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Abstract
Multimedia databases are growing rapidly in size in the digital age. To increase the value of
these data and to enhance the user experience, there is a need to make these videos searchable
through automatic indexing. Because people appearing and talking in the videos are often of
high interest for end users, indices that represent the location and identity of people in the archive
are indispensable for video search and browsing tools. On the other hand, multimedia videos
contain resourceful data of people in both visual and auditory domains. This offers a potential for
multimodal learning in the task of human identification. Hence, the main theme of this thesis is
on algorithms to create indexes and exploit the audio-visual correspondence in large multimedia
corpuses based on person identities.

First, this thesis deals with algorithms to create indexes through person discovery in videos. It
involves several components: face and speaker diarization, face-voice association, and person
naming. To obtain face clusters, we propose a novel face tracking approach that leverages face
detectors with a tracking-by-detection framework relying on long term time-interval sensitive
association costs. We use also shot context to further accelerate and improve face clustering. Face
clusters are then associated to speaker clusters using dubbing and talking detection, in which a
multimodal framework is introduced to represent the temporal relationship between the auditory
and visual streams. We also improve speaker embeddings for recognition and clustering by using
a regularizer called intra-class loss.

In the second half, the thesis focuses on multimodal learning with face-voice data. Here, we aim
to answer two research questions. First, can one improve a voice embedding using knowledge
transferred from a face representation? We investigate several transfer learning approaches
to constrain the target voice embedding space to share latent attributes with the source face
embedding space. The crossmodal constrains act as regularizers helping voice models, especially
in the low-data setting. The second question is can face clusters be used as training labels to learn
a speaker embedding? To answer this, we explore the tolerance of embedding losses under label
uncertainty. From the risk minimization perspective, we obtain the analytical results that provide
the heuristics in strategies to improve the tolerance against label noise. We apply the findings into
our task of learning speaker embeddings using face clusters as labels. While the experimental
results agree with the analytical heuristics, there is still a large gap in performance between the
supervised and the weakly supervised models, which requires further investigation in the future.

Keywords: tracking, face clustering, speaker diarization, embedding learning, transfer learning
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Résumé
A l’ère du digital, les bases de données vidéos multimédia prolifèrent. Afin d’augmenter la valeur
de ces données et d’améliorer l’expérience des consommateurs de ces vidéos, il est nécessaire de
faciliter leur accès en rendant possible la recherche et la navigation dans ces vidéos grâce à une
meilleure indexation automatique. Comme les personnes sont souvent d’un grand intérêt pour
l’utilisateur, l’indexation des moments où elles figurent ou s’expriment ainsi que leur identité se
révèle très pertinente dans ce but. Comme ces vidéos contiennent en elle même les informations
utiles tant visuelles qu’auditives pour effectuer cette tâche, elles offrent un potentiel d’exploration
de méthodes d’apprentissage multimodal pour la reconnaissance et l’identification automatiques
de personnes dans de grand corpus multimédia. Cette thèse s’inscrit dans cette perspective et
aborde deux problématiques principales.

Tout d’abord, le design d’algorithmes d’indexation basés sur la reconnaissance des personnes.
Cette tâche repose sur plusieurs composantes : extraction des segments temporels comprenant
le même visage ou le même locuteur ; association entre les visages et les voix ; nommage des
personnes. Afin d’obtenir des groupements de visage pertinents, nous proposons une nouvelle
approche de suivi de visage qui tire parti de détecteurs de visage performants (mais coûteux)
couplés à une méthode de suivi par détection reposant sur des coûts d’association long-terme
sensibles aux intervalles de temps. Nous exploitons également le contexte temporel de la seg-
mentation vidéo en shots pour accélérer et améliorer le groupement des visages. Ces derniers
sont ensuite associés aux groupes de locuteurs en tenant compte d’un module de détection de
conversation visuel et de détection du doublage audio reposant sur une modélisation multimodale
de la relation temporelle entre les flux auditifs et visuels. Nous proposons également une méthode
qui améliore un module d’extraction de représentation de la voix à base de réseau de neurones
utile pour la reconnaissance et le regroupement, et qui repose sur un terme de régularisation
minimisant les variabilité intra-class.

La deuxième moitié de la thèse porte sur l’apprentissage multimodal exploitant des données
voix-visage. Nous voulons répondre à deux questions de recherche. Premièrement, peut-on
améliorer un module d’extraction d’un descripteur de voix à l’aide de connaissances transférées
des représentations de visage? Nous étudions plusieurs approches d’apprentissage par transfert
pour contraindre l’espace de représentation de la voix à partager des attributs latents avec
l’espace de représentation du visage. Les contraintes multimodales agissent comme des termes
de régularisation aidant la création d’un espace de représentation des voix, en particulier dans le
cas où une faible quantité de données audio est disponible. La seconde question posée est : le
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Résumé

regroupements de visages peut-il être utilisé pour produire des étiquettes d’entraînement utiles à
l’apprentissage d’une représentation du locuteur ? Pour répondre à cette question, nous explorons
la robustesse de la représentation vis à vis des erreurs d’étiquetage des données. Nous étudions
la minimisation des risques d’erreurs et présentons des résultats analytiques qui fournissent des
méthodes heuristiques dans les stratégies visant à améliorer la robustesse au bruit des étiquettes
d’entraînement. Nous appliquons ces résultats à notre tâche d’apprentissage de représentation
d’un locuteur en utilisant des groupements de visages comme étiquettes d’entraînement. Bien que
les résultats expérimentaux soient en accord avec les heuristiques analytiques, il existe encore un
écart de performance important entre les modèles supervisés et les modèles faiblement supervisés,
ce qui appelle à des investigations supplémentaires dans le futur.

Mots clés : suivi, groupement de visages, regroupement en locuteur, apprentissage de représenta-
tion, apprentissage par transfert de connaissance.
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1 Introduction

1.1 Event Understanding through Multimodal Social Stream Inter-
pretation - EUMSSI project

Nowadays, a large amount of multimedia data like news, debates, talkshows, documentaries
or series is being produced and broadcast through multiple TV or internet channels. From the
perspective of a producer of content, a multimedia journalist has to monitor, gather, curate and
contextualize the relevant information for the target audience. To research a topic, he needs to go
through an enormous amount of records with information of very diverse degrees of granularity.
On the other side, many TV viewers are also receiving a large amount of information through the
media. It is harder and harder to put information into context to understand stories and to reduce
the noise of irrelevant content. Both the journalist and the TV viewer would greatly benefit from
a system capable of automatically analyzing unstructured multimedia data stream and its social
background, and contextualizing the data or contributing related information.

The EUMSSI consortium has been created with the main objective of developing methodologies
and technologies for identifying and aggregating data presented as unstructured information in
sources of very different nature (video, image, audio, speech, text and social context).The core
idea is that the process of integrating content from different media sources is carried out in an
interactive manner, so that the data resulting from one media helps reinforce the aggregation of
information from other media. Once all the available descriptive information has been collected,
an interpretation component will reason over the semantic representation in order to derive
knowledge following an event-centered structure. This will be accomplished thanks to the
integration in a multimodal platform of information extraction and analysis techniques from the
different fields involved (image, audio and text analysis).
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Chapter 1. Introduction

a)

b)

Figure 1.1 – Two different applications of human identification in video documents. a) Indices of
when people appear in video. b) Visualization of how people interact in a TV report [1]

1.2 Thesis goals and motivations

In the context of the EUMSSI project, we are interested in identifying people in TV news to
be exploited as semantic indices for efficient retrieval of multimedia content. For example,
timestamps of when people appear can be used to search for related contents in TV news as
shown in figure 1.1-a or viewers can browse interface such as figure 1.1-b to discover interesting
contents of TV news based on how people interact with each other. This practical need leads to our
research problem of how to identify people presence in videos or to answer “who appears when?”
and “who speaks when?”, or how to index videos through person discovery. Therefore, research
efforts have been devoted to unsupervised segmentation of videos into homogeneous segments
according to person identity, like speaker diarization, face diarization, and audio-visual (AV)
person diarization. Combined with names extracted from overlaid text, AV person diarization
makes it possible to identify people in videos.

Given the diversity and amount of multimedia documents, there are 2 main challenges: robustness
and computation cost. Firstly, because of the wide range of media content, people can appear in
widely different situations. Secondly, video corpuses, such as the corpus provided by EUMSSI
partner Deutsche Welle, contain thousands of hours of videos. We need to optimize the computa-
tion cost for person diarization, which is the bottleneck for the whole system. Furthermore, it is
an open question of how to utilize multimodal features to perform AV person diarization. Hence,
the first part of the thesis focuses on improving each individual component as well as addressing
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1.3. Contributions

Figure 1.2 – Outlines of the thesis. Each highlighted box corresponds to one main contribution
and its chapter. Chapter 2, 3, and 4 deal with improving and integrating components of a audio-
visual person discovery system. Chapter 5 and 6 focuses on using models on the face domain to
improve that of the auditory domain.

the audio-visual association problem in the integrated person discovery system.

Besides the immediate goal in indexing videos, person diarization results in a large scaled
database of associated face-voice segments. Hence, it leads to research questions in how to
exploit such correspondence between the facial domain and the auditory domain. Can we use
one domain to improve the recognition models in another domain? Or can we use the result
of one domain, such as face clustering, to automatically collect training data to use in another
domain, i.e. speaker recognition? These research questions lead to the second part of the thesis
in crossmodal transfer learning and weakly supervised learning.

1.3 Contributions

The main focus of this thesis is on algorithms to create and exploit indexes in large multimedia
corpuses based on person identities. As indicated above, the first part the thesis was devoted
to the design of a person discovery system. Hence, the first set of contributions are focused on
the components of a person discovery system: (1) face tracking and clustering, (2) audio-visual
streams association and person naming, and (3) learning speaker embeddings for clustering and
recognition.

The second part involves multimodal learning with face-voice data. In this context, the contri-
butions revolved around 2 main themes:(1) crossmodal transfer learning from facial domain to
improve speaker turn embeddings, and (2) analysis of learning with unreliable labels and its
application in speaker embedding learning using face clusters as labels. Figure 1.2 visually places
how the contributions and their corresponding chapters fit into the whole context of the thesis.
More details of each contribution are presented below.
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1.3.1 Face diarization

Face diarization, i.e. face tracking and clustering within video documents, is useful and important
for video indexing and fast browsing but it is also a difficult and time consuming task. To address
this task, this thesis presents two main contributions. First, we propose a novel tracking approach
that leverages deformable part-based model (DPM) face detector with a multi-cue discriminant
tracking-by-detection framework that can automatically learn long-term time-interval sensitive
association costs for each document type. The method is able to skip frames, i.e. process only 3
to 4 frames per second - thus cutting down computational cost - while performing better than
state-of-the-art methods as evaluated on public benchmarks. Second, a shot constrained face
clustering method is proposed, which significantly reduces the processing time while keeping or
improving performance. We further show that complementing biometric i-vector representation
with matching similarity measure improves performance.

1.3.2 Dubbing and talking face detection and person naming

Person discovery in the absence of prior identity knowledge requires accurate association of
visual and auditory cues. In broadcast data, multimodal analysis faces additional challenges
due to narrated voices over muted scenes or dubbing in different languages. To address these
challenges, we define and analyze the problem of dubbing detection in broadcast data, which has
not been explored before. We propose a method to represent the temporal relationship between
the auditory and visual streams. This method consists of canonical correlation analysis to learn a
joint multimodal space, and long short term memory (LSTM) networks to model cross-modality
temporal dependencies. Our contributions also include the introduction of a newly acquired
dataset of face-speech segments from TV data, which we have made publicly available. The
proposed method achieves promising performance on this real world dataset as compared to
several baselines.

Another contribution of this thesis is the integrated system for person naming in videos. Besides
the individual improvement in face diarization and multimodal association, we have developed
the toolchain and system to process large scaled audio-visual databases, in particular for the
EUMSSI demonstration. To benchmark our contributions, we participated in the MediaEval
Person Discovery challenge in 2015 and 2016. Our improved systems achieved the first place in
both evaluation campaigns.

1.3.3 Improving speaker embeddings with intra-class loss

Learning a good speaker embedding is critical for many speech processing tasks, including
recognition, verification, and diarization. To this end, we propose a complementary optimizing
goal called intra-class loss to improve deep speaker embeddings learned with triplet loss. This loss
function is formulated as a soft constraint on the averaged pair-wise distance between samples
from the same class. Its goal is to prevent the scattering of these samples within the embedding
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space to increase the intra-class compactness.When intra-class loss is jointly optimized with
triplet loss, we can observe 2 major improvements: the deep embedding network can achieve a
more robust and discriminative representation and the training process is more stable with a faster
convergence rate. We conduct experiments on 2 large public benchmarking datasets for speaker
verification, VoxCeleb and VoxForge. The results show that intra-class loss helps accelerating the
convergence of deep network training and significantly improves the overall performance of the
resulting embeddings.

1.3.4 Transfer learning from facial domain to improve speaker turn embeddings

Learning a discriminative voice embedding allows speaker turns to be compared directly and
efficiently, which is crucial for tasks such as diarization and verification. This thesis investigates
several transfer learning approaches to improve a voice embedding using knowledge transferred
from a face representation. The main idea of our crossmodal approaches is to constrain the target
voice embedding space to share latent attributes with the source face embedding space. The
shared latent attributes can be formalized as geometric properties or distribution characteristics
between these embedding spaces. We propose four transfer learning approaches belonging to
two categories: the first category relies on the structure of the source face embedding space
to regularize at different granularities the speaker turn embedding space. The second category
-a domain adaptation approach- improves the embedding space of speaker turns by applying
a maximum mean discrepancy loss to minimize the disparity between the distributions of the
embedded features. Experiments are conducted on TV news datasets, REPERE and ETAPE, to
demonstrate our methods. Quantitative results in verification and clustering tasks show promising
improvement, especially in cases where speaker turns are short or the training data size is limited.
The analysis also gives insights on the embedding spaces and shows their potential applications.

1.3.5 Weakly supervised learning with triplet loss

Collecting labeled data to train deep neural networks is costly and even impractical for many
tasks. Thus, research effort has been focused in automatically curated datasets or unsupervised
and weakly supervised learning. Given the results we obtained through person diarization, there
is a possibility to use face clustering as weak labels to create large scaled database for training
speaker recognition models, especially with embedding losses such as triplet loss.

This is a very practical problem as face clustering can automatically provide a massive amount of
speech training data instead of the costly annotation process. The main problem in this direction
is learning with unreliable label information. In this thesis, we first address the tolerance of deep
embedding learning losses against label noise, i.e. when the observed labels are different from the
true labels. Specifically, we conduct an analysis on the triplet loss, which shows the bound on the
expected risk when optimizing triplet loss under noise. From the analytical results, we provide
practical heuristics on sampling strategies and noise rate can affect the level of resistance against
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label noise. These heuristics help providing more effective insights in unsupervised and weakly
supervised deep embedding learning. We apply the guidelines to our task of learning speaker
embeddings using face clusters as labels and the result validates our conjectures. However, the
models learned with these weak labels still exhibits an accuracy gap in comparison to supervised
models learned with clean data. This suggests potential to further improve weakly supervised
speaker embedding learning.

1.4 Dissertation Outline

The body of this thesis is organized into 5 main chapters. Each chapter is self contained and can
be read independently. The detailed outline is as follows:

• In Chapter 2, the face tracking and clustering framework, which significantly reduces the
computation time while achieving state-of-the-art results, is presented. This chapter is
based on 2 papers:

– N. Le, A. Heili, D. Wu, and J.-M. Odobez, “Temporally subsampled detection for
accurate and efficient face tracking and diarization,” in International Conference on
Pattern Recognition, IEEE, Dec. 2016

– N. Le, A. Heili, and J.-M. Odobez, “Long-term time-sensitive costs for CRF-based
tracking by detection,” in European Conference on Computer Vision Workshops,
pp. 43–51, Springer, 2016

• In Chapter 3, we introduce the dubbing and talking face detection problem and discuss
an AV asynchrony detection algorithm. Then we describe the integrated person naming
system used in the EUMSSI projects and related evaluation campaigns. This chapter is
constructed with elements from the following papers:

– N. Le and J.-M. Odobez, “Learning multimodal temporal representation for dubbing
detection in broadcast media,” in ACM Multimedia, ACM, Oct. 2016

– N. Le, D. Wu, S. Meignier, and J.-M. Odobez, “EUMSSI team at the mediaeval
person discovery challenge,” in MediaEval 2015 Workshop, 2015

– N. Le, S. Meignier, and J.-M. Odobez, “EUMSSI team at the mediaeval person
discovery challenge 2016,” in MediaEval Benchmarking Initiative for Multimedia
Evaluation, 2016

– N. Le, H. Bredin, G. Sargent, P. Lopez-Otero, C. Barras, C. Guinaudeau, G. Gravier,
G. B. da Fonseca, I. L. Freire, Z. Patrocínio Jr, et al., “Towards large scale multimedia
indexing: A case study on person discovery in broadcast news,” in Proceedings of the
15th International Workshop on Content-Based Multimedia Indexing, p. 18, ACM,
2017

• In Chapter 4, we propose a regularizer called intra-class loss that aims to improve models
that use triplet loss for speaker recognition. This work was previously published in:
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– N. Le and J.-M. Odobez, “Robust and discriminative speaker embedding via intra-
class distance variance regularization,” Proc. Interspeech 2018, pp. 2257–2261, 2018

• In Chapter 5, we investigate 4 methods for transfer learning from a facial domain to a
speech domain, concretely in the task of speaker turn embedding. Each method exploits
the structure of the embedding space at different granularities. This chapter is based on the
following papers:

– N. Le and J.-M. Odobez, “A domain adaptation approach to improve speaker turn
embedding using face representation,” in Proceedings of the 19th ACM International
Conference on Multimodal Interaction, pp. 411–415, ACM, 2017

– N. Le and J.-M. Odobez, “Improving speaker turn embedding by crossmodal transfer
learning from face embedding,” in Proceedings of the IEEE International Conference
on Computer Vision Workshops, pp. 428–437, 2017

– N. Le and J.-M. Odobez, “Improving speech embedding using crossmodal transfer
learning with audio-visual data,” Multimedia Tools and Applications, pp. 1–24, 2018

• In Chapter 6, the focus is on how to use face clustering results as pseudo-labels to collect
training data to learn speaker recognition models with triplet loss. To this end, we first
study the theoretical guarantees of learning with triplet loss under label uncertainty. Then,
a prototype framework to learn speaker models with supervision data collected from the
facial domain is introduced. This chapter is partially based on our paper:

– N. Le and J.-M. Odobez, “Theoretical guarantees of deep embedding losses under
label noise,” arXiv preprint arXiv:1812.02676, 2018
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2 Face Diarization

2.1 Introduction

In this chapter, we address face diarization and develop a method applicable to TV broadcast
media in general, like news, debates, documentaries. Given a video segmented into shots, a
typical diarization system proceeds in two main steps: extracting face tracks within a shot,
which is important as it has been shown that using tracks leads to better face representation than
individual images [18], and clustering all face tracks with the same identity. These steps are
illustrated in Figure 2.1. Due to the wide range of media content and amount of videos, this has
two main challenges that we investigate in this paper for the two above tasks: robustness and
computational cost.

