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ABSTRACT

Despite the recent success of deep neural network-based ap-
proaches in sound source localization, these approaches suffer
the limitations that the required annotation process is costly,
and the mismatch between the training and test conditions
undermines the performance. This paper addresses the ques-
tion of how models trained with simulation can be exploited
for multiple sound source localization in real scenarios by
domain adaptation. In particular, two domain adaptation
methods are investigated: weak supervision and domain-
adversarial training. Our experiments show that the weak
supervision with the knowledge of the number of sources
can significantly improve the performance of an unadapted
model. However, the domain-adversarial training does not
yield significant improvement for this particular problem.

Index Terms— Sound source localization, DOA estima-
tion, domain adaptation, weakly-supervised learning.

1. INTRODUCTION

Recent studies have shown that deep neural networks (DNNs)
have become the state-of-the-art for sound source localization
(SSL) and directions of arrival (DOA) estimation [1–8]. Al-
though these DNN-based approaches outperform the classical
signal processing-based techniques [9–11] under certain con-
ditions, they suffer two major drawbacks.

First, these approaches require a large amount of device-
specific training data and obtaining real data with annotation
is arduous. Since signals captured by microphone arrays with
different geometries are radically different, individual data
collection is required for each specific type of microphone
array. In addition to recording data, the annotation of the
ground truth sound source locations in real data is also par-
ticularly difficult. The costly data recording and annotation
process hinders the application of DNN-based SSL systems.

Another drawback of the DNN-based approaches is their
sensitivity to the mismatch between the training and test
conditions. The acoustic environments vary considerably
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in terms of background noise, reverberation, signal-to-noise
ratio (SNR) as well as distribution of source locations. In
case of using simulated training data, there is even larger
mismatch between the virtual and real environments, such as
difference in sensor properties, device physical bodies, etc.

This paper seeks to solve the aforementioned problems
by adapting the models developed on simulated data for real
scenarios. By using simulation, we can easily produce suffi-
cient training data for any device. At the same time, we can
acquire a large amount of unlabelled or weakly labelled real
data, which can be exploited for adaptation. By applying un-
supervised or weakly supervised adaptation, we can minimize
the efforts for data collection.

This paper focuses on two domain adaptation techniques.
First, we propose weak supervision by output regularization.
Specifically, we examine the weak supervision with known
number of sources. The number of sources contains crucial
information for SSL, and is much easier to annotate compared
to the exact location of each source. Based on the available
weak labels, we can significantly reduce the dimension of the
desired output space, and the output regularization aims to
bring the network output closer to the reduced space. Second,
we study the use of domain-adversarial training [12]. This
unsupervised adaptation method seeks to train the network to
extract domain-invariant features. This is achieved by a do-
main classifier that distinguishes the domains of the features,
whereas the first part of the network attempts to extract fea-
tures that are indistinguishable by the domain classifier.

2. RELATION TO PRIOR WORK

Previous studies have investigated the unsupervised adap-
tation of neural networks for SSL with entropy minimiza-
tion [13, 14]. These methods attempt to modify part of the
network parameters so that the entropy of the network output,
namely the predicted posterior probability, is minimized.

The limitation of the previous studies is that, entropy
minimization can only be applied to classification problems,
where the network output is interpreted as a probability dis-
tribution. Two types of output coding have been proposed
for multiple sound source localization: joint posterior prob-



ability [15] and likelihood-based coding (or spatial spec-
trum) [7, 8]. The latter type is more advantageous as it is not
limited to a predefined maximum number of sources. How-
ever, this type of output cannot be considered a probability
distribution. Therefore, entropy minimization is not applica-
ble to these multiple sound source localization approaches.

In this paper, we focus on the adaptation of multiple
sound source localization neural networks. Specifically, our
approach differs from previous studies in: (1) the neural net-
work for adaptation does not predict posterior probability; (2)
in addition to unsupervised adaptation, we also investigate
weakly supervised adaptation to produce more stable results;
(3) we examine the regularization not only on the output, but
also on the features.

3. PROPOSED DOMAIN ADAPTATION APPROACH

We consider the problem of multiple sound source localiza-
tion as learning the mapping from the audio segments X to
the sound locations Y , with source domain data S and target
domain data T . In the experiments, X are 170ms long au-
dio segments (8192 samples with 48kHz sampling rate). We
compute the short-time Fourier transforms (STFT) of these
segments with frame size of 43ms (2048 samples) and 50%
overlap, and use both their real and imaginary parts as the net-
work input. The sound location space Y is the set of all finite
subsets of the horizontal directions Φ = [−π, π). The source
domain data are samples of audio segments with location la-
bels: S = {(xi, yi)}ni=1 ⊂ X×Y , and the target domain data
are samples with weak labels: T = {(xi, zi)}n+n

′

i=n+1 ⊂ X×Z.
The weak labels Z provide inexact but related information
about the source locations.

