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Abstract

Speech intelligibility is an important assessment criterion of the
communicative performance of pathological speakers. To assist
clinicians in their assessment, time- and cost-efficient automatic
intelligibility measures offering a repeatable and reliable assess-
ment are desired. In this paper, we propose to automatically as-
sess pathological speech intelligibility based on a distance mea-
sure between the subspaces of spectral patterns of the pathologi-
cal speech signal and of a fully intelligible (healthy) speech sig-
nal. To extract the subspace of spectral patterns we investigate
two linear decomposition methods, i.e., Principal Component
Analysis and Approximate Joint Diagonalization. Pathological
speech intelligibility is then derived using a Grassman distance
measure which quantifies the difference between the extracted
subspaces of pathological and healthy speech. Experiments
on an English database of Cerebral Palsy patients show that
the proposed intelligibility measure is significantly correlated
with subjective intelligibility ratings. In addition, comparisons
to state-of-the-art measures show that the proposed subspace-
based measure achieves a high performance with a significantly
lower computational cost and without imposing any constraints
on the speech material of the speakers.
Index Terms: spectral subspace, Grassman distance, Principal
Component Analysis, Approximate Joint Diagonalization

1. Introduction
Speech is a very complex activity which can be significantly im-
paired due to pathologies caused by genetic influences, physical
deformities, or neurological malfunctions. Many pathologies
cause impairments in the speech production mechanism that re-
sult in reduced speech intelligibility and communicative abil-
ity [1]. As an index of pathology severity, functional limita-
tion, and impairment progress, speech intelligibility assessment
plays a crucial rule in clinical decision-making and monitoring.

Subjective listening tests are a gold standard for patholog-
ical speech intelligibility assessment. Such subjective assess-
ments are not only time-consuming and costly, but they may
also be influenced by the familiarity of the listener with the pa-
tient’s speech pathology and the contextual/linguistic informa-
tion available in the speech tasks under study [2]. To further
assist clinicians in their assessments, automatic measures offer-
ing frequent, reliable, economical, and objective intelligibility
assessment are required.

Automatic pathological speech intelligibility assessment
approaches can be broadly categorized into i) blind approaches
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which do not require any healthy (intelligible) speech sig-
nals [3–10] and ii) non-blind approaches which exploit infor-
mation about intelligible speech from healthy speakers [11–20].

Blind intelligibility assessment approaches typically refer
to extracting several acoustic features that are believed to be cor-
related with intelligibility, such as the range of the fundamen-
tal frequency or the low-to-high modulation energy ratio [6, 7].
Intelligibility scores are then estimated by combining multiple
features via feature selection and regression training [3–10].

Non-blind approaches encompass a wide range of ap-
proaches where healthy reference signals are exploited in differ-
ent manners. For example, in [11] a single speaker-independent
Gaussian Mixture Model (GMM) is trained on data of healthy
speakers to create a healthy reference model. By adapting
the parameters of this reference model, a GMM-based super-
vector is created to represent the pathological speech signal
and the intelligibility score is obtained by training a regres-
sion model on the GMM-based supervector. A very similar
approach is followed in [12–14], with the difference consist-
ing in using an iVector representation instead of a GMM-based
supervector. In [15–19] healthy reference signals are needed
to train an Automatic Speech Recognition (ASR) system. The
ASR system is used to replace human listeners and pathologi-
cal speech intelligibility is computed based on the word recog-
nition rate. Finally, for the pathological speech intelligibility
measure based on short-time objective intelligibility (P-ESTOI)
in [20], healthy reference signals are used to create an intelligi-
ble utterance representation in the perceptually relevant octave
band domain. After using Dynamic Time Warping (DTW) to
align the pathological octave band representation to the intel-
ligible representation, pathological speech intelligibility is di-
rectly computed as the divergence between the two aligned rep-
resentations.

Many of the above-mentioned blind and non-blind ap-
proaches that rely on regression training have not followed a
fair leave-one-subject-out evaluation paradigm, which might
positively bias the reported results. Furthermore, the above-
mentioned GMM-based, iVector-based, and ASR-based ap-
proaches require a large amount of healthy speech data. Addi-
tionally, ASR-based approaches are complex and might be un-
predictable for severe patients [12]. Unlike these approaches,
P-ESTOI does not suffer from such drawbacks since it does not
require any regression training or a large amount of healthy
speech data. However, P-ESTOI relies on time-alignment.
Time-alignment using DTW might fail for severe patients, its
computational cost is high when aligning long utterances, and
it intrinsically requires healthy and pathological speakers utter-
ing the same speech material, and hence, it cannot be used in
phonetically unbalanced scenarios.