To obtain face tracks, typical diarization systems [19, 20] rely on frontal face detectors like the
Viola-Jones (VJ) detector [21] due to availability and speed. Then, for tracking, KLT interest
point trackers are often used to link detections and associate them over time [20, 18, 22, 23, 24].
Nevertheless, given the diversity of image backgrounds and faces that can appear in challenging
illumination and poses, the detector may miss detections and produce a large amount of false
ones. To counter this lack of robustness, systems usually only use the frontal face detector (thus
missing a large amount of near profile faces), apply it at every frame to obtain better detection
statistics, and complement it with forward/backward tracking or complex per track skin filtering
procedure [19] to remove false alarms. Although there are much better detectors nowadays, they
are usually not used due to their expensive running time in normal hardware.

We propose a novel tracking approach that takes advantage of the powerful multi-view DPM
detector1 within a fast tracking method to benefit from the detector accuracy without the expense
of running time. More precisely, we use a fast version [25] of the DPM detector. For tracking,
we rely on and extend the human tracking-by-detection framework of [2] to the multi-face
tracking domain, resulting in a tracker that exploits time-interval sensitive discriminative multi-
cue appearance and motion association costs learned in an unsupervised way, allowing an easy

1State-of-the-art in face detection as of 2016
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Figure 2.1 – Given a video segmented into shots, we address two main steps in a diarization
system: (1) face detection and tracking within a shot to produce face tracks, and (2) face clustering
across shots to create face clusters corresponding to identities.

adaptation to each media document type. In particular, since long term connectivity between
detections is exploited, to the contrary of most frame-to-frame methods, our approach delivers
competitive results while only having to process 3 to 4 frames per second.

Face track clustering is also a time-consuming step. Indeed, traditional unsupervised bottom-up
hierarchical approaches [19, 26] are at least quadratic in the number of face tracks to cluster, and
thus quickly become time consuming when the number of track is large, as in news or talk shows.

We thus propose a divide-and-conquer strategy that follows the observation that people’s faces
often appear in similar shots. By prioritizing the merging of faces more likely to have the
same identity, we both significantly cut down the computational cost, while allowing to build
more robust face representation from multiple face tracks for further clustering. To this end, as
representation of group of face tracks, we investigate the use of i-vectors, a biometric approach
based on total variability modeling which has been shown to handle well appearance variations
[27, 28]. However, in spite of the state-of-the-art performance reported by this model on several
comprehensive benchmarks [28], we show that for face diarization on TV datasets, combining
it with a keypoints-based representation, which is robust for measuring the similarity of faces
acquired in similar conditions, is still important to improve the performance.

To sum-up, our main contributions are as follows:

• a novel multi-face tracking approach relying on multi-cue and long-term time-sensitive
association costs;

• a shot-constrained face track clustering approach reducing computation while improving
performance;

• an empirical evaluation showing that for face diarization, state-of-the-art biometric models
can unexpectedly be advantageously combined with a key-point based similarity measure.

Extensive experiments on public datasets demonstrate the benefit of each individual module as
well as the performance of the whole system.

The next section reviews existing works complementary to ours. Sections 2.3 and 2.4 describe
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the tracking and clustering methodologies. Section 2.5 presents the conducted experiments to
support our propositions. Finally, Section 2.6 concludes the chapter with further discussion and
future works.

2.2 Related Work

Face diarization is a collective process with 3 different components: detection, tracking, and
clustering. Below we comment on the related works in the context of each task.

Face detection. This is the bottleneck that decides the performance of the whole system. Missing
detections can be caused by profile faces, lighting conditions, or intrinsic variability of faces.
Meanwhile, background with detailed textures can be easily mistaken for real faces, which
creates noise for tracking as well as clustering. Such problems not only diminish the utility of
the system but can also annoy practical users. Most diarization systems rely on the standard VJ
detector [21] which has shown to have low accuracy on competitive datasets such as PASCAL
faces or FDDB [29]. To improve this, 2 strategies are proposed: aggregating multiple detectors
to increase the recall rate [22] and filtering with upper body detectors to increase the precision
rate [23]. Both strategies slow down the system significantly. In another direction, deep neural
networks has achieved high accuracy on face detection problem. However, these networks also
require sophisticated infrastructures and are not fast enough for practical usage [30]. Therefore
in our work, we rely on the DPM detector [31], which is highly competitive and easy to integrate
without side effects [29].

Face tracking. From the face detection result, face tracking aims to create a set of continuous
faces. Kanade-Lucas-Tomasi feature tracker (KLT) [32] is commonly applied due to its speed
and simplicity [22, 23]. KLT tracker is also used to repopulate detections missed by the detector.
However, this tracker is sensitive to long occlusion and drifting over time. On the other hand,
tracks can also be obtained by associating detections. In [33], tracklets are formed based on time,
motion, and color information and then linked by optimizing a graphical model. Meanwhile
in [24], faces are first associated by location, size, and pose; then tracklets are connected by
discriminative face appearance models. All the aforementioned systems require the detector to
be applied every frame to create face tracks reliably. On the contrary, our model has a major
advantage that the parameters are estimated unsupervised for long term connectivity. This allows
speeding up by applying the detector sparsely.

Face clustering. This final task aims to associate face tracks with the same identity to the same
cluster. This problem is closely related to building face representation for face recognition.
In a small dataset with limited people, one can use pre-trained recognition models [34, 23].
However, when dealing with a large dataset with unknown identities, we are more interested
in unsupervised approaches. In [23], the Fisher face descriptor [18] is extended to represent
face clusters with pose specific comparison. Meanwhile in [19], a person is represented by a
Gaussian Mixture Model (GMM) and a set of matching keypoints. To calculate distances, they

11



Chapter 2. Face Diarization

Figure 2.2 – Tracking as graph clustering task. The detections form the nodes, and a long-term
connectivity is used, i.e. all links between pairs of nodes within a temporal window Tw are
used to define the cost function. Long-term connectivity combined with time-interval sensitive
discriminative pairwise models and visual motion enables dealing with missed detections, e.g.
due to occlusion, as well as skipped frames.

used cross-likelihood ratio which is time consuming and the adapted GMMs can be biased to
specific recording conditions. Therefore, although we follow the idea of combining the matching
similarity and biometric similarity in [19], our face descriptor is built based on total variability
modeling (TVM). TVM has been shown to be successful for face verification in uncontrolled
conditions such as illumination, pose, or expression [28, 27]. Furthermore, applying TVM allows
us to directly compare the face representations, or i-vectors, which is more efficiently than other
biometric models using cross-likelihood ratio [28].

Besides intrinsic properties of faces, video structure is also a valuable indicator for clustering. In
TV news with fixed camera angles, camera classification can help identifying people in regular
viewpoints [35]. However, this approach is applicable to specific shows and requires heavy
annotations. In [23], threading similar shots helps reducing clustering cost and collecting negative
pairs for their exemplar SVM. As we favor our system to be unsupervised and independent of
data sources, shot constrained face clustering is utilized to group similar shots without prior
knowledge to speed up the face clustering process.

2.3 Face detection and tracking

The first stage of face diarization comprises face detection and tracking, which includes a false
alarm track removal step.
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2.3.1 Face detection

We employ the multi-view DPM model, which achieved state-of-the-art results [31, 29]. However,
due to the numerous convolutions required, a main disadvantage of DPM is its computational
cost, which can take up to 3s/frame for HD videos. Thus, we use a sped-up variant leveraging
Fourier transforms to accelerate the processing [25]. Furthermore, as shown in the experiments,
thanks to the increased accuracy w.r.t. the VJ detector, we only need to apply the face detector 3
to 4 times per second, which considerably decreases the computational cost for detection.

2.3.2 Face tracking overview

We propose to leverage and extend the multi-human tracking method proposed in [36, 2], by
adding new features, handling sparse detections over time (Section 2.3.4), and adding a false
track removal step (Section 2.3.5).

Our approach is illustrated in Figure 2.2. Face tracking is formulated as a labeling problem within
a Conditional Random Field (CRF) framework. Given the set of face detections Y = {

yi
}

i=1:Ny
,

where Ny is the total number of detections, we search for the set of corresponding labels
L = {li }i=1:Ny

such that faces belonging to the same identity are assigned the same label. This
is done by optimizing the posterior probability p(L|Y ,λ), where λ denotes the set of model
parameters. Under some assumption, this is equivalent to minimizing the following energy
potential:

U (L) =
( ∑

(i , j )∈V

Ns∑
r=1

w r
i j β

r
i j δ(li − l j )

)
, (2.1)

with the coefficients defined as:

βr
i j = log

[
p(Sr (yi , y j )|H0,λr

∆i j
)

p(Sr (yi , y j )|H1,λr
∆i j

)

]
. (2.2)

with the different terms defined as follows. First, the energy involves Ns feature functions
Sr (yi , y j ) measuring a similarity between detection pairs as well as confidence weights w r

i j for
each detection pair. Importantly, note that a long-term connectivity is exploited, in which the
set of valid pairs V contains all pairs whose temporal distance ∆i j = |t j − ti | is lower than Tw ,
where Tw is usually between 1 and 2 seconds. This contrasts with most frame-to-frame tracking
or path optimization approaches. For instance, in Fig. 2.2, even if there is a path from A to B and
B to C for the same track, the link A to C is also exploited in the cost function, resulting in better
conditioned objective function.

Secondly, the Potts coefficients themselves are defined as the likelihood ratio of the probability
of feature distances under two hypotheses: H0 if li 6= l j (i.e. detections do not belong to the same
face), or H1 when labels are the same. In practice, this allows us to incorporate discrimination,
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Figure 2.3 – Position. The different iso-contours of value 0 of the Potts costs for different values
of ∆ (i.e. location of detections occurring after ∆ frames around each shown detection and for
which β= 0), learned in an unsupervised fashion from TV REPERE (left) and Hannah (right). In
the region delimited by a curve, association will be favored, whereas outside it will be disfavored.
Curves show that more motion is expected on the Hannah movie, than on the TV data.

by quantifying how much features are similar and dissimilar under the two hypotheses, and not
only on how much they are similar for the same identity as done in traditional path optimization
of many graph-based tracking methods. Furthermore, note that as these costs depend on the set
of parameters λr

∆i j
, they are time-interval sensitive, in that they depend on the time difference ∆i j

between the detections. This allows a fine modeling of the problem and will be illustrated below.

Finally, in Eq. 2.1, δ(.) denotes the Kronecker function (δ(a) = 1 if a = 0, δ(a) = 0 otherwise).
Therefore, coefficients βr

i j are only counted when the labels are the same. They can thus be
considered as “costs” for associating or not a detection pair within the same track. When βr

i j < 0,
the pair of detections should be associated so as to minimize the energy 2.1, whereas when
βr

i j > 0, it should not.

2.3.3 Features and association cost definition

Our approach relies on the unsupervised learning of time sensitive association costs for Ns = 8

different features. Below, we briefly motivate and introduce the chosen features and their
corresponding distributions. We illustrate them by showing the Potts curves (for their learning
see next section), emphasizing the effect of time-interval sensitivity and their easy adaptation to
different datasets.

Position. The similarity is the Euclidean distance S1(yi , y j ) = xi −x j , with xi the image location
of the i th detection yi . The distributions of this feature are modeled as zero mean Gaussians
whose covariance ΣH

∆ depends on the hypothesis (H0 or H1) and the time gap ∆ between two
detections. Fig. 2.3 illustrates the learned models by plotting the zero iso-curves of the resulting
β functions. We can notice the non-linearity with respect to increasing time gaps ∆ (curves are
closer and closer as ∆ increases), and the difference between document types: more static heads
are expected in the REPERE TV programs than in the Hannah movie.
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Figure 2.4 – Automatically learned Potts functions β for different similarity functions and some
∆ values. Left: color cue. Middle: motion. Right: SURF.

Figure 2.5 – An example of motion vectors in 2 frames t (left) and t +∆ (right). The cosine
similarity between the motion vector in frame t is closer to 1 for the right face in frame t +∆
while being smaller for the left face in the same frame.

Motion cues. Motion similarity between detection pairs is assessed by comparing their relative
displacement and their visual motion. This motion is estimated by [37]. The similarity is
computed as the cosine of the angle between these two vectors. Intuitively, if a face moves in
a constant direction, the displacement between its detections and their visual motion will be
aligned, leading to a motion similarity close to 1, whereas for unrelated faces, this would be
more random. An example of these motion vectors is shown in Figure 2.5. Note that the use of
such an instantaneous motion information differs from frame-to-frame KLT tracking and is not
affected by occlusion or drift. The resulting β curves in the middle plot of Figure 2.4 confirm
the above intuition, but surpringly indicate that this motion information is more discriminative
for short time intervals. Indeed, in the TV data, when considereing 1 to 2 seconds time intervals,
head motion might be less reliable as people are more likely to shake their heads back and forth,
leading to flatter β curves.

Appearance (color). Faces are represented by multi-level color histograms in 4 different regions:
the whole face, and the mouth, eye, and nose regions. The similarity between histograms of
the same region of the detections is measured using the Bhattacharyya distance Dh , and the
distributions of this distance is modeled using a non-parametric method. Example of Potts curve
β are shown in Fig. 2.4, Left. We can notice here that the statistics associated to each region
are relatively different, and although we would not expect so, also varies with the time gap ∆
between detections.

Appearance (SURF). Color is insufficient to discriminate between faces. We thus propose to
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exploit SURF [38] descriptors computed at interest points detected within the face bounding box
as more structured appearance measures. As similarity measure, we use the average Euclidean
distances between pairs of nearest keypoint descriptors from the two detections. We model
the distributions of the similarity measures with a non-parametric approach. As can be seen in
the right plot of Fig. 2.4, the Potts coefficient β is negative for a SURF similarity around 0.3,
thus encouraging association for such values. On the other hand, positive coefficients for larger
distances - around 0.5 - discourage the association.

2.3.4 Parameter learning, optimization

Given our non-parametric and time interval sensitive cost model, the number of parameters in
λ is quite large. We adopt an unsupervised learning strategy to estimate λ directly from data,
removing the need for tedious track annotations. Learning is done in two steps. First, we rely on
a simple assumption that up to a short term interval, pairs of closest and second closest detections
come from the same person or not, respectively. This allows us to learn model parameters under
each of the two hypotheses, and perform a first round of tracking. Second, we use the resulting
tracks to refine and obtain the model parameters up to larger time intervals. Note that although
on test data we are only interested in the parameters at multiples of ∆sk (the frequency at which
face detections is applied), during training tracking is done using all intervals to obtain reliable
tracks for the parameter refinement.

Optimization. For computational efficiency, we used a sliding window algorithm that labels the
detections in the current frame as the continuation of a previous track or the creation of a new
one, using an optimal hungarian association algorithm relying on all the pairwise links to the
already labeled detections in the past Tw instants. A second step of block Iterated Conditional
Modes is then conducted, which allows reasoning at global level by swapping track fragments at
each time instant [2].

2.3.5 False alarm track removal

The CRF provides face tracks, some of which may correspond to false alarms. In other trackers
[2, 22], these are often simply removed based on track length. On broadcast data, this is not
sufficient given the content diversity and track length limited by shot duration. Thus, in contrast
to [2], we further learnt a classifier to filter the false alarm tracks based on more cues [39].
For each face track, motion, position, size, and detection confidence scores were collected and
accumulated to form a feature vector. Then, a linear SVM classifier was trained to distinguish
true tracks from false ones.

To train our model, we created a training database by annotating 9364 face tracks from 9 videos
from the development set of the REPERE corpus, and used the obtained model to conducted
our evaluation on other datasets as reported in the experiment section. The linear SVM model
achieves 93.3% cross validation accuracy. Based on the weights, the most important cues are
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a) b) c)
Figure 2.6 – False alarm removal examples. a) Short but positive track falsely removed by [2]
but kept by our model. b) Negative track correctly removed mainly thanks to image position and
detection size. c) Negative track falsely kept by [3] due to skin color but correctly removed by
our model.

detection score, width, and position. Fig. 2.6 illustrate qualitatively why this multi-cue model is
superior to false alarm models based on single feature such as duration [2] or skin filtering [3].
Furthermore, our linear model with simple features is fast to work with large video corpus.

2.4 Face clustering

The goal of face clustering is to merge tracks having the same identity. To achieve this, ideally
tracks need first to be represented so that intra-personal variations are reduced while inter-personal
differences are enhanced. Then, face tracks can be grouped, potentially using complementary
information. We describe below how we addressed these aspects.

2.4.1 Representations and similarity measures

As discussed in the related work, our aim is to exploit face and face track representations good at
handling appearance variabilities. To this end, we decided to rely on the state-of-the-art i-vectors
which have been shown to perform well on standard biometric verification benchmarks [28, 27].
However, at the same time, face diarization also involves clustering face instances usually shot in
similar conditions. Thus, exploiting similarities based on matching methods can be useful in this
contex, as shown in the experiments. We thus also propose to use SURF to represent faces. We
describe both models below.

SURF similarity. Each track is represented by 9 keyfaces that are equally distributed a long the
track. Given the extracted SURF descriptors, the similarity between two faces is measured as
the average of the 6 smallest distances between the descriptors of the matched keypoints. The
same approach is extended to calculate the similarity DS between clusters by averaging the N = 9

smallest distances between all pairs of keyfaces.

i-vector representation with total variability modeling (TVM). When the face variability
increases, matching similarity loses its discrimination as intra-person variance becomes closer
to inter-person variance. To improve generalization, features are often sampled densely and the
semantic correspondence between images is bridged using statistical models. Here we borrow
models from the biometric domain, and used DCT variants as features and i-vectors for this
purpose [27].
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Regarding features, eyes are detected to register images and the Tan & Triggs [40] algorithm is
used to normalize the cropped images. K = 3657 12×12 blocks are densely sampled, preprocessed,
and the 44 lowest frequency DCT coefficients are extracted and normalised (across blocks) to
zero mean and unit variance, resulting in at set O of K normalized DCT vectors ok to characterize
an image.

