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ABSTRACT

In today’s aging society, the number of neurodegenerative dis-
eases such as Alzheimer’s disease (AD) increases. Reliable tools for
automatic early screening as well as monitoring of AD patients are
necessary. For that, semantic deficits have been shown to be useful
indicators. We present a way to significantly improve the method
introduced by Wankerl et al. [1]. The purely statistical approach of
n-gram language models (LMs) is enhanced by using the rwthlm
toolkit to create neural network language models (NNLMs) with
Long Short Term-Memory (LSTM) cells. The prediction is solely
based on evaluating the perplexity of transliterations of descriptions
of the Cookie Theft picture from DementiaBank’s Pitt Corpus. Each
transliteration is evaluated on LMs of both control and Alzheimer
speakers in a leave-one-speaker-out cross-validation scheme. The
resulting perplexity values reveal enough discrepancy to classify pa-
tients on just those two values with an accuracy of 85.6% at equal-
error-rate.

Index Terms— Alzheimer’s disease, automatic diagnosis, lan-
guage models, neural network language models, Long-Short Term
Memory

1. INTRODUCTION

According to the World Alzheimer Report 2016, 47 million people
live with dementia worldwide today, while this number is expected
to increase to more than 131 million by 2050 [2]. This increase can
be retraced to aging populations, but also to a huge majority of peo-
ple that so far have not received a diagnosis. Since no cure exists,
medication at best allows to alleviate or decelerate symptoms. To
choose the right treatment, diagnosing the onset of the disease plays
the pivotal role. AD accounts for around 60% of all cases of de-
mentia. Its most typical cognitive deficit is memory loss, typically
progressing to loss of cognition [3]. Yet, changes of cognitive ca-
pabilities, such as oral and written language that lie beyond what is
expected due to age, can be measured. To investigate these changes,
analyzing spontaneous speech has proven reasonable. That is why
the Cookie Theft picture (Figure 1) description task is widely used
in neurological tests as it is considered a very natural approximation
to spontaneous discourse. The constrained context allows to use lin-
guistic approaches, but also good comparability to other studies. The
Cookie Theft picture description was first included in the popular
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Fig. 1. Cookie Theft Picture [4]

Boston Diagnostic Aphasia Examination protocol [4]. Similar to in-
telligence tests it may be described on different levels of abstraction,
ranging from very simple to more abstract depending on the person’s
cognitive capabilities, e.g. identifying the woman as the children’s
mother or the risk of the boy falling of the stool. We present a method
that relies on transcribed Cookie Theft picture descriptions. We aim
to distinguish Alzheimer and control group, even though estimating
a person’s cognitive capabilities is the goal. To assess cognitive ca-
pabilities several assessment scales exist, the most common being
the mini-mental state examination (MMSE) protocol. It contains 30
questions regarding e.g. orientation, calculation or comprehension.
The median for healthy people with at least nine years of schooling
is 29. Mild dementia is associated with a score of 21-26, moder-
ate dementia with a score of 10-20, severe dementia with a score
less than 10 [5]. When conducting the examination, daily condi-
tion or discomfort might distort the patient’s performance. Mitchell
[6] reports a sensitivity of the MMSE in a clinical setting of 79.8%.
Therefore, the goal of this analysis is not to reproduce the MMSE
result, but to reach human parity in examining patients. We assume
that a good correlation of our method with MMSE scores is useful,
but not mandatory. Pre-selection of people that have a risk of devel-
oping a dementia is the main use-case of this work. Ideally, a test
could be taken on a tablet by asking a person to describe the picture.
Once the person provides a picture description, an automatic speech
recognizer transcribes the picture before the presented method could



be used to analyze the transliteration. As this procedure is quick, it
could be repeated regularly and on a large scale and thereby reduce
the costs for the health care system. Furthermore, by predicting the
disease’s progress in terms of MMSE score could help to determine
the optimal use of pharmacological treatments and to deliver effec-
tive care.

