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Abstract

In acoustic multi-channel equalization techniques, such as complete multi-channel equalization based on the
multiple-input/output inverse theorem (MINT), relaxed multi-channel least-squares (RMCLS), and partial multi-channel
equalization based on MINT (PMINT), the length of the reshaping filters is generally chosen such that perfect
dereverberation can be achieved for perfectly estimated room impulse responses (RIRs). However, since in practice
the available RIRs typically differ from the true RIRs, this reshaping filter length may not be optimal. This paper
provides a mathematical analysis of the robustness increase of equalization techniques against RIR perturbations
when using a shorter reshaping filter length than conventionally used. Based on the condition number of the
(weighted) convolution matrix of the RIRs, a mathematical relationship between the reshaping filter length and the
robustness against RIR perturbations is established. It is shown that shorter reshaping filters than conventionally used
yield a smaller condition number, i.e., a higher robustness against RIR perturbations. In addition, we propose an
automatic non-intrusive procedure for determining the reshaping filter length based on the L-curve. Simulation
results confirm that using a shorter reshaping filter length than conventionally used yields a significant increase in
robustness against RIR perturbations for MINT, RMCLS, and PMINT. Furthermore, it is shown that PMINT using an
optimal intrusively determined reshaping filter length outperforms all other considered techniques. Finally, it is shown
that the automatic non-intrusively determined reshaping filter length in PMINT yields a similar performance as the
optimal intrusively determined reshaping filter length.
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1 Introduction
The microphone signals recorded in many hands-free
speech communication applications, such as teleconfer-
encing, voice-controlled systems, or hearing aids, do not
only contain the desired speech signal but also attenuated
and delayed copies due to reverberation. While early
reverberation may be desirable [1–3], late reverberation
may degrade the perceived speech quality and intelligibil-
ity [4–6] as well as the performance of automatic speech
recognition systems [7, 8]. In order to mitigate these detri-
mental effects of reverberation, several single-channel and

*Correspondence: ina.kodrasi@uni-oldenburg.de
Department of Medical Physics and Acoustics, University of Oldenburg, 26111
Oldenburg, Germany

multi-channel dereverberation techniques have been pro-
posed [9], with multi-channel techniques being generally
preferred since they are able to exploit both the spectro-
temporal and the spatial characteristics of the received
microphone signals. Existing multi-channel dereverber-
ation techniques can be broadly classified into spectro-
temporal enhancement techniques [10–14], probabilistic
modeling-based techniques [15–18], and acoustic multi-
channel equalization techniques [19–26]. Acoustic
multi-channel equalization techniques aim to reshape
the available room impulse responses (RIRs) between the
speaker and the microphone array. Since in theory they
can achieve perfect dereverberation [19], they represent
an attractive approach to speech dereverberation.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-018-0532-1&domain=pdf
http://orcid.org/0000-0002-1747-1322
mailto: ina.kodrasi@uni-oldenburg.de
http://creativecommons.org/licenses/by/4.0/


Kodrasi and Doclo EURASIP Journal on Advances in Signal Processing  (2018) 2018:11 Page 2 of 13

A well-known complete multi-channel equalization
technique aiming at acoustic system inversion is the
multiple-input/output inverse theorem (MINT)-based
technique [19], which however suffers from drawbacks
in practice. Since the available RIRs typically differ from
the true RIRs due to fluctuations (e.g., temperature or
position variations [27]) or due to the sensitivity of blind
system identification (BSI) and supervised system identifi-
cation (SSI) methods to near-common zeros or interfering
noise [28–30], MINT generally fails to invert the true
RIRs, possibly leading to severe distortions in the output
signal [22–24, 26]. In order to increase the robustness
against RIR perturbations, partial multi-channel equal-
ization techniques, such as relaxed multi-channel
least-squares (RMCLS) [23] and partial multi-channel
equalization based on MINT (PMINT) [24], have been
proposed. Since early reflections tend to improve speech
intelligibility [1–3] and late reflections are the major
cause of speech intelligibility degradation [4–6], the
objective of partial equalization techniques is to shorten
the overall impulse response by suppressing only the
late reflections. While RMCLS imposes no constraints
on the remaining early reflections, PMINT has been
shown to be more perceptually advantageous since it also
aims to control the remaining early reflections. Although
partial equalization techniques can be significantly more
robust than MINT, their performance still remains rather
susceptible to RIR perturbations [23, 24, 26]. As a result,
several methods have been proposed to further increase
the robustness against RIR perturbations. In [22, 24], it
has been proposed to incorporate regularization, such
that the distortion energy due to RIR perturbations is
decreased. In [26], it has been proposed to use a signal-
dependent penalty function to promote sparsity in the
output signal and reduce artifacts generated by non-
robust techniques. In [31, 32], it has been proposed to
relax the constraints on the filter design by constructing
approximate reshaping filters in the subband domain.
In [33], it has been proposed to relax the constraints on
the filter design by using a shorter reshaping filter length
than conventionally used. The objective of this paper
is to provide a mathematical analysis of the robustness
increase when using a shorter reshaping filter length as
well as to propose an automatic non-intrusive procedure
for selecting an optimal shorter reshaping filter length.
The length of the reshaping filters in MINT, RMCLS,

and PMINT is conventionally chosen such that per-
fect dereverberation can be achieved for perfectly esti-
mated RIRs. As already mentioned, since in practice the
available RIRs typically differ from the true RIRs, this
choice of the reshaping filter length yields a high sensi-
tivity to RIR perturbations. In [33], it has been analyt-
ically shown that decreasing the reshaping filter length
increases the robustness forMINT and PMINT only if the

multi-channel convolution matrix of the RIRs is a square
matrix. In this paper, it is analytically shown that decreas-
ing the reshaping filter length increases the robustness of
MINT, RMCLS, and PMINT independently of the dimen-
sion of the (weighted) multi-channel convolution matrix
of the RIRs. A mathematical relationship between the
reshaping filter length and the condition number of the
(weighted) multi-channel convolution matrix of the avail-
able RIRs, hence, the sensitivity of equalization techniques
to RIR perturbations, is derived. We show that shorter
reshaping filters than conventionally used yield a smaller
condition number, i.e., a higher robustness against RIR
perturbations.
In general, the reshaping filter length yielding opti-

mal performance can only be determined intrusively (i.e.,
using a clean reference signal), obviously limiting the prac-
tical applicability. Hence, we also propose and investigate
an automatic non-intrusive selection procedure for the
reshaping filter length based on the L-curve [34–36].
Simulation results for several acoustic systems and