Motivated by the success of P-ESTOI, while aiming to
avoid time-alignment and its inherent drawbacks, in this pa-
per we propose an automatic pathological intelligibility mea-
sure exploiting spectral bases of the octave band representa-
tions of intelligible and pathological speech. We propose to



find the subspaces of spectral patterns characterizing intelligible
(healthy) and pathological speech using linear decomposition
methods such as Principal Component Analysis (PCA) or Ap-
proximate Joint Diagonalization (AJD). The distance between
the two subspaces is quantified using a Grassman distance mea-
sure and used to predict the intelligibility score of the patho-
logical speaker. Experimental results on the Universal Access
(UA) speech database [21] of Cerebral Palsy (CP) patients show
that the proposed measure yields significant correlations with
subjective intelligibility scores, while avoiding time-alignment,
large amounts of training data, and being applicable to phoneti-
cally unbalanced scenarios.

2. Subspace-Based Pathological Speech
Intelligibility Assessment

Speech spectrograms can be well approximated using low-rank
matrices constructed based on low-dimensional spectral pat-
terns. In the context of pathological speech intelligibility as-
sessment, we hypothesize that the spectral patterns characteriz-
ing intelligible (healthy) speech differ from the spectral patterns
characterizing pathological speech, with the difference increas-
ing as pathological speech intelligibility decreases. To automat-
ically assess speech intelligibility using spectral patterns, we
propose to i) compute spectral bases characterizing an intelligi-
ble (healthy) utterance, ii) compute spectral bases characteriz-
ing the test (pathological) utterance, and iii) compute a distance
measure between the healthy and pathological spectral bases.
A schematic representation of the proposed pathological speech
intelligibility measure is presented in Figure 1.

In the remainder of this section, the computation of the
spectral bases and of the distance measure are presented. Fur-
thermore, insights on the computational complexity reduction
that is achieved using the proposed measure instead of P-ESTOI
are also provided.

2.1. Computing intelligible spectral bases

As in P-ESTOI [20], in order to obtain a simplified internal rep-
resentation resembling the transform properties of the auditory
system, signals are first transformed to the time-frequency (TF)
domain using one-third octave band analysis. Let Hs denote
the (J × Ms)-dimensional TF representation of an utterance
from healthy speaker s, with J the number of octave bands and
Ms the number of time frames. Searching for spectral patterns
characterizing an intelligible (healthy) utterance, we propose to
project each time frame in Hs into a set of J-dimensional spec-
tral bases vectors uk, k = 1, 2, , . . . , B, with B < J . To
obtain meaningful spectral bases vectors, multiple representa-
tions of utterances by different healthy speakers should be taken
into account, such that the spectral bases can capture patterns
which are specific to intelligible speech but are independent of
the particular speaker. A large number of matrix decomposi-
tion techniques exist to solve such a problem. As presented in
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Figure 1: Schematic representation of the proposed subspace-
based pathological speech intelligibility measure.

Sections 2.1.1 and 2.1.2, we will use here the PCA and AJD
techniques.

2.1.1. Principal Component Analysis

To take into account multiple healthy speakers, we consider the
octave band representation of an utterance from all available
healthy speakers and compute the average long-term spectral
correlation ΦH , i.e.,

ΦH =

c∑
s=1

1

Ms
HsH

T
s , (1)

with c being the number of available healthy speakers. The data
are assumed to be mean-centered before computing the long-
term spectral correlations. In order to obtain healthy spectral
bases, the eigenvalue decomposition (EVD) of ΦH is first com-
puted, i.e.,

ΦH = UΣUT , (2)
with U being the J × J-dimensional matrix of eigenvectors ui

and Σ being the J×J-dimensional diagonal matrix of eigenval-
ues σi assumed to be sorted in descending order. The (J ×B)-
dimensional matrix of spectral bases ŨH is then defined as the
first B eigenvectors in U. Clearly, the number of considered
spectral bases B is a hyper-parameter of the proposed tech-
nique. The choice of B is discussed in Section 2.1.3.