A face or face cluster i can then typically be represented by the supervector of concatenated
means of a Gaussian Mixture Model (GMM) modeling the distribution of the observations ok of
that face/cluster. This vector, denoted si , is obtained through mean-only MAP adaptation of the
supervector means m of a Universal GMM Background Model (UBM) trained from a large set of
images, i.e si = m+di , in which di denotes the mean offset specific to the given face. However,
due to the inherent sensitivity to the specific conditions in which images are captured [28], offsets
d can be unreliable for cluster comparison. This is critical since in TV broadcast, a person can
appear in quite different contexts, especially with respect to viewpoint, pose and illumination.

Thus, factor analysis in general and total variability modeling in particular have been proposed to
handle such situations. The main idea to obtain a better and more discriminative representation is
to constrain the mean offsets to lie within a linear, low-dimensional subspace representing the
principal directions of inter-face variations. Concretely, the TVM supervector representation is
modeled as si = m+T ui +ξi , in which T is the total variability subspace, ui the low-dimensional
i-vector face representation, and ξi is a random gaussian noise with diagonal covariance ΣTv used
to model the residual variability not covered by T . In practice, T and ΣTv are learned through
likelihood optimization, and we used the BANCA and MOBIO dataset as training data. For
details about TVM, see [41, 42].

Representation. According to the TVM model, the i-vector representation ui of an image i can
be computed using the centralised 0th and 1st-order Baum-Welch statistics of the feature vectors
ok of that image w.r.t. the UBM mean mixture components (Ni and Fi , respectively) as [41, 42]):

ui = (I +T ′Σ−1
Tv Ni T )−1T ′Σ−1

Tv Fi

When dealing with one face track or one face cluster, the same formula can be used but pooling
all feature vectors together to calculate the required statistics. Thus a single i-vector is extracted
to represent the whole cluster.

To compare clusters, i-vectors are further whitened and L2−normalized and the distance between
clusters Ci and C j is simply computed using the cosine distance, i.e:

DT (Ci ,C j ) = 1− cos(ui ,u j )
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Figure 2.7 – Example of shot clusters. Each line shows shot thumbnails of one cluster.

2.4.2 Shot-constrained clustering

To perform the unsupervised clustering of face tracks, we rely on a bottom-up hierarchical
clustering, as commonly done [26, 19]. However, since no temporal constraints are usually
exploited (except that tracks appear at the same time should not be merged in the same cluster),
one must compute the similarity between all pairs of tracks during the hierarchical clustering.
Thus the complexity for this task raises at least quadratically with the number of tracks/clusters.
Furthermore, as shots are rather short in TV programs, the face variability (esp. in terms of pose)
is usually quite low, and thus can limit the representativeness of the extracted i-vectors.

To address these problems, we propose a divide-and-conquer strategy, observing that in TV
programs the same person tend to appear in groups of similar shots. By first limiting the
clustering within such groups of shots, we can quickly associate tracks which are obviously from
the same person, and from there build better face representations for a smaller number of cluster,
thus reducing the computational cost.

More concrete elements are as follows.

• First, shots are grouped based on Bhattacharyya distance between color histograms of
keyframes. We rely on this representation and a simple hierarchical approach because of its
speed and simplicity over other alternatives [23, 35]. To reduce complexity, we constrain
association between pairs of shots (or shot clusters) that are within 20 shots away from
each other. A very low threshold is used to stop the process. Typically, 50% of the shots
(esp. in commercials) remain alone due to their unique color tones, while clusters of more
than 2 shots contain an average of 6 shots often showing a person under different poses as
illustrated in Fig. 2.7.

• Then, within each shot cluster, face tracks are clustered locally. As faces in such shots tend
to be similar, we only use the matching similarity DS . This process terminates when DS

reaches a threshold T h1.

• Third, all face clusters, which are now much less in quantity, are hierarchically merged
using a combination of matching and biometric i-vector distances DS and DT . More
precisely, as DS is distinctive and adequate for matching between face tracks captured
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in comparable conditions, the initial clusters are merged based on it until a conservative
threshold T h2 is reached. Then, reliable i-vectors are extracted from these bigger clusters
which are gradually merged according to a distance combination (i.e. using DS +αDT )
until a last threshold T h3 is attained.

2.5 Experiments

2.5.1 Evaluation Datasets

We conducted evaluation separately at each stage of the face diarization. For this purpose, three
public datasets were used to benchmark the results:

• “Frontal and Turning”. It consists of 2 videos recorded with a fixed camera [43]. In each
video, there are 4 subjects moving around. In Frontal video, there are frequent occlusions
and fast movements while the Turning video contain many profile faces.

• “Hannah”. It is manually annotated based on the movie "Hannah and her sisters" by
W. Allen [22]. This dataset is challenging due to dynamic cameras with faces of many
characters at multiple poses and angles.

• REPERE corpus. It features 9 programs including news, debates, and talk shows from two
French TV channels (LCP and BFMTV) [44] with sparse annotations. One face track is
annotated with its corresponding identity using one reference frame only. From the Test
2 subset of the REPERE challenge, we randomly selected 27 videos equally from each
program. These videos cover approximately 18 hours of data. 9 of the videos are used for
parameter tuning and the 18 other ones are used for testing.

2.5.2 Tracking evaluation

Evaluation of tracking on Frontal/Turning dataset. We use the face tracking metrics used
by [45] on this dataset to evaluate the results: Mostly Tracked (MT, number of groundtruth
trajectories correctly tracked for more than 80% of their duration, the bigger the better), Frag-
mentation (Frag, number of times groundtruth trajectories are interrupted, the smaller the better),
ID Switches (IDS, number of times tracked trajectories change matched groundtruth identity).

Our results are reported in Table 2.1 for different parameter configurations. The first number is
the tracking window size Tw and the second number X is the frequency at which detection is
performed (every X frames).

When varying these parameters, one can observe that when the tracking window Tw is wider,
tracks are more likely to recover from temporary occlusions or missed detections, which usually
results in less Frag and higher MT (compare sets of results for Tw = 48 vs Tw = 36). On the other
hand, when detection is applied very scarcely (e.g. every 12 frames), we can notice an important
performance decrease (e.g. 2 vs 6 Mostly tracked people for Tw = 36 on the Frontal sequence).
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Figure 2.8 – Snapshots of tracking results on two benchmarking datasets - left, sample frame
from Frontal/Turning dataset used for evaluating face tracking. Right, one frame from a broadcast
program in the REPERE dataset.

Frontal Turning
Tw -X PH MT Frag IDS PH MT Frag IDS
36-1 28 6 16 0 15 4 9 0
36-6 26 5 18 0 18 3 16 0
36-12 38 2 30 1 30 0 27 0
48-1 27 6 15 0 14 4 8 0
48-6 25 5 17 0 16 4 14 0
48-12 37 3 30 2 30 1 26 1
[24] 11 4 24 13 11 2 8 4
[33] 15 5 25 10 15 4 8 5

Table 2.1 – Tracking results on “Frontal and Turning”. The parameters denote: Tw , up-to how
many frames apart are pairwise links built. X : detections are only extracted every X frames.

However, applying the detection every 6 frames produces only a small loss of performance, and
since detection is one of the bottlenecks for the face diarization stage, provides a good trade-off
between performance and speed.

When comparing with other methods in the literature [24, 33], our system outperforms them
in both scenarios, with much less ID switches and Frag overall, and higher or the same MT.
Indeed, as tracking is done within a long temporal window and the detection enough recall, we
can track most of the groundtruth tracks. Most importantly, the number of IDS is minimized,
which is crucial for further person clustering and naming. Though tracks are still frequently
fragmented due to long occlusion, they could be further joined by face clustering in the next step.
It is important to note that we did not apply false track removal on this dataset, explaining why
we have more predicted hypotheses (PH). A qualitative visualization is presented in Figure. 2.8.

Evaluation on Hannah dataset. Frame by frame annotation allows us to evaluate the detector
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Frame-based Track-based
FP (%) FN (%) MultT (%) OPu (%) TPu (%) Purity (%)

[22] 17.4 39.2 0.39 22.5 50.6 31.2
[3] 13.2 66.6 0.07 12.3 66.7 20.7

Ours, X = 1, no FAR 36.3 33.7 1.25 35.9 54.2 43.2
Ours, X = 6, no FAR 29.6 40.6 6.08 28.1 56.3 37.5

Ours, X = 6, FAR 5.3 42.6 0.72 27.5 91.1 42.3

Table 2.2 – Evaluation of our tracking framework against other baseline systems on Hannah
dataset.

and tracker with both detection-based as well as track-based metrics, as used by [22] for this
dataset:

• Frame-based evaluation compares faces returned by the system (track boxes) and groundtruth
faces (GT boxes) to calculate 3 measures: False Positive (FP), False Negative (FN), and
Multiple Track (MultT, the ratio of GT boxes with multiple matches). It is important to
note that these boxes are considered after the tracking phase.

• Track-based evaluation reflects the purity of matching through 3 metrics: Tracker Purity
(TPu), Object Purity (OPu), and Purity. For each output track, its tracker purity is calculated
as the ratio of frames for which it correctly identifies the GT track it is associated with,
over the total length of the output track. Similarly, for each GT track, its object purity is
calculated as the ratio of frames for which it is correctly identified by the output track it is
associated with, over the total length of the GT track. Averaging over all output tracks and
GT tracks yields TPu, and OPu, respectively. Purity measures the overall quality of face
tracks based on TPu and OPu.

We compare the proposed system with 2 strong baselines, each of them illustrating a different
approach to the problem. The first baseline is proposed by [22]. Their detector is a combination of
frontal and profile VJ detectors with Zhu and Ramanan multi-pose detector [46], which produces
high frame-based score. Tracking is done with an improved version of the KLT tracker. The
second baseline utilizes only the frontal Viola & Jones detector and GMM-based skin filtering
[3]. Tracking is done by associating pairs of detections based on matching similarity together
with forward and backward search. Because false alarms are minimized and frontal faces are
easier to connect with exhaustive search, this baseline produces fewer false positives and a high
tracker purity score.

For our systems, there are 3 different configurations, with Tw = 36 in all cases: X = 1 with no
false alarm removal (FAR), X = 6 without FAR, and X = 6 with FAR. Table 2.2 shows the detailed
comparison of all the systems. First, we observe the frame-based evaluation. At step X = 1, there
are more detections, thus lower FN, but high FP. When step X gets larger, FN increases and FP
decreases as expected. When FAR is applied, it greatly reduces the FP with only a minor loss
in FN. Our tracker yields the highest results at frame-based level. At the track-based level, our
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Dev set Test set
Recall Precision F1 Missed T. FA T. Recall Precision F1 Missed T. FA T.

Baseline [3] 39.2 94.3 55.4 68.1 5 43.9 96.8 60.3 62.7 8.9
Ours, no FAR 60.6 79.1 68.6 52.0 8.7 58.2 82.2 68.2 53.5 11.8

Ours, with FAR 59.1 93.1 72.3 52.5 4 57.0 94.8 71.2 55.6 7.3

Table 2.3 – Detection and tracking performance on the 27 videos coming from the REPERE
Test2 dataset, split according to your training and test sets (see Section 4.1).

system outperform all other baselines. Because false alarm tracks are taken into account when
computing the tracker purity TPu, FAR significantly contributes to improving TPu (moving from
56.3% to 91.1%) with a very minor drop of OPu. When comparing the Purity indicator, X = 6

with FAR performs equally to X = 1 with an advantage of acceleration by 6 folds. This further
confirms our expectation of a powerful and high-speed detector/tracker system.

Evaluation on REPERE corpus. The REPERE corpus does not provide dense annotation but
only temporal bounds and one head position at a single reference frame are given for each track.
Therefore, we evaluate the performance only indirectly by measuring the detection performance
on these reference frames, where the detections in one reference frame come either from the raw
detector, or are generated through interpolation of one track at that frame.

In the 27 selected videos, there are 4130 annotated heads. Based on the intersection of the
groundtruth polygons and tracked hypotheses at these reference frames, one can calculate the
recall, precision, and F1-measure. Then to report performance at the track-level, we simply
weight the detection errors by the duration of each track active at the reference frame. This results
in the false alarm time rate (denoted FA. T), i.e. the sum of the false alarms weighted by the track
duration divided by the total duration of all reported tracks. We can similarly compute the Missed
time (Missed T.).

The tracker configuration is the following: faces are detected every 6 frames, and links between
detections could be made up to 36 frames apart. The baseline consists of frontal detector, skin
filtering, and SURF-based tracker as in previous experiments [3].

Table 2.3 shows the results of each system. At frame-based evaluation, thanks to the DPM face
detector, the recall is increased by quite a large margin (on the test set, from 43.8% for the
baseline relying on VJ detector to 58.2%). However, this is at the cost of an increase of false
alarms (reduction of precision). These number can be improved by applying the false alarm
track removal step. In that case, the precision increases by almost 13% (from 82.2% to 94.8%)
while only losing 1% in recall. Compared to the baseline, we gain more than 12% in F1-measure.
Looking at the weighted measure, we can note that though our system without FAR has around
20% false detections at frame level, the total FA time is only around 10%. This means that our
false alarms tend to form short tracks. We visualize a tracking result from a REPERE broadcast
example in Figure. 2.8.
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Our system can also be applied for more general multi-object tracking tasks such as pedestrian
tracking. We present these tracking results in the Appendix A.

2.5.3 Face clustering evaluation

Metrics and Baseline. The performance of the clustering task is measured according to two
different metrics: Cluster Purity (CP) and Clustering Confusion Error Rate (CER).

• The CP of one cluster is the proportion of the largest number of frames of that cluster
belonging to one identity to the total number of frames of this cluster. The CP aims to
control if we overcluster tracks.

• CER is measured by computing the overall person time that is attributed to the wrong
person and normalized by total duration of the videos [3].

Face tracks in all cases are provided by our system. To compare with our clustering framework,
tracks are also grouped using the baseline proposed by [19].

Evaluation of shot constrained face clustering. We assess the impact of 2 different clustering
schemes: (i) using only global face clustering (global) with matching similarity and (ii) applying
a shot constrained face clustering (SCFC) step before our global face clustering (local + global).
Because the main goal of SCFC is to quickly merge clusters without making mistakes, CP is the
main metric of concern.

Fig. 2.9-left shows how CP changes as the clusters are merged locally or globally. SCFC
can still preserve the purity comparable to exhaustive clustering while decreasing significantly
computation time. In figure 2.9-right, CER stops to decrease in SCFC after a certain point. This
shows that SCFC has reached its limit. Therefore, we choose the threshold T h1 to stop SCFC at
800 clusters on the training set and apply it on the test set.

Table 2.4 compares the global exhaustive clustering without and with local SCFC. After the first
local clustering, most easy face tracks are quickly associated. Therefore, the number of face
clusters as input for global clustering is drastically reduced to 40% of the original numbers and
the total running time decreases accordingly. The total running time is reduced to 25%. The
effect is even more visible for long videos (more than 45 mins) where running time is cut down
by 8 to 10 times. Besides the speed, we can also observe the improvement in CER in figure
2.9-right when applying global clustering after local SCFC due to less noise in the SCFC.

Evaluation of fusing similarity. Figure 2.10 shows how the CER evolves during the process
with 3 different similarities: keypoint-based similarity DS , TVM-based similarity DT , and the
fusing similarity DS+T . In the first stage of the graph, face clusters are matched using only
keypoint-based similarity. During this stage, closely similar clusters are easily merged first, thus
reducing the CER sharply. However, as the intra-person variance increases, matching similarity
gradually loses its discriminative advantage. Based on the curve of DS , we can choose the
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Figure 2.9 – SCFC evaluation based on 2 metrics versus the number clusters. Left: cluster purity
(CP) Right: confusion error rate (CER).

Figure 2.10 – Evolution of CER during hierarchical clustering with different similarities. During
the first part of the clustering (from more than 800 clusters to less than 700, only the matching
similarity DS is used.

threshold T h2 used to start representing clusters with TVM on the test set. TVM performs
consistently as the i-vectors are capable of capturing both the person-dependent variabilities and
condition-dependent variabilities. The combination of these two similarities achieves the best
result in the development dataset at the minimum CER as well as when the number of clusters
reaches the number of groundtruth identities GT = 341.

In Table 2.5, we can observe more clearly the improvement of total variability modelling over
the baseline [19] using standard GMM adaptation. It is also interesting that matching similarity
DS is still important to improve the performance. This shows that although i-vector can capture
well intra-person variabilities, there is still room for improvement with further discriminative

No. clusters Time (mins)
Global 21263 22497

Local + Global 8883 5465

Table 2.4 – Comparison on 27 videos of REPERE test 2 when performing SCFC using matching
similarity. "No. clusters" denotes the number of face clusters available as input for global
clustering step (which contains false alarms and unannotated clusters).
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[19] DS DT DS+T

CER 11.2 9.3 9.7 8.2
No. clusters 1182 798 728 917

Table 2.5 – Comparison of clustering using different similarities on the test set of REPERE

Figure 2.11 – Face clustering time given the number of initial face tracks. For videos with more
face tracks, the clustering time increases quadratically. By dividing a video into clusters of shots,
the total time for our 2-stage face clustering only increases linearly with the number of face
tracks.

modeling.

Computational performance. Besides accuracy, the running time is a major concern for face
diarizaton systems. On an Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz machine, for HD
images (1024x756), the detector can process 3-4 frames/s, yielding real time speed when applying
it only on 4 frames per second. For comparison, frontal and profile VJ detectors run at 6 - 7
frames/s on the same machine. For 1 hour of HD video, the tracker costs around 1.5 hour in
total including motion estimation on detections. Comparing to standard hierarchical clustering,
our divide-and-conquer strategy and the faster biometric measure comparison using i-vectors
lead to an important computation decrease by a factor ranging from 2 to 3 on short videos
and 8 to 10 on longer videos (more than 45 minutes). In Figure 2.11, we plot how the face
clustering time evolves with different number of face tracks per video. Without shot clustering,
when the number of face tracks increases, the computational cost increases quadratically. By
dividing-and-conquering each shot clusters, we reduce the growth of face clustering time to a
linear growth with respect to the number of face tracks.
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2.6 Conclusion

We have presented our diarization system with a novel tracking and shot-constrained clustering
methods. Unlike other methods, our tracker is able to exploit long term connectivity to perform
tracking across a long gap of frames, thus allowing us to take advantage of the robust DPM detec-
tor. Meanwhile, the efficient shot-constrained clustering scheme speeds up the face clustering
process significantly. We also apply and combine the total variability modeling with the matching
similarity, which further improve the accuracy of our system. Our contributions are evaluated on
standard datasets and yield state-of-the-art results. Nevertheless, the experiments show room for
more exploration of face representations. As our methods still rely on primitive elements (color,
motion, position) and local features (SURF, DCT), further improvement can be expected using
recent deep face recognition. It is also beneficial to combine the tracker with other state-of-the-art
deep face detectors.