RIR perturbations show by means of instrumental per-
formance measures that using shorter reshaping filters
in MINT, RMCLS, and PMINT significantly increases
the robustness against RIR perturbations. In addition, it
is demonstrated that PMINT using the optimal intru-
sively determined reshaping filter length outperforms the
other considered equalization techniques, yielding a larger
reverberant energy suppression and perceptual speech
quality improvement. Furthermore, it is shown that the
non-intrusively determined reshaping filter length yields a
nearly optimal performance for PMINT.
The paper is organized as follows. In Section 2, the con-

sidered acoustic configuration and the used notation is
introduced. In Section 3, state-of-the-art acoustic multi-
channel equalization techniques, i.e., MINT, RMCLS, and
PMINT, are briefly reviewed. In Section 4, the sensitiv-
ity of these equalization techniques to RIR perturbations
is evaluated by means of the condition number of the
(weighted) convolution matrix and analytical insights on
increasing the robustness by decreasing the reshaping
filter length are provided. In Section 5, the automatic non-
intrusive procedure for determining the reshaping filter
length is discussed. Using instrumental performancemea-
sures, the dereverberation performance of all considered
techniques is compared in Section 6.

2 Configuration and notation
We consider an acoustic system with a single speech
source and M microphones, as depicted in Fig. 1. The
m-th microphone signal ym(n), m = 1, 2, . . . , M, at
discrete time index n, is given by

ym(n) = hm(n) ∗ s(n)
︸ ︷︷ ︸

xm(n)

+vm(n), (1)
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Fig. 1 Acoustic system configuration

where ∗ denotes convolution, s(n) is the clean speech sig-
nal, hm(n) is the RIR between the speech source and the
m-th microphone, xm(n) is the reverberant speech com-
ponent, and vm(n) is the noise component. Since acoustic
multi-channel equalization techniques generally design
reshaping filters without taking the additive noise into
account, in the following it is assumed that vm(n) = 0, and
hence, ym(n) = xm(n).
Using the filter-and-sum structure in Fig. 1, the output

signal z(n) is equal to the sum of the filtered microphone
signals, i.e.,

z(n) =
M

∑

m=1
xm(n) ∗ gm(n) (2)

= s(n) ∗
M

∑

m=1
hm(n) ∗ gm(n)

︸ ︷︷ ︸

c(n)

, (3)

where gm(n) is the filter applied to the m-th microphone
signal and c(n) denotes the equalized impulse response
(EIR) between the speech source and the output of the sys-
tem. In vector notation, the RIR hm and the filter gm are
given by

hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , (4)

gm = [

gm(0) gm(1) . . . gm(Lg − 1)
]T , (5)

where Lh and Lg denote the RIR length and the reshap-
ing filter length, respectively. Using theMLg–dimensional
stacked filter vector g = [

gT1 g
T
2 . . . gTM

]T , the EIR vector c

of length Lc = Lh+Lg−1, i.e., c =[ c(0) c(1) . . . c(Lc−1)]T
can be expressed as

c = Hg, (6)

where H denotes the Lc × MLg–dimensional multi-
channel convolution matrix of the RIRs, i.e., H =
[H1H2 . . .HM], with

Hm=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

hm(0) 0 . . . 0

hm(1) hm(0)
. . .

...
... hm(1)

. . . 0

hm(Lh−1)
...

. . . hm(0)

0 hm(Lh−1)
. . . hm(1)

...
. . . . . .

...
0 . . . 0 hm(Lh−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7)

Using the Lc-dimensional clean speech vector
s(n) = [s(n)s(n − 1) . . . s(n − Lc + 1)]T , the output signal
in (3) can be expressed as

z(n) = cTs(n) = gTHTs(n). (8)

The reshaping filter g can then be constructed based on
different design objectives for the EIR c.

3 Acoustic multi-channel equalization
Acoustic multi-channel equalization techniques aim at
speech dereverberation by designing the reshaping fil-
ter g such that the (weighted) EIR c in (6) is equal to a
(weighted) target EIR cd. For the equalization techniques
considered in this paper, i.e., MINT [19], RMCLS [23],
and PMINT [24], the definition of the target EIR cd is pre-
sented in Table 1, where τ denotes a delay, Ld denotes
the length of the direct path and early reflections, and
p ∈ {1, . . . , M}. The delay τ is incorporated in order
to relax the causality constraints on the filter design [22].
The length of the direct path and early reflections Ld
in the RMCLS and PMINT is typically considered to be
between 10–50 ms [23, 24]. It should be realized that in
practice, only the perturbed RIRs ĥm are available, i.e.,
ĥm = hm + em, where em represents the RIR pertur-
bations due to fluctuations (e.g., temperature or position
fluctuations [27]) or due to the sensitivity of BSI and

Table 1 Definition of the target EIR cd and weighting matrixW for MINT, RMCLS, and PMINT

Technique Target EIR cd Weighting matrixW

MINT
[

0 . . . 0
︸ ︷︷ ︸

τ

1 0 . . . 0
]T I

RMCLS
[

0 . . . 0
︸ ︷︷ ︸

τ

1 0 . . . 0
]T diag

{[

1 . . . 1
︸ ︷︷ ︸

τ

1 0 . . . 0
︸ ︷︷ ︸

Ld

1 . . . 1
]T}

PMINT
[

0 . . . 0
︸ ︷︷ ︸

τ

ĥp(0) . . . ĥp(Ld − 1)
︸ ︷︷ ︸

Ld

0 . . . 0
]T I
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SSI methods to near-common zeros or interfering noise
[28–30]. Hence, for the filter design, the perturbed convo-
lution matrix Ĥ = H + E is used, where E represents the
convolution matrix of the RIR perturbations. The consid-
ered equalization techniques compute the filter g as the
solution of the system of equations