2. RELATED WORK

Weiner et al. [7] presents an approach to dementia detection that
compares feature extraction from manual and automatic transcrip-
tions created by automatic speech recognition. The study analyzes
data from 74 participants, who provided a total of 230 hours of au-
dio recordings, over 3 sessions in a period of 15 years associated to 3
groups: 80 control, 13 aging-associated cognitive decline and 5 AD
recordings. They contain biographic interviews and cognitive diag-
noses without interviewer speech. Using an in-house speech recog-
nition toolkit, the overall word-error rate is 58.2%. Nevertheless,
it is shown that the majority of linguistic features created from au-
tomatic transcriptions outperform their manual version. The results
are presented using the unweighted average recall (UAR) metric, a
Gaussian classifier and by performing a leave-one-person-out cross-
validation. The overall best result of UAR = 0.623 is achieved
by the automatic version of the within-speaker perplexity, which
are calculated using the SRILM toolkit [8]. This underlines, that
linguistic features using automatic transcriptions are robust against
transcription quality.

A more extensive approach to diagnose AD has been taken by
Fraser et al. [9]. A large variety of features on semantic, acoustic,
syntactic and information impairment were extracted from a selec-
tion of Alzheimer and control patients from DementiaBank’s Pitt
corpus (cf. sec. 4). The features were grouped and analyzed using
a factor analysis. On a total of 370 features an accuracy of 58.51%
was achieved, but using logistic regression to identify the 35 most
discriminative features yielded an accuracy of 81.92%.

Asgari et al. [10] does a linguistic analysis on unstructured con-
versational speech of mild cognitive impairment (MCI) and controls.
Data was collected during the course of a 6-week randomized clin-
ical trial of daily online video chats on preselected topics. The au-
thor uses data from 14 MCI and 27 control participants. The data
is automatically transcribed using an ASR system. The word stems
of the resulting texts are grouped using the Berkeley aligner into 5
top-level categories to cluster topic-related words or of 68 subcate-
gories per top-level category; about 40% of words were not classi-
fiable. The occurrences of words per category are counted and nor-
malized by the total number of words to build a 68-dimensional vec-
tor. This method is referred to as Linguistic Inquiry and Word Count.
For classification, Support Vector Machine and Random Forests are
used. Due to the imbalance between MCI and control participants a
5-fold cross-validation is repeated until the accuracy converged. In
a variety of experiments, the overall best classification accuracy is
84%.

Klumpp et al. [11] reports results on the same selection of
Cookie Theft picture description transliterations from Dementia-
Bank’s Pitt Corpus as presented in this work. The transliterations
are stemmed to form one bag-of-words vectors of all occuring 546
words per transliteration. The bag-of words vectors are input to a
three-layer neural network that outputs a probability that a translit-
eration belongs to the Alzheimer class. The experimental scheme is
a leave-one-speaker cross-validation, identical to the protocol of this
work. The overall accuracy is 84.4%, which shows that even though
the word order is neglected, the global vocabulary usage is suitable

to discriminate between Alzheimer and control patients.

3. THEORY AND BACKGROUND

3.1. N-gram language models

N-gram LMs attempt to reflect the frequency with which each word
or word sequence occurs in natural text. The probability for a se-
quence s is estimated by the product of the probabilities of the words
that compose the sequence. This is simplified by only considering a
history of n− 1 preceding words:

P (s) =

l∏
i=1

P (wi|wi−1
1 ) ≈

l∏
i=1

P (wi|wi−1
i−n+1) (1)

where wi denotes word i, wj
i denotes words wi, ..., wj and n is the

number of preceding words taken into account. When setting n to
one, two or three models are referred to as unigram, bigram, trigram
models, respectively. One of the key issues in n-gram language mod-
eling is the sparsity of training data. Considering for example, a text
corpus with a vocabulary size of 100000 and trigram word sequences
gives 100, 0003 − 1 = 1015 − 1 potential combinations. The rel-
ative frequency as an estimate of the probability for a sequence of
words s that does not occur in the training data results in assigning
P (s) = 0, where the probability clearly should be larger than zero.
For that, smoothing, meaning a redistribution of the probability mass
alleviates that issue [12].

