
1

A Non-Euclidean Gradient Descent Framework for
Non-Convex Matrix Factorization

Ya-Ping Hsieh, Yu-Chun Kao, Rabeeh Karimi Mahabadi, Alp Yurtsever, Anastasios Kyrillidis, Member, IEEE,
and Volkan Cevher, Senior Member, IEEE

Abstract—We study convex optimization problems that feature
low-rank matrix solutions. In such scenarios, non-convex methods
offer significant advantages over convex methods due to their
lower space complexity, as well as practical faster convergence.
Under mild assumptions, these methods feature global conver-
gence guarantees.

In this paper, we extend the results on this matter by following
a different path. We derive a non-Euclidean optimization frame-
work in the non-convex setting that takes nonlinear gradient steps
on the factors. Our framework enables the possibility to further
exploit the underlying problem structures, such as sparsity or
low-rankness on the factorized domain, or better dimensional
dependence of the smoothness parameters of the objectives. We
prove that the non-Euclidean methods enjoy the same rigorous
guarantees as their Euclidean counterparts, under appropriate
assumptions. Numerical evidence with Fourier Ptychography and
FastText applications, using real data, shows that our approach
can enhance solution quality, as well as convergence speed over
the standard non-convex approaches.

Index Terms—Non-convex optimization, low-rank approxima-
tion, non-Euclidean gradient descent

I. INTRODUCTION

WE study convex minimization problems with respect to
a matrix variable:

min
X∈X⊆Rp×q

f(X), (I.1)

where X is either the positive semi-definite (PSD) cone (in
which case p = q) or the whole space. Let X? be the optimal
solution of (I.1). We are interested in the scenario where
r? , rank(X?) � min{p, q}. Such a formulation spans a
wide spectrum of applications in machine learning and signal
processing [1]–[16].

Given low-rankness at the optimum, recent research has
suggested the following recipe for solving (I.1): Fix a number
r � p, q as close as possible to r?, and factorize X = UV > (or
X = UU> in the PSD case), where U ∈ Rp×r and V ∈ Rq×r.
Then, recast (I.1) as:

min
U,V

g(U, V ) := f(UV >). (I.2)

Since the program (I.2) is non-convex, it is impossible to prove
global convergence without additional assumptions. To this
end, the typical approach is to assume that the initialization
is close to the global optimum in some sense, and prove that
simple gradient descent for U and V provably converges to
the global minimum.

In theory, such an approach relies on unverifiable initializa-
tion conditions and hence is not fully satisfactory. Nonetheless,

it has yielded wide success in practice [5], [13], [17], [18].
In particular, the assumption of good initialization can often
be met using heuristics, for instance multiple trials of random
initialization or running a few iterations of gradient descent on
the original matrix variable space; see, for instance, Section
VI.

Following the recipe (I.2), we ask whether we can further
exploit the problem structures in the non-convex setting. For
instance, in phase retrieval, the decision variable X ∈ Rd2×d2

of the convex problem (I.1) is obtained by lifting a vectorized
image U ∈ Rd2×1. However, the original image, whose natural
domain is Rd×d, often exhibits further low-rankness, a useful
structure not revealed in the vectorized form. Is there an
algorithm that directly runs in Rd×d and features low-rank
updates, similar to the Frank-Wolfe method [19] in the convex
case, while retaining the guarantees enjoyed within the non-
convex research vein?

As another motivating example, recent studies in computer
science [20] and machine learning [21]–[23] have shown that
the log-softmax function [24], with important applications in
deep learning and natural language processing, converges much
faster when a nonlinear operation is applied to each gradient
step. Is there an analogous result in the non-convex setting,
again retaining the favorable global convergence?

In this paper, we show that the above-posed questions can be
addressed by the non-Euclidean optimization framework in a
unified fashion. To promote sparse (or low-rank) iterates, such
as for the phase retrieval application, we show that gradient
descent on U in the nuclear norm enjoys rank-1 updates in the
natural image domain Rd×d. For optimizing the log-softmax
function, we employ gradient descent in the spectral norm,
and show that the advantages observed in [20]–[23] carry over
to the non-convex setting.

Most importantly, we prove that, under the similar as-
sumption of a good initialization, our non-Euclidean methods
provably converge to the global optimum.

Akin to previous work, we empirically verify the initial-
ization assumption, through extensive experiments on the
real data. Numerical evidence with Fourier Ptychography
and FastText applications shows that our approach can
significantly enhance solution quality as well as speed over
the standard non-convex approaches.
Related work: For solving (I.1) with PSD constraint, [25]
and [26] popularized the factorization idea leading to the
formulation (I.2). In recent years, there has been a large body of
literature [13], [27]–[32] studying the convergence guarantees
under factorization, while most of them only apply to the
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quadratic loss. For generic convex loss, [17] focused on (I.1)
with PSD constraint. The analysis was further extended in
[18] to unconstrained problems. Another recent work [33]
studied the convergence from both statistical and algorithmic
perspectives, with distinct assumptions.

To the best of our knowledge, we are the first to introduce and
analyze non-Euclidean gradient steps for solving the factorized
formulation (I.2). All of the aforementioned works employ
Euclidean gradient descent steps for variables U, V in (I.2).

On a related note, the work [21] studied the spectral gradient
method for optimizing log-softmax functions in the deep
learning realm, which reduces to matrix factorization when
a two-layered neural network is considered. However, no
convergence guarantee to the global optimum was provided.

For completeness, we further mention another line of re-
search which focuses on the Riemannian geometry of matrices;
see [34] for a comprehensive survey and [35], [36] for recent
developments. Despite also having a non-Euclidean gradient
feature, these works are distinct from our work as they do not
utilize the factorization in (I.2). The only exception we know
of is [37], where the convergence guarantees for Riemannian
first-order methods are proved for (I.1) with linear objectives
under PSD + affine constraints. It is interesting to see if the
techniques in [37] can be used to analyze general f under our
setting, or whether our non-Euclidean algorithms succeed for
the tasks in [37].

II. BACKGROUND

A. Notations

Given a matrix X , we use σi(X) to denote its i-th largest
singular value. We use ‖ · ‖∗, ‖ · ‖S∞ and ‖ · ‖F to denote
nuclear norm, spectral norm and Frobenius norm, respectively.
The Schatten-p norm of a matrix X , denoted by ||X||Sp

, is
defined as (

∑
i σ

p
i (X))

1/p.
We define a parameter τ(X) ≡ σmax(X)

σmin(X) . Xr denotes the best
rank-r approximation of X , and therefore σi(Xr) = σi(X)
for 1 ≤ i ≤ r. For a given matrix U , we use QU to denote
the matrix constituted of an orthonormal basis of the column
space of U . Note that QUQTU is the projection operator of
the column space of U and thus QUQTUU = U . Given two
matrices X,Y ∈ Rp×q, the Hilbert-Schmidt inner product is
denoted by 〈X,Y 〉 = Tr(X>Y ).

For two real numbers a and b, the minimum of them is
denoted by a ∧ b.

B. Matrix operators

For any matrix X , let X = PΛR> be its singular value
decomposition (SVD). We define: leftmargin=0.5cm
• The nuclear #-operator: Let Pmax and Rmax be the left and

right singular vectors corresponding to the largest singular
value of X . Then, the nuclear #-operator corresponds to

[X]#∗ , σ1(X)PmaxR
>
max. (II.1)

That is, [X]#∗ is the best rank-1 approximation of X .

• The spectral #-operator: Let rank(X) = r. Then, the
spectral #-operator corresponds to

[X]#∞ ,

(∑
i

σi(X)

)
· PIrR> = ‖X‖∗ · PIrR>,

(II.2)
where Ir ∈ Rp×q has 1’s on the first r diagonal entries,
and 0 otherwise. Notice that [X]#∞ has the same rank as
X , but with singular values all equal to ‖X‖∗.

To motivate the above definition and notation, we remark
that (II.1) and (II.2) are instances of the so-called duality map
in Banach spaces [38]. Let (X ?, ‖ · ‖?) be a general Banach
space1, (X , ‖ ·‖) be its dual space, and let 〈·, ·〉 : X ?×X → R
denote the dual pair [39]. The (possibly set-valued) duality
map # : X ? → X maps a point X ∈ X ? to an element of the
dual space X# ∈ X satisfying the following relation:〈

X,X#
〉

= ‖X#‖2 = (‖X‖?)2 . (II.3)

One can easily verify that [·]#∗ is the duality map when (X , ‖ ·
‖) = (Rp×q, ‖ · ‖∗); that is, the following relation holds for
any X ∈ Rp×q:〈

X, [X]#∗
〉

= ‖[X]#∗ ‖2∗ = ‖X‖2S∞ , (II.4)

in which case the dual pair becomes the Hilbert-Schmidt inner
product. Similarly, [·]#∞ is the duality map when (X , ‖ · ‖) =
(Rp×q, ‖ · ‖∞).

We quote some properties of the nuclear and spectral #-
operators.

Properties 1. For any differentiable function f , it holds

(∀X,Y ) ‖∇f(Y )−∇f(X)‖∗ ≤ L‖Y −X‖S∞ (II.5)

if and only if

(∀X,Y ) f(Y ) ≤ f(X) + 〈∇f(X), Y −X〉+
L

2
‖Y −X‖2S∞ .

(II.6)

Moreover,

X − 1

L
[∇f(X)]#∞ ∈ arg min

Y
f(X) + 〈∇f(X), Y −X〉

+
L

2
‖Y −X‖2S∞ . (II.7)

Also, for any differentiable function f , it holds

(∀X,Y ) ‖∇f(Y )−∇f(X)‖S∞ ≤ L‖Y −X‖∗ (II.8)

if and only if

(∀X,Y ) f(Y ) ≤ f(X) + 〈∇f(X), Y −X〉+
L

2
‖Y −X‖2∗.

(II.9)

Moreover,

X − 1

L
[∇f(X)]#∗ ∈ arg min

Y
f(X) + 〈∇f(X), Y −X〉

+
L

2
‖Y −X‖2∗. (II.10)

1The reason why we choose X ?, instead of the normal X , to denote the
underlying space is due to the fact that our algorithms use #-operators on
the gradients, which naturally live in the dual space.
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One can see conditions (II.5), (II.6), (II.8), and (II.9) as
similar to the classic smoothness definition, but in different
norms. The proof of (II.5) ≡ (II.6) and (II.8) ≡ (II.9) can be
found in [20], [40]. A simple derivation of (II.7) can be found
in [21]; (II.10) is proved using similar techniques.

C. Reivew of Euclidean Methods

Recall the objective in (I.1) and the factorized form in (I.2).
We first focus on the PSD-constrained case

min
U∈Rp×r

g(U) , min
U∈Rp×r

f(UU>). (II.11)

The simplest algorithm for solving (II.11) is to do gradient
descent on U , which corresponds to the iterates

Ui+1 = Ui − ηi∇g(Ui) = Ui − ηi∇f(UiU
>
i ) · Ui. (II.12)

We adopt the same settings as [17], [18], who analyzed
(II.12) applied to (II.11). The high-level message of these work
is that, as alluded to in the introduction, a good initilization
is sufficient to ensure convergence to the global optimum; cf.,
Theorem 4.1 of [17] and Theorem 4.4 of [18].

III. NON-CONVEX NUCLEAR GRADIENT METHODS FOR
PSD-CONSTRAINED PROBLEMS

We consider the Nuclear Gradient Descent for solving (II.11).
Before giving convergence guarantees, let us first motivate with
a concrete example.

Consider the phase retrieval application2:

min
x∈Rd×d

n∑
i=1

(
bi − |〈ai, x〉|2

)2
(III.1)

where bi = |〈ai, x\〉|2 + wi is the noisy observation under the
true image x\ ∈ Rd×d, the measurement ai ∈ Rd×d, and noise
wi. The inner product here is in the Hilbert-Schmidt sense.

As (III.1) is a non-convex problem, the standard approach
first vectorizes x\ and ai into U \ ∈ Rd2×1 and Ai ∈ Rd2×1,
and then rewrites the observations in the equivalent form:

bi = TrAiA>i U
\U \> + wi. (III.2)

Renaming Ai := AiA
>
i and X\ := U \U \>, the program (III.1)

now turns into a convex problem

min
X∈Rd2×d2

‖b−A(X)‖22 (III.3)

for an appropriate linear operator A. The solution we wish to
recover, the X\, is then rank-1.