WĤg = Wcd, (9)

with W an Lc × Lc–dimensional diagonal weighting
matrix. The definition of the weighting matrix W for
MINT, RMCLS, and PMINT is presented in Table 1,
where I denotes the Lc × Lc–dimensional identity matrix.
Based on these definitions ofW and cd, it can be observed
that on the one hand, MINT and PMINT do not use a
weighting matrix and constrain all taps of the EIR (i.e.,
W = I), while on the other hand, RMCLS uses a weight-
ing matrix and does not constrain all taps of the EIR (i.e.,
W = diag

{[

1 . . . 1
︸ ︷︷ ︸

τ

1 0 . . . 0
︸ ︷︷ ︸

Ld

1 . . . 1
]T}

). It has been

experimentally validated in [23, 24, 26] that by constrain-
ing all taps of the EIR, MINT and PMINT may result in
a good perceptual speech quality but a high sensitivity to
RIR perturbations, whereas by not constraining all taps of
the EIR, RMCLS may result in a lower sensitivity to RIR
perturbations but a decreased perceptual speech quality.
For all considered equalization techniques, the reshap-

ing filter solving (9) is computed by minimizing the
(weighted) least-squares cost function

JLS = ‖W(Ĥg − cd)‖22. (10)

As shown in [19, 23, 24], assuming that the RIRs do not
share common zeros and using a reshaping filter length

Lg ≥
⌈

Lh − 1
M − 1

⌉

, (11)

with �·� the ceiling operator, the reshaping filter minimiz-
ing (10) to 0, and hence solving (9), is given by [19, 23, 24]

gLS = (WĤ)+(Wcd), (12)

where {·}+ denotes the matrix pseudo-inverse. When the
true RIRs are available, i.e., Ĥ = H, the reshaping filter
of length Lg according to (11) yields perfect dereverber-
ation, i.e., WHgLS = Wcd. However, in the presence of
RIR perturbations, i.e., Ĥ �= H, this filter typically fails
to achieve perfect dereverberation, i.e., WHgLS �= Wcd,
possibly even causing severe distortions in the output sig-
nal [24, 26]. The sensitivity of the reshaping filter to RIR
perturbations can be evaluated by analyzing the condition
number of the matrixWĤ.

4 Robust acoustic multi-channel equalization
In this section, the Wedin theorem [37] relating the con-
dition number of the matrix being inverted to the sensi-

tivity of the solution to perturbations is briefly reviewed.
In addition, it is analytically shown that using shorter
reshaping filters than conventionally used decreases the
condition number of thematrixWĤ, hence increasing the
robustness against RIR perturbations.
Wedin theorem [37]: Consider the system of equations

Aq = b, where the matrixA has dimensions u×v and rank
r ≤ min{u, v}. Let A be perturbed to A+ �A. The pseudo-
inverse solution q = A+b is then perturbed to q + �q =
(A + �A)+b, where �q is the deviation between the true
and the perturbed solution. The condition number χA of
the matrix A is defined as

χA = ‖A‖2
‖A+‖2 = σA(1)

σA(r)
, (13)

with σA(i) the i-th singular value of the matrix A, ordered
such that σA(1) ≥ σA(2) ≥ · · · ≥ σA(r) > 0. Using χA and
defining the variable ξ as

ξ = ‖�A‖2
‖A‖2 , (14)

the norm of the deviation between the true and the per-
turbed solution is bounded by

‖�q‖2 ≤ χAξ‖q‖2
1 − χAξ

+ ‖(AAT )+b‖2‖A‖2, (15)

where it is assumed that χAξ < 1.
The relation in (15) shows that a large condition num-

ber χA can result (and typically does) in a large deviation
between the true and the perturbed solution [37, 38].
For clarity of presentation, the notation summarized in

Table 2 is used in the following. In order to satisfy (11),
reshaping filters in acoustic multi-channel equalization

Table 2 Notation for different reshaping filter lengths and the
corresponding matrices

Variable Denotes

Ltg =
⌈

Lh−1
M−1

⌉

Reshaping filter length conventionally used in
acoustic multi-channel equalization techniques

WtĤt Matrix when using the reshaping filter length Ltg

pt = Lh + Ltg − 1 Number of rows inWtĤt

qt = MLtg ≥ pt Number of columns inWtĤt

rt ≤ pt Rank ofWtĤt

Lsg < Ltg Reshaping filter length smaller than Ltg

WsĤs Matrix when using the reshaping filter length Lsg

ps = Lh + Lsg − 1 Number of rows inWsĤs

qs = MLsg < ps Number of columns inWsĤs

rs = qs Rank ofWsĤs
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techniques are conventionally designed using the filter
length Ltg =

⌈

Lh−1
M−1

⌉

, i.e., based on the pt ×qt-dimensional

matrix WtĤt with pt ≤ qt and rank rt ≤ pt (cf. Table 2).
However, reshaping filters can also be designed using a
shorter filter length Lsg < Lst , i.e., based on the ps × qs-
dimensional matrix WsĤs (cf. Table 2). Considering that
Lsg <

Lh−1
M−1 , the matrix WsĤs is a full column-rank matrix

with fewer columns than rows, i.e., qs < ps, since

(M − 1)Lsg < Lh − 1 ⇒ MLsg
︸︷︷︸

qs

< Lh + Lsg − 1
︸ ︷︷ ︸

ps

. (16)

As schematically illustrated in Fig. 2, the matrix WsĤs
is a sub-matrix of WtĤt, constructed by deleting Ltg − Lsg
rows and M

(

Ltg − Lsg
)

columns from WtĤt. Aiming at
establishing a relation between the condition numbers of
the matricesWtĤt andWsĤs, i.e.,

χWtĤt
= σWtĤt

(1)
σWtĤt

(rt)
, (17)

χWsĤs
= σWsĤs

(1)
σWsĤs

(rs)
, (18)

we consider the following interlacing inequalities between
the singular values of a matrix and its sub-matrices [39].
Interlacing inequalities [39]: Given a matrix A of

dimensions u× v and a sub-matrix B obtained by deleting
l rows and/or columns fromA, the singular values ofA and
B interlace as

σA(i) ≥ σB(i) ≥ σA(i + l), (19)

for i = 1, . . . , min{u − l, v − l}.