3.2. Neural network language models

As for n-grams, the goal of building an NNLM is to learn the joint
probability of sequences of words. However, NNLMs are designed
to overcome the sparse-data problem by using a different represen-
tation of words: Words are encoded by vectors, which will learn to
encode words with similar meaning close to each other in a continu-
ous vector space, so called word embeddings. This concept was first
introduced by Mikolov et al. [13]. By relating words to each other
and by that also sentences, a generalization forms that addresses the
sparse data problem.

The general process boils down to the following steps: Each
word in the vocabulary V is one-hot encoded by a |V |-dimensional
vector. These vectors are input to a projection layer, which concate-
nates the words and maps them to their vector space representation.
The projection layer is followed by variable number of hidden lay-
ers, which is followed by an output layer of vocabulary size |V | tar-
get probabilities. The output probabilities P (wi|hi) for each word
wi given history hi are computed by applying the softmax function.
In this case, the probability mass is distributed over only the target
words, while unknown words are assigned zero unless one intro-
duces a token for unknown words [14]. Finally, the network’s pa-
rameters are adapted using gradient-based optimization algorithms.

When NNLMs are built, the following has to be considered: Us-
ing feed-forward layers will, according to the chain rule, result in
predicting words of all predecessors of a sequence without taking
the respective order into account [15]. On the other hand recurrent
layers are very convenient for processing sequential data. LSTM
layers are a special kind of recurrent layers, that expand the con-
cept of recurrence by introducing so called gates, to optionally let
information through and remember long-term dependencies. The
LSTM cell’s design, e.g. hidden state and forget gate, are suited to
learn when to remember and when to remove information [16]. This
allows variable context lengths, which was shown to outperform n-
grams, feed-forward and recurrent neural networks [15].



3.3. Language model evaluation – perplexity

The performance of an LM in predicting a test sample, meaning a se-
quence of words S = w1, ..., wN , is often measured by calculating
its perplexity:

PPL(S) = P (S)−
1
N (2)

where P (S) denotes the probability assigned to sequence S. The
perplexity is inversely related to the average probability a model as-
signs to a sequence. Note, that the perplexity is normalized by the
number of words N . When evaluating an LM, a well-fitting LM
tends to assign high probabilities to the test sequence S. There-
fore, lower perplexity indicates better performance through better
predictability of the test sequence [12].

4. DATA

The DementiaBank’s Pitt Corpus [17] contains audio recordings and
the corresponding transcriptions of English Cookie Theft picture de-
scriptions. From a total of 292 participants 194 suffered from some
sort of dementia and 98 healthy speakers serve as control group. Pre-
conditions were a minimum age of 44 years, an initial MMSE score
of 10, at least 7 years of education and no history of disorders of the
nervous system. The examinations were conducted on a yearly basis
up to seven times, each time recording a variety of mental exam-
inations such as MMSE. Unfortunately, there are recordings with-
out a corresponding MMSE score. The participants diagnosed with
dementia are mainly of Alzheimer’s type or probable Alzheimer’s.
However, there are a few people with another type of dementia who
were excluded from this study. Thus, 168 patients, who were di-
agnosed with AD or probable AD, contributing 255 transcriptions
remain. This group consists of 55 males and 113 females. In the
control group, 98 speakers provided 244 transcriptions, consisting of
31 males and 67 females. In the transcriptions, fillers, such as uhm,
uhh, repetitions, paraphrases, grammatical mistakes and requests ut-
tered by the participant were kept to obtain a more accurate copy of
the actual recording. Annotations which are not directly linked to
the utterances of the test subject (e.g. clears throat), are removed.