Building from the result of face processing in this chapter, we will introduce the full system ,
which takes advantage of both audio and visual streams for person naming, in the next chapter.

27





3 Multimodal Person Discovery

3.1 Introduction

In this chapter, we address the main problem of person discovery in broadcast TV. As person
indices can be used to retrieve identity of people presented in the archive and to obtain their
respective quotations, a person naming system is indispensable for searching archives. To this
end, a video must be segmented into segments during which a person appears or speaks. Then,
person names must be extracted from the videos and assigned to the corresponding segments to
when a person appears or speaks. As the identity information comes from both the face and the
voice of a person, there is a need to correctly associate a face track and a voice track.

Hence, in the first part of the chapter, we introduce the task of talking face and dubbing detection,
which enables face and speech association for audio-visual person diarization. In the second half,
the full person discovery system with all components are detailed. Finally, quantitative results
in the person retrieval task and qualitative demonstration of the EUMSSI project are presented.
Overall, the main highlights of this chapter are:

Face-speech association problem. To correctly associate a speech segment to a face track and
an overlaid name, one needs to verify the synchronicity between the face and the voice. This
is especially important in TV broadcast when there are commentary scenes or when a different
language is dubbed over the true voice. To solve this task, we propose a method to represent
the temporal relationship between the auditory and visual streams. It consists of a canonical
component analysis (CCA) transform to learn a joint multimodal space and a long short term
memory (LSTM) network to model cross-modality temporal dependencies.

Audio-visual naming system. The system consists of four main stages: face and speech diariza-
tion, candidate identity retrieval, and audio-visual association, and person naming. Figure 3.1
shows the diagram of these four stages. In the first stage, we use the face diarization system
from the previous chapter and the speech diarization provided by LIUM [47], our project partner,
which will be briefly described. For the second stage, person identities can be retrieved either

29



Chapter 3. Multimodal Person Discovery

Figure 3.1 – Architecture of our system

from speech transcripts or from the onscreen names commonly used to introduce the current
speaker. Here, we use the onscreen names as the main cue because identities can be reliably
extracted using Optical Character Recognition (OCR) techniques, and their association with
people in the videos is easier than analysing pronounced names in ASR transcripts. And finally,
faces and speakers need to be associated using the talking face and dubbing detection model.
Then the names are propagated to the speakers or faces of the identities of the persons in the
show.

The chapter is structured as follows: Section 3.2 introduces our work in audio-visual association,
Section 3.3 describes the person naming system in details, experimental and evaluation results are
presented in Section 3.4, Section 3.5 shows the the EUMSSI demonstration and project outcome,
and Section 3.6 concludes the chapter.

3.2 Talking face detection and dubbing detection

Solving the AV person diarization and naming tasks requires associating visual person tracks or
overlaid names with auditory voices, which has several difficulties. Firstly, the visible person may
not be the current speaker. This issue occurs when anchors or invited speakers are commenting on
video footage displaying famous people who might be talking or when several persons appear to
be talking in the background. This cannot be solved with existing systems which visually detect
talking faces [48, 49, 50, 51] to reinforce the AV association. Secondly, another recurrent issue
in international TV is dubbing. The problem is common when an interviewed person, shown in
the video, is speaking in a different language than that of the target audience, and is dubbed by a
narrator.

We focus on dubbing detection in broadcast data, which involves modelling the synchrony of
audio and lip motion. This task can be used to handle the two issues mentioned above, by detecting
which of the talking persons (if any) actually produces the audio discourse. Although it is related
to several research problems (AV speech recognition, voice over detection, spoofing in AV
biometry), to the best or our knowledge, this dubbing problem has not been addressed previously.
To initiate further research, we acquired the DW-dubbing corpus comprising 4722 segments
of 2 seconds with the corresponding face track and audio. In addition, from a methodological
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a) b)

Figure 3.2 – Examples of vision only systems. (a) used head and upperbody [50] while (b) used
only mouth motion [49]

perspective, we propose to exploit the recently revived LSTM networks to model the joint
dynamics of synchronized AV segments in a multimodal space obtained via canonical correlation
analysis (CCA). Experiments demonstrate the benefit of our method over several baselines. In
summary, our contributions are:

• We address for the first time the problem of dubbing detection in broadcast data;
• We propose a method relying on LSTM and multimodal feature extraction, which achieves

promising result on this problem;
• We make publicly available a dubbing dataset collected from TV news for future research.

3.2.1 Related work

Dubbing detection shares some similarities to several problems discussed below along with the
related works.

Talking faces. Person diarization and naming require matching audio segments with face
tracks of talking people. To detect talking people, mean squared intensity differences [48] or
motion entropy [49] within mouth regions were typically used, potentially combined with head
motion [50]. These vision only methods are illustrated in Figure 3.2 Such visual-based approaches
could be further enhanced using multimodal contextual information, like audio segment-face
track overlap duration, or face size and position [51]. It is interesting to see that none of the
existing systems relied on temporal models for this task. Also, when several persons are seen
talking, or in dubbing situations, visual information is insufficient to address the task, and audio
and video need to be jointly considered.

AV speech recognition. Modeling the relationship between audio and visual streams can be
traced back to early researches in multimodal speech recognition [52]. Typical examples include
coupled hidden Markov Model (CHMM) [53] or asynchronous HMM to model anticipation and
retention phenomena. More recently, multimodal deep networks [54] showed good performance.
However, the approach did not include temporal models: it relied on neural networks applied to
groups of frames, whose outputs were averaged over time. Furthermore, the task is limited to the
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Figure 3.3 – System overview: feature extraction, dimensionality reduction over concatenated
feature from block of frames, mutual information extraction via Canonical-Correlation Analysis
(CCA), and temporal modelling with LSTM.

Figure 3.4 – A related work by [57] that was based on either co-inertia to detected uncorrelated
AV signals (spoofing cases), or on coupled HMM to detect unsynchronization. This work focus
more on the temporal classification models but not learning the representation of the sequences.
Also, the method was applied to a constrained biometric environment, with specific test sentences
used as input to the system.

recognition of simple sounds [55] with little noise (head movements, illumination).

AV biometry and synchronization. The dubbing problem somehow resembles AV spoofing
detection, where the task is to detect when visual attackers pretend to match with a playback
audio. As an early work, cross-modal fusion with latent semantic analysis or canonical correlation
analysis were applied, but only tested attacks composed of a single photograph, potentially
animated with simple synthetic movements [56]. To deal with real face tracks with different
voices, [57] investigated co-inertia or coupled HMM approaches to detected uncorrelated AV
signals or unsynchronization. However, the method was applied to a constrained biometric
environment, with specific test sentences used as input to the system. This work, as shown in
Figure 3.4, only focus on the classification model but not the representation of the sequences.

In addition, synchrony detection has also been addressed for speaker location & association
[58, 59] in scenes with two people, and has focused more on mutual information modeling
than temporal aspects. Mutual information was also shown to be important in monologue
detection where a system needs to identify real speakers among sets of confusers [60, 61].
However, temporal modeling using HMM to evaluated likelihood of word utterance given joint
AV distribution only yielded limited results [60]. Another related problem is to distinguish
narrated vs genuine voices in TV news addressed in [62], where only primitive lip features were
used without joint modality space or temporal modeling, and the dataset was very small (40 video
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Figure 3.5 – Example of mouth boxes. Mouth region is detected based on landmarks. Features
are computed in 3×5 grid and grouped in a block of 5 frames.

clips). In contrast to the above works, our approach utilizes both cross-modal correlation analysis
and temporal modeling with state-of-the-art LSTM. Furthermore, our dataset is collected from
TV with unconstrained settings and unrestricted speech content.

AV modeling with Neural networks. In addition to the AV speech recognition [54], there has
been more attention towards using deep neural networks (DNNs) for AV speaker naming with
audio and visual streams. [63] used DNNs to jointly learn recognition models from 2 input
streams. This work is further extended in the temporal domain with multimodal LSTM by [64].
Nevertheless, these works require identity information and are thus closer to biometric joint
recognition than unsynchronization speech detection.

3.2.2 Multimodal framework

The overview of our system is illustrated in Fig. 3.3. First, features are extracted per frame for
each modality. Subsequently, blocks of frames are concatenated and dimensionality reduction is
applied. This is followed by cross-modality correlation modelling, whose outputs are modelled in
the temporal domain using an LSTM to get the high level representation used for classification.

3.2.3 Feature extraction

Our goal is to build a full neural network to represent audio-visual speech. However, in this paper,
we rely on standard features which should be sufficient for the task.

Visual stream. First, to obtain face tracks, we rely on the tracking-by-detection method described
in [10]. Then, the mouth region is localized within each frame. This is done by detecting
landmarks using the DLIB implementation of [65].

To characterise the mouth dynamics, dense optical flow is computed using the OpenCV im-
plementation of [66]. The average flow is subtracted to remove head motion, and the residual
flows are quantized into 8 bins based on their angular values, with 1 additional bin for close to
static points. The mouth region is divided into 3×5 spatial regions in which flow histograms are
computed, resulting in a vector of 3×5×9 = 135 dimensions.

Audio stream. Every 10ms, we extract from 20ms windows Mel-frequency cepstral coefficient
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(MFCC) features with 13 coefficients and energy level together with first and second derivatives,
resulting in a vector of 42 dimensions.

3.2.4 Multimodal processing

As often done in gesture recognition [67] and in NN-based AV speech recognition [54], we
consider observations over a short interval (0.2s as in [67, 54]) to capture short-term temporal
dynamics. Here, a block of 5 visual frames are grouped together (675-dim vector), which
corresponds to 20 audio frames (840-dim vector). Principal component analysis (PCA) is applied
separately to each modality to keep 95% of the variance, resulting in vectors of NV = 100 (visual)
and NA = 90 (audio) dimensions.

Canonical-correlation analysis (CCA). The two modality streams contain different types of
information. For example, audio may contain features about identity, semantics, or emotions
which are irrelevant for our task and may have little correlation with the visual stream. To capture
the synchrony between the two modalities, we use CCA, a powerful multivariate statistical
technique. Its principle consists of learning matrices, one for each modality, which project the
paired modality samples into a common space where the cross-correlation between the projected
samples is maximized. For instance, let X A ∈ IRNA×N and XV ∈ IRNV×N be N audio and visual
samples, respectively. Looking at a one dimensional subspace, CCA looks for the projection
weights wA ∈ IRNA and wV ∈ IRNV such that:

max
wA,wV

cor r
[
wT

A X A , wT
V XV

]
s.t . ||wA|| = 1, ||wV|| = 1.

Such optimization is conducted by finding wA and wV using the eigenvalue decomposition method
on the correlation matrix, and then generalized to find the common subspace in which the audio
stream and visual stream are most correlated [68]. Thus, features from this subspace can represent
how two modalities harmonize with each other, which will be important to detect dubbing events.

3.2.5 Temporal modeling and classification

In this part, we introduce the LSTM architecture and then describe how it is used in our dubbing
detection task.

Long Short Term Memory. In sequence modelling, the typical challenge is to learn a model
mapping an input sequence {x0, x1, ..., xn} to an output sequence {y0, y1, ..., yn} where predictions
at step t should use the knowledge from x0 to xt . To tackle this challenge, RNNs were introduced
and shown to learn both high level representation of input signals and temporal dependencies.
However, due to gradients multiplications during back propagation through time, they suffered
from exploding or vanishing gradients, making it hard to learn long range dependencies [69].

LSTMs were introduced to overcome these issues [70]. The key ideas were to add a memory
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Figure 3.6 – Temporal models. LSTM illustration. Red circles denote sigmoid activation of
the gates while blue circles denote tanh activation of the states. × circles denote point-wise
multiplication.

cells Ct to store useful information to model long term dependencies, as well as explicit gating
mechanisms to regulate the memory updates, as illustrated in Fig. 3.6 and indicated by the
formulae below:

Gates : ft = si g m(Wxf xt +Whf ht−1 +b f ), (3.1)
it = si g m(Wxi xt +Whi ht−1 +bi ), (3.2)
ot = si g m(Wxo xt +Whoht−1 +bo), (3.3)

St ates : C̃t = t anh(Wxc xt +Whc ht−1 +bc ), (3.4)
Ct = ft ×Ct−1 + it × C̃t ,ht = ot × ct (3.5)

Out put : yt =Wy ht +by , (3.6)

where W. and b. denote weight matrices and biases. The mechanism works as follows. First, new
information are processed from current states xt and ht−1 to yield C̃t . Then, to update Ct , the
LSTM can selectively decide how much information from the past needs to be ”remembered” or
forgotten by passing Ct−1 through the forget gate ft , and replaced (reset) by new information
C̃t through the input gate it . Finally, through the output gate ot , the LSTM selects which Ct

components to use to generate the hidden states ht , from which the LSTM output yt is produced.
Importantly, the strategy to open or close gates is data driven and automatically learned from the
data through the trainable W. and b.. Also, the weighted addition of C̃t and Ct−1 is crucial for
LSTMs to avoid the vanishing gradient issue and to propagate gradient through long intervals.

Multimodal LSTM. Let X = {x0, x1, ..., xn} be a sequence of CCA projections for one segment.
Because our task is binary, we have only one supervised signal denoting the class (Authentic or
Dubbing). Straightforwardly, one could thus define the output sequence as a series of only 0s or
of only 1s when appropriate and learn the LSTM classifier. However, such an approach does not
constrain enough the network parameters, thus quickly leads to overfitting. Furthermore, in one
dubbing segment, not all frames look asynchronous, thus forcing the label to 0 at every step can
be misleading for the network to learn.

To overcome this challenge, similarly to [71, 72], we propose to train the LSTM in an unsuper-
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a) b)

Figure 3.7 – LSTM model. a) At each step i the LSTM learns to predict the feature vector xi+1

from the next time step. b) The LSTM is applied to the input sequence, and the sequence of
hidden states hi are averaged and used as input for classification.

vised fashion with a bottleneck hidden layer h of size Nh: at each step t , the LSTM needs to
predict the feature xt+1 of the next step, as shown in Fig. 3.7a. This architecture can learn good
features for two related reasons. First, the hidden layer must be able to extract and compress
the essential information from the input vector to make predictions. Since an input vector xi is
composed of two feature vectors of equal size coming from each modality, several hidden units
will be able to capture the existing correlation between modalities, whereas others will perform
intra-modality predictions (see Fig. 3.10). Second, to make better predictions and learn retention
and anticipation temporal phenomena across modalities, the LSTM must also rely on features
observed several steps in the past.

Finally, on a test sequence, the extracted hidden representations are mean pooled over the whole
segment to form a single vector used for classification, as shown in Fig. 3.7b.

3.3 Integrated person discovery system

To automatically index all people in raw TV broadcasts, each shot must be automatically tagged
with the name(s) of people who can be both seen as well as heard in the shot along with the
confidence score. The list of people is not known apriori and their names must be discovered
from video text overlay or speech transcripts [73]. To this end, a video must be segmented in
an unsupervised way into homogeneous segments according to person identity, like speaker
diarization and face diarization, to be combined with the extracted names.

Our goal is to benchmark our system in all components and address the fusion of multimodal
results. The system we proposed is illustrated in Fig. 3.1. It consists of 4 main parts: video
optical character recognition (OCR) and named entity recognition (NER), face diariation, speaker
diarization, and fusion naming.
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Person discovery challenge at MediaEval 2016

To evaluate our multimodal system, the EUMSSI consortium participated in the MediaEval
challenge 2016 [73]. The goal of this challenge is to identify all people who simultaneously
appear and speak in a video corpus, which in principle requires information from both the audio
and visual streams. The submission of competitors must contain not only the final automatic
annotations but also the evidence of such claims. The evidence enables manual verification of the
annotations and in general human annotators can use them as inputs to greatly decrease manual
effort in a collaborative process. In the end, the EUMSSI fusion system won the challenge and
scored highest in the test data.

3.3.1 Video OCR and NER

To detect OCR segments in videos and exploit them for retrieval, we first relied on the approaches
described in [74, 75] for text recognition in videos, and on [76, 77] for text recognition and
indexing. In brief, given an input video, two main steps are applied: first the video is preprocessed
with a motion filtering to reduce noise, and individual frames are processed to localize and
binarize the text regions for text recognition. As compared to printed documents, OCR in TV
news videos encounters several challenges: low resolution of text regions, sequence of different
texts continuously displayed, or small amount of text to be recognized etc. To tackle these,
multiple image segmentations of the same text region are decoded, and then all results are
compared and aggregated over time to produce several hypotheses. The best hypothesis is used
to extract people names for identification. To recognize names from texts, we use the MITIE
open library 1, which provides state-of-the-art NER tool. To improve the raw MITIE results, a
heuristics preprocessing step identifies names of editorial staff based on their roles (cameraman,
editor, or writer) because they do not appear within the video, thus are not useful for identification.

3.3.2 Face diarization

Given the video shots, face diarization consists of (i) face detection, (ii) face tracking, and
(iii) face clustering. Recall from the previous chapter, this system includes (i) a fast version
of deformable part-based model (DPM) [31, 29, 78](ii) the CRF-based multi-target tracker [2],
which relies on the unsupervised learning of time sensitive association costs for different features,
and finally (iii), a face clusteringframework using matching and biometric similarity measures
similarly to [19] with two improvements: shot-constrained face clustering (SCFC) and the use of
total variability modeling (TVM).

1https://github.com/mit-nlp/MITIE
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3.3.3 Speaker diarization

The speaker diarization system (“who speak when?") is based on the LIUM Speaker Diarization
system [47], freely distributed2. This system has achieved the best or second best results in the
speaker diarization task on REPERE French broadcast evaluation campaigns 2012 and 2013 [79].

The diarization system is first composed of an acoustic Bayesian Information Criterion (BIC)-
based segmentation followed by a BIC-based hierarchical clustering. Each cluster represents a
speaker and is modeled with a full covariance Gaussian. A Viterbi decoding re-segments the signal
using GMMs with 8 diagonal components learned by EM-ML, for each cluster. Segmentation,
clustering and decoding are performed with 12 MFCC+E, computed with a 10ms frame rate.
Music and jingle regions are removed using a Viterbi decoding with 8 GMMs (trained on french
broadcast news data) for music, jingle, silence, and speech (with wide/narrow band variants for
the last two, and clean or noised or musical background variants for wideband speech).

In the above steps, features were used unnormalized in order to preserve information on the
background environment, which may help differentiating between speakers. At this point however,
each cluster contains the voice of only one speaker, but several clusters can be related to a same
speaker. The background environment contribution must be removed from each GMM cluster,
through feature gaussianization. Finally, the system is completed with clustering method based
on the i-vectors paradigm and Integer Linear Programming (ILP). This new clustering method
is fully described in [80] and [81]. The ILP clustering along with i-vectors speaker models
gives better results than the usual hierarchical agglomerative clustering based on GMMs and
cross-likelihood distances [82].