We propose a deep convolutional network, the main struc-
ture of which is adopted from [16], using only a single-task
output (Fig. 1). Instead of directly predicting labels in Y , the
network outputs the likelihood values of each sampled direc-
tion. The output coding, which defines the mapping between
the labels Y and the output space O, is explained in details
in Section 3.1. The neural network consists of a feature ex-
tractor Gf (·; θf ), a DOA estimator Gy(·; θy), and a domain
classifier Gd(·; θd).

During adaptation, depending on the part of the network,
the following objective function is either minimized or maxi-
mized:

E(θf , θy, θd) = E
x,y∈S

Ly (Fy(x), y) + µ E
x,z∈T

Lz (Fy(x), z)

− λ
(

E
x∈S
Ld (Fd(x), 0) + E

x∈T
Ld (Fd(x), 1)

)
,

(1)

where Fy(x) = Gy(Gf (x; θf ); θy) is the output of the DOA
estimator, and Fd(x) = Gd(Gf (x; θf ); θd) is the output of
the domain classifier. The loss terms (namely the prediction
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Fig. 1: The proposed network architecture consists of the fea-
ture extractor Gf (green), the DOA estimator Gy (blue), and
the domain classifier Gd (red). GRL is the gradient reversal
layer [12]. Batch normalization layers and rectified linear unit
(ReLU) after each hidden layer are omitted in this graph.

loss Ly , the weak supervision loss Lz , the domain loss Ld),
and their optimization targets are introduced in the following
sections.

3.1. Prediction Loss and Output Coding

We choose prediction loss to be the mean squared error
(MSE) loss between the network output and the likelihood-
based coding o(y) [7]:

Ly(Fy(x), y) = ‖Fy(x)− o(y)‖22 . (2)

The output is encoded as the likelihood of a source existence
on the 360 sampled directions {φi}360i=1 ⊂ Φ (Fig. 2):

o(y)i =

max
φ′∈y

{
e−d(φi,φ

′)2/σ2
}

if |y| > 0

0 otherwise
, (3)

where |y| is the number of sources, d(·, ·) is the angular dis-
tance, and σ is parameter for the beam width. We map the
network output to the prediction in Y by finding the peaks
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Fig. 2: Example of the output coding for multiple sources
according to Eq. 3. It resembles a spatial spectrum: the peaks
indicate the directions of the sources.

above a given threshold ξ:

ŷ(o) =

{
φi : oi > ξ and oi = max

d(φj ,φi)<σn

oj

}
, (4)

with σn being the neighborhood distance.

3.2. Weak Supervision by Output Regularization

We apply weak supervision with the target domain data by
fine-tuning the network output to be coherent with the avail-
able information. We know that, the encoded outputs lie in a
space o(Y ) = {o(y) : y ∈ Y }, which is much more restricted
than the network output space O = [0, 1]

360. Moreover, the
weak labels can further reduce the dimension of the space
by filtering out incoherent predictions. Therefore, we design
the weak supervision as constraining the network output to be
closer to the reduced output space:

Lz(Fy(x), z) = min
y∈r(z)

‖Fy(x)− o(y)‖22 , (5)

where r(z) is the set of predictions coherent with the weak
label z. We formulate the candidate selection as:

r(z) = {y ∈ Y : |y| = z} . (6)

The weak supervision with known number of sources
helps with the adaptation in several ways. When the number
of sources is zero, the network is supervised to output all
zero, thus reducing the false positives caused by unseen noise
(Fig. 3a). When the number of sources is one or more, the
network is supervised to give more certain prediction on the
most prominent peaks, thus increasing the recall (Fig. 3c).
At the same time, the other peaks that are caused by unseen
conditions are suppressed (Fig 3b,c). However, the weak
supervision does not always yield correct results, mostly due
to the inaccurate initial output (Fig 3d).

3.3. Domain-Adversarial Training

In addition to weak supervision, we apply regularization on
the feature space by domain-adversarial training [12]. We in-
troduce the domain loss as the binomial cross entropy loss:

Ld(Fd(x), d) = −d logFd(x)−(1−d) log(1−Fd(x)). (7)

Domain-adversarial training tries to make the feature extrac-
tor and the DOA estimator minimize the objective function
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Fig. 3: Examples of output regularization with known number
of sources. The desired output is the closest output in the
reduced space to the actual network output. The ground truth
locations are presented but not used for weak supervision.