Fig. 2 Schematic illustration of the construction of the
ps × qs-dimensional sub-matrixWsĤs from the pt × qt-dimensional
matrixWtĤt

Using (19), in Appendix A we derive the following
inequalities relating the largest and the smallest non-zero
singular values ofWtĤt andWsĤs:

σWtĤt
(1) ≥ σWsĤs

(1), (20)

σWsĤs
(rs) ≥ σWtĤt

(rt). (21)

It readily follows from (20) and (21) that the condition
number ofWsĤs is smaller than or equal to the condition
number ofWtĤt, i.e.,

χWsĤs
= σWsĤs

(1)
σWsĤs

(rs)
≤ σWtĤt

(1)
σWtĤt

(rt)
= χWtĤt

. (22)

Hence, using a shorter reshaping filter than conventionally
used in equalization techniques can result (and based on
simulations, it always does) in a lower condition number
of the matrix being inverted.
Figure 3 depicts the singular values of the matrix WtĤt

for PMINT, constructed using the conventional reshaping
filter length Ltg = 1947. The used acoustic system is sys-
tem S1 described in Section 6.1, withM = 4 microphones
and Lh = 5840. The singular values of two sub-matrices
WsĤs, constructed using Lsg = 1000 and Lsg = 300,
are also depicted. The largest and the smallest non-zero
singular values of eachmatrix are marked in order to illus-
trate the inequalities presented in (20) and (21). Using
these singular values, the condition numbers of the differ-
entmatrices are presented in Table 3, where it is illustrated
that using a shorter reshaping filter length than con-
ventionally used decreases the condition number of the
matrixWĤ.

Fig. 3 Singular values of the matrixWtĤt (Ltg = 1947) and of two

sub-matricesWsĤs
(

Lsg = 1000 and Lsg = 300
)

for PMINT. The largest
and the smallest non-zero singular values of each matrix are explicitly
marked. The considered acoustic system is system S1 described in
Section 6.1



Kodrasi and Doclo EURASIP Journal on Advances in Signal Processing  (2018) 2018:11 Page 6 of 13

Table 3 Condition number of the matrixWtĤt (Ltg = 1947) and

of two sub-matricesWsĤs (Lsg = 1000 and Lsg = 300) for PMINT

Filter length Condition number

Ltg = 1947 χWtĤt
= 1.65 × 107

Lsg = 1000 χWsĤs
= 4.91 × 103

Lsg = 300 χWsĤs
= 6.23 × 102

The considered acoustic system is system S1 described in Section 6.1

In summary, decreasing the reshaping filter length in
acoustic multi-channel equalization techniques decreases
the condition number of the matrix being inverted,
increasing the robustness against RIR perturbations.
However, decreasing the reshaping filter length also
reduces the equalization performance with respect to the
true RIRs, resulting in a trade-off between equalization
performance for perfectly estimated RIRs and robustness
in the presence of RIR perturbations. Using a shorter
reshaping filter is not only desirable to increase the robust-
ness against RIR perturbations, but also because of the
lower computational complexity of the reshaping filter
design.

5 Automatic non-intrusive reshaping filter length
The optimal reshaping filter length Loptg yielding the high-
est dereverberation performance obviously depends on
the acoustic system and the RIR perturbation level. In
simulations, Loptg can be intrusively determined by exploit-
ing a clean reference signal. Reshaping filters for several
reshaping filter lengths can be computed and applied to
the received microphone signals such that different out-
put signals are generated. The optimal reshaping filter
length Loptg can then be selected by comparing the differ-
ent output signals to the clean reference signal. Since one
typically does not have access to the clean reference sig-
nal, an automatic non-intrusive procedure is required in
practice.
Motivated by the simplicity and the applicability of

the L-curve to automatically determine a regularization
parameter in regularized (weighted) least-squares solu-
tions [24, 34, 35], in this section, we propose to use
the L-curve to automatically determine the reshaping fil-
ter length Lautog in acoustic multi-channel equalization
techniques.
Using a shorter reshaping filter introduces a trade-off

between the condition number χWĤ and the (weighted)
least-squares error ‖W(Ĥw − cd)‖22. An appropriate fil-
ter length should incorporate knowledge about χWĤ
and ‖W(Ĥw − cd)‖22, such that preferably both quan-
tities are kept as small as possible. Due to the aris-
ing trade-off between these quantities, the parametric
plot of the condition number versus the (weighted)

least-squares error for several reshaping filter lengths has
an L-shape. The corner of the L-curve, i.e., the point of
maximum curvature, is located where the filter changes
from being dominated by a large condition number to
being dominated by a large (weighted) least-squares error.
Hence, we propose to automatically select the reshap-
ing filter length Lautog as the filter length corresponding
to the corner of the parametric plot of the condition
number χWĤ versus the (weighted) least-squares error
‖W(Ĥw − cd)‖22.
Figure 4 depicts a typical L-curve obtained using

PMINT for acoustic system S1 described in Section 6.1.
As illustrated in this figure, decreasing the reshap-
ing filter length decreases χWĤ but at the same time
increases ‖W(Ĥw − cd)‖22. Although from such a curve
it seems straightforward to determine the reshaping fil-
ter length corresponding to the corner of the L-curve
(i.e., Lsg = 1000 in this example), numerical problems
may occur, and hence, a numerically stable algorithm
is required. Similarly as in [24], in this paper we use
the triangle method [36] for locating the corner of the
L-curve.

