidhuber. Hindsight policy gradients. arXiv
preprint arXiv:1711.06006, 2017.

[152] John Rieffel and Jean-Baptiste Mouret. Soft tensegrity
robots. Soft Robotics, 2018.

[153] Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and
Volkan Cevher. High-Dimensional Bayesian Optimiza-
tion via Additive Models with Overlapping Groups. arXiv
preprint arXiv:1802.07028, 2018.

[154] Nicholas Roy and Sebastian Thrun. Motion planning
through policy search. In Proc. of IROS, 2002.

[155] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real
single-image flight without a single real image. In Proc.
of RSS, 2017.

[156] Steindór Sæmundsson, Katja Hofmann, and Marc Peter
Deisenroth. Meta Reinforcement Learning with Latent Vari-
able Gaussian Processes. In Proc. of UAI, 2018.

[157] Joseph Salini, Vincent Padois, and Philippe Bidaud. Syn-
thesis of complex humanoid whole-body behavior: a focus
on sequencing and tasks transitions. In Proc. of ICRA,
2011.

[158] Matteo Saveriano, Yuchao Yin, Pietro Falco, and Dongheui
Lee. Data-efficient control policy search using residual dy-
namics learning. In Proc. of IROS, 2017.

[159] Tom Schaul, Daniel Horgan, Karol Gregor, and David Sil-
ver. Universal value function approximators. In Proc. of
ICML, 2015.

[160] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimization.
In Proc. of ICML, 2015.

[161] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando de Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceedings
of the IEEE, 104(1):148–175, 2016.

[162] Bruno Siciliano and Oussama Khatib. Springer handbook
of robotics. Springer, 2 edition, 2016.

[163] David Silver et al. Deterministic policy gradient algorithms.
In Proc. of ICML, 2014.

[164] David Silver et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[165] Karl Sims. Evolving Virtual Creatures. In Proc. of SIG-
GRAPH, 1994.

[166] Jonathan Spitz, Karim Bouyarmane, Serena Ivaldi, and
Jean-Baptiste Mouret. Trial-and-Error Learning of Repul-
sors for Humanoid QP-based Whole-Body Control. In Proc.
of Humanoids, 2017.

[167] Mark W. Spong and Daniel J. Block. The pendubot: A
mechatronic system for control research and education. In
Proc. of Decision and Control, 1995.

[168] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

[169] Kenneth O. Stanley and Risto Miikkulainen. Evolving Neu-
ral Networks Through Augmenting Topologies. Evolution-
ary Computation, 10(2):99–127, 2002.

[170] Freek Stulp and Olivier Sigaud. Policy improvement:
Between black-box optimization and episodic reinforce-
ment learning. In Journées Francophones Planification,
Décision, et Apprentissage pour la conduite de systèmes,
2013.

[171] Freek Stulp and Olivier Sigaud. Robot skill learning: From
reinforcement learning to evolution strategies. Paladyn,
Journal of Behavioral Robotics, 4(1):49–61, 2013.

[172] Freek Stulp, Evangelos Theodorou, and Stefan Schaal. Re-
inforcement learning with sequences of motion primitives
for robust manipulation. IEEE Transactions on Robotics,
28(6):1360–1370, 2012.

[173] Freek Stulp, Gennaro Raiola, et al. Learning Compact Pa-
rameterized Skills with a Single Regression. In Proc. of
Humanoids, 2013.

[174] Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Taka-
fumi Kanamori, Hirotaka Hachiya, and Daisuke Okanohara.
Least-squares conditional density estimation. IEICE Trans.
on Information and Systems, 93(3):583–594, 2010.

[175] Richard S Sutton. Dyna, an integrated architecture for
learning, planning, and reacting. ACM SIGART Bulletin,
2(4):160–163, 1991.

[176] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction, volume 1. MIT press Cambridge,
1998.

[177] Richard S Sutton, David A McAllester, Satinder P Singh,
and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In NIPS, 2000.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 20



[178] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yun-
fei Bai, Danijar Hafner, Steven Bohez, and Vincent Van-
houcke. Sim-to-Real: Learning Agile Locomotion For
Quadruped Robots. In Proc. of RSS, 2018.

[179] Voot Tangkaratt, Syogo Mori, Tingting Zhao, Jun Morimoto,
and Masashi Sugiyama. Model-based policy gradients with
parameter-based exploration by least-squares conditional
density estimation. Neural Networks, 57:128–140, 2014.