3.3.4 Identification and result ranking

After obtaining homogeneous clusters during which distinct identities speak or appear, one needs
to assign each name output from NER module to the correct clusters. However, associating
auditory voices with visual person clusters or names has two major difficulties. The visible
person may not be the current speaker and the speaking person can be dubbed by a narrator in a
different language. Although we have introduced a temporal learning method to solve the dubbing
problem, incorporating it into an AV diarization system is still an open question. Because of
these problems of AV association, we use a direct naming method [83] which finds the mapping
between clusters and names to maximize the co-occurrences between them. This direct naming
scheme is illustrated in Figure 3.8.

Naming. Names are propagated based on the outputs of face diarization and speaker diarization
independently. The direct naming method is applied to speaker clusters to produce a mapping
between names and clusters. All shots which overlap with the clusters are tagged with the
corresponding names with equal confident scores. The same direct method is applied to face

2www-lium.univ-lemans.fr/en/content/liumspkdiarization
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Figure 3.8 – Direct naming example. Given the face (or speech) clusters Ci and the names
extracted from OCR N j , we create an edge between a cluster and a name if their durations
overlap. In this example, N1 is assigned to C1, C5 will not have any name, and C2..4 will be
assigned names to maximize the total overlap scores ti j .

clusters to produce a set of named clusters. Unlike speaker naming, for one shot, a name coming
from face naming is ranked based on the talking score of the cluster’s segment within that shot.
The talking score is predicted using lip motion and temporal modeling with LSTM [9]. Based on
the two results, we propose a strategy to appropriately combine them.

Ranking in MediaEval. In MediaEval challenge, beside retrieving the people appearing and
talking during each shot, we also need to rank the names to compute mean average precision. Let
S = {sk } be the list of testing shots. Within each shot, {N F

i , t (N F
i )} is the set of names returned

by face naming and the corresponding talking scores and {N A
i ,1.0} is the set of names returned

by speaker naming, each is ranked equally with score 1.0. The names which the two methods
agree on are ranked highest. Then, names from face naming are ranked higher than speaker
naming because we found that face naming is more reliable in empirical experiments. Alternative
strategies that rank speaker naming equal or higher than face naming gave inferior results. Our
ranking strategy is described in Algo. 1.

3.4 Evaluation

3.4.1 Talking faces and dubbing detection

We describe below our experimental protocol and analysis of the talking face and dubbing
detections results.

Experimental protocol

DW-Dubbing dataset3. We collect face tracks with their corresponding audio from Deutsche-
Welle broadcast programs including debates and documentaries. Each track was divided into
2s segments. Segments with multiple arguing voices, inaudible speeches, or profile faces were

3 http://www.idiap.ch/scientific-research/resources
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Algorithm 1 Ranking names within shots. For each shot sk the list of shots S, for each shot, we
apply the face naming and speaker naming methods to acquire the names and scores (N F

i , t (N F
i )),

(N A
j ,1.0) respectively. Then ranking is apply to return the final sorted list of names Qsk .

1: for sk ∈ S do
2: Qsk =;
3: Face_naming(sk ) ⇒ (N F

i , t (N F
i ))

4: Speaker_naming(sk ) ⇒ (N A
j ,1.0)

5: for each N F
i do

6: if ∃N A
j /N A

j = N F
i then

7: Qsk =Qsk ∪ {(N F
i , t (N F

i )+2.0)}
8: else
9: Qsk =Qsk ∪ {(N F

i , t (N F
i )+1.0)}

10: for each N A
j do

11: if not ∃N F
i /N F

i = N A
j then

12: Qsk =Qsk ∪ {(N A
j ,1.0)}

Training set Testing set Unsupervised set
Authentic 617 444 1598
Dubbing 440 209 0
Silence 406 237 771

Table 3.1 – Number of segments belonging to different splits and classes in the DW-dubbing
dataset

discarded. The statistics of the dataset is shown in Tab. 3.1. Data from different videos were split
into subsets used for unsupervised training, training and test data. The language of authentic
speech/speaker segments was English, and dubbing segments taken from DW international
documentaries had English voice dubbing a wide range of languages including Spanish, German,
or other minority languages.

Protocol. For all models below, the authentic segments of the unsupervised set and of the training
set were used to learn the PCA, CCA, and LSTM representations. Linear SVM classifiers were
trained from the authentic and dubbing segments from the training set, using cross validation
(CV) to determine hyperparameters. Evaluation was done on the test set, using accuracy as

CV Acc. Testing Acc.
MSD [48] 80.67 77.79
Mv [49] 78.92 82.16

HOF + SVM 78.39 79.06
HOF + LSTM 81.59 83.08

Table 3.2 – Talking face detection results.
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Testing
CV Acc. Acc. Prec. Recall

Audio 67.50 76.92 96.31 72.08
PCA 91.01 79.91 97.03 73.65
CCA 74.58 81.80 89.64 83.78

PCA + LSTM 85.44 83.76 94.69 81.53
CCA + LSTM 86.36 88.03 95.78 86.79

Table 3.3 – Dubbing classification results on DW data.

Figure 3.9 – Training and testing accuracies for different values of Nh for the CCA+LSTM model.

performance measures, along with recall and precision of authentic segments.

Models. To evaluate the contributions of the different elements, we tested several models:

1. Audio. This uses only MFCC features as the input for a SVM classifier.
2. PCA. It consists of applying another PCA on the concatenation of the PCA representation

of each modality. Keeping 95% of the representation, we obtained a 75 dimension vector
for each block of frames, which were averaged and used as input to a SVM classifier.

3. CCA. For each block, as shown in Fig. 3.3, the CCA projections (32 dimensions per
modality) were computed, averaged and fed to a SVM.

4. PCA+LSTM. It consists of a LSTM with Nh = 16 applied to the multimodal PCA repre-
sentation of the PCA baseline.

5. CCA+LSTM. A LSTM with Nh = 16 is trained with the CCA projection vectors of the
CCA baseline.

Experimental Results

Talking faces. In a preliminary experiment, we trained a LSTM model to detect talking faces
from optical flow histograms computed at every frame. As in dubbing, the LSTM was trained to
predict the next frame observations, and the average hidden state was used as input to a silent-vs-
speaking classifier. Results in Tab. 3.2 demonstrate the benefit of the temporal information over
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a) b)

Figure 3.10 – Hidden neurons activation distributions. Green distributions are from the authentic
samples, red ones from dubbing samples. a) discriminative neurons. b) non-discriminative
neurons.

other baselines (see Sec. 3.2.1 for details of [48] and [49]).

Dubbing. Tab. 3.3 displays the obtained results. Because one can possibly distinguish dubbing
cases based on languages or quality of voices in the audio, Audio only can give some positive
results. However, using both streams in PCA slightly improves the accuracy, this signifies the
importance of multimodal analysis in this task. Nevertheless, the joint PCA subspace computed
by maximizing variance is not expressive enough and results in confusing class observations, the
classifier cannot be well generalized for the test set. CCA learns a better space where high or
low correlation are expected depending on the class, leading to more stable results. By modeling
the temporal dynamics within segments rather than averaging, the hidden state representation
extracted from LSTM better discriminates the two classes and boosts the performance of both
types of input. In this view, CCA offers a more suitable space for LSTM predictions of normal
speech, and LSTM trained on CCA inputs outperforms LSTM trained from PCA.

This is confirmed by visualizing the activation distribution of the hidden neurons (i.e. each
dimension of the hidden state). Typical examples are illustrated in Fig. 3.10 (CCA+ LSTM with
Nh = 16). The two left neurons fire stronger when the two streams are correlated (in green), and
are inhibited otherwise (in red). Neurons on the right fire similarly regardless of the classes,
suggesting that they are probably specialized to process single modality inputs, whereas left ones
incorporate cross-modality information, thus contributing significantly to detecting asynchrony.

Finally, to explore the LSTM parameter space, we vary the hidden size Nh from 8 to 48. Results
are shown in Fig. 3.9. As Nh increases, the cross validation training accuracy increases, but not
the testing results. This shows that large hidden size can lead to overfitting on the training set.

3.4.2 Person discovery

Challenge task

In the MediaEval Person Discovery task, the goal is the following. Given the raw TV broadcasts,
each shot must be automatically tagged with the name(s) of people who can be both seen as well
as heard in the shot. The list of people is not known in prior and their names must be discovered
in an unsupervised way from video text overlay or speech transcripts. This situation corresponds
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MAP@1 MAP@10 MAP@100
(1) Face naming + baseline OCR 30.3 22.0 21.0
(2) Face naming + our OCR 58.6 42.9 42.0
(3) Talking face naming + our OCR 64.2 53.1 52.1
(4) Talking face naming + speaker naming 68.3 56.2 54.7
(5) Fusion (4) with baselines 79.2 65.2 63.4

Table 3.4 – Benchmarking results of our submissions. Details of each submission in the text.

to cases where at the moment a content is created or broadcast, some of the appearing people
are relatively unknown but may later on become a trending topic on social networks or search
engines. In addition, to ensure high quality indexes, algorithms should also help human annotators
double-check these indexes by providing an evidence of the claimed identity (especially for
people who are not yet famous).

Datasets

The test set is divided into three datasets: INA, DW and 3-24. The INA dataset contains 2 TV
video channels for a total duration of 90 hours. The DW dataset is composed of video downloaded
from Deutsche Welle website, in English and German for a total duration of 50 hours. This
dataset was provided by EUMSSI so that we can have benchmarking on actual data of our project.
The last dataset contains 13 hours of broadcast from 3/24 Catalan TV news channel.

As the test set comes completely free of any annotation, it was annotated a posteriori based
on participants’ submissions and by participants themselves. Using the evidence provided by
participants, an annotator can double-check the automatically-generated index. Two types of
evidence are allowed coming from video OCR and automatic audio transcripts.

Evaluation

Participants are scored based on a set of queries. Each query is a person name in the corpus,
each participant has to return all shots when that person appears and talks. The metric is Mean
Average Precision (MAP) over all queries. In Tab. 3.4, we report our result on the test set as of
24/09/2016 4. Each of our 5 submissions (Sub.) is as following:

• Sub. (1) and Sub. (2) used our face naming without talking score with baseline OCR-NER
(1) or with our OCR-NER (2).

• Sub. (3) used our face naming with talking score.
• Sub. (4) used the combination of talking face naming in sub. (3) with speaker naming.
• And sub. (5) used the combination of sub. (4) with other systems using baseline OCR-NER

or baseline face diarization. This is also our primary submission.

4The groundtruth was been updated by a collaborative annotation until 20/10/2016.
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MAP@1 MAP@10 MAP@100
TokyoTech [87] 31.5 20.0 NA

UVigo [86] 31.5 23.6 21.1
HCMUS [85] 36.3 29.3 27.3
Baseline [73] 37.0 30.3 29.2

UPC [88] 63.0 50.5 48.4
PUC Minas and IRISA [84] 64.4 49.3 47.8

EUMSSI 79.2 65.2 63.4

Table 3.5 – Test result ranking of all participants.

System comparisons. When comparing sub. (1) and sub. (2), one can observe that our OCR-
NER outperforms the baseline OCR-NER by a large margin. This may be contributed by the
high recall of our system. Because the metric is averaged over all queries, any missing name
can significantly decrease the overall MAP. On the other hand, false names are less problematic
because of two reasons: they may not be associated with any clusters and they are not queried at
all. In sub. (3), using talking face detection with LSTM, we can further improve by 5.6%. By
combining face naming and speaker naming, we manage to increase the precision. This shows
the potential for further research of better audio-visual naming. In our primary submission (5),
the result are greatly boosted when other methods are added. From this we can note that these
methods are complementary to each other and how to exploit their advantages is an open question
in the future.

Comparison with the other participants. Table 3.5 showed the ranking of all teams participat-
ing in MediaEval 2016. Interestingly, EUMSSI was the only team with a dedicated talking face
detection module. Meanwhile UPC systems achieved high result based on 2 factors: combining
the results of two OCR systems and fusing face naming and speaker naming. As these factors are
similar to our system, it further highlights our improvement in year 3 of talking face detection
and dubbing detection within EUMSSI project. On the other hand, PUC Minas and IRISA [84]
proposed a system with 2 improvements: a multimodal combination of face-speaker clustering
face and name propagation methods based on minimum spanning tree and random walk. The
improvement of their result shows the potential for us to further investigate in multimodal diariza-
tion and name propagation. Other teams (HCMUS [85], UVigo [86], TokyoTech [87]) all used
only baseline OCR-NER provided by the organizers, which turned out to be detrimental because
of the low recall of the results. This showcases both the importance of video OCR and NER for
person identification in videos and the strong performance of the OCR-NER system developed
in the EUMSSI project. We also present the result of the challenge in MediaEval 2015 in the
Appendix B.
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Figure 3.11 – Screenshot of one video entry in the EUMSSI interface.

3.5 EUMSSI Outcome

3.5.1 Online demonstration

We present the demonstration of the online platform of the EUMSSI project5 which showcases
an application of our system. To provide a concrete idea of where the AV processing is involved,
Figure 3.11 depicts a screenshot of the EUMSSI web interface for a particular video. The
interface displays the title of the video, offers to view it (clickable play logo), and then provides
diverse meta-data either gathered from the original website (e.g. summary, publication data)
or automatically extracted from diverse resources (text, audio, video), like named entities. The
results of the AV processing tools are displayed, namely, face thumbnails associated to extracted
face clusters (clickable to reach their corresponding appearance in the video), the main captions
extracted from the video OCR, and more OCR text used for video indexing and temporal segment
indexing (not visible to the user). In addition, person clusters whose name has been automatically
detected from the OCR and associated to them are used to created browsing entries in the Amalia
video browsing tool, see Fig. 3.12. In this browsing tool, a user can click on the interesting people
to jump to the relevant segments.

3.5.2 Data processing and outcome

It is also important to highlight my contribution in extending and maintaining the processing
toolchain as illustrated in Figure 3.13. This toolchain integrated all the components (OCR, ASR,

5http://demo.eumssi.eu/demo/
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Figure 3.12 – Video browser indexed with person appearance temporal information.

Data
provider

eumssi

...

Toolchain
manager

Tools and dependencies:

OCR

Shot Detection
Face Detection
and Tracking

Face Clustering

Speaker Diarization

NamingNER

Execution
manager

grid

local

Figure 3.13 – Video processing toolchain. Data provider feeds video files and metadata to
the toolchain manager. Tools are prepared based on desired configuration properties. They are
and then given to the execution manager. Based on their dependencies, tools are executed on
computational grid or on local workstation.

speaker diarization, face diarization, and naming) and is highly modular and easy to modify.
Thanks to the toolchain and the signigicant improvement in processing speed, we had processed
more than 14000 videos as of 31/10/2016 for the demonstration. The number of results is 2 times
more than the number of OCR results and 20 times more than that of person identification results
processed before I joined the project. Overall, the EUMSSI project was rated "Excellent" by the
European Commission.

3.6 Conclusion

In this chapter, we have presented the integrate system for person discovery in TV broadcast. To
this end, we have addressed talking face and dubbing detection in broadcast data, which involves
detecting asynchrony between a visible speaker and the actual audio. We proposed an algorithm
comprising a CCA step, to capture the correlation between the 2 modalities, and a LSTM to
capture the joint evolution of audio and mouth features. Our DW-dubbing dataset available has
been made publicly available.

Currently, our work is limited to TV broadcast. To detect more challenging dubbing situations,
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semantic understanding of the asynchrony origin will be needed. The framework can be further
improved with deep CCA or stacked LSTM for more discriminative feature extraction. We
used only the visual features from the mouth region, thus leaving the visual attributes of the
speakers such as: age, gender, or ethnicity. Incorporating these information can further enhance
the correlation between the audio-visual streams.

To demonstrate the performance of our person naming system, submissions containing our
recent advances in video processing and temporal modeling were benchmarked at the MediaEval
challenge 2016. Each modality showed positive performance and we achieved the first place at
the challenge. The EUMSSI project, which utilized our video processing and naming system,
was also rated as "Excellent." One prospect of the person diarization system is that it creates a
rich dataset of person tracks with face-speech correspondence. In Chapters 5 and 6, we explore
the rich nature of this audio-visual person data in the context of cross domain transfer learning
and weakly supervised learning.
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4 Intra-Class Variance Regularization
to Improve Speaker Embedding

4.1 Introdution

Learning speaker representations that can enable comparing speech utterances directly is crucial
for multiple speaker related tasks in speech processing, including diarization, recognition, and
verification. Recently, deep learning systems have achieved better benchmarking results than
i-vectors in these speaker related tasks [89, 90, 91, 92, 6]. In these systems, a speaker embedding
can be learned in two main ways. First, it can be extracted as the derivatives of the speaker
recognition task by using the activation of the last layer before classification [92, 93, 94]. Second,
it can be learned directly by optimizing the loss functions constraining the distances between
same-speaker and different-speaker utterance pairs [91, 95, 5]. Among the distance-based losses,
triplet loss has become more and more widely used in deep embedding networks [90, 91, 95].

The main idea of triplet loss is that the distance between a given pair of same-speaker utterances
should be smaller than the distance from each of these utterances to any different-speaker
utterance by a constant margin [96]. While this idea is attractive, learning with triplet loss can
result in suboptimal performance in practice, especially in text-independent verification, where
the content of speech is not predefined. The label information is not explicitly used in this loss
function. Therefore, the model has to figure out the identity related factors that differentiate
an utterance pairs besides the variation in content, accents, etc. This wide range of variation
can lead to a dispersion of intra-class samples, thus rendering the embedding sensitive to noise.
Furthermore, the number of triplets increases exponentially with the number of samples, which
makes it hard to extract meaningful triplets to learn. Therefore learning with triplet loss can
be slow to converge and can result in suboptimal performance. To overcome these challenges,
one can employ effective sampling strategies [96, 97] or training embedding networks on top of
pretrained classification models [6, 5].

In this chapter, we address the problem of training embedding networks with triplet loss by
proposing a complementary loss function called intra-class loss. This loss acts as a regularizer
that reduces the averaged intra-class distance variance of the final embedded features. The
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effects of this loss is twofold. First, by reducing intra-class distance variance, the embedded
features for each class are more compact and less sensitive to noise. Second, by minimizing the
variation in utterances due to content or recording condition, the model can subsequently focus
on differentiating utterances based on identities. Hence, using intra-class loss can help stabilize
training and result in performance improvement. In practice, we optimize an equivalence of
intra-class distance variance, which is the averaged pair-wise distance of same-speaker utterances.
This upperbound can be efficiently estimated without parametrized means as in [98] and can be
combined with triplet loss without expensive overhead cost.