2.1.2. Approximate Joint Diagonalization

If spectral correlations from different healthy speakers differ
significantly, computing spectral bases using the average of the
long-term spectral correlations in (1) might yield spectral pat-
terns that do not offer a reasonable approximation to the differ-
ent representations. Hence, instead of averaging spectral corre-
lations from all available healthy speakers, we also propose to
compute the healthy spectral bases by means of AJD [22]. AJD
computes a J × J-dimensional orthonormal matrix V which
aims to simultaneously transform all available spectral correla-
tions 1

Ms
HsH

T
s , s = 1, 2, . . . , c, to the diagonal form based

on a diagonality criterion [22], i.e.,

J(V) =

c∑
s=1

Off (VT 1

Ms
HsH

T
s V), (3)

where Off{A} denotes the sum of the squares of the off-
diagonal elements of the (N ×N)-dimensional matrix A, i.e.,

Off(A) =
∑

16i 6=j6N

|aij |2, (4)

with aij the (i, j)th entry of A. After appropriately sorting
the column vectors in V, the (J × B)-dimensional matrix of
healthy spectral bases ŨH is defined as the first B vectors in
V. For estimating V, the Jacobi Angles algorithm [22] is used.
Similarly to before, the number of considered spectral bases B
is a hyper-parameter of the proposed technique.

2.1.3. Choosing the number of spectral bases B

The number of spectral bases B affects the performance of the
proposed intelligibility measure. While on the one hand we
would like to use a large number of spectral bases B to bet-
ter approximate the available spectral correlations, on the other
hand, we would like to use a small number of spectral bases B
to ensure that only spectral patterns important for speech intel-
ligibility are being captured (rather than patterns describing ex-
traneous variations such as speaker variability or noise). Hence,



there is an inherent trade-off associated with selecting the num-
ber of bases B.

Dimensionality reduction techniques typically select B
based on a user-defined threshold on the percentage of overall
variance explained. Instead of selectingB based on the percent-
age of overall variance explained (which requires the threshold
as an additional hyper-parameter to be optimized), we propose
to automatically selectB by adapting the L-curve method origi-
nally proposed for regularized least-squares techniques [23]. To
apply the L-curve method, we compute the reconstruction er-
ror of the healthy spectral correlations for different bases num-
ber B. Due to the inherent trade-off between the reconstruc-
tion error and B, the plot of the reconstruction error versus B
typically has an L-shape, with the corner of the L-curve (i.e.,
point of maximum curvature) representing a reasonable com-
promise between simultaneously minimizing the reconstruction
error and keeping the number of spectral basesB as low as pos-
sible. The corner point is automatically determined using the
triangle method [24].

When healthy spectral bases are derived using PCA, the re-
construction error can be straight-forwardly computed as

εPCA(B) =

∥∥∥∥∥ΦH −
B∑

i=1

σiuiu
T
i

∥∥∥∥∥
2

F

=

J∑
i=B+1

σi, (5)

with ‖·‖F denoting the matrix Frobenius norm. When healthy
spectral bases are derived using AJD, we define the recon-
struction error using the minimum least-squares distortion cri-
teria [25], i.e.,

εAJD(B) =

c∑
s=1

min
Λs

∥∥∥∥ 1

Ms
HsH

T
s −VBΛsV

T
B

∥∥∥∥2
F

, (6)

where VB denotes the matrix constructed from the first B
columns of V found in (3) and Λs denotes a (B × B)-
dimensional diagonal matrix. Using some mathematical manip-
ulations (not presented here due to space constraints) εAJD(B)
can be computed as:

εAJD(B) =

c∑
s=1

Tr
(
(
1

Ms
HsH

T
s )

2)− B∑
i=1

di
2, (7)

where di is the ith diagonal element of
∑c

s=1 VT 1
Ms

HsH
T
s V.

Figure 2 depicts a typical L-curve obtained using PCA for
the data and system settings considered in Section 3. As illus-
trated in this figure, increasing the number of basesB decreases
the reconstruction error. However, decreasing the number of
bases B beyond the corner point (i.e., B = 5 in this example)
does not provide any further significant reduction in the recon-
struction error, making the corner point a reasonable compro-
mise between the minimization of the reconstruction error and
using a low number of spectral bases.