The program (III.3) is of the form (II.11), and hence existing
gradient methods apply. However, the non-convex framework
in [17] sets r = 1 (or a small number r � d) in (II.11), and
hence the image is now viewed as a vector in Rd2×1. Such an
operation does not utilize the underlying structure of natural
images, which exhibit low-rankness when viewed as in Rd×d.

In this section, we show that the non-Euclidean methods
provide a framework for simultaneously exploiting the com-
putational efficiency of factorized gradient methods, and the

2Strictly speaking, the variable x in (III.1) should be Cd×d or R2d×2d.
We write x ∈ Rd×d for notational convenience. Same for the measurements
ai’s.

additional low-rank structures of natural images. We achieve the
desiderata in two steps. First, we show that the nuclear gradient
method, for any factorization, gives rise to rank-1 updates, and
we prove that the nuclear gradient method possesses similar
convergence guarantees to the Euclidean counterpart. Second,
we consider a general factorization through tensor product,
which allows us to preserve the structure of images even in
the factorized domain U . Finally, if the objective is strongly
convex, we provide a variant of our algorithm achieving linear
rate.

A. Convergence Rate of Nuclear Gradient Descent for PSD-
Constrained Programs

We propose Algorithm 1, which is obtained by simply
applying the [·]#∗ -operator to the gradients in (II.12).

Algorithm 1 Nuclear Gradient Descent for (II.11)
Input: X0 = U0U

>
0 , step-sizes ηi.

for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi[∇f(UiU

>
i ) · Ui]#∗

end for
Return: Uk

Let X? = U?(U?)> be the global optimum, and define

D∗(U1, U2) ≡ min
R is unitary

‖U1 − U2R‖∗. (III.4)

Under a good initialization, we prove that Algorithm 1
converges to the global optimum.

Theorem 1. Assume that rank(X?) = r, ∇f(·) ∈ Rp×p
is symmetric and f being convex and LS1→S∞-smooth:
‖∇f(X) − ∇f(Y )‖S∞ ≤ LS1→S∞‖Y − X‖∗. Assume also
that

D̃∗ ≡ max
U :f(UU>)≤f(U0U>0 )

D∗(U,U
?) ≤ σr(U

?)

10
. (III.5)

If the step-size is chosen according to ηi ≤ γi ≡
1
4

(
1

LS1→S∞‖Xi‖S∞
∧ 1
‖∇f(Xi)‖S∞

)
, then we have

f(UkU
>
k )− f(U?U?>) ≤ 4.5 D̃2

∗∑k−1
i=0 ηi

,

and mini γi ≥ 1
4η, where

η ≡
( 1

LS1→S∞( 11
9 )2‖X0‖S∞

∧

1
40LS1→S∞

81 σr(U0)σ1(U0) + ‖∇f(X0)‖∗

)
.

In particular, to avoid computing γi at each iteration, we can
simply set ηi = η and still attain the convergence rate O

(
1
k

)
.

Proof. See Section A in the supplementary material.

Remark 1. It is worth noting that the smoothness assumption
is on the original convex objective f(X), not the factorized
problem f(UU>). The same remark applies to Theorem 2
and 3 below.
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Algorithm 2 Nuclear Gradient Descent for (III.7)

Input: Initial point X0 = U0 ⊗ U0, step-sizes ηi.
for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi[∇f(Ui ⊗ Ui) · Ui]#∗

end for
Return: Uk

B. Factorizing through Tensor Products

Let A ∈ Rd1×d2 and B ∈ Rd3×d4 be two matrices. Their
tensor product A ⊗ B ∈ Rd1d3×d2d4 is given, in the block
matrix form, by

A⊗B = [aijB]ij (III.6)

where aij is the (i, j)-th entry of A.
Recall the convex formulation of the phase retrieval problem

(III.3). Instead of factorizing the variable X ∈ Rd2×d2 into
UU> for some U ∈ Rd2×1, we now consider the factorization
through tensor product. That is, we consider the factorized
variable as U ∈ Rd×d, and we decompose the original problem
(II.11) as

min
U∈Rd×d

g(U) , f(U ⊗ U). (III.7)

Evidently, the program (III.7) still preserves the rank-
1 property of the solution X? ∈ Rd2×d2 to the convex
problem, as we can always vectorize the solution to (III.7)
into U? ∈ Rd2×1 and output X? := U?U?>. However, notice
now that the decision variable operates in Rd×d, which is the
natural ambient space for images.

Motivated by the above observations, we propose Algorithm
2, which is the analogue of Algorithm 1 with the tensor product
factorization.

The theorem and analysis of Theorem 1 generalizes immedi-
ately to the above algorithm, except that the last term of (III.5)

needs to be replaced by the equivalent quantity
√
σr(X∗)

10 . We
provide a complete proof in Section B of the supplementary
material.

C. Linear Rate for Smooth and Strongly Convex Objectives

In this subsection, we show that linear convergence can
be attained for smooth and strongly convex objectives, as in
classical convex optimization theory.

We apply Algorithm 3 to solve (II.11). Notice the subtle
difference between Algorithm 1 and Algorithm 3: The updates
of Algorithm 1 are based on [∇f(UU>) · U ]#∗ , whereas
Algorithm 3 uses [∇f(UU>)]#∗ · U.

Algorithm 3 Nuclear Gradient Descent for (II.11)
Input: Initial point X0 = U0U

>
0 , step-sizes ηi.

for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi[∇f(UiU

>
i )]#∗ · Ui

end for
Return: Uk

Let X? be the global optimum and denote its best rank-r
approximation as X?

r = U?(U?)>. If X? is exactly rank-r,
then X? ≡ X?

r .

Theorem 2. Assume ∇f(·) ∈ Rp×p is symmetric. Let f be
both L-smooth ‖∇f(X)−∇f(Y )‖S∞ ≤ L‖Y −X‖∗ and µ-
strongly convex f(Y ) ≥ f(X) + 〈∇f(X), Y −X〉+ µ

2 ‖Y −
X‖2∗. Denote κ = L

µ and define

DF (U1, U2) ≡ min
R is unitary

‖U1 − U2R‖F , (III.8)

D̃F ≡ max
U :f(UU>)≤f(U0UT

0 )
DF (U,U?),

D̃∗ ≡ max
U :f(UU>)≤f(U0UT

0 )
D∗(U,U

?),

and ρ ≡ 1
100κτ(X?

r )
.

Assume that D̃F ≤ ρσr(U
?
r ), ‖X? − X?

r ‖F ≤
1

200κ1.5τ(X?
r )
σr(X

?), and D̃∗ ≤ 1
81κ

σr(X
?)

σ1(U?) . If we choose step-
sizes as ηi = 1

16(L‖UiU>i ‖S∞+‖∇f(UiU>i )#QUi
Q>Ui
‖S∞ )

, then
we have

DF (Ui+1, U
?
r )2 ≤ αiDF (Ui, U

?
r )2 + βi‖X? −X?

r ‖F (III.9)

where αi = 1 − 0.7 µ σr(X
?)

2 ηi and βi = L
2 ηi. We also have

min
i≥0

ηi ≥ 1
16η, where

η ≡ 1

L
(

1+ρ
1−ρ

)2
‖X0‖S∞ + 4Lσ1(U0)σr(X?)

81κσ1(U?)(1−ρ) + ‖∇f(X0)‖S∞
.

That is, when the rank of the optimum X? is equal to
or less than r, then we have linear convergence in the
distance measure DF (Uk, U

?) ≤ ᾱkDF (U0, U
?) where ᾱ ,

1− 0.7 µ σr(X
?)

2 η̄ < 1.

Proof. See Section C in the supplementary material.

The above theorem highlights that our framework applies
to approximately low-rank minimizers. Given a minimizer
X? with rank(X?) = r?, assume that we have factorized the
problem with rank r. Then, the analysis (after replacing σr(Ui)
by max{σr(U?), σr(Ui)} ) shows that our algorithms converge
to the best rank-r approximation of X? if r < r?, and converge
to X? if r > r?, with the same rate.

IV. NON-CONVEX SPECTRAL GRADIENT METHODS FOR
PSD-CONSTRAINED PROBLEMS

We consider the Spectral Gradient Descent for solving
(II.11). Our main motivation is to tackle the matrix version
of the log-sum-exp function (IV.1), which has important
applications in deep learning and natural language processing.

Consider the log-sum-exp function over vectors z ∈ Rd:

lse(z) = log

d∑
i=1

exp(zi), (IV.1)

which is obtained by applying Nesterov’s smoothing to the
max function [41]. It arises naturally as the main part of the
log-softmax function [24] in machine learning.

Standard calculation shows

∀z, z′ ∈ Rd ‖∇lse(z)−∇lse(z′)‖2 ≤
1

2
‖z − z′‖2, (IV.2)

which implies that lse is 1
2 -smooth in the Euclidean norm.

Using ‖ ·‖2 ≤
√
d‖ ·‖∞ and ‖ ·‖2 ≥ 1√

d
‖ ·‖1, one expects that



5

Algorithm 4 Spectral Gradient Descent for (II.11)
Input: X0 = U0U

>
0 , step-sizes ηi.

for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi[∇f(UiU

>
i ) · Ui]#∞

end for
Return: Uk

lse should be d
2 -smooth in the `∞-norm. However, a careful

analysis [41] gives

∀z, z′ ∈ Rd ‖∇lse(z)−∇lse(z′)‖1 ≤ ‖z − z′‖∞ (IV.3)

which reveals that lse is in fact 1-smooth in the `∞-norm, vastly
improving upon the naïve estimate d

2 . In the vector case, the
property (IV.3) hints upon the use of the spectral #-operator,
which has led to impressive progress in computer science [20]
and machine learning [21]–[23].

We propose to perform spectral #-operator on the matrix
problems, as there are important matrix variants of log-sum-exp
function; see the FastText application in Section VI. The
convergence is analyzed in Section IV-A, and in Section IV-B
we show that the same calculation leading to (IV.3) generalizes
to the matrix-variate lse as well.

A. Convergence Rate of Spectral Gradient Descent for PSD-
Constrained Programs

We consider Algorithm 4, which is obtained by applying
the [·]#∞-operator to the gradient updates.

Let X? = U?(U?)> be the global optimum. Define

D∞(U1, U2) ≡ min
R unitary

‖U1 − U2R‖S∞ . (IV.4)

Similar to Theorem 1, under a good initialization, we can
guarantee the convergence to the global optimum.

Theorem 3. Assume that rank(X?) = r, ∇f(·) ∈ Rp×p
is symmetric, and f is convex and LS∞→S1

-smooth, i.e.,
‖∇f(X) − ∇f(Y )‖∗ ≤ LS∞→S1

‖Y − X‖S∞ . Assume also
that

D̃∞ ≡ max
U :f(UU>)≤f(U0U>0 )

D∞(U,U?) ≤ σr(U
?)

10
. (IV.5)

If the step-size is chosen according to ηi ≤ γi ≡
1
4

(
1

LS∞→S1
‖Xi‖S∞

∧ 1
‖∇f(Xi)r‖∗

)
, then we have after k it-

erations:

f(UkU
>
k )− f(U?U?>) ≤ 4.5 D̃2

∞∑k−1
i=0 ηi

, (IV.6)

and mini γi ≥ 1
4η, where

η ≡
( 1

LS∞→S1
( 11

9 )2‖X0‖S∞
∧ 1

40LS∞→S1

81 σr(U0)σ1(U0) + ‖∇f(X0)r‖∗

)
.

In particular, to avoid computing γi at each iteration, we can
simply set ηi = η and still attain the convergence rate O

(
1
k

)
.

Proof. See Section D in the supplementary material.

B. Convergence Comparison the Matrix-Variate lse Function

Let f be a matrix-variate function of the form

f(A) = lse(Ax), A ∈ Rd
′×d (IV.7)

where x ∈ Rd is a fixed vector and the lse function is given in
(IV.1)3. Such functions appear, for instance, in the final layer
of deep neural networks [24] or the FastText application
[42], [43].

We show that the smoothness parameters for (IV.7) exhibit
similar comparison as (IV.2) and (IV.3) in the vector case.

Lemma 1. Let f(A) := lse(Ax) for a fixed vector x. Then f
is convex. Moreover, for all A,A′ ∈ Rd′×d, we have

‖∇f(A)−∇f(A′)‖F ≤
1

2
‖x‖22 · ‖A−A′‖F (IV.8)

and

‖∇f(A)−∇f(A′)‖S1 ≤ ‖x‖22 · ‖A−A′‖S∞ . (IV.9)

In other words, LS2→S2
=
‖x‖22
2 and LS∞→S1

= ‖x‖22.
Proof. See Section E in the supplementary material.