5. METHODS

To create LMs the rwthlm toolkit is used [18]. The rwthlm toolkit is
an open source C++ library that implements the concept of NNLM,
using especially LSTMs. The toolkit offers all features necessary to
train an NNLM, most importantly a customizable network architec-
ture. Supported layer types are linear, feed-forward, standard recur-
rent and LSTMs. By definition the first layer must be a linear layer
with identity activation function. The main focus of this work was
on using LSTM layers, since recurrence allows for flexible context
lengths. Results were assessed using a linear and an LSTM layer of
the same size N . Network optimization highly depends on a good
initial learning rate. Conceptually, faster convergence is achieved by
a high initial learning rate, but too high values cause the perplexity
to fluctuate. This behavior is handled by the toolkit by decreasing
the learning rate as soon as a full epoch leads to a degradation in
perplexity. When creating LMs, the toolkit expects a vocabulary list,
a file containing the training text data, a file containing the devel-
opment text data and an initial learning rate. The learning rate was
tuned individually to the used architecture, so that the development
perplexity after the first epoch is minimal. The development set was
created by randomly selecting ten speakers of the respective group,
who were then excluded from the training data. Note, that this may

lead to different numbers of transliterations used as development set,
as not every speaker provided the same number of picture descrip-
tions. Additionally, instead of applying some early stopping crite-
rion to either learning rate or development perplexity per epoch, the
maximal number of epochs is set to 20.

The presented experimental setup was introduced in [1], for
which the selection of 168 Alzheimer’s and 98 control participants,
i.e. 255 and 244 transliterations of the Pitt corpus is used. For
both groups, all transliterations per group are used to create an
Alzheimer’s LMMAlzheimer and a control LMMControl by us-
ing the rwthlm toolkit. These are supposed to represent the typical
Alzheimer’s and healthy speech respectively. Then, a leave-one-
speaker-out cross-validation is performed, which means that for
all speakers, an LM M−s is created, using all transliterations of
that group but those of speaker s and the speakers excluded for the
development set. The cross-validation is conducted per speaker,
as speakers that provided multiple recordings are expected to use
similar phrases that are not always representative for the whole
group and would distort the results. The transliterations provided
by speaker s are then used to evaluate a test set perplexity, also by
using the rwthlm toolkit. A speaker s is always tested on M−s,
giving a perplexity pown. Additionally, the speaker is tested on the
respective other LM, giving pother , usingMAlzheimer , if belonging
to the control group, orMControl, if belonging to the Alzheimer’s
group. Naturally, pown is expected to be lower than pother , as the
own group’s LM is supposed to represent the test set better than
the other group’s LM. Finally, the difference between the perplexity
evaluated on an Alzheimer’s LM and the control’s LM is calculated
for each speaker, giving following distinction for the groups:

pdiff =

{
pown − pother if s ∈ Alzheimer′s group
pother − pown if s ∈ Control′s group

(3)

In order to actually classify the transliterations, the perplexity
difference pdiff is considered. A binary decision is made by set-
ting a threshold, such that both groups have equal error rate (EER).
The results are assessed at EER, as this gives a robust estimate of a
classifiers performance. Note, that to classify an unknown sample,
pdiff would be obtained by subtracting the perplexity evaluated on
MControl from the perplexity provided byMAlzheimer .

6. RESULTS

The experimental setup, as described in sec. 5, can be executed for
different neural network architectures. We are aware that comparing
the accuracy of different architectures means implicitly optimizing
on the test set. This is done for a lack of enough data. Different
layer sizes N were evaluated. The overall best result was achieved
using a linear and an LSTM layer of size N = 150, resulting in
72 wrongly classified transliterations at EER. This means 85.6% ac-
curacy regarding a total of 499 recordings. The 36 wrongly classi-
fied transliterations per group in both cases come from 27 different
speakers. In the same experimental setup, when creating trigram
LMs using SRILM the overall accuracy is 77.1% with 114 wrongly
classified transliterations [1]. This means that the result could be
improved by 8.5% absolute corresponding to 42 wrongly classified
transliterations less.

Figure 2 shows the histogram of MMSE scores for our selec-
tion of speakers from the Pitt corpus, for all speakers from whom an
MMSE score is available. These are 234 recordings from 166 AD



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
MMSE score

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

co
un

t

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Control Count
Alzheimer Count
Overall Accuracy [%]

Fig. 2. Histogram of all MMSE scores in the Pitt corpus and overall
accuracies per MMSE score.