2.2. Computing test spectral bases

To derive the pathological speech intelligibility measure, spec-
tral bases of the test pathological representation need to be com-
pared to the intelligible spectral bases computed in Section 2.1.
Denoting by Ps the (J ×Ms)-dimensional TF representation
of the test pathological utterance from speaker s, the (J × B)-
dimensional test pathological spectral bases ŨP are computed
based on the EVD of 1

Ms
PsP

T
s (similarly as in Section 2.1.1).

2.3. Computing a distance measure between spectral bases

To predict the pathological speech intelligibility, a distance
measure between the subspaces spanned by the columns of ŨH

and ŨP needs to be defined. The spanned subspaces can be
viewed as points on the Grassman manifold. The Grassman
manifold has a Riemannian structure that allows the compu-
tation of many different distance measures on the manifold.
While other subspace distance measures can be used, in this
work we use the f-norm Chordal distance defined as

dCF = 2

√√√√ B∑
i=1

sin2(θi/2), (8)

where θi denotes the ith principal angle between sub-
spaces [26]. The final intelligibility score for each patient is
obtained as the mean of the Chordal distance values across all
considered utterances.

2.4. Complexity analysis

In this section, we provide some insights on the complexity
reduction that is achieved when using the proposed subspace-
based method instead of P-ESTOI.

The proposed subspace-based measure first needs to com-
pute covariance matrices with a complexity ofO(J2M), where
M denotes the number of time-frames [27]. In addition,
the complexity of the PCA decomposition based on the EVD
is O(J3) [28]. Similarly, the complexity of the AJD decompo-
sition is also O(J3) [29]. Hence, the proposed subspace-based
measure (using either PCA or AJD) has a computational com-
plexity of O(J2M + J3).

When using P-ESTOI, the burden on the computational
complexity arises due to using DTW. The DTW algorithm has
a computational complexity of O(MN), with M and N being
the number of time frames in the two octave band representa-
tions being aligned [30]. Additionally, for each iteration step of
DTW, a frame-wise Euclidean distance with complexity O(J)
needs to be computed. Hence, assuming M = N , the overall
complexity of P-ESTOI is O(JM2).

Since M � J (particularly for long utterances), using
the proposed subspace-based measure instead of P-ESTOI re-
duces the computational complexity by a factor ofM (i.e., from
O(JM2) toO(J2M +J3)), which can be advantageous when
using such automatic measures for real-time feedback and as-
sistance of clinicians.

3. Experimental Results
In this section, the performance of the proposed intelligibil-
ity measure is investigated and compared to state-of-the-art ap-
proaches.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

B

ε P
C

A
(B

)

Corner point

Figure 2: Typical L-curve obtained for the PCA reconstruction
error εPCA(B) versus the number of bases B for the data of a
sample utterance.



3.1. Database

We consider the UA speech database with 763 isolated words
from 15 English-speaking CP patients (11 males, 4 females) and
13 healthy speakers (9 males, 4 females) [21]. For each speaker,
155 isolated words were repeated 3 times, whereas the remain-
ing words were uttered only once. The subjective intelligibility
scores of patients range from 2% to 95%. Since multi-channel
recordings are available, we consider the recordings of the 5th
channel for our evaluation. Furthermore, an energy-based voice
activity detection [31] is used to extract speech-only segments.

3.2. Evaluation measures, considered scenarios, and state-
of-the-art approaches

To evaluate the performance, the automatically estimated in-
telligibility and the subjective intelligibility scores are com-
pared in terms of the Pearson correlation coefficient (R) and
the Spearman rank correlation coefficient (Rs) along with their
p-values (significance analysis).

To assess whether the length of the considered utterances
has any effect on the computed intelligibility measures, the fol-
lowing scenarios are investigated:

i) Word-level analysis where intelligibility scores are computed
for each word and the final intelligibility of the patient is ob-
tained as the mean across all word-level intelligibility scores.

ii) Text-level analysis where intelligibility scores are computed
for every 100 words concatenated to create a longer utterance.
Concatenating words this way yields in total 8 utterances for
each speaker. The final intelligibility of the patient is obtained
as the mean across all text-level intelligibility scores (i.e., 8
scores).