We now compare the convergence rates between Algorithm
4 and the Euclidean method with, say, Gaussian initialization,
applied to the matrix lse function (IV.7). Without loss of
generality, assume that ‖x‖22 = 1 (otherwise one can define a
new decision variable Ã := ‖x‖22 · A and minimize over Ã)
and d > d′. Then the bound (IV.6) dictates the convergence
rate

f(Xk)− f(X?) = O

(
d

k

)
,

whereas the Euclidean counterpart (see equation (9) in [17]) is

f(Xk)− f(X?) = O

(√
d′d

k

)
.

As a result, by exploiting the favorable S∞ geometry for the
matrix lse function, one can obtain an O(

√
d′) improvement

over standard gradient method, which can be significant when
the dimension is large.

V. CONVERGENCE RATE FOR NON-PSD PROGRAMS

So far, we have only considered PSD-constrained problems
(II.11). In this section, we show that the guarantees in previous
sections can be extended to unconstrained programs via a
lifting trick [52].

Consider the asymmetrically factorized program:

min
X∈Rp×q

f(X) , min
U∈Rp×r,V ∈Rq×r

f(UV >). (V.1)

Define W =

[
U
V

]
∈ R(p+q)×r, and define a new objective by

f̂(WW>) = f̂

([
UU> UV >

V U> V V >

])
:= f(UV >). (V.2)

It is easy to verify the following: leftmargin=0.5cm

3We do not assume A to be constrained in the PSD cone in this subsection.
The convergence guarantees for general A is given in Section V.
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Original Picture

Nuclear Wirtinger Flow Wirtinger Flow [6] Fienup [44]

Phaselift [45] Phaselamp [46] Phasemax [47], [48]

Truncated Amplitude Flow [49] SketchyCGM [50] Reweighted Wirtinger Flow [51]

Fig. 1: Comparison of phase retrieval algorithms, synthetic dataset 1.

• Wi+1 = Wi − ηi[∇f̂(WiW
>
i )Wi]

#
∗ is equivalent to[

Ui+1

Vi+1

]
=

[
Ui
Vi

]
− ηi

2

[
∇f(UiV

>
i )Vi

∇f(UiV
>
i )>Ui

]#
∗
. (V.3)

• Wi+1 = Wi − ηi[∇f̂(WiW
>
i )Wi]

#
∞ is equivalent to[

Ui+1

Vi+1

]
=

[
Ui
Vi

]
− ηi

2

[
∇f(UiV

>
i )Vi

∇f(UiV
>
i )>Ui

]#
∞
. (V.4)
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Moreover, we can relate the smoothness of f̂ to that of f ;
the following lemma generalizes Proposition 3.1. of [18].

Lemma 2. Let f̂
([

A B
B> D

])
, f(B) be defined on the

PSD cone. Suppose that f is convex and L-smooth in some
Schatten-p norm:

‖∇f(X)−∇f(Y )‖Sq
≤ L‖Y −X‖Sp

, (V.5)

where q, p satisfies 1
p+ 1

q = 1. Suppose also that∇f(·) ∈ Rp×p

is symmetric. Then f̂ is convex and L-smooth in the same norm;
i.e., f̂ also satisfies (V.5).

Proof. See Section F in the supplementary material.

Hence, if we apply (V.3) (resp. (V.4)) to the lifted objective
(V.2), then the results in Section IV-A (resp. Section III-A)
hold (with obvious changes in the constants).

VI. EXPERIMENTS

Two real-world applications are considered: Fourier Ptychog-
raphy and text classification via the FastText architecture.
The former application has a PSD-constrained objective, and the
latter unconstrained. We show that the tensor-based Algorithm
3 exploits the low-rank structure of natural images, and hence
leads to state-of-the-art performance on synthetic and real data.
For the latter application, we show that spectral gradient descent
leads to considerable speedups.

A. Fourier Ptychography

We consider the task of Fourier Ptychography reconstruction,
a computational imaging technique that aims to reconstruct a
high-resolution image based on a collection of low-resolution
samples [53], [54]. Ptychography reconstruction is subclass of
Phase Retrieval, and the factorized gradient method for such
applications has the domain name Wirtinger Flow [6], with
rank parameter r = 1.

We consider Algorithm 3, henceforth referred to as nuclear
Wirtinger flow, for ptychography reconstruction. As a baseline
comparison, we first perform extensive comparison against
existing algorithms for synthetic data in Section VI-A1. In
Section VI-A2, we show that the nuclear Wirtinger flow is the
only algorithm that succeeds for detecting malaria infection in
a reasonable amount of time.

1) Synthetic Data: We adopt the same setting as the
online library PhasePack [55]: In (III.1), we choose ai’s from
empirical measurements obtained by an optical device [56]. A
synthetic image is passed through these measurements using
(III.1), and we report the images of various algorithms returned
in 5 minutes. We perform parameter sweeping for all recovery
algorithms to find the best setting.

The results are reported in Figure 1; for more results, see
Section G in the supplementary material.

Since the true image in the synthetic data is simple, many
of the non-convex algorithms, including Wirtinger flow and
nuclear Wirtinger flow, succeed in recovering the image
quickly and yield comparable results. On the other hand, the
convex methods, such as the SketchyCGM [50], only return

(a) Nuclear Wirtinger Flow (b) Wirtinger Flow

(c) SketchyCGM (d) Fienup method

Fig. 2: Fourier ptychography reconstructions.

noisy figures given limited time. The Truncated Amplitude
Flow method, while known to perform well in the coded
diffraction model [49], fails to recover even simple images in
the ptychographic reconstruction.

2) Real Data: We use the real dataset provided by the
authors of [54]. The dataset consists of Fourier ptychographic
measurements taken from patients with malaria infection,
where the number of samples is 185600 and the image to
be recovered contains 6400 pixels. The critical task is to obtain
reconstructions that allow clear identification of the infected
cells. The objective function for Fourier ptychography falls
under the category of (II.11); we adopt the same setups as in
[54], and we refer the readers to the reference for details.

We incorporated four algorithms: the Wirtinger and nuclear
Wirtinger flow, which are the best-performing non-convex
methods in Section VI-A1, the Fienup [44], a classical method
in computational imaging, and SketchyCGM [50], a convex
algorithm that directly solves the unfactorized problem (III.3).
The step-sizes are obtained by parameter sweeping.

Figure 2 presents the reconstruction images from various
methods. All implementations are in MATLAB. We take 20
random initializations for the Wirtinger and nuclear Wirtinger
flow, and we report the best reconstruction. We run 1000
iterations for all the algorithms except for Fienup (also
known as “Alternating Projections” in [54]), for which the
reconstruction is provided by the authors of [54] without

Table 1: Time comparison

Algorithm Time (sec.)

Wirtinger Flow 13.7799
SketchyCGM 1.6038e+03s

Nuclear Wirtinger Flow 22.8751
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implementation details.
From Figure 2, we see that the infected cells are clearly

visible in the nuclear Wirtinger Flow as boxed in red.
The SketchyCGM algorithm, as a convex method, is time-
consuming but fairly robust, and it returns the second best
image in terms of quality. However, the infected cells are
barely visible from the reconstruction, even though it takes 70
times as the nuclear Wirtinger flow (cf., Table 1). The Fienup
and Wirtinger Flow produce serious artifact, and the latter
completely fails to recover the image.

Table 1 compares the running time for all the algorithms
except for Fienup. We observe that our method results in 66%
computational time overhead compared to Wirtinger flow, but
the overall running time is still reasonably short. On the other
hand, while we expect SketchyCGM to recover the same quality
of the image as the nuclear Wirtinger flow, provided that we
run it for more iterations, the high-dimensional nature of the
problem renders the running time fairly slow.

A more detailed comparison between nuclear Wirtinger
Flow and Wirtinger Flow can be found in Section H of the
supplementary material.

B. Text classification by FastText

Text classification is one of the most important tasks in
Natural Language Processing. Recently, a simple model, called
FastText, has been proposed to solve text classification
problems for very large corpus with large output space. The
FastText assumes that the input-output relation of text
classification can be explained by a large matrix C ∈ Rp×q,
and the objective is to minimize the log-softmax output over
training data {(xn, yn)}Nn=1:

min
C∈Rp×q

− 1

N

N∑
n=1

yn log f(Cxn). (VI.1)

The key idea of FastText is to fix a small intermediate value
r, and decompose C = AB> where A ∈ Rp×r and B ∈ Rq×r.
The role of r is twofold: First, it speeds up the training process
by constraining the decision variable to small rank. Second, it
prevents overfitting due to the excessive number of parameters
in the large matrix C. We refer to [42], [43] for further details.

The main component of the objective in (VI.1) is the matrix-
variate lse in (IV.7). Motivated by the results in Section IV-B,
we propose to run Algorithm (V.4) for the factorized program
of (VI.1), with r fixed to 10. From (VI.1), one can infer that
computing the gradient takes O (pqr + rN min{p, q}) time,
and hence the overhead of the [·]#∞ operation (which takes
O
(
r2 min{p, q}

)
) is negligible, as N � r.

We test the iterate (V.4) (the red curve in Fig. 3 and 5) on 6
datasets whose information can be found in [57]. The baseline
we compare to is the gradient descent algorithm (the black
curve in Fig. 3 and 5) proposed in [43]. We have also included
a heuristic approximation of the iterates (V.4) (the blue curve

in Fig. 3 and 5), by employing
[
A
B

]#
∞
'
[

[A]#∞
[B]#∞

]
.

All the experiments are implemented in C++, and run on
the processor Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz.

Learning rates for each of the algorithms are obtained through
5-fold cross-validation.

Figure 3 shows the training and test performance on two
datasets. The heuristic version of (V.4) performs the best in
terms of training errors. However, the theoretical iterate (V.4)
generalizes the best. In all cases, the spectral iterates outperform
the classic gradient descent. These observations are consistent
throughout our experiments; see Section I of the supplementary
material for more evidence.

VII. CONCLUSION

This paper introduces a non-Euclidean, first-order methods
into the factorization framework for solving (I.1). The frame-
work is easy to implement. We provide rigorous convergence
rates, under assumptions akin to the classical gradient methods.
We demonstrate the empirical success of our algorithms on
phase retrieval and text classification.

We would like to note that for the phase retrieval application,
there is a growing literature of algorithms, with different
speed enhancements. We note that with the additional twists,
many of these state-of-the-art methods perform well when
applied to synthetic data. However, we observe that they
have major robustness issues in real data, possibly due to
imperfect calibration of the linear measurements. We believe
the simplicity of our algorithm is a strength in this setting
even though it can be enhanced with additional tricks, such as
reshaping, truncation, hybrid, and minibatch [58]–[60], which
is beyond the scope of this initial study.

As a result, we have established a different, but very strong
baseline for our comparisons: The first scalable convex opti-
mization approach [50], which none of the non-convex methods
include. We show that convex method indeed outperforms the
other non-convex approaches in the literature in terms of the
solution quality (but certainly NOT speed!). However, our new
algorithm still outperforms the convex method, while being
similar in speed to other fast non-convex methods, such as the
Wirtinger flow [6].

In the FastText application, the spectral norm provides
state-of-the-art results with nearly orthogonal factors in the
respective space. We leave the interpretation of this result as
future work.
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APPENDIX A
PROOF OF SUBLINEAR RATE OF NUCLEAR GRADIENT DESCENT

We first use following lemma to prove the sublinear rate.

Lemma 1. For the sequence of the iterates {Ui}ki=0, we have

f(UiU
T
i )− f(Ui+1Ui+1

T ) ≥ αi · ‖∇f(Xi) · Ui‖2S∞ (A.1)

and

f(UiU
T
i )− f(U∗U∗T ) ≤ βi · ‖∇f(Xi) · Ui‖S∞ (A.2)

where αi = 1.117 ηi and βi = (2 + 19
81 )‖∆Ui

‖∗ = (2 + 19
81 )D∗(Ui, U

∗).

Define δi = f(UiU
T
i )− f(U∗U∗T ) and follow the previous lemma. We know {δi} is an positive decreasing sequence and

δi+1 ≤ δi − αi · ‖∇f(Xi) · Ui‖2S∞
≤ δi −

αi
β2
i

· δ2
i

Dividing both sides with (δi · δi+1), we obtain, by assumption (III.5),

1

δi+1
− 1

δi
≥ αi
β2
i

· δi
δi+1

≥ αi
β2
i

≥ αi

D̃2
∗
.