6 Simulation results and discussion
In this section, we investigate the influence of the reshap-
ing filter length on the dereverberation performance of
all considered acoustic multi-channel equalization tech-
niques. In Section 6.1, the considered acoustic systems,
instrumental performance measures, and algorithmic set-
tings are introduced. In Section 6.2, the increase in
robustness when using shorter reshaping filter lengths
is investigated. In Section 6.3, the performance of all
considered equalization techniques using the intrusively
determined reshaping filter length Loptg is compared for
several acoustic systems and RIR perturbation levels. In
Section 6.4, the performance of PMINT using the auto-
matic non-intrusively determined reshaping filter length
Lautog is investigated.

Fig. 4 Typical L-curve obtained using PMINT for several reshaping
filter lengths ranging from Ltg = 1947 to Lsg = 300. The considered
acoustic system is system S1 described in Section 6.1



Kodrasi and Doclo EURASIP Journal on Advances in Signal Processing  (2018) 2018:11 Page 7 of 13

6.1 Acoustic systems, instrumental performance
measures, and algorithmic settings

Acoustic systems. We consider three different reverber-
ant acoustic systems with a single speech source placed at
a distance of 2 m from M = 4 omni-directional micro-
phones. The RIRs between the speech source and the
microphones are measured using the swept-sine tech-
nique [40] and the reverberant signals are generated by
convolving 10 sentences (approximately 17 s long) from
the HINT database [41] with measured RIRs. For each
acoustic system, Table 4 presents the reverberation time
T60 of the room, the length of the RIRs Lh at a sam-
pling frequency fs = 8 kHz, and the input direct-to-
reverberant-ratio (iDRR). The iDRR is computed using the
RIR of the first microphone h1(n) and is defined as

iDRR = 10 log10

nd−1
∑

n=0
h21(n)

Lh−1
∑

n=nd
h21(n)

, (23)

where the first nd samples (corresponding to 3 ms)
of h1(n) represent the direct path propagation and the
remaining samples represent reflections [9]. In order to
simulate RIR perturbations, the measured RIRs are per-
turbed by proportional Gaussian distributed errors as pro-
posed in [42], such that a desired normalized projection
misalignment (NPM), i.e.,

NPM = 20 log10

∥

∥

∥h − hT ĥ
ĥT ĥ

ĥ
∥

∥

∥

2
‖h‖2 , (24)

is generated. Introducing proportional Gaussian dis-
tributed errors is a widely used technique to systematically
simulate RIR perturbations arising from system identifi-
cation methods. The considered NPMs for each acoustic
system are

NPM ∈ {−33 dB, −30 dB, . . . , −15 dB}, (25)

with −33 dB a moderate perturbation level and −15 dB
a larger perturbation level. It should be noted that the

Table 4 Characteristics of the considered measured acoustic
systems

Acoustic system T60 [ms] Lh iDRR [dB]

S1 730 5840 −2.79

S2 610 4880 −0.87

S3 360 2880 1.43

NPMs in (25) represent realistic NPMs achieved by state-
of-the-art BSI methods (for relatively short RIRs in the
order of 300 − 500 taps) [30].
Instrumental performance measures. The performance

of the equalization techniques is evaluated in terms
of the reverberant energy suppression and perceptual
speech quality improvement. The reverberant energy
suppression is evaluated using the improvement in
direct-to-reverberant ratio (�DRR), i.e., �DRR = oDRR
−iDRR, with

oDRR = 10 log10

nd−1
∑

n=0
c2(n)

Lc−1
∑

n=nd
c2(n)

, (26)

and iDRR defined in (23). Although �DRR exactly
describes the reverberant energy suppression, it cannot
be solely used to evaluate the dereverberation perfor-
mance of equalization techniques, since it does not
provide any insight on the reverberant energy decay rate.
To evaluate the reverberant energy decay rate, the energy
decay curve (EDC) [9] of the EIR c(n) is compared to the
energy decay curve of the true first RIR h1(n). The EDC
of the EIR c is computed as

EDCc(n) = 1
‖c‖22

Lc−1
∑

j=n
c2(j), n = 0, 1, . . . , Lc − 1,

(27)

and the EDC of the RIR h1(n) is computed similarly.
The perceptual speech quality is evaluated using the
frequency-weighted segmental signal-to-noise-ratio
(fSNR) and the cepstral distance (CD) [43]. In [44], it
has been shown that measures such as fSNR and CD can
exhibit a high correlation with subjective listening tests
when evaluating the overall quality and the perceived
amount of reverberation for a wide range of state-of-the-
art dereverberation (and noise reduction) techniques.
These signal-based measures are intrusive measures,
generating a similarity score between a test signal and a
reference signal. The reference signal employed here is
obtained by convolving the clean speech signal with the
direct path and early reflections (considered to be 10 ms
long) of h1(n). The improvement in fSNR, i.e., �fSNR,
is computed as the difference between the fSNR of the
output signal z(n) and the fSNR of the first microphone
signal x1(n). Similarly, the improvement in CD, i.e., �CD,
is computed as the difference between the CD of the
output signal z(n) and the CD of the first microphone
signal x1(n). Note that a positive �fSNR and a negative
�CD indicate a performance improvement.
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Algorithmic settings. For the acoustic systems
described in Table 4 and for all considered equaliza-
tion techniques, the conventionally used filter length is
Ltg =

⌈

Lh−1
M−1

⌉

, i.e., Ltg = 1947 for system S1, Ltg = 1627
for system S2, and Ltg = 960 for system S3. The delay is
set to τ = 90 and the length of the direct path and early
reflections is set to Ld = 0.01× fs, corresponding to 10 ms
(cf. Table 1). The target EIR cd for PMINT is constructed
using the first RIR, i.e., p = 1 (cf. Table 1).
We consider several shorter reshaping filter lengths for

all equalization techniques, i.e.,

Lsg ∈
⎧

⎨

⎩

{300, 330, . . . , 1920} for system S1
{300, 330, . . . , 1620} for system S2
{300, 330, . . . , 930} for system S3

. (28)

For each acoustic system, each NPM, and each equaliza-
tion technique, the optimal filter length Loptg is selected
from (28) as the filter length yielding the lowest CD. It
should be noted that using the CD for determining the
optimal reshaping filter length is an intrusive procedure
which cannot be applied in practice, since knowledge
of the clean reference signal is required. In Section 6.4,
the performance when using the automatic non-intrusive
procedure for selecting the reshaping filter length is
investigated.