For scenarios i) and ii) the utterances uttered by the patients and
healthy speakers are the same. To assess whether phonetic vari-
ability between the utterances of patients and healthy speakers
have any effect on the computed intelligibility measures, we ad-
ditionally investigate the following scenarios:

iii) Text-level analysis with possibly common words where the
763 available words are randomly divided into two subsets
of equal size. One subset is used for the healthy speakers
whereas the other subset is used for the patients. Since some
words are repeated in the database, the utterances of healthy
speakers and patients overlap in terms of their phonetic con-
tent but are not the same. The random division of words into
two subsets is repeated 10 times and the reported correlation
is the average correlation across all repetitions whereas the
reported p-value is the maximum value obtained from all rep-
etitions.

iv) Text-level analysis without common words where a similar
procedure as in iii) is followed, excluding however any com-
mon words between the healthy speakers and patients.

The proposed intelligibility measure (using either PCA or
AJD) is compared to two state-of-the-art approaches, i.e., P-
ESTOI [20] and iVector-based regression [14]. The algorithmic
settings used for P-ESTOI are the same as in [20]. It should
be noted that P-ESTOI cannot be used in scenarios iii) and iv)
since it requires the phonetic content between the healthy speak-
ers and patients to be exactly the same. For the iVector-based
regression approach, we report the results from [14] where the
authors have evaluated the approach on the same database with
a leave-one-out strategy. It should be noted that the iVector-
based regression approach has been implemented on the word-
level scenario described in i).

3.3. Results

Table 1 presents the correlation and p-values obtained by the
proposed subspace-based measures (using either PCA or AJD),

Table 1: Performance of the proposed and state-of-the-art mea-
sures on 15 English CP patients for different scenarios.

Measures R p RS p
i) Word-level

P-ESTOI 0.94 2.5e−7 0.94 9.3e−7
iVector 0.74 – – –
AJD −0.82 1.7e− 4 −0.88 1.8e−5
PCA −0.83 1e−4 −0.88 1.8e−5

ii) Text-level
P-ESTOI 0.93 9e−7 0.95 3e−7
AJD −0.80 3.9e−4 −0.78 5.7e−4
PCA −0.81 2.4e−4 −0.83 1.2e−4

iii) Text-level with common words
AJD −0.79 6e−4 −0.78 9.5e−4
PCA −0.78 0.008 -0.76 0.019

iv) Text-level without common words
AJD −0.78 9.5e−4 −0.77 0.001
PCA −0.7 0.009 −0.65 0.047

P-ESTOI, and the iVector-based approach for different scenar-
ios. We consider the correlation values to be statistically sig-
nificant if p < 0.05. It can be observed that the proposed
subspace-based intelligibility measure using the PCA and AJD
decompositions achieves a high and significant correlation with
the subjective intelligibility scores in all considered scenarios.
When the phonetic content between healthy speakers and pa-
tients is entirely different (i.e., scenario iv)), using the AJD-
based decomposition appears to be more advantageous than us-
ing the PCA-based decomposition. Considering the word-level
and text-level intelligibility assessment with balanced phonetic
content, P-ESTOI gives the highest correlation values, which is
to be expected since it takes both spectral and temporal distor-
tions into account (while the proposed measure does not take
any temporal distortion into account). However, P-ESTOI is
computationally more expensive than the proposed measure and
cannot be used in phonetically unbalanced scenarios. Further-
more, the iVector-based approach yields the lowest Pearson cor-
relation in word-level intelligibility analysis (Rs and p values
are not reported in [14]).

In summary, it can be said that the proposed subspace-based
measure (using either PCA or AJD) yields high and signifi-
cant correlations with subjective scores and can also be ap-
plied to scenarios with phonetic variability between the healthy
and pathological speakers. In such scenarios, using the AJD
decomposition outperforms using the PCA decomposition. Ad-
ditional experimental results (not presented here due to space
constraints) suggest that the proposed subspace-based measure
achieves a high performance independently of the language, of
the speech pathology, or of the choice of healthy speakers to
compute the intelligible subspace.

4. Conclusion
To automatically assess pathological speech intelligibility, we
have proposed a measure based on the subspaces spanned by
the spectral bases of the octave band representation of healthy
and pathological speech signals. Once intelligible (healthy) and
pathological subspaces are estimated by applying linear decom-
positions on the speech data, pathological speech intelligibility
is quantified based on a Grassman distance between the two
subspaces. Experimental results on the UA speech database of
CP patients show that the proposed measure can obtain high
correlations with subjective intelligibility scores, while being
more computationally efficient than state-of-the-art measures,
not requiring a large amount of healthy data, and being appli-
cable to phonetically unbalanced speech data between healthy
and pathological speakers.
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