To validate our contribution, experiments are conducted on two benchmark datasets for speaker
verification: VoxCeleb and VoxForge. In both datasets, our method improves the overall accu-
racy and accelerates the training of embedding learning with triplet loss. Our results are also
competitive with state-of-the-art systems.

The rest of the chapter is organized as follows: Section 4.2 reviews the literature in speaker
recognition, Section 4.3 details our proposed intra-class loss, Section 4.4 presents the experiments,
and Section 4.5 concludes the chapter.

4.2 Related Work

Below we discuss prior works on speaker embedding for recognition and verification as well as
related work in computer vision which share similarities with our proposed method.

Conventionally, speaker representations are based on i-vectors [42]. To extract i-vectors, Baum-
Welch statistics are computed from a Gaussian Mixture Model-Universal Background Model
(GMM-UBM), which is learned using a sequence of feature vectors. I-vectors then can be used
to compare utterances directly using cosine similarity or probabilistic linear discriminant analysis
(PLDA) [99, 100, 101]. To improve upon i-vectors, deep neural networks (DNNs) have been
first applied to gradually replace each step in computing i-vectors traditional speaker recognition
systems [102, 103].

With the recent advances in deep learning, research effort has been devoted to learn end-to-end
DNNs for speaker classification and verification. One common task is to learn a good speaker
embedding to compare utterances, which can be addressed by two main types of approaches:
learning a representation as a byproduct of classification or directly learning an embedding using
distance based losses.

In the first approach, a DNN is trained to classify speakers and the activations of the final
hidden layer are averaged over the utterance to create a ”d-vector” [93]. D-vectors can be
enhanced by concatenating multiple levels of representation [92], PLDA scoring [89], and data
augmentation [94]. The speaker embeddings extracted in this manner are not discriminatively
trained and therefore often require an classifier such as PLDA or another DNN.
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In the second approach, the scoring scheme is fixed as the distance between embedded features,
thus the DNNs are optimized with distance-based loss to directly extract the embeddings. The
distance-based loss can be contrastive loss [5] or triplet loss [96]. Especially, triplet loss has shown
improvements in speaker turn detection [95], speaker diarization [104], and text-independent
verification [90, 91]. The main idea is that the distance between same-speaker utterances
should be smaller than the distance between different-speaker utterances. The challenge of this
approach is the wide range of variation of text-independent utterances. It is hard for a network to
distinguish the speaker related factors from other factors, which can lead to suboptimal results.
Therefore, the network is often pretrained for classification task in advance to achieve good
performance [91, 5]. Pretraining with classification uses the explicit identity labels to the network
into speaker discriminative features, thus filtering other sources of variation.

In our work, we are interested in the problem of large variation in text-independent utterances.
In deep face recognition, increasing intra-class compactness has been shown to improve the
discrimination power of the activation features of the last hidden layer [98]. We follow the
same idea but in the embedding space. Regularzing same-class neighbors has also been applied
in [105]. In our work, instead of minimizing the distances to means [98] or the empirical positive
pair-wise distances [105], we regularize the soft upperbound derived from the intra-class variance,
which is the averaged intra-class distance.

4.3 Proposed Method

In this section, we first present the general framework to learn an embedding space with triplet loss
and discuss its pros and cons to motivate our new loss function, which is described subsequently.

4.3.1 Triplet loss

Given a labeled training set of {(xi , yi )}, in which xi ∈RD , yi ∈ {1,2, ..,K }, we define an embedding
as f (x) ∈Rh , which maps an instance x into a h-dimensional Euclidean space. Additionally, this
embedding is constrained to live on the h-dimensional hypersphere, i.e. || f (x)||2 = 1. Within
the hypersphere, we will simply use the Eulidean distance as the distance between 2 projected
instances: d( f (xi ), f (x j )) = || f (xi )− f (x j )||2

In this embedding space, we want the intra-class distances d( f (xi ), f (x j )),∀xi , x j /yi = y j to
be minimized and the inter-class distances d( f (xi ), f (x j )),∀xi , x j /yi 6= y j to be maximized. To
achieve such embedding, one method is to learn the projection that optimizes the triplet loss in
the embedding space. Unlike other losses such as verification loss [106], triplet loss encourages a
relative distance constraint. A triplet consists of 3 data points: (xa , xp , xn) such that ya = yp and
ya 6= yn and thus, we would like the 2 points (xa , xp ) to be close together and the 2 points (xa , xn)
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Figure 4.1 – Illustration of an embedding space. In this example, an embedding function f is
learned to project the input samples in RD into the embedding space Rh . In this embedding space,
samples from the same class (with the same color) will have smaller distances than their distances
with samples from a different class.

to be further away by a margin α in the embedding space 1. Formally, a triplet must satisfy:

d( f (xa), f (xp ))+α< d( f (xa), f (xn)),∀(xa , xp , xn) ∈ T (4.1)

where T is the set of all possible triplets of the training set, and α is the margin enforced between
the positive and negative pairs. Thus, the triplet loss to train a projection f is defined as:

L ( f ) = 1

|T |
∑

(xa ,xp ,xn )∈T
l (xa , xp , xn , f ) (4.2)

in which

l (xa , xp , xn ; f ) = [d( f (xa), f (xp ))−d( f (xa), f (xn))+α]+ (4.3)

with [x]+ = max{x,0}.

Figure 4.1 shows an example of an embedding space, in which samples from different classes are
separated. By choosing h << D, one can learn a projection to a space that is both distinctive and
compact.

A major advantage of embedding learning is that the projection f is class independent. At test
time, we can expect examples from a different class, or identity, to still satisfy the embedding
goals. This makes embedding learning suitable for verification and clustering tasks.

We can observe in Eq. 4.2 that the parameters of f are updated based on the relative distance
difference between the positive and negative pairs. Embedded features can be spread out to
achieve the margin, thus making the representation sensitive to noise. On the other hand, two
speech segments can be differentiated by not only the speaker identities but also by the content of
speech, accents, etc. This large intra-class variation can make triplet loss result in low accuracy,
especially when trained from scratch. Our intra-class loss is proposed in the next section to

1The value of α varies depending on the particular loss function to optimize We use one value of α= 0.2 in all
cases.
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address these problems.

4.3.2 Reducing intra-class variance in the embedding space

Let Sc = {(xi , yi )} be the set of samples from the class c. We want to minimize the intra-class
distance variance of c:

min
f

∑
xi /yi=c

d( f (xi ),µc )2

nc
(4.4)

in which nc = |Sc | and the mean of class c features is µc = ∑
xi /yi=c

f (xi )
nc

. Eq. 4.4 requires
estimating the mean µc , which changes with each update. To address this problem, a possibility
is to compute a moving average of µc , but this can be unreliable during early training stage and
requires a hyperparameter to tune. To circumvent this issue, we instead minimize an upperbound
of the variance, which uses the pair-wise squared distances within the class. This upperbound
can be derived as follows:

∑
xi /yi=c

d( f (xi ),µc )2

nc
= ∑

xi /yi=c

|| f (xi )−∑
x j

f (x j )
nc

||22
nc

=∑
xi

||∑x j
( f (xi )− f (x j ))||22

n3
c

≤ ∑
xi ,x j

|| f (xi )− f (x j )||22
n3

c
(4.5)

One can observe that minimizing Eq. 4.5 can lead to a trivial solution when all samples are
projected to a single point. This can encourage model collapse when training with triplet loss [96].
Hence, we optimize the squared root of Eq. 4.5 and devise a second upperbound:

√√√√ ∑
xi ,x j

|| f (xi )− f (x j )||22
n3

c
≤ ∑

xi ,x j

√
|| f (xi )− f (x j )||22

nc
p

nc
= ∑

xi ,x j /yi=y j=c

d( f (xi ), f (x j ))

nc
p

nc
(4.6)

In Eq. 4.6, the objective is based on the true distance instead of the squared distance, which
makes the loss more stable to noise and model collapse [97]. Also, we propose a soft constraint
that only requires each pair-wise distance to be smaller than a threshold β. In practice, because
nc is constant across minibatches, we choose the denominator to be n2

c , thus formulating the loss
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Figure 4.2 – Illustration of triplet loss and intra-class loss.

as the soft averaged pair-wise distance. Concretely, our intra-class loss function becomes:

Lc (c) = ∑
xi ,x j /yi=y j=c

[d( f (xi ), f (x j ))−β]+
n2

c
(4.7)

This new intra-class loss can be weighted by λ to be combined with the triplet loss in Eq. 4.2 (as
illutrasted in Fig. 4.2) to form the final loss function:

L =Lt + λ

K

∑
c

Lc (c) (4.8)

Using this intra-class loss as a regularizer has 2 main effects. Firstly, it prevents features to
disperse in the embedding space, thus making the representation more robust to noise. Secondly,
minimizing variance can reduce the influence of other factors such as speech content or recording
conditions. Therefore, the learned model is more discriminative with respect to speaker identities.
We also note that the distances calculated in intra-class loss can be effectively reused from triplet
loss, thus reducing the overhead of adding a new loss function.

4.4 Experiments

We first describe the datasets and implementation details before discussing the experiments and
the results.

Data and metrics

VoxCeleb. This dataset contains videos of celebrities collected from Youtube [5]. There are more
than 140K utterances of 1251 speakers in a free context. 40 speakers are reserved as test data for
the verification protocol. We report Equal Error Rate (EER) computed using the provided trial
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Table 4.1 – ResNet architecture used in the experiments. Residual block follows the same
definition in [4]. Each convolution layer is followed by ReLU and batch normalization.

Layer # filt. Stride
Conv 5×5 64 2×2

Max Pool 3×1 - 2×1
Res. block 64 2×2
Res. block 128 2×2
Res. block 256 2×2
Conv 1×9 256 1×1
Conv 1×9 512 1×1

Stats Pool n ×1 - 1×1
L2 norm - -

pairs.

VoxForge. This is an open source speech database, where speakers voluntarily contribute speech
data for development of open resource speech recognition systems 2. The utterances have lower
variability as the text is read and the data is collected in a clean environment. We follow the
same protocol as in [6]. From 300 chosen speakers, three subsets of 100 speakers are constructed
for training, development, and evaluation. The training set is used to train / finetune embedding
networks. The development set is used to choose a threshold based on EER, and the threshold is
applied on the evaluation set to report Half Total Error Rate (HTER).

Implementation Details

CNN architecture. Our model is built using the ResNet architecture[4]. There are 31 layers
configured as in Tab. 4.1. The key modification is the statistical pooling layer, which concatenates
both mean and standard deviation of the previous layer across the whole sequence in time. We
also change the configuration of the first max pooling layer to work only on the time domain.

Feature extraction. For each utterance, a spectrogram is computed using 512-point FFT, a
temporal window of 25ms, and a window shift of 10ms. Mean and variance normalization on
each frequency bin is performed as in [5].

Training details. All networks are trained using RMSProp optimizer [107] with a 10−3 learning
rate. Each minibatch contains 120 samples, and negative triplets are sampled using distance-based
sampling method [97]. We train with truncated utterances of 2 seconds or 3 seconds as input. For
hyperparameters, we choose α= 0.2, β= 0.2, and λ= 0.001.

2http://www.voxforge.org/
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a)

b)

Figure 4.3 – EER on the validation set of VoxCeleb during training with training samples of
different lengths: (a) 2s or (b) 3s.

Experimental Results

Training from scratch. In this setting, a ResNet is initialized randomly and then learned on the
VoxCeleb training set using either triplet loss alone or in combination with intra-class loss.

In Fig. 4.3, we visualize the EER on the VoxCeleb validation set as the model training progress.
One can observe that intra-loss accelerates the training speed. The model not only converges
faster but also to a lower EER. In Tab. 4.2, EERs on the validation and test sets with different
utterance input lengths are shown. Intra-class loss substantially improves the overall performance
of the deep model. The EER is reduced relatively by 14% for 2s-segment input and 7% for 3s-
segment input. Overall, 2s-segment input yields worse EER in comparison to using 3s. However,
it is important to note that when intra-loss is added, the model learned with 2s-segment input can
still reach the same performance as in using 3s-segment. This shows intra-class loss can enhance
the embedding space even when the input signals contain less information.

Embedding learning from a pretrained model. In this experiment, a ResNet for speaker
recognition is first trained with softmax loss using the speakers in the VoxCeleb training set. Then
the convolutional weights are frozen and the last embedding layer is trained with the embedding
losses.

When using the activation of the last hidden layer of the pretrained models, one can achieve
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Table 4.2 – Ablation study of how using intra-class loss effect the EER on the validation and test
set of VoxCeleb. We also compare how results differ when the training utterances are truncated
to 2s or 3s.

Setting In. len. Loss Val. EER Test EER

Scratch
2s

Trip. 12.73 12.44
Trip. + Intra. 11.71 10.74

3s
Trip. 11.17 10.68

Trip. + Intra. 10.31 9.93

Pretrained
2s

Softmax - 14.43
Trip. 7.21 8.31

Trip. + Intra. 6.30 7.97

3s
Softmax - 11.96

Trip. 6.84 8.20
Trip. + Intra. 6.03 8.12

Table 4.3 – Comparison of our embedding method to other state-of-the-arts on VoxCeleb dataset.
(∗are reported in [5])

GMM-UBM∗ 15.0
i-vector + PLDA∗ 8.8

Bi-LSTM Embedding [95] 14.1
CNN Embedding [5] 7.8

Ours (Pretrained + Intra.) 7.97

14.43% and 11.96% EER on the test set using input of 2s or 3s respectively. As the models were
pretrained to predict explicitly the identities, they can focus more on the discriminative features
for classification. Therefore, training an embedding layer on top of these models can significantly
enhance the results. As the initial model is already well-trained, both cases of with and without
intra-class loss yield statistically similar EERs.

In Tab. 4.3, we compare our method with state-of-the-art systems. Our embedding network with
intra-class loss outperforms traditional methods using factor analysis with GMM-UBM. When
comparing with other embedding methods, one can see that bidirectional LSTM trained with
triplet loss [95] cannot capture the discriminative variation of the data well. Meanwhile, our
systems perform on par with [5], which uses pretrained classification model and contrastive
loss for embedding learning. This agrees with the conclusion from [97] that shows similar
performance between contrastive loss and triplet loss.

Verification task on VoxForge. In this experiment, we use the pretrained classification network
from VoxCeleb and the embedding layer is learned using either the VoxCeleb or the VoxForge
training sets and report test results on the VoxForge evaluation set. In evaluation stage, all
distances from a probe utterance to every enrollment utterance is computed and the identity is
simply decided based on a threshold. The development set is used to set the threshold with lowest
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Table 4.4 – Verification result of our embedding method comparing to other state-of-the-arts on
VoxForge dataset. (∗are reported in [6]). In the left column, ’VoxCeleb’ means a model was
trained entirely on VoxCeleb and ’VoxForge’ means a model was pretrained on VoxCeleb and
finetuned on VoxForge.

VoxCeleb
Triplet loss 2.09

Triplet + Intra-class loss 1.50

VoxForge
Triplet loss 1.69

Triplet + Intra-class loss 1.16
GMM-UBM∗ 3.05

i-vector + PLDA∗ 5.87
ISV∗ 2.40

CNN Clas. [6] 1.20

EER. HTER is reported on the evaluation set using this threshold.

Tab. 4.4 shows our ablation results together with other methods. Comparing our models when
using intra-class loss against using triplet loss only, we can observe a significant relative reduction
of 30% in EER in both cases of training sets. Interestingly, the model trained with intra-class
loss on only out-domain data (VoxCeleb) can still perform better than the model finetuned with
only triplet loss on in-domain data (VoxForge). The improvement shows that intra-class loss
can help adapting models to new datasets. This can be explained as the variance of each class is
regularized, the learned embedded features are less sensitive to noises which are not present in
the original dataset.

When comparing to other methods on this dataset, our deep embedding models are better than
traditional factor analysis systems. Using intra-class loss, our model can work slightly better than
the deep method that uses classification CNNs to model specific speakers [6]. It is important to
note that in our system, we do not build a specific model for each speaker using their enrollment
data. Only the distances from a probe utterance to all enrollment data are used to verify directly.
This advantage allows our system to be used when there is no enrollment phase, for example in
the setting of speaker verification in the wild.

4.5 Conclusion

We have presented a novel loss function as an supportive learning goal to improve the speaker
embedding spaces learned by deep neural networks. By reducing the averaged intra-class pair-
wise distances, our loss aims to increase the robustness of learned features. The results of speaker
verification task on two public datasets, VoxCeleb and VoxForge, validate the improvement of
our approach. Models learned with intra-class loss not only converge faster but also achieve
better accuracy. However, these effects are only limited to text-independent speaker verification
and learning embedding from scratch without pretraining. In the future, more experiments
with different strategies for reducing intra-class variance such as using moving averaged class
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means [98] or using embedding margin based loss [97] can be conducted.
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5 Improving speech embedding by
transfer learning with visual data

5.1 Introduction

Learning speaker turn representation is the fundamental problem to enable comparing or clustering
speech segments for multimedia indexing or interactive dialogue analysis. State-of-the-art
Gaussian-based speaker diarization methods have been shown to be successful in various types of
content such as radio, TV broadcast news, telephone conversation and meetings [108, 109, 110].
In these contents, the speech signal is mostly prepared speech and clean audio, the number of
speakers is limited, and the duration of speaker turn (i.e. a speech segment of one speaker) is
more than 2 seconds on average. When these conditions are not valid, in particular the assumption
of speaker turn duration, the quality of speaker diarization deteriorates [111]. As shown in TV
series or movies, state-of-the-art approaches do not perform well [112, 113] when there are many
speakers (from 28 to 48 speakers), or speaker turns are spontaneous and short (1.6 seconds on
average in the Game of Thrones TV series).

To alleviate these shortcomings of speaker diarization, research has been conducted along two
fronts: better methods to learn speaker turn embeddings or utilizing the multimodal nature of
video content. For instance, the recent work on speaker turn embedding using triplet loss shows
certain improvements [95, 114, 13], where as other multimodal related works focus on late fusion
of two streams by propagating labels [115, 116] or high level information such as distances or
overlapping duration [51, 84].