Telescoping the inequality we get the desired result.
Now we prove (A.1) of lemma 1. The smoothness gives

f(UiU
T
i )− f(Ui+1Ui+1

T )

≥〈∇f(Xi), Xi −Xi+1〉 −
L

2
‖Xi −Xi+1‖2∗

=
〈
∇f(Xi), (Ui − Ui+1)UTi + Ui(Ui − Ui+1)T

〉︸ ︷︷ ︸
1©

−
〈
∇f(Xi), (Ui − Ui+1)(Ui − Ui+1)T

〉︸ ︷︷ ︸
2©

− L

2
‖Xi −Xi+1‖2∗︸ ︷︷ ︸

3©
. (A.3)

For 1© we have 〈
∇f(Xi), (Ui − Ui+1)UTi + Ui(Ui − Ui+1)T

〉
=2〈∇f(Xi)Ui, Ui − Ui+1〉
=2ηi

〈
∇f(Xi)Ui, [∇f(Xi)Ui]

#
∞
〉

=2ηi‖∇f(Xi)Ui‖2S∞ .
(A.4)



2

To upper bound 2©, we use 〈
∇f(Xi), (Ui − Ui+1)(Ui − Ui+1)T

〉
=η2

i ‖∇f(Xi) · Ui‖2S∞ · Trace(∇f(Xi)A1A
T
1 )

≤η2
i ‖∇f(Xi) · Ui‖2S∞ · ‖∇f(Xi)‖S∞

(∗)
≤ 1

4
ηi‖∇f(Xi) · Ui‖2S∞ (A.5)

in which A1 is the first singular vector of ∇f(Xi) · Ui, and (∗) is by ηi ≤ 1
4‖∇f(Xi)‖S∞

.
To upper bound 3©, we use

‖UiUTi − Ui+1U
T
i+1‖S∞

=‖Ui(Ui − Ui+1)T + (Ui − Ui+1)UTi

− (Ui − Ui+1)(Ui − Ui+1)T ‖S∞
≤2‖Ui‖S∞‖Ui − Ui+1‖∗ + ‖Ui − Ui+1‖S∞‖Ui − Ui+1‖∗
=2ηi‖Ui‖S∞‖∇f(Xi) · Ui‖S∞ + η2

i ‖∇f(Xi) · Ui‖2S∞
=ηi ‖∇f(Xi) · Ui‖S∞ [2‖Ui‖S∞ + ηi‖∇f(Xi) · Ui‖S∞ ]

≤ηi ‖∇f(Xi) · Ui‖S∞ [2‖Ui‖S∞ + ηi‖∇f(Xi)‖S∞‖Ui‖S∞ ]

(1)

≤ηi ‖∇f(Xi) · Ui‖S∞
9

4
‖Ui‖S∞ (A.6)

where (1) is by ηi ≤ 1
4‖∇f(Xi)‖S∞

.
Plugging above inequalities into (A.3), we obtain

f(UiU
T
i )− f(Ui+1Ui+1

T )

≥2ηi‖∇f(Xi)Ui‖2S∞ −
1

4
ηi‖∇f(Xi) · Ui‖2S∞

− L

2
(
9

4
ηi ‖Ui‖S∞‖∇f(Xi) · Ui‖S∞)2

≥ηi‖∇f(Xi) · Ui‖2S∞

[
7

4
− L

2

(
9

4

)2

ηi‖Ui‖2S∞

]
(∗)
≥1.117 ηi ‖∇f(Xi) · Ui‖2S∞ (A.7)

where (∗) is by ηi ≤ 1
4L‖Xi‖S∞

= 1
4L‖Ui‖2S∞

. We have thus finished the first part of lemma 1.

Now we give the proof of (A.2) of lemma 1.
We denote

RUi
≡ arg min

R
R is unitary

‖Ui − U∗R‖∗. (A.8)

and define ∆Ui
≡ Ui − U∗RUi

. We begin with

f(UiU
T
i )− f(U∗U∗T )

≤〈∇f(Xi), Xi −X∗〉
=
〈
∇f(Xi),∆UiU

T
i

〉
+
〈
∇f(Xi), Ui∆

T
Ui

〉
−
〈
∇f(Xi),∆Ui

∆T
Ui

〉
=2〈∇f(Xi)Ui,∆Ui

〉 −
〈
∇f(Xi),∆Ui

∆T
Ui

〉
≤2‖∇f(Xi) · Ui‖S∞‖∆Ui‖∗ +

∣∣〈∇f(Xi),∆Ui∆
T
Ui

〉∣∣︸ ︷︷ ︸
1©

.

(A.9)
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To upper bound 1©, we use 〈
∇f(Xi),∆Ui

∆T
Ui

〉
=〈∇f(Xi)∆Ui

,∆Ui
〉

≤‖∇f(Xi)∆Ui
‖S∞‖∆Ui

‖∗
=‖∇f(Xi)P∆Ui

∆Ui
‖S∞‖∆Ui

‖∗
≤‖∇f(Xi)P∆Ui

‖S∞‖∆Ui
‖S∞‖∆Ui

‖∗
(∗)
≤
(
‖∇f(Xi)PUi

‖S∞ + ‖∇f(Xi)PU∗‖S∞
)
‖∆Ui

‖2∗ (A.10)

in which PU denotes the projection onto Col(U). (∗) is due to Span(Col(∆Ui)) ⊆ Span(Col(Ui) ∪ Col(U∗r )) and
‖∆Ui

‖S∞ ≤ ‖∆Ui
‖∗. Continuing, we get

‖∇f(Xi)PUi
‖S∞ = ‖∇f(Xi)UiU

†
i ‖S∞

(1)

≤ ‖∇f(Xi)Ui‖S∞
1

σr(Ui)
(2)

≤ ‖∇f(Xi)Ui‖S∞
10

9σr(U∗)
(A.11)

in which U†i denotes the pseudoinverse of Ui. Here, (1) is due to σ1(U†i ) = σr(Ui)
−1, and (2) is by assumption (III.5), Weyl’s

inequality and σr(U∗RUi) = σr(U
∗).

Similarly, we have

‖∇f(Xi)PU∗‖S∞ = ‖∇f(Xi)U
∗(U∗)†‖S∞

≤ ‖∇f(Xi)U
∗‖S∞︸ ︷︷ ︸

A©

1

σr(U∗)
. (A.12)

To upper bound A©, we use the following inequality.

‖∇f(Xi)U
∗‖S∞

=‖∇f(Xi)U
∗RUi

‖S∞
≤‖∇f(Xi)Ui‖S∞ + ‖∇f(Xi)∆Ui

‖S∞
=‖∇f(Xi)Ui‖S∞ + ‖∇f(Xi)P∆Ui

∆Ui
‖S∞

≤‖∇f(Xi)Ui‖S∞ + ‖∇f(Xi)P∆Ui
‖S∞‖∆Ui‖S∞

(1)

≤‖∇f(Xi)Ui‖S∞
+
(
‖∇f(Xi)PUi

‖S∞ + ‖∇f(Xi)PU∗‖S∞
)
‖∆Ui

‖S∞
(2)

≤‖∇f(Xi)Ui‖S∞
+

10

9

(
‖∇f(Xi)Ui‖S∞ + ‖∇f(Xi)U

∗‖S∞
)‖∆Ui

‖S∞
σr(U∗)

(3)

≤‖∇f(Xi)Ui‖S∞
+

1

10

(10

9
‖∇f(Xi)Ui‖S∞ + ‖∇f(Xi)U

∗‖S∞
)

=
10

9
‖∇f(Xi)Ui‖S∞ +

1

10
‖∇f(Xi)U

∗‖S∞ . (A.13)

Here, (1) is owing to the similar reason of (A.10), (2) is obtained by plugging in (A.11) and (A.12), and (3) is by assumption
(III.5) and ‖∆Ui‖S∞ ≤ ‖∆Ui‖∗. Thus we arrive at

‖∇f(Xi)U
∗‖S∞ ≤

(
10

9

)2

‖∇f(Xi)Ui‖S∞ . (A.14)

Plugging this into (A.12), we get

‖∇f(Xi)PU∗‖S∞ ≤
(

10

9

)2

‖∇f(Xi)Ui‖S∞
1

σr(U∗)
. (A.15)



4

Combining (A.11) and (A.15) with (A.10), we obtain〈
∇f(Xi),∆Ui∆

T
Ui

〉
≤(‖∇f(Xi)Ui‖S∞

10

9σr(U∗)

+

(
10

9

)2

‖∇f(Xi)Ui‖S∞
1

σr(U∗)
)‖∆Ui‖2∗

=‖∇f(Xi)Ui‖S∞
190

81

‖∆Ui
‖∗

σr(U∗)
‖∆Ui

‖∗
(∗)
≤ 19

81
‖∇f(Xi)Ui‖S∞‖∆Ui

‖∗ (A.16)

where (∗) is by assumption (III.5). Now we plug (A.16) into (A.9) and obtain

f(UiU
T
i )− f(U∗U∗T ) ≤ (2 +

19

81
)‖∆Ui

‖∗‖∇f(Xi) · Ui‖S∞ . (A.17)

The last part is to prove mini γi ≥ 1
4η by showing ‖Ui‖S∞ ≤ 11

9 ‖U0‖S∞ and

‖∇f(Xi)‖S∞ ≤
40L

81
σr(U0)σ1(U0) + ‖∇f(X0)‖S∞ . (A.18)

By assumption (III.5) and Weyl’s inequality, we have for every i ≥ 0

(1− 1

10
)σ1(U∗) ≤ σ1(Ui) ≤ (1 +

1

10
)σ1(U∗) , and thus

1 + 1
10

1− 1
10

σ1(U0) ≥ σ1(Ui). (A.19)

For ‖∇f(Xi)‖S∞ , we have

‖∇f(Xi)‖S∞ ≤ ‖∇f(Xi)−∇f(X0)‖S∞ + ‖∇f(X0)‖S∞
≤ LS1→S∞‖Xi −X0‖∗ + ‖∇f(X0)‖S∞
≤ LS1→S∞

(
‖Xi −X∗‖∗ + ‖X0 −X∗‖∗

)
+ ‖∇f(X0)‖S∞ . (A.20)

Since

‖Xi −X∗‖∗ = ‖Ui(Ui − U∗RUi
)T

+ (Ui − U∗RUi)(U
∗RUi)

T ‖∗
≤ ‖Ui − U∗RUi

‖∗
(
‖Ui‖S∞ + ‖U∗‖S∞

)
, (A.21)

we have

‖Xi −X∗‖∗ + ‖X0 −X∗‖∗
≤‖Ui − U∗RUi‖∗(‖Ui‖S∞ + ‖U∗‖S∞)

+‖U0 − U∗RU0‖∗(‖U0‖S∞ + ‖U∗‖S∞) (A.22)

≤σr(U
∗)

10
σ1(U0)(

11

9
+

10

9
+ 1 +

10

9
)

≤ 1

1− 1
10

σr(U0)

10
σ1(U0)

40

9

=
40

81
σr(U0)σ1(U0)

by applying inequality (A.19).
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APPENDIX B
PROOF OF SUBLINEAR RATE FOR NUCLEAR GRADIENT DESCENT, TENSOR VERSION

We first define the action (·) on a bounded linear operator T of H1 ⊗H2 and H1 where H1 and H2 are Hilbert spaces.

∀T ∈ L(H1 ⊗H2,R), h1 ∈ H1, T =
∑
i

λi(ai ⊗ bi)

T · h1 ,
∑
i

λi〈ai, h1〉bi ∈ H2. (B.1)

Immediately we have 〈T, h1 ⊗ h2〉 = 〈T · h1, h2〉, since

〈T, h1 ⊗ h2〉 =

〈∑
i

λi(ai ⊗ bi), h1 ⊗ h2

〉
=
∑
i

λi〈ai, h1〉〈bi, h2〉

= 〈T · h1, h2〉. (B.2)

For the cases Hi = Rni×mi , we define the norm to be injective cross norm with each Hi having the spectral norm ‖‖S∞ as
primal norm and the consequent dual norm, nuclear norm ‖‖∗.