6.2 Increasing robustness using shorter reshaping filters
In this section, the robustness of MINT, RMCLS, and
PMINT against RIR perturbations is investigated when
using the conventional reshaping filter length Ltg and the
optimal (shorter) reshaping filter length Loptg . Although
similar results are obtained for all considered acoustic sys-
tems, in this section, only results for acoustic system S1 are
presented. For completeness, the intrusively determined
optimal reshaping filter length Loptg for each considered
technique and NPM is presented in Table 5.
MINT using Ltg and Loptg . Figure 5 depicts the

performance of MINT when using the filter lengths Ltg

Table 5 Optimal intrusively determined reshaping filter length
Loptg for MINT, RMCLS, and PMINT for acoustic system S1 and all
considered NPMs

NPM [dB] MINT RMCLS PMINT

−33 1140 1200 1170

−30 1200 1200 1230

−27 930 1140 1200

−24 1050 1020 1050

−21 870 840 900

−18 780 780 900

−15 510 660 510

The conventionally used reshaping filter length is Ltg = 1947

and Loptg in terms of �DRR, EDC, �fSNR, and �CD. As
expected, the �DRR values presented in Fig. 5a show that
using the conventional filter length Ltg fails to suppress
the reverberant energy, even significantly worsening the
DRR by about 20 dB on average in comparison to h1.
Furthermore, it can be observed that using the shorter
filter length Loptg (cf. Table 5) significantly increases the
robustness of MINT for all NPMs, improving the DRR by
about 4 dB on average in comparison to h1. These results
are confirmed in Fig. 5b, which depicts the EDC of h1
and the EDCs of the EIRs obtained using MINT with Ltg
and Loptg for an NPM of −33 dB. It can be observed that
while using Ltg completely fails to achieve dereverbera-
tion and results in a slower reverberant energy decay rate
than h1, using L

opt
g yields a significantly faster reverberant

energy decay rate. However, using Loptg yields only a slight
improvement of the reverberant energy decay rate when
compared to h1, even for the moderate NPM of −33 dB.
The �fSNR and �CD values depicted in Fig. 5c, d show
that using the conventional filter length Ltg in MINT
yields a significantly worse quality than the unprocessed
microphone signal x1(n) for all NPMs. While an increase
in robustness is obtained for all NPMs using Loptg , for
most considered NPMs, the performance in terms of
�fSNR is still worse than for the unprocessedmicrophone
signal x1(n).
In summary, as expected from the theoretical analysis

in Section 4, these simulation results demonstrate that
using an optimal intrusively determined shorter reshap-
ing filter length than conventionally used in MINT is
advantageous to increase the robustness against RIR
perturbations. However, since acoustic system inversion
using MINT is very sensitive to RIR perturbations, these
results indicate that even a shorter reshaping filter is
not sufficient to make MINT robust enough against RIR
perturbations.
RMCLS using Ltg and Loptg . Figure 6 depicts the per-

formance of RMCLS using the filter lengths Ltg and Loptg
in terms of �DRR, EDC, �fSNR, and �CD. The �DRR
values presented in Fig. 6a show that using the con-
ventional filter length Ltg improves the DRR for moder-
ate NPMs, whereas for NPMs larger than −21 dB, the
DRR is worsened in comparison to h1. In addition, it
can be observed that using the shorter filter length Loptg
(cf. Table 5) significantly increases the reverberant energy
suppression for all NPMs, on average yielding a 6 dB larger
�DRR in comparison to the �DRR obtained using Ltg . To
evaluate the reverberant energy decay rate, Fig. 6b depicts
the EDC of h1 and the EDCs of the EIRs obtained using
RMCLS with Ltg and Loptg for an NPM of −33 dB. It can
be observed that for this moderate NPM, a very simi-
lar reverberant energy decay rate is obtained for RMCLS
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a b c d

Fig. 5 Performance of MINT using the conventional filter length Ltg and the optimal intrusively determined reshaping filter length Loptg for acoustic
system S1 in terms of a �DRR, b EDC for an NPM of −33 dB, c �fSNR, and d �CD

when using Ltg and Loptg . Since RMCLS using the con-
ventional filter length Ltg is relatively robust for moderate
NPMs and yields a fast reverberant energy decay rate, a
shorter reshaping filter does not yield any improvement in
the reverberant energy decay rate, but instead leads to a
significant improvement in the perceptual speech quality.
This is illustrated in Fig. 6c, d, which shows that using Loptg
in RMCLS significantly improves the �fSNR and �CD
values for all NPMs.
In summary, as expected from the theoretical analysis

in Section 4, these simulation results demonstrate that
using an optimal intrusively determined shorter reshap-
ing filter length than conventionally used in RMCLS is
advantageous and increases the robustness against RIR
perturbations.
PMINT using Ltg and Loptg . Figure 7 depicts the perfor-

mance of PMINT using the filter lengths Ltg and Loptg in
terms of �DRR, EDC, �fSNR, and �CD. As expected,
the �DRR values presented in Fig. 7a show that using
the conventional filter length Ltg in PMINT fails to sup-
press the reverberant energy, even worsening the DRR in
comparison to h1. Furthermore, it can be observed that
using Loptg (cf. Table 5) significantly increases the robust-
ness for all NPMs, on average improving the DRR by about
7 dB in comparison to h1. These results are further con-
firmed in Fig. 7b, which depicts the EDC of h1 and the