[180] Emanuel Todorov and Weiwei Li. A generalized iterative lqg
method for locally-optimal feedback control of constrained
nonlinear stochastic systems. In Proc. of American Control
Conference, 2005.

[181] Nikolaos G Tsagarakis, Giorgio Metta, et al. icub: the de-
sign and realization of an open humanoid platform for cog-
nitive and neuroscience research. Advanced Robotics, 21
(10):1151–1175, 2007.

[182] Shigeyoshi Tsutsui and Ashish Ghosh. Genetic algorithms
with a robust solution searching scheme. IEEE Transac-
tions on Evolutionary Computation, 1(3):201–208, 1997.

[183] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Mori-
moto. Task-specific generalization of discrete and peri-
odic dynamic movement primitives. IEEE Transactions on
Robotics, 26(5):800–815, 2010.

[184] Aleš Ude, Bojan Nemec, Jun Morimoto, et al. Trajectory
representation by nonlinear scaling of dynamic movement
primitives. In Proc. of IROS, 2016.

[185] Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson,
and Marco Wiering. A theoretical and empirical analysis of
Expected Sarsa. In ADPRL, 2009.

[186] Vassilis Vassiliades and Chris Christodoulou. Toward non-
linear local reinforcement learning rules through neuroevo-
lution. Neural Computation, 25(11):3020–3043, 2013.

[187] Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and
Jean-Baptiste Mouret. Using centroidal Voronoi tessella-
tions to scale up the multi-dimensional archive of pheno-
typic elites algorithm. IEEE Transactions on Evolutionary
Computation, 2017.

[188] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert
Soyer, Joel Z Leibo, Remi Munos, Charles Blundell, Dhar-
shan Kumaran, and Matt Botvinick. Learning to reinforce-
ment learn. arXiv preprint arXiv:1611.05763, 2016.

[189] Youqing Wang, Donghua Zhou, and Furong Gao. Iterative
learning model predictive control for multi-phase batch pro-
cesses. Journal of Process Control, 18(6):543–557, 2008.

[190] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson,
and Nando de Feitas. Bayesian optimization in a billion
dimensions via random embeddings. JAIR, 55:361–387,
2016.

[191] Pawel Wawrzynski. Learning to control a 6-degree-of-
freedom walking robot. In EUROCON, 2007.

[192] Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using tra-
jectory data to improve bayesian optimization for reinforce-
ment learning. JMLR, 15(1):253–282, 2014.

[193] Tingfan Wu and Javier Movellan. Semi-parametric Gaus-
sian process for robot system identification. In Proc. of
IROS, 2012.

[194] Wenhao Yu, C Karen Liu, and Greg Turk. Preparing for the
unknown: Learning a universal policy with online system
identification. arXiv preprint arXiv:1702.02453, 2017.

[195] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter
Abbeel. Learning deep control policies for autonomous
aerial vehicles with mpc-guided policy search. In Proc. of
ICRA, 2016.

[196] Shaojun Zhu, Andrew Kimmel, Kostas E. Bekris, and Ab-
deslam Boularias. Fast Model Identification via Physics

Engines for Data-Efficient Policy Search. In Proc. of IJCAI,
2018.

[197] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-
hinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven vi-
sual navigation in indoor scenes using deep reinforcement
learning. In Proc. of ICRA, 2017.

Chatzilygeroudis, Vassiliades, Stulp, Calinon and Mouret arXiv | 21


	1 Introduction
	2 Problem formulation
	3 Using priors on the policy parameters/representation
	3.1 Hand-designed policies
	3.2 Policies as function approximators
	3.3 Trajectory-based Policies
	3.4 Learning the controller
	3.5 Learning the policy representation
	3.6 Initialization with demonstrations / imitation learning

	4 Learning models of the expected return
	4.1 Bayesian optimization: active learning of policy parameters
	4.2 Bayesian optimization with priors: using non-zero mean functions as a starting point for the search process

	5 Learning models of the dynamics
	5.1 Model-based Policy Search: alternating between updating the model and learning a policy in the model
	5.1.1 Model Learning
	5.1.2 Long-term predictions

	5.2 Using priors on the dynamics

	6 Other approaches
	6.1 Guided policy search
	6.2 Transferability approaches
	6.3 Simulation-to-Reality & Meta-Learning approaches

	7 Challenges and Frontiers
	7.1 Scalability
	7.2 Priors
	7.3 Generalization and robustness
	7.4 Interplay between planning, model-predictive control and policy search
	7.5 Computation time

	8 Conclusions
	9 Acknowledgements