‖x‖ , sup
‖ai‖∗≤1

〈a1 ⊗ a2, x〉 (B.3)

which satisfies

‖h1 ⊗ h2‖ = ‖h1‖S∞‖h2‖S∞
‖a1 ⊗ a2‖dual = ‖a1‖∗‖a2‖∗.

(B.4)

We also use ‖h1 ⊗ h2‖S∞ and ‖a1 ⊗ a2‖∗ to denote ‖h1 ⊗ h2‖ and ‖a1 ⊗ a2‖dual.
We use following lemma to prove the sublinear rate.

Lemma 2. For the sequence of the iterates {Ui}ki=0, we have

f(Ui ⊗ Ui)− f(Ui+1 ⊗ Ui+1) ≥ αi · ‖[∇f(Xi) · Ui]#∞‖2S∞ = αi · ‖∇f(Xi) · Ui‖2∗ (B.5)

and

f(Ui ⊗ Ui)− f(U∗ ⊗ U∗) ≤ βi · ‖[∇f(Xi) · Ui]#∞‖S∞ (B.6)

where αi = 1.117 ηi and βi = (2 + 19
81 )‖∆Ui‖S∞ = (2 + 19

81 )D∞(Ui, U
∗).

Define δi = f(Ui⊗Ui)− f(U∗⊗U∗) and follow the previous lemma. We know {δi} is an positive decreasing sequence and

δi+1 ≤ δi − αi · ‖[∇f(X) · U ]#∞‖2S∞
≤ δi −

αi
β2
i

· δ2
i

Dividing both sides with (δi · δi+1), we obtain, by assumption (B.14),

1

δi+1
− 1

δi
≥ αi
β2
i

· δi
δi+1

≥ αi
β2
i

≥ αi

D̃2
S∞

.

Telescoping the inequality we get the desired result.
Now we prove (B.5) of lemma 2. We assume ∇f(X) is symmetric, i.e. ∇f(X) =

∑
i λi(ai ⊗ ai) throughout. The smoothness

gives

f(Ui ⊗ Ui)− f(Ui+1 ⊗ Ui+1) ≥ 〈∇f(Xi), Xi −Xi+1〉 −
L

2
‖Xi −Xi+1‖2S∞

= 〈∇f(Xi), (Ui − Ui+1)⊗ Ui + Ui ⊗ (Ui − Ui+1)〉︸ ︷︷ ︸
1©

− 〈∇f(Xi), (Ui − Ui+1)⊗ (Ui − Ui+1)〉︸ ︷︷ ︸
2©

−L
2
‖Xi −Xi+1‖2S∞︸ ︷︷ ︸

3©
(B.7)
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For 1© we have

〈∇f(Xi), (Ui − Ui+1)⊗ Ui + Ui ⊗ (Ui − Ui+1)〉 (∗)
= 2〈∇f(Xi) · Ui, Ui − Ui+1〉
= 2ηi

〈
∇f(Xi) · Ui, [∇f(Xi) · Ui]#∞

〉
= 2ηi‖∇f(Xi) · Ui‖2∗

(B.8)

where (∗) is by the assumption that ∇f(Xi) is symmetric.
To upper bound 2©, we use

〈∇f(Xi), (Ui − Ui+1)⊗ (Ui − Ui+1)〉 = η2
i ‖∇f(Xi) · Ui‖2∗

〈
∇f(Xi), AB

T ⊗ABT
〉

≤ η2
i ‖∇f(Xi) · Ui‖2∗ · ‖∇f(Xi)‖∗‖ABT ‖2S∞

(∗)
≤ 1

4
ηi‖∇f(Xi) · Ui‖2∗ (B.9)

in which A and B are respectively the left and right singular vectors of ∇f(Xi) · Ui. (∗) is by ηi ≤ 1
4‖∇f(Xi)‖∗ .

To upper bound 3©, we use

‖Ui ⊗ Ui − Ui+1 ⊗ Ui+1‖S∞ = ‖Ui ⊗ (Ui − Ui+1) + (Ui − Ui+1)⊗ Ui − (Ui − Ui+1)⊗ (Ui − Ui+1)‖S∞
≤ 2‖Ui‖S∞‖Ui − Ui+1‖S∞ + ‖Ui − Ui+1‖2S∞
= 2ηi‖Ui‖S∞‖∇f(Xi) · Ui‖∗ + η2

i ‖∇f(Xi) · Ui‖2∗
= ηi ‖∇f(Xi) · Ui‖∗ [2‖Ui‖S∞ + ηi‖∇f(Xi) · Ui‖∗]
(1)

≤ ηi ‖∇f(Xi) · Ui‖∗ [2‖Ui‖S∞ + ηi‖∇f(Xi)‖∗‖Ui‖S∞ ]

(2)

≤ ηi ‖∇f(Xi) · Ui‖∗
9

4
‖Ui‖S∞ (B.10)

(2) is by ηi ≤ 1
4‖∇f(Xi)‖∗ and (1) is due to

‖∇f(Xi) · Ui‖∗ = sup
‖y‖S∞≤1

〈∇f(Xi) · Ui, y〉

= sup
‖y‖S∞≤1

〈∇f(Xi), Ui ⊗ y〉

≤ sup
‖y‖S∞≤1

‖∇f(Xi)‖∗‖Ui‖S∞‖y‖S∞

= ‖∇f(Xi)‖∗‖Ui‖S∞
(B.11)

Plugging above inequalities into (B.7), we obtain

f(Ui ⊗ Ui)− f(Ui+1 ⊗ Ui+1) ≥ 2ηi‖∇f(Xi) · Ui‖2∗ −
1

4
ηi‖∇f(Xi) · Ui‖2∗

− L

2
(
9

4
ηi ‖Ui‖S∞‖∇f(Xi) · Ui‖∗)2

≥ ηi‖∇f(Xi) · Ui‖2∗

[
7

4
− L

2

(
9

4

)2

ηi‖Ui‖2S∞

]
(∗)
≥ 1.117 ηi ‖∇f(Xi) · Ui‖2∗ (B.12)

(∗) is by ηi ≤ 1
4L‖Xi‖S∞

= 1
4L‖Ui‖2S∞

. We thus finish the first part of lemma 2.

We give the proof of (B.6) of lemma 2 which only holds for the phase retrieval case. We then use f̃(X̃) to denote the
original objective function, i.e. X̃ = Ũ ŨT , f̃(X̃) = f(X) = f(U ⊗ U) and Ũ , a p × 1 vector, is the vectorization of U , a
m× n matrix where p = m · n. We have the following equalities.

〈∇f(Xi), U1 ⊗ U2〉 =
〈
∇f̃(X̃i), Ũ1Ũ2

T
〉

and its immediate consequence

〈∇f(Xi) · U1, U2〉 =
〈
∇f̃(X̃i)Ũ1, Ũ2

〉
(B.13)
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in which both sides of the first equation are the first order term of the objective function.
The assumption made here, which corresponds to IV.5, would be

D̃∞ ≡ max
Ũ :f(ŨŨ>)≤f(Ũ0Ũ>0 )

D∞(Ũ , Ũ∗) ≤ σmin(Ũ∗)

10
=
σ1(Ũ∗)

10
=
‖Ũ∗‖l2

10
. (B.14)

We denote

RŨi
≡ arg min

R unitary
‖Ũi − Ũ∗R‖S∞

= arg min
R∈{1,−1}

‖Ũi − Ũ∗R‖S∞ .

and define ∆Ũi
≡ Ũi − Ũ∗RŨi

.

f(Ui ⊗ Ui)− f(U∗ ⊗ U∗) ≤ 〈∇f(Xi), Xi −X∗〉 =
〈
∇f(Xi), Ui ⊗ Ui − U∗RŨi

⊗ U∗RŨi

〉
=
〈
∇f̃(X̃i),∆Ũi

ŨTi

〉
+
〈
∇f̃(X̃i), Ũi∆

T
Ũi

〉
−
〈
∇f̃(X̃i),∆Ũi

∆T
Ũi

〉
= 2
〈
∇f̃(X̃i)Ũi,∆Ũi

〉
−
〈
∇f̃(X̃i),∆Ũi

∆T
Ũi

〉
≤ 2‖∇f(X̃i)Ũi‖∗‖∆Ũi

‖S∞ +
∣∣∣〈∇f̃(X̃i),∆Ũi

∆T
Ũi

〉∣∣∣︸ ︷︷ ︸
1©

(B.15)

To upper bound 1©, ∣∣∣〈∇f̃(X̃i),∆Ũi
∆T
Ũi

〉∣∣∣ =
∣∣∣〈∇f̃(X̃i)∆Ũi

,∆Ũi

〉∣∣∣
≤ ‖∇f̃(X̃i)∆Ũi

‖∗‖∆Ũi
‖S∞

= ‖∇f̃(X̃i)(P∆Ũi
∆Ũi

)‖∗‖∆Ũi
‖S∞

≤ ‖∇f̃(X̃i)P∆Ũi
‖∗‖∆Ũi

‖2S∞
(∗)
≤ (‖∇f̃(X̃i)PŨi

‖∗ + ‖∇f̃(X̃i)PŨ∗‖∗)‖∆Ũi
‖2S∞ (B.16)

in which PU denotes the projection onto Col(U). (∗) is due to Span(Col(∆Ũi
)) ⊆ Span(Col(Ũi) ∪Col(Ũ∗r )).

‖∇f̃(X̃i)PUi‖∗ = ‖∇f̃(X̃i)UiU
†
i ‖∗

(1)

≤ ‖∇f̃(X̃i)Ui‖∗
1

σmin(Ui)

(2)

≤ ‖∇f̃(X̃i)Ui‖∗
10

9σmin(U∗)
(B.17)

in which U†i denotes the pseudoinverse of Ui and σmin denotes the smallest non-zero singular value. (1) is due to σ1(U†i ) =
σr(Ui)

−1. (2) is by assumption (B.14) and Weyl’s inequality.
Similarly, we have

‖∇f̃(X̃i)PŨ∗‖∗ = ‖∇f̃(X̃i)Ũ
∗(Ũ∗)†‖∗ ≤ ‖∇f̃(X̃i)Ũ

∗‖∗︸ ︷︷ ︸
A©

1

σmin(Ũ∗)
. (B.18)

To upper bound A©, we use the following inequality.

‖∇f̃(X̃i)Ũ
∗‖∗ = ‖∇f̃(X̃i)Ũ

∗RŨi
‖∗

≤ ‖∇f̃(X̃i)Ũi‖∗ + ‖∇f̃(X̃i)∆Ũi
‖∗

= ‖∇f̃(X̃i)Ũi‖∗ + ‖∇f̃(X̃i)P∆Ũi
∆Ũi
‖∗

≤ ‖∇f̃(X̃i)Ũi‖∗ + ‖∇f̃(X̃i)P∆Ũi
‖∗‖∆Ũi

‖S∞
(1)

≤ ‖∇f̃(X̃i)Ũi‖∗ + (‖∇f̃(X̃i)PŨi
‖∗ + ‖∇f̃(X̃i)PŨ∗‖∗)‖∆Ũi

‖S∞
(2)

≤ ‖∇f̃(X̃i)Ũi‖∗ + (‖∇f̃(X̃i)Ũi‖∗
10

9
+ ‖∇f̃(X̃i)Ũ

∗‖∗)
‖∆Ũi

‖S∞
σmin(Ũ∗)

(3)

≤ ‖∇f̃(X̃i)Ũi‖∗ + (‖∇f̃(X̃i)Ũi‖∗
10

9
+ ‖∇f̃(X̃i)Ũ

∗‖∗)
1

10

=
10

9
‖∇f̃(X̃i)Ũi‖∗ +

1

10
‖∇f̃(X̃i)Ũ

∗‖∗. (B.19)
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(1) is owing to the similar reason of (B.16). (2) is obtained by plugging in (B.17) and (B.18). (3) is by assumption (B.14).
Thus we arrive

‖∇f̃(X̃i)Ũ
∗‖∗ ≤

(
10

9

)2

‖∇f̃(X̃i)Ũi‖∗. (B.20)

Plugging this into (B.18), we get

‖∇f̃(X̃i)PŨ∗‖∗ ≤
(

10

9

)2

‖∇f̃(X̃i)Ũi‖∗
1

σmin(Ũ∗)
. (B.21)