5.1.1 Motivation

In this chapter, we combine the two fronts of embedding learning and multimodal processing
by investigating crossmodal transfer learning approaches to improve directly a speaker turn
embedding using a face embedding . An overview of our framework is illustrated in Figure 5.1.
First, on the visual side, we rely on the state-of-the-art advances in deep face embedding [117,
96]. Indeed recently, learning face embeddings has made significant achievements in all tasks,
including recognition, verification, and clustering [118, 119, 96, 117, 120]. On the acoustic side,
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Figure 5.1 – Overview of our proposed method. Face embedding model is pretrained and
used to guide the training of speaker turn embedding model through crossmodal transfer loss
L V →A( f A ; f V ). Speaker turn embedding is trained with the combination of the embedding loss
L A( f A) and the crossmodal transfer loss.

we exploit the deep architecture to learn a speaker turn embedding with triplet loss (TristouNet)
of [95], which achieved improvement on short utterances. By projecting both acoustic signals and
face images into a common hypersphere, one can unify the two embedding spaces, thus enabling
the knowledge to be shared across modalities. The discrepancy between the two domains is
formulated as an added regularizing term which measures differences between the two embedding
spaces.

Our motivation for crossmodal transfer learning and adaptation is twofold. First, we can point
to the difference in training data of two modalities. There are hundreds of thousands images
from thousands identities in any standard face dataset. However, collecting labeled speech data
is more challenging1 because we cannot use Internet search engines similarly to face images
in [117, 106]. Also, manual labeling speech segments is much more costly or the labels have to
be obtained indirectly from visual modules [5]. Thus, we aim at mitigating the need for massive
datasets and take advantage of pretrained face embeddings through transfer learning and domain
adaptation.

Second, we can observe that although one cannot find the exact voice of a person given only a
face, when given a small set of voice candidates, it is possible to pick a voice which is more likely
to come from the given face than others. This means that there are shared commonalities between
the two embedding spaces such as age, gender, or ethnicity; or in other words, if a group of
people share common facial traits, we expect their voices to also share common acoustic features.
Thus, there are latent attributes which are shared between the two modalities.

1In 2018, a large dataset VoxCeleb2 for speaker recognition with 7000+ speakers was released [121]
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5.1.2 Our approach and main contributions

Rather than relying on multimodal data with explicit shared labels such as genders, ages, or
accent and ethnicity, we want to discover the latent commonalities from the source domain, a face
embedding, and transfer them to the target domain, a speaker turn embedding. We hypothesize
that these latent attributes can be related to the geometry of the space or to the underlying
distributions of features. Therefore, by transferring properties of the source embedding feature
space (i.e. face embedding) onto the target embedding feature space (i.e. speaker turn embedding),
we can improve the performance.

Because different properties can be used as constraints to be transferred, we investigate 4 different
strategies. Out of these, 3 strategies aim at transferring spatial constraints of the embedding at
different levels of granularity. Meanwhile, the fourth strategy focuses on the distributions of
multimodal features. More precisely, they are:

• Target embedding transfer: We are given the identity correspondences between the 2
modalities. Hence, given the 2 inputs from the same identity, one can force the desired
embedded features of the speaker turn to be close to embedded features of the face.
Minimizing the disparity between the 2 embedding spaces with respect to identity will act
as a regularizing term for optimizing the speaker turn embedding.

• Relative distance transfer: One can argue that exact similar location in the embedding
spaces is hard to achieve given the fuzzy relationship between the 2 modalities. It may
be sufficient to only enforce relative order between identities. Therefore, this approach
constrains that 2 people who look more similar will have more similar voices.

• Clustering structure transfer: This approach focuses on discovering shared commonalities
between the 2 embedding spaces such as age, gender, or ethnicity. If a group of people
share common facial traits, we expect their voices to also share common acoustic features.
In particular, the shared common traits in our case is expressed as belonging to the same
cluster of identities in the face embedding space.

• Maximum mean discrepancy: This approach is different in nature from the previous
ones, following the hypothesis that the crossmodal commonalities can be expressed as the
discrepancy between the distributions of the two embedded features. In other words, by
minimizing the difference between the distribution of speech features and the distribution
of the visual features, one can achieve a better speech embedding. We use maximum mean
discrepancy, which is the statistical measure of difference between 2 distributions [122], as
the regularizing term.

Experiments conducted on 2 public datasets REPERE and ETAPE show significant improvement
over the competitive baselines, especially when dealing with short utterances. Our results also
show that by transferring knowledge from the visual domain, one can still learn competitive
speaker turn embeddings when there are limited data. Our contributions are also supported by
crossmodal retrieval experiments and the visualization of our intuition.
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a) b)

Figure 5.2 – Examples of late fusion systems. (a) formulated the joint clustering problem in
a CRF framework with the acoustic distance and the face representation distance as pair-wise
potential functions [51] while (b) used face clustering labels to classify the results from speaker
turn segmentation [116]

The organization of the chapter is as follows: Section 5.2 reviews other works related to audio-
visual learning, Section 5.3 introduces embedding learning with triplet loss and the architecture
that we use in our work, Section 5.4 describes our transfer learning methods in details, Section 5.5
presents the experimental results, and Section 5.6 closes the chapter with further discussion.

5.2 Related Work

Below we discuss prior works on audio-visual person recognition and transfer learning which
share similarities with our proposed methods.

As person analysis tasks in multimedia content such as diarization or recognition are multimodal
by nature, significant effort has been devoted to using one modality to improve another. Several
works exploit labels from the modality that has superior performance to correct the other modality.
In TV news, as detecting speaker changes produces a smaller false alarm rate and less noise than
detecting and clustering faces, speaker diarization hypothesis is used to constrain face clustering,
i.e. talking faces with different voice labels should not have the same name [115]. Meanwhile
in [116], because face clustering outperforms speaker diarization in TV series, labels of face
clusters are propagated to the corresponding speaker turns. Another approach is to perform
clustering jointly in the audio-visual domain. [84] linearly combines the acoustic distance and
the face representation distance of speaking tracks to perform graph-based optimization; while
[51] formulates the joint clustering problem in a Conditional Random Field framework with the
acoustic distance and the face representation distance as pair-wise potential functions. Examples
of these works are illustrated in Figure 5.2.

Beside late fusion of labels, early fusion of features has been proposed, including using deep
neural networks [63, 64] (shown in Figure 5.3). However, it is only suitable for supervised tasks
and has only been tested on limited datasets limited with 6 identities. Note that the aforementioned
works focus on aggregating two streams of information whereas we emphasize on the transfer of
knowledge from one embedding space to another.
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Figure 5.3 – A related work by [63] that focused on aggregating two streams of information
whereas we emphasize on the transfer of knowledge from one embedding space to another.

By applying recent advances in embedding learning, with deep networks for face [117, 96] and
speaker turn [95] our goal is not only to improve the target task (as speaker turn embedding in
our case) but also provide a unified way for multimodal combination.

Each of our three geometric-based approaches draws inspiration from a different line of research
in transfer learning. First, we can point to coupled matching of image-text and heterogeneous
recognition [123, 124, 125] or harmonic embedding [96] as related background for our target
embedding transfer. These works focus on learning the direct mapping between an item in
one domain to one item in the other. Since it is arguable that audio-visual identities contain
less correlated information, our method uses the one-one correspondences as a regularization
term rather than as a main loss to optimize. Meanwhile, as the learning target is a Euclidean
embedding space in both modalities, relative distance transfer is inspired by metric imitation [126]
or multi-tasks metric learning [127]. In our work, the triangular relationship is transferred across
modalities instead of neighbourhood structure [126] or across tasks of the same modality [127].
Finally, as one identity is enforced to have the same neighbors in both face embedding and
speech embedding spaces, our clustering structure transfer is therefore closely related to transfer
learning through projection ensemble [128]. Although co-clustering information and cluster
correspondence inference have also been used in transfer learning on traditional tasks of text
mining [129, 130], we are first to expand that concept into exploiting clustering structure of
person identities for crossmodal learning.

Unlike the previous 3 transferring methods which emphasize on the geometric properties of the
embedding spaces, the domain adaptation approach relies on the underlying distributions of the
features within the embedding spaces. A popular method in visual domain adaptation [131, 132,
133] is to minimize the maximum mean discrepancy (MMD) loss between the 2 feature sets.
Maximum mean discrepancy (MMD) loss, proposed by [122], is a non-parametric approach to
compare distributions. Intuitively, the 2 feature sets are projected into the kernel space and the
distance between the means of the 2 distributions in this kernel space is used as the measurement
of discrepancy. This is an interesting approach since non-parametric representations are well-
suited for representing complex multimodal data in high-dimensional spaces. Our work is the
first attempt in unifying the audio and visual domains into a single feature space which shares the
commonalities by minimizing MMD loss between feature distributions in 2 embedding spaces.

65



Chapter 5. Improving speech embedding by transfer learning with visual data

5.3 Preliminaries

This section first briefly recall the concept of learning embedding and the triplet loss from previous
chapter. Then we review the TristouNet architecture, which is used as the main architecture for
learning speech embedding within this chapter.

5.3.1 Embedding Learning with Triplet Loss

Recall from the previous chapter, a triplet consists of 3 data points: an anchor point xa , a positive
point xp , and a negative point xn such that ya = yp and ya 6= yn . Following the embedding goal,
we would like the 2 points (xa , xp ) to be close together and the 2 points (xa , xn) to be further
away by a margin α in the embedding space. Formally, we define the triplet loss to be minimized
as:

Lt = 1

|T |
∑

[d( f (xa), f (xp ))−d( f (xa), f (xn))+α]+ (5.1)

where T is the set of all possible triplets of the training set and d is the Euclidean distance in the
embedding space.

In spite of its advantages, the triplet loss training is empirical and depends on the training data,
the initialization, and triplet sampling methods. For a certain set of training samples, there can be
an exponential number of possible solutions that yield the same training loss. One approach to
guarantee good performance is to make sure that the training data come from the same distribution
of the test data (as in [117]). Another solution for the projection to work in more general unseen
cases may be to gather a massive training dataset with more data (as FaceNet was trained with
100-200 millions images of 8 millions of identities [96]). Although it is possible to gather such
a large scale dataset for visual information, it is less the case for acoustic data. This explains
why speaker turn embedding TristouNet only gains slight improvement over Gaussian-based
methods [95]. To alleviate the data concern, we tackle the problem of embedding learning from
the multimodal point of view. By using a superior face embedding network that was trained on
a face dataset with the same identities as in the acoustic dataset, we can regularize the speaker
embedding space and thus guide the training process to a better minima.

5.3.2 Learning speaker turn embedding with triplet loss

The fundamental task we are interested in is to learn a good speaker turn embedding so that given
2 speaker segments, one can compare them directly for verification or clustering. To this end,
one can employ different architectures with different input representations such as time delay
neural networks [92] or convolutional neural networks on spectrograms [5]. In this work, we
use the architecture proposed by [95], which learns speech emebedding using triplet loss, for
compatibility with our visual models.
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The TristouNet architecture is illustrated in Figure 5.4. Firstly, a bidirectional Long Short-Term
Memory (LSTM) recurrent networks [134] receives the input sequence x A to produce the hidden
forward and backward outputs. Secondly, average pooling is then applied along the temporal axis
of each output yielding 2 fixed length vectors. These 2 forward and backward vectors are then
concatenated as input for the fully connected layers for projection into higher dimensional space.
Finally, the output are L2−normalized into the Euclidean hypersphere.

Figure 5.4 – TristouNet architecture

In spite of its advantages, the triplet loss training is empirical and depends on the training data,
the initialization, and triplet sampling methods. For a certain set of training samples, there can be
an exponential number of possible solutions that yield the same training loss. One approach to
guarantee good performance is to make sure that the training data come from the same distribution
of the test data (as in [117]). Another solution for the projection to work in more general unseen
cases may be to gather a massive training dataset with more data (as FaceNet was trained with
100-200 millions images of 8 millions of identities [96]). Although it is possible to gather such
a large scale dataset for visual information, it is less the case for acoustic data. This explains
why speaker turn embedding TristouNet only gains slight improvement over Gaussian-based
methods [95]. To alleviate the data concern, we tackle the problem of embedding learning from
the multimodal point of view. By using a superior face embedding network that was trained on
a face dataset with the same identities as in the acoustic dataset, we can regularize the speaker
embedding space and thus guide the training process to a better minima.

5.4 Crossmodal transfer learning

In this section, we will expand the embedding learning concept into multimodal data to learn
different feature embedding spaces. Then we will in turn describe our transfer learning methods
to use one embedding space to improve the other.

In audio-visual (or multimodal data in general) settings, data contain 2 corresponding streams
{(x A

i , xV
i , yi )}. If the learning process is applied independently to each modality, we can learn
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2 projections f A and fV into 2 embedding spaces RdA and RdV following their own respective
losses:

L A( f A) = 1

|T A|
∑

(x A
a ,x A

p ,x A
n )∈T A

l (x A
a , x A

p , x A
n ; f A) (5.2)

and

L V ( f V ) = 1

|T V |
∑

(xV
a ,xV

p ,xV
n )∈T V

l (xV
a , xV

p , xV
n ; f V ) (5.3)

in which L A and L V are defined from the general embedding loss Eq. 4.2 to speaker turn
embedding and face embedding.

As shown in the experiments, f V can already achieve a significantly better accuracy than
the counterpart in acoustic domain, therefore our goal is to transfer the knowledge from face
embedding to the speaker turn embedding. Hence, we assume that f V is already trained with
Eq. 5.3 using the corresponding face dataset (as well as optional external data). Using fV , an
auxiliary term L V →A( f A) is defined to regularize the relationship between voices and faces from
the same identity in addition to the loss function used to train speaker turn embedding in Eq. 4.2.
Formally, the final loss function can be written as:

L ( f A) =L A( f A)+λL V →A( f A) (5.4)

The transfer loss L V →A( f A) depends on what type of knowledge is transferred across modalities.
λ is a constant hyper-parameter chosen through experiments specifically for each transfer type.
In the following sections, different types of L V →A( f A) will be described in details.

5.4.1 Target embedding transfer

Assuming that f A projects x A
i into the same hypersphere as f V (xV

j ), one can observe that by
enforcing f A(x A

i ) to be in close proximity of f V (xV
j ) when yi = y j , f A could achieve a similar

training loss as f V . In that case, the regularizing term in Eq. 5.4 can be defined as the disparity
between crossmodal instances of the same identity:

L V →A( f A) = ∑
(x A

i ,xV
j )/yi=y j

d( f A(x A
i ), f V (xV

j )) (5.5)

The goal of Eq. 5.5 is to minimize intra-class distances by binding embedded speaker turns and
embedded faces within the same class similarly to coupled multimodal projection methods [123,
125]. In this work, we extend this goal further by adopting the multimodal triplet paradigm to
jointly minimize intra-class distances and maximize inter-class distances.
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a) b)

Figure 5.5 – Examples of multimodal triplets in target embedding transfer. Each triplet consists
of mixing samples from both modalities. (a) (V , A, A) triplet where the anchor comes from visual
domain. (b) (A,V , A) triplet where the positive comes from visual domain.

Algorithm 2 Target embedding transfer triplet set. Given the audio-visual input
{(x A

i , xV
i , yi )}i=1..N and the corresponding embeddings f A, f V , we mixed the inputs from 2

domain to collect the set of multimodal triplets Tt ar .

1: Input f A , f V , Q A,V , {(x A
i , xV

i , yi )}i=1..N

2: Tt ar =;
3: for ∀(a, p,n)/ya = yp ∧ ya 6= yn do
4: for ma ,mp ,mn ∈ {Q A,V } do
5: da,p = d( f ma (xma

a ), f mp (x
mp
p ))

6: da,n = d( f ma (xma
a ), f mn (xmn

n ))
7: if da,p +α> da,n then
8: Tt ar = Tt ar ∪ (a, p,n)

9: Output Tt ar

Multimodal triplet loss. In addition to minimizing the audio triplet loss of Eq. 5.2, we also
want two embedded instances to be close if they come from the same identity, regardless of
the modality they comes from, and to be far from embedded instances of all other identities in
both modalities as well. Concretely, the regularizing term is thus defined as the triplet loss over
multimodal triplets:

L V →A( f A) = 1

|Tt ar |
∑

(xma
a ,x

mp
p ,xmn

n )∈Tt ar

l (xma
a , x

mp
p , xmn

n ; f A , f V ) (5.6)

where m• is the modality associated with the sample xm•• , and the loss l is adapted from Eq. 4.3
by using the embedding appropriate to each sample modality. The set Tt ar denotes all useful
and valid cross-modal triplets, i.e. with the positive sample to be of the same identity of the
anchor (ya = yp), and the negative sample to be from another identity (ya 6= yn); and with
(ma ,mp ,mn) ∈ Q A,V , the set of valid modalities (all combinations except (V ,V ,V ), (V ,V , A),
and (A, A, A) already considered in the primary loss of Eq. 5.2). In Figure 5.5, 2 examples of
(V , A, A) and (A,V , A) are shown. For instance, if (ma ,mp ,mn) = (A,V ,V ), the loss will foster the
decrease of the intra-class distance between f A(x A

a ) and f V (xV
p ) while increasing the inter-class

distance between x A
a and xV

n . The strategy to collect the set Tt ar at each epoch of the training is
described in Alg. 2.

Using Eq. 5.6 as regularizing term in L ( f A), one can effectively use the embedded faces as
targets to learn a speaker turn embedding. Note that this is similar in spirit to the neural network
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Figure 5.6 – An example of a transfer triplet in relative distance transfer. In the visual domain,
d(per son A, per sonB) < d(per son A, per sonC ). However, this inequality is not satisfied in the
audio domain. Therefore they form a negative triplet for training.

distillation [135], using one embedding as a teacher for the other. Moreover, the two modalities
can be combined straightforwardly as their embedding spaces can be viewed as one harmonic
space [96], and the embedding features across 2 domains can be compared directly with one
another.

5.4.2 Relative distance transfer

The correspondence between faces and voices is not a definitive one-to-one, i.e. it is not trivial
to precisely select the face corresponding to a voice one has heard. Therefore target embedding
transfer might not generalize well even when achieving low training error. Instead of the exact
locations, the relative distance transfer approach works at a lower granularity and aims to mimic
the discriminative power (i.e. the notion of being close or far) of the face embedding space. Thus,
it does not directly transfer the embeddings individual instances but the relative distances between
their identities.