EDCs of the EIRs obtained using PMINT with Ltg and Loptg
for an NPM of −33 dB. It can be observed that PMINT
using Ltg completely fails to achieve dereverberation and
results in a slower reverberant energy decay rate than h1.
Using the optimal reshaping filter length Loptg yields a sig-
nificant increase in robustness, resulting in a much faster
reverberant energy decay rate than h1. Furthermore, the
�fSNR and �CD values depicted in Fig. 7c, d show that
while PMINT using Ltg worsens the perceptual speech
quality in comparison to the unprocessed microphone
signal x1(n), using Loptg results in a significantly better
performance.
In summary, as expected from the theoretical analysis in

Section 4, these simulation results demonstrate that using
an optimal intrusively determined shorter reshaping fil-
ter length than conventionally used in PMINT results in
a significant increase in robustness against RIR perturba-
tions, both in terms of reverberant energy suppression and
perceptual speech quality improvement.

6.3 Performance of equalization techniques when using
the optimal intrusive reshaping filter length

In the previous section, it was shown that using a
shorter reshaping filter than conventionally used increases
the robustness of all considered equalization tech-
niques against RIR perturbations. In this section, the

a b c d

Fig. 6 Performance of RMCLS using the conventional filter length Ltg and the optimal intrusively determined reshaping filter length Loptg for acoustic
system S1 in terms of a �DRR, b EDC for an NPM of −33 dB, c �fSNR, and d �CD
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a b c d

Fig. 7 Performance of PMINT using the conventional filter length Ltg and the optimal intrusively determined reshaping filter length Loptg for acoustic
system S1 in terms of a �DRR, b EDC for an NPM of −33 dB, c �fSNR, and d �CD

performance of MINT, RMCLS, and PMINT using the
optimal intrusively determined reshaping filter length Loptg
is extensively compared for all acoustic systems in Table 4
and all NPMs in (25). The performance of the differ-
ent techniques is evaluated in terms of �DRR, �fSNR,
and�CD, where the presented performance measures are
averaged over all considered NPMs.
Table 6 presents the obtained �DRR, �fSNR, and �CD

values for all considered techniques1. First, it can be
observed that MINT using Loptg results in the lowest per-
formance in terms of all performance measures, often
worsening the perceptual speech quality in comparison to
the unprocessed microphone signal x1(n). Since MINT is
very sensitive to RIR perturbations (cf. Fig. 5), the robust-
ness increase that can be obtained by using a shorter
reshaping filter length is also limited. Second, it can be
observed that RMCLS and PMINT using Loptg result in a
high reverberant energy suppression in terms of �DRR,
with PMINT outperforming RMCLS for systems S2 and
S3 whereas a similar performance is obtained for system
S1. Finally, it can be observed that for all considered acous-
tic systems, PMINT using the reshaping filter length Loptg
yields the highest perceptual speech quality improvement,
outperforming RMCLS in terms of �fSNR and �CD.
While PMINT always improves the perceptual speech
quality in comparison to the unprocessed microphone
signal x1(n), RMCLS sometimes fails to yield an improve-
ment, as indicated by the negative �fSNR for systems S2
and S3. The advantage of PMINT lies in its control of the
early reflections in the EIR, hence better preserving the
perceptual speech quality of the output signal.

In summary, based on instrumental measures, it can
be said that PMINT using the optimal intrusively deter-
mined reshaping filter length Loptg is a robust and per-
ceptually advantageous equalization technique, yielding a
high reverberant energy suppression and outperforming
all other considered equalization techniques in terms of
perceptual speech quality. Informal listening tests further
support this conclusion.

6.4 Performance of PMINT when using the automatic
non-intrusive reshaping filter length

In this section, we investigate the performance of PMINT
when using the automatic non-intrusively determined
reshaping filter length Lautog (cf. Section 5) instead of
the optimal intrusively determined reshaping filter length
Loptg . For completeness, the obtained values of Lautog are
also compared to the values of Loptg . Similarly as in
Section 6.3, we consider all acoustic systems in Table 4
and all NPMs in (25). In order to generate the parametric
L-curve, the matrix WĤ is constructed for all reshaping
filter lengths in (28), the PMINT reshaping filter is com-
puted, and the quantities χWĤ and ‖W(Ĥw − cd)‖22 are
calculated. Using the triangle method [36], the automatic
reshaping filter length Lautog corresponding to the point
of maximum curvature of the L-curve is determined.
The performance of PMINT using Lautog is evaluated in
terms of �DRR, �fSNR, and �CD, where the presented
performance measures are averaged over all considered
NPMs.
Table 7 presents the values of Loptg and Lautog for the

acoustic system S1 and all considered NPMs2. It can be

Table 6 Average performance of MINT, RMCLS, and PMINT using the optimal intrusively determined reshaping filter length Loptg

S1 S2 S3

�DRR [dB] �fSNR [dB] �CD [dB] �DRR [dB] �fSNR [dB] �CD [dB] �DRR [dB] �fSNR [dB] �CD [dB]

Loptg -MINT 4.41 −0.55 −1.31 1.66 −2.07 0.07 1.20 −3.89 −0.22

Loptg -RMCLS 6.75 3.53 −1.77 1.76 −0.81 −0.39 1.31 −0.61 −0.52

Loptg -PMINT 6.98 8.65 -1.78 4.42 2.58 -0.66 2.40 1.88 -0.57
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Table 7 Intrusively and non-intrusively determined reshaping filter lengths for PMINT for acoustic system S1 and all considered NPMs