Table 1. Correlations between MMSE scores and perplexity differ-
ence pdiff .

r ρ
Alzheimer 0.433 0.547
Control 0.112 0.109
All 0.656 0.771

and 181 recordings from 94 healthy speakers. The dashed black line
indicates the overall accuracy per MMSE score.

Table 1 shows Pearson’s and Spearman’s correlation between
MMSE scores and the perplexity difference values pdiff . The cor-
relation values for the Alzheimer group indicate that pdiff can be
used to predict a person’s MMSE score. The control group’s corre-
lation is low. Considering that the MMSE scores only range between
24 and 30, but the perplexity difference values still vary to a larger
extend, a low correlation value is to be expected. Moreover the cor-
relation of all MMSE values and all respective perplexity differences
indicates the potential usage to predict a person’s MMSE score with-
out knowing a diagnosis.

The performance of a classifier can also be evaluated by an-
alyzing its ROC curve. In order to simulate a screening scenario
we compare our result’s ROC curve obtained from all speakers with
the ROC curve when only evaluating transliterations with an MMSE
score from 21 to 30. This means speakers are either healthy or di-
agnosed with a mild dementia. 78 transliterations from 59 speakers
remain in the AD group. Figure 3 shows the two ROC curves. At
an overall accuracy of 85.6% of all transliteration, the false positive
rate (FPR) is 15%, the true positive rate (TPR) is at 86%, meaning
that while only classifying 15% of control speakers wrongly, 86% of
Alzheimer speakers are classified correctly. In the screening scenario
an overall accuracy of 79.5% at an equal-error-percentage per group
and 66 wrongly classified transliterations, 20% FPR correspond to
21% TPR. At 90% TPR, the FPR on all transliterations is still only
25%, whilst on the subset from 21 to 30 MMSE scores the FPR is
35%. The AUC is 0.92 compared to 0.87 in the screening scenario.
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Fig. 3. Comparison of accuracies and ROC curves of the results from
all speakers and speakers with an MMSE score from 21 to 30.

7. DISCUSSION

Just by comparing perplexity values, the database can be separated
with an accuracy of 85.6% on a total of 499 transliterations. This
approach exploits the assumption that Alzheimer patients describe
the picture in an unforeseen way, which leads to more unpredictable
language structures resulting in higher perplexity values. Figure 2 il-
lustrates that clear cases, e.g. those with low and high MMSE scores,
have a high recognition rate. The borderline cases at the transition
from dementia to control group having an MMSE score between 24
and 26 are less obvious and therefore have a lower recognition rate.
Yet, evaluating this approach on only healthy and mildly demented
subjects shows still high enough accuracy to be used as a screening
tool. This represents an improvement of the method presented by
Wankerl et al. [1] on a scale, that it may be applicable in a realistic
screening scenario. In addition, correlating all MMSE scores with
the respective perplexity difference yields a Pearson’s correlation of
r = 0.656 and Spearman’s correlation of ρ = 0.771. This shows,
that this method can also be used to predict a patient’s MMSE score.

Generally, this method is not supposed to replace a physician’s
examination, but to pre-select people that should undergo an exam-
ination. If this approach had to be fully automated, a speech recog-
nizer would be prepended. So far, we are implicitly assuming 100%
recognition rate, as we work on hand-transcribed data. As shown in
[7], linguistic features may even be more robust on speech recog-
nition output. Nevertheless it has to be investigated, how speech
recognition errors influence the presented method’s performance.
Ultimately, to consecutively assess people’s cognitive capabilities,
this method could be extended by more pictures to avoid learning
effects. A clear advantage of this purely statistical approach of us-
ing LMs for automatic dementia diagnosis is that it is not relying on
any further linguistic or medical annotations. Therefore, it is likely,
that this approach is not restricted to the English language, thus may
work in another language as well.
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