(Eq. 1), while the domain classifier maximize the that func-
tion. Specifically, it seeks to find the saddle point such that:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d), (8)

θ̂d = arg max
θd

E(θ̂f , θ̂y, θd). (9)

On such saddle point, the network yields low prediction and
weak supervision loss. At the same time, the feature extractor
attempts to fool the domain classifier. In this way, the network
extracts domain-invariant features.

4. EXPERIMENTS

We evaluate the proposed method on the adaptation of
simulation-based SSL neural networks to real robot data.

4.1. Data

The target domain data are the publicly available real robot
recordings from [7]. They are recorded by the robot Pepper,
which has four microphone on its head. The data include
overlapping speech sources (maximum two sources) cor-
rupted by the robot ego noise, and the frame-level source
location ground truth obtained with the robot camera and
markers. We use the loudspeaker training data (506k sam-
ples, 16 hours) for adaptation, and the weak label (number
of sources) are derived from the location ground truth. For
evaluation, we use both the loudspeaker and human talker test
data.

We generate the source domain data by simulation. The
microphone positions are set according to the real microphone
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Fig. 4: Localization performance on different simulation conditions and different test sets (indicated by the titles). The DOA
estimations are considered correct if their error is less than 5°. The curves are generated by varying the threshold ξ in Eq. 4.

array on the robot, and the source locations are randomly cho-
sen. We generate the impulse responses with the RIR gener-
ator [17] and convolve them with clean speech data from the
AMI corpus [18]. We simulate two sets of source domain
data with different room conditions: anechoic and reverber-
ant (RT60 up to 800ms). Frames of single sources are mixed,
so that we generate overlapping sources with diverse location
combinations. Finally, the sources are added with the real
background noise (robot fan noise) recorded by the robot. We
control the SNR (with respect to the background noise) be-
tween 0 and 20dB. For each room condition, we generate 1
million samples.

4.2. Network Training

We pre-train the network with the source domain data, ac-
cording to the two-stage training scheme [16]. The network is
trained with supervision on the intermediate time-frequency
local prediction in four epochs, before it is supervised on the
final output in ten epochs. Then, the network is adapted for
ten epochs with both the source and target domain data. We
choose µ = 1, and λ varying from 0 to 10−3 during the train-
ing:

λ(p) =

(
2

1 + exp(−10p)
− 1

)
× 10−3, (10)

where p ∈ [0, 1] is the adaptation progress. During both the
pre-training and adaptation, we use Adam optimizer [19], and
mini-batches of size 100.

4.3. Methods

We include the following methods for comparison.

TAR Model trained with fully labelled target domain data.

SRC Unadapted model trained with simulation data.

WKS Adapted with weak supervision (λ = 0).

DOM Adapted with domain-adversarial training (µ = 0).

BOTH Adapted with both weak supervision and domain-
adversarial training.

4.4. Results

We evaluate the localization performance in term of precision
and recall, using the same evaluation criteria in [7]. The DOA
estimations are considered correct if their error is less than
5°. We generate the precision-recall plots for each individual
source domains and different test sets (Fig. 4).

The results show that the weak supervision increases the
performance significantly in all the conditions. The abso-
lute precision improvement is roughly 10% while keeping the
same recall. This confirms that the number of sources indeed
provide useful information for the weakly supervised adapta-
tion.

The adaptation with domain-adversarial training only
shows insignificant improvement on the loudspeaker test set
(Fig 4a,c). Moreover, combining domain-adversarial train-
ing with weak supervision does not improve the result with
respect to using only weak supervision. We have explored
different values of λ, different architecture of the domain
classifier, and different layers of features extractor, however
further improvements were not obtained. In practice, intro-
ducing domain-invariance suffers the risk of reducing the
discriminative power of the features, because the feature ex-
tractor may produce irrelevant features in order to fool the
domain classifier. Furthermore, finding the balance between
domain-invariance and discriminative power is difficult.

5. CONCLUSION

In conclusion, we have studied two methods and their com-
bination for domain adaptation of multiple sound source lo-
calization DNNs: weak supervision and domain-adversarial
training. The weak supervision regularizes the network out-
put, making it closer to the possible output space based
on the inexact labels, such as the number of sources. The
domain-adversarial training aims to find domain-invariant
features. The experiments have shown significant improve-
ment of models adapted with weak supervision, however, the
combination of domain-adversarial training does not further
improve the performance according to our experiments.
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