NPM [dB] −33 −30 −27 −24 −21 −18 −15

Loptg 1170 1230 1200 1050 900 900 510

Lautog 1200 1170 1170 1230 1230 1170 1170

observed that for low NPMs, the non-intrusively deter-
mined reshaping filter length is very similar to the opti-
mal intrusively determined one. As the NPM increases
beyond −21 dB, the reshaping filter length obtained using
the proposed non-intrusive procedure is larger than the
optimal intrusively determined one.
Table 8 presents the �DRR, �fSNR, and �CD obtained

using PMINT with Lautog for all considered acoustic sys-
tems. It can be observed that using the automatic non-
intrusively determined reshaping filter length in PMINT
yields a high dereverberation performance, both in terms
of reverberant energy suppression and perceptual speech
quality improvement. In addition, when comparing the
performance measures presented in Table 8 to the ones
presented in Table 6, it can be observed that in general, the
performance of PMINT when using Lautog is similar to the
performance when using Loptg . More precisely, the aver-
age performance degradation over all considered acoustic
systems when using the automatic non-intrusively deter-
mined reshaping filter length Lautog instead of the optimal
intrusively determined reshaping filter length Loptg is only
0.58 dB in terms of �DRR, 1.15 dB in terms of �fSNR,
and 0.24 dB in terms of �CD.
In summary, the presented results show that the auto-

matic non-intrusively determined reshaping filter length
in PMINT yields a high performance in the presence
of RIR perturbations, making PMINT when using this
shorter reshaping filter length a robust and perceptu-
ally advantageous acoustic multi-channel equalization
technique.

7 Conclusions
In this paper, we have analyzed the use of a shorter reshap-
ing filter length than conventionally used in order to
increase the robustness of acoustic multi-channel equal-
ization techniques. We have analytically shown that using
a shorter reshaping filter decreases the condition num-
ber of the (weighted) convolution matrix, increasing as a
result the robustness against RIR perturbations. In addi-
tion, we have proposed to automatically determine the
reshaping filter length as the point of maximum curvature

of the parametric plot of the condition number versus
the (weighted) least-squares error, such that both quan-
tities are simultaneously kept small. Using instrumental
performance measures, it has been shown that using
shorter reshaping filters indeed increases the robustness
ofMINT, RMCLS, and PMINT against RIR perturbations.
In addition, it has been shown that PMINT using the
optimal intrusively determined reshaping filter length out-
performs MINT and RMCLS. Finally, it has been shown
that the automatic non-intrusive procedure for selecting
the reshaping filter length in PMINT yields a nearly opti-
mal performance, confirming the practical applicability of
using shorter reshaping filters in acoustic multi-channel
equalization.

Endnotes
1 It should be noted that the performance measures pre-

sented for system S1 are an average of the results already
presented in Section 6.2.

2 It should be noted that presented Loptg values are the
same as the ones presented in Table 5.

Appendix A
In order to construct the matrix WsĤs from the matrix
WtĤt (cf. Fig. 2), we first create an intermediate
[

pt−
(

Ltg−Lsg
)]×[

qt−(Ltg−Lsg)
]

-dimensional sub-matrixT
by deleting Ltg −Lsg rows and Ltg −Lsg columns fromWtĤt.
The interlacing inequalities in (19) for the matricesWtĤt
and T can then be written as

σWtĤt
(i) ≥ σT(i) ≥ σWtĤt

(

i + (

Ltg − Lsg
))

, (29)

for i = 1, . . . , rt − (

Ltg − Lsg
)

, . . . , pt − (

Ltg − Lsg
)

. Using
i = 1 and i = rt −

(

Ltg −Lsg
)

in (29), the following inequali-
ties between the singular values of the matricesWtĤt and
T can be established:

σWtĤt
(1) ≥ σT(1), (30)

σT
(

rt − (

Ltg − Lsg
)) ≥ σWtĤt

(rt). (31)

Table 8 Average performance of PMINT using the automatically non-intrusively determined reshaping filter length Lautog

S1 S2 S3

�DRR [dB] �fSNR [dB] �CD [dB] �DRR [dB] �fSNR [dB] �CD [dB] �DRR [dB] �fSNR [dB] �CD [dB]

Lautow -PMINT 6.68 7.90 −1.68 3.41 1.62 −0.33 1.97 0.14 −0.29
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In order to construct the matrixWsĤs, (M − 1)
(

Ltg − Lsg
)

columns are now deleted from the matrix T. The interlac-
ing inequalities in (19) for the matrices T and WsĤs can
then be written as

σT(i) ≥ σWsĤs
(i) ≥ σT

(

i + (M − 1)
(

Ltg − Lsg
))

, (32)

for i = 1, . . . , rs. Using i = 1 and i = rs in (32), the
following inequalities between the singular values of the
matrices T andWsĤs can be written:

σT(1) ≥ σWsĤs
(1), (33)

σWsĤs
(rs) ≥ σT

(

rs + (M − 1)
(

Ltg − Lsg
))

. (34)

Since the number of columns in WtĤt is greater than or
equal to its rank, i.e.,

qt = MLtg ≥ pt ≥ rt, (35)

the index of the singular value in the right hand side of (34)
can be written as

rs + (M − 1)
(

Ltg − Lsg
) = MLsg + (M − 1)

(

Ltg − Lsg
)

= MLtg − (

Ltg − Lsg
) ≥ rt − (

Ltg − Lsg
)

. (36)

Based on (36) and the fact that the singular values of the
matrices are sorted in descending order, it can be said that

σT
(

rs + (M − 1)
(

Ltg − Lsg
)) ≥ σT

(

rt −
(

Ltg − Lsg
))

, (37)

such that the inequality in (34) can also be written as

σWsĤs
(rs) ≥ σT

(

rt − (

Ltg − Lsg
))

. (38)

Finally, combining (30), (31), (33), and (38), the following
inequalities relating the largest and the smallest non-zero
singular values ofWtĤt andWsĤs can be established:

σWtĤt
(1) ≥ σWsĤs

(1), (39)

σWsĤs
(rs) ≥ σWtĤt

(rt). (40)
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