Combining (B.17) and (B.21) with (B.16), we obtain〈
∇f̃(X̃i),∆Ũi

∆T
Ũi

〉
≤ (‖∇f̃(X̃i)Ũi‖∗

10

9σmin(U∗)
+

(
10

9

)2

‖∇f̃(X̃i)Ũi‖∗
1

σmin(U∗)
)‖∆Ũi

‖2S∞

= ‖∇f̃(X̃i)Ũi‖∗
190

81

‖∆Ũi
‖S∞

σmin(U∗)
‖∆Ũi

‖S∞
(∗)
≤ 19

81
‖∇f̃(X̃i)Ũi‖∗‖∆Ũi

‖S∞ (B.22)

where (∗) is by assumption (B.14). Now we plug (B.22) into (B.15) and obtain

f(Ui ⊗ Ui)− f(U∗ ⊗ U∗) ≤ (2 +
19

81
)‖∆Ũi

‖S∞‖∇f̃(X̃i)Ũi‖∗
(∗∗)
≤ (2 +

19

81
)C0‖∆Ũi

‖S∞‖∇f(Xi) · Ui‖∗ (B.23)

where C0 is a constant and (∗∗) is obtained by the connection between ∇f(Xi) · Ui and f̃(X̃i)Ũi (see (B.13)) and the
equivalence of norms of finite dimensional Banach space.
The last part is to prove mini γi ≥ 1

4η by showing ‖Ui‖S∞ ≤ 11
9 ‖U0‖S∞ and

‖∇f(Xi)r‖∗ ≤
40L

81
σmin(U0)σ1(U0) + ‖∇f(X0)r‖∗. (B.24)

By assumption (B.14) and Weyl’s inequality, we have for every i ≥ 0

(1− 1

10
)σ1(U∗) ≤ σ1(Ui) ≤ (1 +

1

10
)σ1(U∗) , and thus

1 + 1
10

1− 1
10

σ1(U0) ≥ σ1(Ui). (B.25)

Since ‖∇f(Xi)r‖∗ is the Ky Fan r-norm of ∇f(Xi), we have

‖∇f(Xi)r‖∗ ≤ ‖(∇f(Xi)−∇f(X0))r‖∗ + ‖∇f(X0)r‖∗
≤ ‖∇f(Xi)−∇f(X0)‖∗ + ‖∇f(X0)r‖∗
≤ LS∞→S1

‖Xi −X0‖S∞ + ‖∇f(X0)r‖∗
≤ LS∞→S1

(‖Xi −X∗‖S∞ + ‖X0 −X∗‖S∞) + ‖∇f(X0)r‖∗.

Since

‖Xi −X∗‖S∞ = ‖Ui ⊗ (Ui − U∗RUi
) + (Ui − U∗RUi

)⊗ (U∗RUi
)‖S∞

≤ ‖Ui − U∗RUi
‖S∞(‖Ui‖S∞ + ‖U∗‖S∞)

we have

‖Xi −X∗‖S∞ + ‖X0 −X∗‖S∞ ≤ ‖Ui − U∗RUi
‖S∞(‖Ui‖S∞ + ‖U∗‖S∞)

+ ‖U0 − U∗RU0
‖S∞(‖U0‖S∞ + ‖U∗‖S∞)

≤ σmin(U∗)

10
σ1(U0)(

11

9
+

10

9
+ 1 +

10

9
)

≤ 1

1− 1
10

σmin(U0)

10
σ1(U0)

40

9

=
40

81
σmin(U0)σ1(U0)

by applying inequality (B.25).
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APPENDIX C
PROOF OF LINEAR RATE FOR NUCLEAR GRADIENT DESCENT

We use U and U+ to denotes the current state and the updated state. Let X∗ = U∗(U∗)T be the optimum, X = UUT and
X+ = U+(U+)T .

U+ = U − ηU∇f(UUT )# · U (C.1)

where ηU = 1
16(L‖X‖S∞+‖∇f(X)#QUQT

U‖S∞ )
which also denoted as η for simplicity.

We now start to prove the following key lemma.

Lemma 3. Given DF (U,U∗) ≤ ρσr(U∗r ) and D∗(U,U∗) ≤ 1
81κ

σr(X∗)
σ1(U∗) ,

1

η

〈
U − U+, U − U∗rRU

〉
=
〈
∇f(X)#U,U − U∗rRU

〉
≥0.86η‖∇f(X)#U‖2F +

0.7 µ

4
σr(X

∗)DF (U,U∗r )2

− L

4
‖X∗ −X∗r ‖2F , (C.2)

in which RU = arg min
R

R is unitary

‖U − U∗rR‖F .

First, we define ∆ ≡ U − U∗rRU and thus〈
∇f(X)#U,U − U∗rRU

〉
=

1

2

〈
∇f(X)#, X −X∗r

〉
+

1

2

〈
∇f(X)#,∆∆T

〉
. (C.3)

First, we lower bound
〈
∇f(X)#, X −X∗r

〉
:

f(X) ≥ f(X+)−
〈
∇f(X), X+ −X

〉
− L

2
‖X+ −X‖2∗

≥ f(X∗)−
〈
∇f(X), X+ −X

〉
− L

2
‖X+ −X‖2∗, (C.4)

and

f(X∗r ) ≥ f(X) + 〈∇f(X), X∗r −X〉+
µ

2
‖X∗r −X‖2∗. (C.5)

Noticing PSD matrices form a convex cone, we obtain 〈∇f(X∗), X∗〉 = 0 and consequently 〈∇f(X∗), X∗r 〉 = 0. Therefore
we have

f(X∗r ) ≤ f(X∗) + 〈∇f(X∗), X∗r −X∗〉+
L

2
‖X∗r −X∗‖2∗

= f(X∗) +
L

2
‖X∗r −X∗‖2∗. (C.6)

Summing up previous three inequalities, we have

〈∇f(X), X −X∗r 〉

≥
〈
∇f(X), X −X+

〉
− L

2
‖X+ −X‖2∗

+
µ

2
‖X∗r −X‖2∗ −

L

2
‖X∗r −X∗‖2∗. (C.7)

Let A ≡ I − η
2QUQ

T
U∇f(X)#, we have

X+ −X = (U − η∇f(X)#U)(U − η∇f(X)#U)T − UUT

= −η∇f(X)#XA− ηATX∇f(X)# (C.8)
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where we have used the property of ∇f(X)# being symmetric.
Plugging the previous equality into (C.7), we achieve

〈∇f(X), X −X∗r 〉 −
µ

2
‖X∗r −X‖2∗ +

L

2
‖X∗r −X∗‖2∗

≥
〈
∇f(X), X −X+

〉
− L

2
‖X+ −X‖2∗

≥2η
〈
∇f(X),∇f(X)#XA

〉
− L

2
(2‖η∇f(X)#XA‖∗)2 (C.9)

where we have used ‖Y + Y T ‖∗ ≤ 2‖Y ‖∗.
For the two terms on the RHS of (C.9) we have the following bounds.〈

∇f(X),∇f(X)#XA
〉

=
[〈
∇f(X),∇f(X)#UUT

〉
− η

2

〈
∇f(X),∇f(X)#UUTQUQ

T
U∇f(X)#

〉]
≥‖∇f(X)#U‖2F −

η

2
‖∇f(X)#U‖2F ‖QUQTU∇f(X)#‖S∞

≥(1− 1

32
)‖∇f(X)#U‖2F (C.10)

where the last inequality is due to the choice of the step size. Continuing, we compute

|∇f(X)#XA‖∗ ≤ ‖∇f(X)#U‖∗‖U‖S∞‖A‖S∞
≤ ‖∇f(X)#U‖∗‖U‖S∞

(
1 +

1

32

)
. (C.11)

Now plugging these two bounds into (C.9), we have

〈∇f(X), X −X∗r 〉 −
µ

2
‖X∗r −X‖2∗ +

L

2
‖X∗r −X∗‖2∗

≥2η ‖∇f(X)#U‖2F

[
1− 1

32
− ηL‖U‖2S∞

(
33

32

)2
]

≥2η ‖∇f(X)#U‖2F

[
1− 1

32
− 1

16

(
33

32

)2
]

≥18η

10
‖∇f(X)#U‖2F

That is,

〈∇f(X), X −X∗r 〉

≥18η

10
‖∇f(X)#U‖2F +

µ

2
‖X∗r −X‖2∗ −

L

2
‖X∗r −X∗‖2∗. (C.12)

We now lower bound
〈
∇f(X)#,∆∆T

〉
, the second term of (C.3):〈
∇f(X)#,∆∆T

〉
=
〈
Q∆Q

T
∆∇f(X)#,∆∆T

〉
≥− |Trace(∆∆TQ∆Q

T
∆∇f(X)#)|

≥ − ‖Q∆Q
T
∆∇f(X)#‖S∞〈∆,∆〉

≥ −
[
‖QUQTU∇f(X)#‖S∞

+ ‖QU∗rQTU∗r∇f(X)#‖S∞
]
·DF (U,U∗r )2 (C.13)

where the last inequality is owing to Span(Col(∆)) ⊆ Span(Col(U) ∪Col(U∗r )).

‖QUQTU∇f(X)#‖S∞ DF (U,U∗r )2 = η 16(L‖X‖S∞ + ‖∇f(X)#QUQ
T
U‖S∞)‖QUQTU∇f(X)#‖S∞ DF (U,U∗r )2

= 16ηL‖X‖S∞‖QUQTU∇f(X)#‖S∞DF (U,U∗r )2+

16η‖∇f(X)#QUQ
T
U‖2S∞DF (U,U∗r )2

(C.14)
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We bound the underlined term by considering two possible conditions, ‖∇f(X)#QUQ
T
U‖S∞ ≤ µσr(X)

40 and
‖∇f(X)#QUQ

T
U‖S∞ > µσr(X)

40 .

16ηL‖X‖S∞‖QUQTU∇f(X)#‖S∞D2 ≤ max

{
16ηL‖X‖S∞µσr(X)

40
D2, 16η40κτ(X)‖∇f(X)#QUQ

T
U‖2S∞D2

}
≤ 16ηL‖X‖S∞

µσr(X)

40
D2 + 16η40κτ(X)‖∇f(X)#QUQ

T
U‖2S∞D2

≤ µσr(X)

40
D2 + 16η40κτ(X)‖∇f(X)#QUQ

T
U‖2S∞D2 (C.15)

in which D denotes DF (U,U∗r ). Combining the previous inequality with inequality (C.14), we get

‖QUQTU∇f(X)#‖S∞ D2 ≤ µσr(X)

40
D2 + (40κτ(X) + 1)16η‖∇f(X)#QUQ

T
U‖2S∞D2

(i)

≤ µσr(X)

40
D2 + (40(

101

99
)2κτ(X∗r ) + 1)16η‖∇f(X)#QUQ

T
U‖2S∞(ρσr(U

∗
r ))2

≤ µσr(X)

40
D2 + 16 · 43ηκτ(X∗r )‖∇f(X)#QUQ

T
U‖2S∞σr(X∗r )ρ2

(ii)

≤ µσr(X)

40
D2 + 16 · 43ηκτ(X∗r )‖∇f(X)#U‖2S∞

σr(X
∗
r )

σr(X)
ρ2

(iii)

≤ µσr(X)

40
D2 + 16 · 43ηκτ(X∗r )‖∇f(X)#U‖2S∞(

100

99
)2ρ2

(iv)

≤ µσr(X)

40
D2 +

2η

29
‖∇f(X)#U‖2S∞ (C.16)

(i) and (iii) is due to the assumption DF (U,U∗) ≤ ρσr(U∗r ) and lemma 6. (ii) is owing to

‖∇f(X)#U‖S∞ = ‖UT∇f(X)#‖S∞ = ‖UTQUQTU∇f(X)#‖S∞ ≥ σmin(U)‖∇f(X)#QUQ
T
U‖S∞

and σmin(U) = σr(U) =
√
σr(X). (iv) is obtained by plugging ρ = 1

100κτ(X∗r ) .
We first note that ∇f(U∗(U∗)T )U∗ = 0, since X∗ is the optimum, and thus ∇f(X∗)QU∗r = 0. Now we start to bound
‖QU∗rQTU∗r∇f(X)#‖S∞ .

‖QU∗rQTU∗r∇f(X)#‖S∞ ≤ ‖QU∗rQTU∗r∇f(X)‖S∞
= ‖QU∗rQTU∗r (∇f(X)−∇f(X∗))‖S∞
≤ ‖∇f(X)−∇f(X∗)‖S∞
≤ L (‖X −X∗r ‖∗ + ‖X∗r −X∗‖∗) (C.17)

where the last inequality is owing to L-smoothness and the triangular inequality.
Plugging inequalities (C.16) and (C.17) into (C.13), we get

〈
∇f(X)#,∆∆T

〉
≥ −

[
µσr(X)

40
D2 +

2η

29
‖∇f(X)#U‖2S∞ + L (‖X −X∗r ‖∗ + ‖X∗r −X∗‖∗)D2

]
. (C.18)

Now we plug two bounds (C.12) and (C.18) into (C.3) to get

〈
∇f(X)#U,U − U∗rRU

〉
≥ 1

2

[
18η

10
‖∇f(X)#U‖2F +

µ

2
‖X∗r −X‖2∗ −

L

2
‖X∗r −X∗‖2∗

]
− 1

2

[
µσr(X)

40
D2 +

2η

29
‖∇f(X)#U‖2S∞ + L (‖X −X∗r ‖∗ + ‖X∗r −X∗‖∗)D2

]
≥ 0.86η‖∇f(X)#U‖2F −

L

4
‖X∗r −X∗‖2∗

+
µ

4

[
|X∗r −X‖2∗ −

σr(X
∗)D2

20
− 2κD2 (‖X −X∗r ‖∗ + ‖X∗r −X∗‖∗)

]
(C.19)

Now we present two lemmas to bound |X∗r −X‖∗ and thus the underlined term in (C.19).
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Lemma 4. If DF (U,U∗) ≤ ρσr(U∗r ) and ρ ≤ 1
100 , then for any unitary matrix R

‖X −X∗r ‖∗ = ‖UUT − U∗r (U∗r )T ‖∗
= ‖UUT − U∗rRUT + U∗rRU

T − U∗rR(U∗rR)T ‖∗
≤ ‖U − U∗rR‖∗‖U‖S∞ + ‖U − U∗rR‖∗‖U∗r ‖S∞
(i)

≤ ‖U − U∗rR‖∗(1 + ρ)‖U∗r ‖S∞ + ‖U − U∗rR‖∗‖U∗r ‖S∞
≤ (2 + ρ)‖U − U∗rR‖∗‖U∗r ‖S∞
≤ (2.01)‖U − U∗rR‖∗‖U∗r ‖S∞ (C.20)

where (i) is due to lemma 6.

Lemma 5. Let X = UUT and X∗rU
∗
r (U∗r )T then

‖X −X∗r ‖2F ≥ 2(
√

2− 1)σr(X
∗
r )DF (U,U∗r )2. (C.21)

See reference [2].

Combining lemmas 4 and 5, we obtain a lower bound for the underlined term in (C.19).

‖X∗r −X‖2∗ −
σr(X

∗)D2

20
− 2κD2 (‖X −X∗r ‖∗ + ‖X∗r −X∗‖∗)

(i)

≥‖X∗r −X‖2F −
σr(X

∗)D2

20
− 2κD2

(
‖X −X∗r ‖∗ +

σr(X
∗)

200κ1.5τ(X∗r )

)
(ii)

≥ 2(
√

2− 1)σr(X
∗
r )D2 − σr(X

∗)D2

20
− 2κD2‖X −X∗r ‖∗ −

σr(X
∗)D2

50
(iii)

≥
[
2(
√

2− 1)− 1

20
− 1

50

]
σr(X

∗
r )D2 − 2κD2(2.01)

1

81κ

σr(X
∗)

σ1(U∗)
‖U∗r ‖S∞

≥
[
2(
√

2− 1)− 1

20
− 1

50
− 1

20

]
σr(X

∗
r )D2

≥ 0.7 σr(X
∗
r ) D2 (C.22)

where (i) is due to ‖ · ‖∗ ≥ ‖ · ‖F , and (ii) is owing to lemma 5. (iii) is due to the assumption D̃∗ ≤ 1
81κ

σr(X?)
σ1(U?) . Combining

(C.22) with (C.19), we get〈
∇f(X)#U,U − U∗rRU

〉
≥ 0.86η‖∇f(X)#U‖2F −

L

4
‖X∗r −X∗‖2∗ +

0.7 µ

4
σr(X

∗
r ) D2, (C.23)

the desired lemma 3.

DF (U+, U∗r )2 = min
R is unitary

‖U+ − U∗r ‖2F ≤ ‖U+ − U∗rRU‖2F
= ‖U − U∗rRU‖2F − 2η

〈
∇f(X)#U,U − U∗rRU

〉
+ η2‖∇f(X)#U‖2F

(i)

≤ DF (U,U∗)2 − 2η

[
−L

4
‖X∗r −X∗‖2∗ +

0.7µ

4
σr(X

∗
r )D(U,U∗)2

]
−

(2(0.86)− 1)η2‖∇f(X)#U‖2F
≤
[
1− 0.7 µ η

2
σr(X

∗
r )

]
D(U,U∗)2 +

η L

2
‖X∗r −X∗‖2∗ (C.24)

in which RU = arg min
R

R is unitary

‖U − U∗rR‖F . (i) is by lemma 3.

Lemma 6. Let U and U∗r be two n × r matrices such that DF (U,U∗r ) ≤ ρσr(U
∗
r ), for ρ ≤ 1

100 . Define X ≡ UUT and
X∗r ≡ U∗r (U∗r )T . Then we have

(1− 1

100
)σ1(U∗r ) ≤ σ1(U) ≤ (1 +

1

100
)σ1(U∗r ) (C.25)

(1− 1

100
)σr(U

∗
r ) ≤ σr(U) ≤ (1 +

1

100
)σr(U

∗
r ) (C.26)

and thus
τ(U) ≤ 101

99
τ(U∗r ) and τ(X) ≤ (

101

99
)2τ(X∗r ) (C.27)
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Proof. By ‖ · ‖S∞ ≤ ‖ · ‖F and Weyl’s inequality for perturbation of singular values, we obtain

|σi(U∗r )− σi(U)| ≤ ρσr(U∗r ) ≤ 1

100
σr(U

∗
r ). (C.28)

Now we show min
i≥0

ηi ≥ 1
16η by verifying ‖UiUTi ‖S∞ ≤

(
1+ρ
1−ρ

)2

‖X0‖S∞ and ‖∇f(UiU
T
i )#QUiQ

T
Ui
‖S∞ ≤

4Lσ1(U0)σr(X∗)
81κσ1(U∗)(1−ρ) + ‖∇f(X0)‖S∞ . The first one is an immediate result of lemma 6. Applying the same arguments of (A.20),

(A.21) and (A.22), the second part is a direct consequence of assumption D̃∗ ≤ 1
81κ

σr(X?)
σ1(U?) and assumption D̃F ≤ ρσr(U?r ).

APPENDIX D
PROOF OF SUBLINEAR RATE OF SPECTRAL GRADIENT DESCENT

We first use following lemma to prove the sublinear rate.

Lemma 7. For the sequence of the iterates {Ui}ki=0, we have

f(UiU
T
i )− f(Ui+1Ui+1

T ) ≥ αi · ‖[∇f(Xi) · Ui]#∞‖2S∞
= αi · ‖∇f(Xi) · Ui‖2∗ (D.1)

and

f(UiU
T
i )− f(U∗U∗T ) ≤ βi · ‖[∇f(Xi) · Ui]#∞‖S∞ (D.2)

where αi = 1.117 ηi and βi = (2 + 19
81 )D∞(Ui, U

∗).

Define δi = f(UiU
T
i )− f(U∗U∗T ) and follow the previous lemma. We know {δi} is an positive decreasing sequence and

δi+1 ≤ δi − αi · ‖[∇f(X) · U ]#∞‖2S∞
≤ δi −

αi
β2
i

· δ2
i

Dividing both sides with (δi · δi+1), we obtain, by assumption (IV.5),

1

δi+1
− 1

δi
≥ αi
β2
i

· δi
δi+1

≥ αi
β2
i

≥ αi

D̃2
S∞

.

Telescoping the inequality we get the desired result.
Now we prove (D.1) of lemma 7. The smoothness gives

f(UiU
T
i )− f(Ui+1Ui+1

T ) ≥ 〈∇f(Xi), Xi −Xi+1〉 −
L

2
‖Xi −Xi+1‖2S∞

=
〈
∇f(Xi), (Ui − Ui+1)UTi + Ui(Ui − Ui+1)T

〉︸ ︷︷ ︸
1©

−
〈
∇f(Xi), (Ui − Ui+1)(Ui − Ui+1)T

〉︸ ︷︷ ︸
2©

−L
2
‖Xi −Xi+1‖2S∞︸ ︷︷ ︸

3©
(D.3)

For 1© we have 〈
∇f(Xi), (Ui − Ui+1)UTi + Ui(Ui − Ui+1)T

〉
=2〈∇f(Xi)Ui, Ui − Ui+1〉
=2ηi

〈
∇f(Xi)Ui, [∇f(Xi)Ui]

#
∞
〉

=2ηi‖∇f(Xi)Ui‖2∗.
(D.4)

To upper bound 2©, we use 〈
∇f(Xi), (Ui − Ui+1)(Ui − Ui+1)T

〉
=η2

i ‖∇f(Xi) · Ui‖2∗ · Trace(AT∇f(Xi)A

[
Ir 0
0 0(n−r)×(n−r)

]
)

≤η2
i ‖∇f(Xi) · Ui‖2∗ · ‖∇f(Xi)r‖∗

(∗)
≤ 1

4
ηi‖∇f(Xi) · Ui‖2∗ (D.5)
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in which A is the left-singular vectors of ∇f(Xi) · Ui and ‖∇f(Xi)r‖∗ equals to the sum of the top r singular values of
∇f(Xi). (∗) is by ηi ≤ 1

4‖∇f(Xi)r‖∗ .
To upper bound 3©, we use

‖UiUTi − Ui+1U
T
i+1‖S∞

=‖Ui(Ui − Ui+1)T + (Ui − Ui+1)UTi − (Ui − Ui+1)(Ui − Ui+1)T ‖S∞
≤2‖Ui‖S∞‖Ui − Ui+1‖S∞ + ‖Ui − Ui+1‖2S∞
=2ηi‖Ui‖S∞‖∇f(Xi) · Ui‖∗ + η2

i ‖∇f(Xi) · Ui‖2∗
=ηi ‖∇f(Xi) · Ui‖∗ [2‖Ui‖S∞ + ηi‖∇f(Xi) · Ui‖∗]

(1)

≤ηi ‖∇f(Xi) · Ui‖∗ [2‖Ui‖S∞ + ηi‖∇f(Xi)r‖∗‖Ui‖S∞ ]

(2)

≤ηi ‖∇f(Xi) · Ui‖∗
9

4
‖Ui‖S∞ (D.6)

where (1) is due to the rank of Ui is less than r and (2) is by ηi ≤ 1
4‖∇f(Xi)r‖∗ . Plugging above inequalities into (D.3), we

obtain

f(UiU
T
i )− f(Ui+1Ui+1

T )

≥2ηi‖∇f(Xi)Ui‖2∗ −
1

4
ηi‖∇f(Xi) · Ui‖2∗

− L

2
(
9

4
ηi ‖Ui‖S∞‖∇f(Xi) · Ui‖∗)2

≥ηi‖∇f(Xi) · Ui‖2∗

[
7

4
− L

2

(
9

4

)2

ηi‖Ui‖2S∞

]
(∗)
≥1.117 ηi ‖∇f(Xi) · Ui‖2∗ (D.7)

(∗) is by ηi ≤ 1
4L‖Xi‖S∞

= 1
4L‖Ui‖2S∞

. We have thus finished the first part of lemma 7.
Now we give the proof of (D.2) of lemma 7.

We denote

RUi
≡ arg min

R
R is unitary

‖Ui − U∗R‖S∞ . (D.8)

and define ∆Ui
≡ Ui − U∗RUi

. Then we have

f(UiU
T
i )− f(U∗U∗T )

≤〈∇f(Xi), Xi −X∗〉
=
〈
∇f(Xi),∆Ui

UTi
〉

+
〈
∇f(Xi), Ui∆

T
Ui

〉
−
〈
∇f(Xi),∆Ui

∆T
Ui

〉
=2〈∇f(Xi)Ui,∆Ui

〉 −
〈
∇f(Xi),∆Ui

∆T
Ui

〉
≤2‖∇f(Xi) · Ui‖∗‖∆Ui‖S∞ +

∣∣〈∇f(Xi),∆Ui∆
T
Ui

〉∣∣︸ ︷︷ ︸
1©

(D.9)

To upper bound 1©, we use 〈
∇f(Xi),∆Ui

∆T
Ui

〉
= 〈∇f(Xi)∆Ui

,∆Ui
〉

≤ ‖∇f(Xi)∆Ui
‖∗‖∆Ui

‖S∞
= ‖∇f(Xi)P∆Ui

∆Ui
‖∗‖∆Ui

‖S∞
≤ ‖∇f(Xi)P∆Ui

‖∗‖∆Ui
‖2S∞

(∗)
≤
(
‖∇f(Xi)PUi

‖∗

+ ‖∇f(Xi)PU∗‖∗
)
‖∆Ui

‖2S∞ (D.10)

in which PU denotes the projection onto Col(U), and (∗) is due to Span(Col(∆Ui)) ⊆ Span(Col(Ui) ∪ Col(U∗r )).
Continuing, we compute
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‖∇f(Xi)PUi‖∗ = ‖∇f(Xi)UiU
†
i ‖∗

(1)

≤ ‖∇f(Xi)Ui‖∗
1

σr(Ui)
(2)

≤ ‖∇f(Xi)Ui‖∗
10

9σr(U∗)
(D.11)

in which U†i denotes the pseudoinverse of Ui. Here (1) is due to σ1(U†i ) = σr(Ui)
−1, and (2) is by assumption (IV.5), Weyl’s

inequality and σr(U∗RUi
) = σr(U

∗). Similarly, we have

‖∇f(Xi)PU∗‖∗ = ‖∇f(Xi)U
∗(U∗)†‖∗

≤ ‖∇f(Xi)U
∗‖∗︸ ︷︷ ︸

A©

1

σr(U∗)
. (D.12)

To upper bound A©, we use the following inequality.

‖∇f(Xi)U
∗‖∗ = ‖∇f(Xi)U

∗RUi‖∗
≤ ‖∇f(Xi)Ui‖∗ + ‖∇f(Xi)∆Ui‖∗
= ‖∇f(Xi)Ui‖∗ + ‖∇f(Xi)P∆Ui

∆Ui‖∗
≤ ‖∇f(Xi)Ui‖∗ + ‖∇f(Xi)P∆Ui

‖∗‖∆Ui
‖S∞

(1)

≤ ‖∇f(Xi)Ui‖∗ + (‖∇f(Xi)PUi
‖∗

+ ‖∇f(Xi)PU∗‖∗)‖∆Ui
‖S∞

(2)

≤ ‖∇f(Xi)Ui‖∗ +
(10

9
‖∇f(Xi)Ui‖∗

+ ‖∇f(Xi)U
∗‖∗
)‖∆Ui

‖S∞
σr(U∗)

(3)

≤ ‖∇f(Xi)Ui‖∗ +
1

10

(10

9
‖∇f(Xi)Ui‖∗

+ ‖∇f(Xi)U
∗‖∗
)

=
10

9
‖∇f(Xi)Ui‖∗ +

1

10
‖∇f(Xi)U

∗‖∗. (D.13)

Here, (1) is owing to the similar reason of (D.10), (2) is obtained by plugging in (D.11) and (D.12) and (3) is by assumption
(IV.5). Thus we arrive at

‖∇f(Xi)U
∗‖∗ ≤

(
10

9

)2

‖∇f(Xi)Ui‖∗. (D.14)

Plugging this into (D.12), we get

‖∇f(Xi)PU∗‖∗ ≤
(

10

9

)2

‖∇f(Xi)Ui‖∗
1

σr(U∗)
. (D.15)

Combining (D.11) and (D.15) with (D.10), we obtain〈
∇f(Xi),∆Ui

∆T
Ui

〉
≤
(
‖∇f(Xi)Ui‖∗

10

9σr(U∗)

+

(
10

9

)2

‖∇f(Xi)Ui‖∗
1

σr(U∗)

)
‖∆Ui

‖2S∞

= ‖∇f(Xi)Ui‖∗
190

81

‖∆Ui
‖S∞

σr(U∗)
‖∆Ui

‖S∞
(∗)
≤ 19

81
‖∇f(Xi)Ui‖∗‖∆Ui

‖S∞ (D.16)

where (∗) is by assumption (IV.5). Now we plug (D.16) into (D.9) and obtain

f(UiU
T
i )− f(U∗U∗T ) ≤

(
2 +

19

81

)
‖∆Ui

‖S∞‖∇f(Xi) · Ui‖∗. (D.17)
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The last part is to prove mini γi ≥ 1
4η by showing ‖Ui‖S∞ ≤ 11

9 ‖U0‖S∞ and

‖∇f(Xi)r‖∗ ≤
40L

81
σr(U0)σ1(U0) + ‖∇f(X0)r‖∗. (D.18)

By assumption (IV.5) and Weyl’s inequality, we have for every i ≥ 0

(1− 1

10
)σ1(U∗) ≤ σ1(Ui) ≤ (1 +

1

10
)σ1(U∗) , and thus

1 + 1
10

1− 1
10

σ1(U0) ≥ σ1(Ui). (D.19)

Since ‖∇f(Xi)r‖∗ is the Ky Fan r-norm of ∇f(Xi), we have

‖∇f(Xi)r‖∗ ≤ ‖((∇f(Xi)−∇f(X0))r‖∗ + ‖∇f(X0)r‖∗
≤ ‖∇f(Xi)−∇f(X0)‖∗ + ‖∇f(X0)r‖∗
≤ LS∞→S1‖Xi −X0‖S∞ + ‖∇f(X0)r‖∗
≤ LS∞→S1

(
‖Xi −X∗‖S∞ + ‖X0 −X∗‖S∞

)
+ ‖∇f(X0)r‖∗.

Since

‖Xi −X∗‖S∞ = ‖Ui(Ui − U∗RUi)
T

+ (Ui − U∗RUi
)(U∗RUi

)T ‖S∞
≤ ‖Ui − U∗RUi

‖S∞(‖Ui‖S∞ + ‖U∗‖S∞),

we have

‖Xi −X∗‖S∞ + ‖X0 −X∗‖S∞
≤‖Ui − U∗RUi

‖S∞(‖Ui‖S∞ + ‖U∗‖S∞)

+ ‖U0 − U∗RU0
‖S∞(‖U0‖S∞ + ‖U∗‖S∞)

≤σr(U
∗)

10
σ1(U0)(

11

9
+

10

9
+ 1 +

10

9
)

≤ 1

1− 1
10

σr(U0)

10
σ1(U0)

40

9

=
40

81
σr(U0)σ1(U0)

by applying inequality (D.19).

APPENDIX E
PROOF OF LEMMA 1

Using chain rules, we see that
∇f(A) = ∇lse(Ax)x>. (E.1)

To prove the convexity of f , we compute

〈∇f(A)−∇f(A′), A−A′〉 =
〈
∇lse(Ax)x> −∇lse(A′x)x>, A−A′

〉
= 〈∇lse(Ax)−∇lse(A′x), Ax−A′x〉
≥ 0

since the lse function is convex.
We now turn to the smoothness parameters. Since transposing a matrix does not alter the Schatten-p norm, we have

‖∇f(A)−∇f(A′)‖F =
∥∥∥(∇lse(Ax)−∇lse(A′x)

)
x>
∥∥∥
F

≤ ‖x‖2‖∇lse(Ax)−∇lse(A′x)‖2
≤ ‖x‖2‖(A−A′)x‖2, by (IV.2)

≤ ‖x‖22‖A−A′‖F
which proves (IV.8).
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Using similar arguments, we compute

‖∇f(A)−∇f(A′)‖S1
=
∥∥∥(∇lse(Ax)−∇lse(A′x)

)
x>
∥∥∥
S1

≤ ‖x‖2‖∇lse(Ax)−∇lse(A′x)‖2
≤ ‖x‖2‖∇lse(Ax)−∇lse(A′x)‖1
≤ ‖x‖2‖(A−A′)x‖∞, by (IV.3)

≤ ‖x‖22‖A−A′‖S∞
which establishes (IV.9).

APPENDIX F
PROOF OF LEMMA 2

The convexity of f̂ follows immediately from the convexity of f .

For any two positive semi-definite matrices Z1 =

[
A1 B1

B>1 D1

]
and Z2 =

[
A2 B2

B>2 D2

]
, we have

‖∇f̂(Z1)−∇f̂(Z2)‖qSq
=

1

2

∥∥∥∥[ 0 ∇f(B1)−∇f(B2)
∇f(B1)−∇f(B2) 0

]∥∥∥∥q
Sq

(1)
=

1

2

∥∥∥∥[∇f(B1)−∇f(B2) 0
0 ∇f(B1)−∇f(B2)

]∥∥∥∥q
Sq

(2)
=

1

2

(
‖∇f(B1)−∇f(B2)‖qSq

+ ‖∇f(B1)−∇f(B2)‖qSq

)
(3)

≤ Lq‖B1 −B2‖qSp
, (F.1)

where
(1) is because || · ||Sq

is permutation invariant,
(2) is because of the block-diagonal structure, and
(3) uses the smoothness of f .
It remains to see that ‖B1 −B2‖Sp

≤ ‖Z1 − Z2‖Sp
. In order to prove this, we use the permutation invariance of the || · ||Sp

,
and the Pinching inequality [1]:

‖Z1 − Z2‖pSp
=

∥∥∥∥[B1 −B2 A1 −A2

D1 −D2 B>1 −B>2

]∥∥∥∥p
Sp

≥ ‖B1 −B2‖pSp
.

APPENDIX G
SYNTHETIC DATA FOR PHASE RETRIEVAL

Two synthetic datasets are further presented in Figure 1 and 2. The results are in accordance with Section VI in the main text.
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Original Picture

Nuclear Wirtinger Flow Wirtinger Flow Fienup

Phaselift Phaselamp Phasemax

Truncated Amplitude Flow SketchyCGM Reweighted Wirtinger Flow

Fig. 1: Comparison of phase retrieval algorithms, synthetic dataset 2.
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Original Picture

Nuclear Wirtinger Flow Wirtinger Flow Fienup

Phaselift Phaselamp Phasemax

Truncated Amplitude Flow SketchyCGM Reweighted Wirtinger Flow

Fig. 2: Comparison of phase retrieval algorithms, synthetic dataset 3.
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APPENDIX H
WIRTINGER FLOW V.S. NUCLEAR WIRTINGER FLOW

In Figure 4 we present the images recovered from nuclear Wirtinger flow and Wirtinger flow, indexed by time. Our experiments
show that the nuclear Wirtinger flow quickly finds area (at t = 4s) where meaningful image characteristics start to emerge. At
t = 8s, a fully visible image is recovered, and the reconstruction stays at the solution for a short period. However, the nuclear
Wirtinger flow eventually overfits and returns a noisy figure; see Figure 3. This phenomenon is possibly due to the mismatch of
the mathematical model and real Fourier Ptychographic reconstructions.

In contrast, the Wirtinger flow recovers only partial image at t = 8s, and exhibits oscillating behaviors. Eventually the
Wirtinger flow overfits, and return solutions like random noise.

We stress that the Wirtinger flow fails to recover the image for all the initializations we have tried, whereas the nuclear
Wirtinger flow is quite robust to the choice of initial point.
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Fig. 3: Final solution of the nuclear Wirtinger flow, t = 37s.

APPENDIX I
SPECTRAL GRADIENT METHODS FOR FASTTEXT

Four more datasets are presented in Figure 5. The results are in accordance with our observations in Section VI-B: The
heuristic version of (V.4) is the best optimization algorithm, in that it solves the training problem most efficiently, but is prone
to overfitting. On the other hand, the theoretical iterates (V.4) is either the best or comparable to the other methods in terms of
prediction accuracy.
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(a) Nuclear Wirtinger flow at t = 2s. (b) Wirtinger flow at t = 2s.

(c) Nuclear Wirtinger flow at t = 4s. (d) Wirtinger flow at t = 4s.

(e) Nuclear Wirtinger flow at t = 8s. (f) Wirtinger flow at t = 8s.

(g) Nuclear Wirtinger flow at t = 14s. (h) Wirtinger flow at t = 14s.

(i) Nuclear Wirtinger flow at t = 16s. (j) Wirtinger flow at t = 16s.

Fig. 4: Nuclear Wirtinger Flow v.s. Wirtinger Flow
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Fig. 5: From left to right, training loss and test accuracy. From top to bottom, results on Yelp Review Polarity, AG
News, Sogou News, and Amazon Review Polarity
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