Before computing relative distances, let us define the mean face representation My of a person
and the distance between identities within the face embedding space. Concretely, let X yi be the
set of faces of identity yi , the mean face representation Myi of person yi is computed as:

Myi =
1

|X yi |
∑

xi∈X yi

f V (xi ) (5.7)

where X yi is the set of visual samples with identity yi . From {Myi }, we can define the distance
between identities as:

d(yi , y j ) = d(Myi , My j ), (5.8)

The goal is then to collect in the set Tr el all audio triplets (a, p,n) with arbitrary identities where
the sample p has an identity which is closer to the identity of the anchor sample a than the
identity of the sample n, as defined in the face embedding. In other words, if within the face
embedding space the relative distances among the 3 identities of the triplet (a, p,n) follows:

d(MV
ya

, MV
yp

) < d(MV
ya

, MV
yn

), (5.9)

70



5.4. Crossmodal transfer learning

Figure 5.7 – In the visual domain, the identities form 2 clusters (i.e. male vs female). We expect
the samples in the audio domain to also from the same clustering structure. The audio embedding
model is trained to not only discriminate between identities but also to form the same structure.

then this relative condition must hold in the speaker turn embedding space as well:

d( f A(x A
a ), f A(x A

p ))+α< d( f A(x A
a ), f A(x A

n )) (5.10)

Then, at each epoch, Eq. 5.9 and 5.10 can be used to collect the set Tr el , as shown in Alg. 3,
and the regularizing transfer loss L V →A( f A) can then be defined as the average sum of the
standard triplet loss over this set. Figure 5.6 illustrates how such negative triplets are formed
using Eq. 5.9 and 5.10. In theory, relative distance transfer can achieve the same training error as
with target embedding transfer, but leave more freedom to the relaxation of the exact location of
the embedded features.

Algorithm 3 Relative distance transfer triplet set. Based on the relative order between identities
in the visual domain, d(MV

ya
, MV

yp
) < d(MV

ya
, MV

yn
), we collect the audio triplets that violated this

relative order into Tr el .

1: Input f A , f V , {M y }y=1..K , {(x A
i , xV

i , yi )}i=1..N

2: Tr el =;
3: for ∀(a, p,n)/ya 6= yp ∧ ya 6= yn do
4: if d(MV

ya
, MV

yp
) < d(MV

ya
, MV

yn
) then

5: da,p = d( f A(x A
a ), f A(x A

p ))

6: da,n = d( f A(x A
a ), f A(x A

n ))
7: if da,p +α> da,n then
8: Tr el = Tr el ∪ (a, p,n)

9: Output Tr el

5.4.3 Clustering structure transfer

The common idea of the target transfer and relative distance transfer methods is that people with
similar faces should have similar voices. Thus it aims at putting constrains based on the distances
among individual instances in the face embedding space. In clustering structure transfer, the
central idea does not focus on pair of identities but rather, we hypothesize that commonalities
between 2 modalities can be discovered amongst groups of identities. For example, people within
a similar age group are more likely to be close together in the face embedding space, and we also
expect them to have more similar voices in comparison to other groups.
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Chapter 5. Improving speech embedding by transfer learning with visual data

Based on this hypothesis, we propose to regularize the target speaker turn embedding space to
have the same clustering structure with the source face embedding space, i.e. an identities should
have the same neighbors in the speaker embedding space as in the face embedding space. To
achieve that, we first discover groups in the face embedding space by performing a K-Means
clustering on the set of mean identity representations {MV

yi
} by following 2 steps:

• The set of mean faces of each idendity {MV
yi

} is calculated following Eq. 5.7 in relative
distance transfer.

• K-Means is performed on the set of {MV
yi

}. We denote by C the number of clusters, the
resulting cluster mapping function is defined as:

gm : {1..K } → {1..C }

y → cy

To define the regularizing term L V →A( f A), we simply consider the set of cluster labels cyi

attached to each audio sample (x A
i , yi ) as the second label, and define accordingly a triplet loss

relying on this second label (i.e by considering the instances (x A
i ,cyi )). This step is illustrated in

Figure 5.7, where the audio samples are assigned the cluster labels from the face domain. In this
way, one can guide the acoustic instances of identities from the same cluster to be close together,
thus preserving the source clustering structure. How to collect the set of triplet Tstr to be used
for the regularizing term at each epoch is detailed in Alg.4.

Algorithm 4 Clustering structure transfer triplet set. We use the face cluster labeling cy as
additional labels to collect triplets into Tstr .

1: Input f A , f V , gm , {(x A
i , xV

i , yi )}i=1..N

2: Cluster mapping gm : y → cy ,∀y ∈ 1. . .K
3: Tstr =;
4: for ∀(a, p,n)/cya 6= cyp ∧ cya 6= cyn do
5: da,p = d( f A(x A

a ), f A(x A
p ))

6: da,n = d( f A(x A
a ), f A(x A

n ))
7: if da,p +α> da,n then
8: Tstr = Tstr ∪ (a, p,n)

9: Output Tstr

This group structure can be expected to generalize for new identities because even though a
person is unknown, he/she belongs to a certain group which share similarities in the face and voice
domains. In our work, we only apply K-Means once on the mean facial representations. However,
as people usually belong to multiple non-exclusive common groups, each with a different attribute,
it would be interesting in further works to aggregate multiple clustering partitions with different
initial seeds or with different number of clusters. As the space can be hierarchically structured,
one other possibility could be to apply hierarchical clustering to obtain these multiple partitions.
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5.4. Crossmodal transfer learning

5.4.4 Domain adaptation with maximal mean discrepancy

In the previous 3 methods, the emphasis was put on the geometric properties of the embedding
spaces with respect to the labels. Therefore, the constraints between spaces are established only
if we are given the multimodal correspondence between identities. Hence, these methods may
not make full use of the face embedding, which was trained with more identities, and most of
these are not present in the audio dataset. To overcome the dependence on labels, we focus on
minimizing the difference between the two embedding feature distributions directly.

MMD is a statistical test to quantify the similarity between two distributions p and q on a domain
X by mapping the data to a high dimensional feature space. The observations X = x1, ..., xm

and Y = y1, ..., yn are drawn independently and identically distributed (i.i.d.) from p and q

respectively.

To test whether p = q , we first introduce a class of function F , which contains f : X →R, each
f can be simply viewed as a linear mapping function. Given F , the measure of discrepancy
between p and q can be estimated as:

MMD[X ,Y ] := sup
f ∈F

( 1

m

m∑
i=1

f (xi )− 1

n

n∑
j=1

f (y j )
)

(5.11)

By defining F as the set of functions in the unit ball in a universal Reproducing Kernel Hilbert
Space (RKHS), it was shown that MMD[F , X ,Y ] = 0 if and only i f p = q [122].

Let φ be the the mapping to the RKHS and k(·, ·) =<φ(·),φ(·) > be the universal kernel associated
with this mapping. MMD can be computed as the distance between the mean of the two sets after
mapping each sample to the RKHS:

MMD2(X ,Y ) =
∣∣∣∣∣∣ 1

m

m∑
i=1

φ(xi )− 1

n

n∑
j=1

φ(y j )
∣∣∣∣∣∣2

(5.12)

=
m∑

i , j=1

k(xi , x j )

m2 −2
m,n∑

i , j=1

k(xi , y j )

mn
+

n∑
i , j=1

k(yi , y j )

n2

The MMD between the distributions of two sets of observations is equivalent to the distance
between the sample means in a high-dimensional feature space. In practice, Gaussian or Laplace
kernels are often chosen as they are shown to be universal [136]. We choose kernel k associated
to φ to be Radial Basis Function kernel, i.e. k(u, v) = exp(−d(u, v)2)/σ in Eq. 5.12.

Originally proposed as a statistic measure between 2 distributions, MMD is widely used as the
loss for domain adaptation[131, 132, 133]. Let xs be the samples from the source domain, xt be
the samples from the target domain, and f s , f t be their respective feature mapping functions.
By minimizing MMD({ f s(xs)}, { f t (x t )}), one can minimize the discrepancy between the feature
spaces learned from the two domains, thus enhancing the performance on the target domain using
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Chapter 5. Improving speech embedding by transfer learning with visual data

the knowledge from the source domain. In our work, we adopted the same strategy after unifying
the two embedding spaces of faces and speaker turns respectively.

Given that the two embedding spaces can be constrained to lie within the same hypersphere, one
can measure the discrepancy between the distributions of face embedded features f V (xV

i ) and
auditory embedded features f A(x A

j ) using Eq. 5.12 as:

L V →A( f A) =MMD({ f V (xV
i )}, { f A(x A

j )}) (5.13)

Based on Eq. 5.13, our objective is to find an embedding which is capable of inferring cross-
domain statistical relationships when one exists. Instead of trying to bind faces and voices of
the same individual identity geometrically, minimizing Eq. 5.13 only regulates the statistical
properties of the whole population in an unsupervised fashion. Intuitively, minimizing the MMD
forces the auditory features to have the same distribution with facial features, which includes
having similar density around common attributes or identites. This can be interpreted as a
regularizing term in L ( f A) to effectively use the embedded faces to guide the speaker turn
embedding.

5.5 Experiments

We first describe the datasets and evaluation protocols before discussing the implementation
details and the experimental results.

5.5.1 Datasets

REPERE [44]. We use this standard dataset to collect people tracks with corresponding voice-
face information. It features programs including news, debates, and talk shows from two French
TV channels, LCP and BFMTV, along with annotations available through the REPERE challenge.
The annotations consist of the timestamps when a person appears and talks. By intersecting the
talking and appearing information, we can obtain all segments with face and voice from the same
identity. As REPERE only contains sparse reference bounding box annotation, automatic face
tracks [7] are aligned with reference bounding boxes to get the full face tracks. This collection
process is followed by manual examination for correctness and consistency and to remove short
tracks (less than 18 frames ≈ 0.72s). The resulting data is split into training and test sets. Statistics
are shown in Table 5.1.

ETAPE [137]. This standard dataset contains 29 hours of TV broadcast. In this work, we only
consider the development set to compare with state-of-the-art methods. Specifically, we use
similar settings for the ”same/different” audio experiments than in [95]. From this development
set, 5130 1-second segments of 58 identities are extracted. Because 15 identities appear in the
REPERE training set, we remove them and retain 3746 segments of 43 identities.
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5.5. Experiments

Table 5.1 – Statistics of tracks extracted from REPERE. The training and test sets have disjoint
identities.

# shows # people # tracks
training 98 208 3360

test 35 98 629

5.5.2 Experimental protocols and metrics

The experiments are designed to benchmarking the quality of the embedding space improved by
transfer learning. The same/different experiments are designed following a verification protocol,
which is based on assessing distances between pairs of samples. Meanwhile the clustering
experiments are designed to quantify if the embedding space is discriminative enough to group
segments of each identity among other candidates.

Same/different experiments. Given a set of segments, distances between all pairs are computed.
One can then decide if a pair of instances has the same identity if their (embedded) distance is
below a threshold. We can then report the equal error rate (EER), i.e. the value when the false
negative rate and the false positive rate become equal as we vary the threshold.

Clustering experiments. From a set of all audio (or video) segments, a standard hierarchical
clustering is applied using the distance between cluster means in the embedded space as merging
criteria. At each step, 2 clusters with the minimum distance are merged and a new mean is
computed. For every step, we compute 3 metrics on the clustering set:

• Weighted cluster purity (WCP) [23]: For a given set of clusters C = {c}, each cluster c

has a weight of nc , which is the number of segments within that cluster. At initialization,
we start from N segments with a weight of 1 for each segment. The purity pur i t yc of a
cluster c is the fraction of the largest number of segments from the same identities to the
total number of segments in the cluster nc . We can define WCP as:

W C P = 1

N

∑
c∈C

nc ·pur i t yc

• Weighted cluster entropy (WCE): A drawback from WCP is that it does not distinguish
the errors. For instance, a cluster with 80% purity, 20% error due to 5 different identities
is more severe than if it is only due to 2 identities. To characterize this point, we thus
compute the entropy of a cluster, from which WCE is calculated as:

W C E = 1

N

∑
c∈C

nc ·entr opyc

• Operator clicks index (OCI-k) [138]: This is the total number of clicks required to label
all clusters. If a cluster is 100% pure, only 1 click is required. Otherwise, besides the 1
click needed to annotate segments of the dominant class, to correct each erroneous track of
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a different class, 1 more click will be added. For a cluster c of nc speaker segments, the
cluster cost is formally defined as:

OCI-k(c) = 1+ (nc −max({nc
i })),

where nc
i denotes the number of segments from identity i in the cluster. The cluster clicks

are then added to produce the overall OCI-k measure. This metric simultaneously combines
the number of clusters and cluster quality in one number to represent the manual effort for
correctly annotating all speaker segments given an initial clustering.

5.5.3 Implementation details

Face embedding. Our face model is based on the ResNet-34 architecture [4] trained on the
CASIA-WebFaces dataset [106]. This is a collection of 494,414 images from 10,575 identities.
We follow the procedure of [117] as follows:

• A DPM face detector [78] is run to extract a tight bounding box around each face. No
further preprocessing is performed except for randomly flipping training images.

• ResNet-34 is first trained to predict 10,575 identities by minimizing cross entropy criteria.
Then the last layer is removed and the weights are frozen.

• The last embedding layer with a dimension of h = 128 is learned using Eq. 5.3 and the face
tracks of the REPERE training set.

Speaker turn embedding. Our implementation of TristouNet consists of a bidirectional LSTM
with the hidden size of 32. It is followed by an average pooling of the hidden state over the
different time steps of the audio sequence, followed by 2 fully connected layers of size 64 and 128
respectively. As input acoustic features to the LSTM, 13 Mel-Frequency Cepstral Coefficients
(MFCC) are extracted with energy and their first and second derivatives.

Optimization. All embedding networks are trained using a fixed α = 0.2 and the RMSProp
optimizer [107] with a 10−3 learning rate. From each mini-batch, both hard and soft negative
triplets are used for learning.

Baselines. We compare our speaker turn embedding with 3 approaches: Bayesian Information
Criterion (BIC) [139], Gaussian divergence (Div.) [140], and the original TristouNet [95].

Additional details. Our codes use PyTorch library and are publicly available at:
gitlab.idiap.ch/software/CTL-AV-Identification/
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5.5. Experiments

5.5.4 Experimental results

REPERE - Clustering experiment

We applied the audio (or video) hierarchical clustering to the 629 audio-visual test tracks of
REPERE. In Figure 5.8-a, we can compare other methods with the two reference systems:
Tristounet for speech embedding and ResNet-34 (Rn34-Emb)for face embedding. Face clustering
with Rn34-Emb clearly outperforms all speaker turn based methods. This visual system is used as
a reference to show the significant difference between the two domains, thus motivating transfer
learning to improve the speech embedding.

Our transferring methods surpass TristouNet in both metrics, especially in the middle stages,
when the distances between clusters becomes more confusing. This shows that the knowledge
from the face embedding helps distinguishing confusing pairs of clusters. The gap in WCE
also means that our embedding is also more robust with respect to the inter-cluster distances.
Overall, all transfer learning methods are consistent and show steady improvements. On average,
MMD has a slightly better result than the others. For the geometry-based methods, the lower the
granularity level, the higher the gain in performance is. This shows that due to low the correlation
between the 2 domains, it is better to use the latent attributes in the data with some relaxation
rather than directly enforcing the embedding targets to be the same for both audio and video
domain.

Figure 5.8-b, we compare our best method, MMD, with other state of the art methods. At the
beginning, Div. first merges longer audio segments with enough data so it achieves higher purity.
However, as small segments get progressively merged, the performance of BIC and Div. quickly
deteriorate due to the lack of good voice statistics. We should note that in WCP and WCE,
segments count as one unit and are not weighted according to their duration as done in traditional
diarization metrics. This is one reason why traditional approaches BIC and Div methods appear
much worse with the clustering metrics. More experiments on full diarization are needed in
future works.

Table 5.2 reports the number of clicks to label and correct the clustering results. Our MMD
approach reduces the OCI-k by 17 from the closest competitor in both the best cases at the
minimum OCI-k and at the ideal number of clusters. This in practice can decrease the effort
of human annotation by around 7.5%. While target embedding transfer does not yield any
improvement, clustering structure and relative distance transferring methods also show decreases
of 4.5−6.5%.

ETAPE - biometrics experiment

From the ETAPE development set, 3746 segments of 43 identities are extracted. From these
segments, all possible pairs are used for testing and the EER is reported in Table 5.3. Most of our
networks with transferred knowledge outperform the baselines. With short segments of 1 second,
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a)

b)

Figure 5.8 – Weighted cluster purity (WCP) and weighted cluster entropy (WCE) evaluation
of hierarchical clustering on REPERE. (a) Comparison of our transferring approaches against
the baseline TristouNet and the face embedding using ResNet-34 (b) Comparison of our MMD
approach against state-of-art audio systems.
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Table 5.2 – Result of OCI-k metric on the REPERE test set. ’Min’ reports minimum value of OCI-
k and in parenthesis is the number of clusters where this is achieved. ’At ideal clusters’ reports
OCI-k obtained when clustering reaches clusters the ideal number of clusters corresponding to
98 identities.

Methods Min (# clusters) At 98 clusters
Vision Rn34-Emb (V) 113 (113) 136

Audio
BIC [139] 451 (390) 525
Div. [140] 330 (289) 521

TristouNet [95] 216 (119) 226

Audio-Visual (Ours)

Target 214 (112) 228
Relative 204 (99) 211
Structure 207 (107) 216

MMD 202 (94) 209

Table 5.3 – EER reported on all pairs of 3746 sequences in ETAPE dev set.

BIC[139] Div.[140] TristouNet[95] Target Relative Structure MMD
EER 32.4 28.9 16.1 16.30 15.59 15.62 15.5

BIC and Div. do not have enough data to fit the Gaussian models well, therefore they perform
poorly. By transferring from visual embedding using MMD, we can improve TristouNet with a
relative improvement of 3.7% of EER. We should remark that in [95], the original TristouNet
achieved 17.3% and 14.4% when being trained and tested on 1s sequences and 2s sequences
respectively. It is important to note that our models are trained on a smaller dataset (8h vs. 13.8h
of ETAPE data in [95]) and from an independent training set (REPERE vs. ETAPE). Using
our transfer learning methods, the speaker turn embedding model could be easily trained by
combining different datasets, i.e. combining REPERE and ETAPE training sets.

Results with limited data.

To benchmark the generalization of our approaches, the same verification and clustering protocols
from previous subsections are applied when the amount of training audio data is reduced and the
results are reported in Table 5.4. Transferring methods perform particularly better in this scenario.
In most cases, networks trained with MMD loss achieves better figures. As the amount of training
data decreases, the performance of the audio-only system quickly deteriorates, especially in
the clustering protocol. On the other hand, our visual guided system is less affected. When
using only 60% of data, MMD outperforms audio-only TristouNet in OCI-k by 45 points , i.e.
reducing the manually effort by 16%. Interestingly, both systems perform better with 30% of
data than with 60%. One explanation is that although there are fewer samples, they are more
balanced among identities. Considering both metrics, this balance in identities helps MMD the
most because it is a density-based method. Therefore, the imbalance in the dataset can leads to a
skew in the distribution and reduce the effectiveness of MMD. Meanwhile, as target transfer is a
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Table 5.4 – Performance when training data are limited. EER is reported on ETAPE dev set.
OCI-k is reported on REPERE.

60% 30%
[95] Tar. Rel. Str. MMD [95] Tar. Rel. Str. MMD

Min OCI-k 274 241 256 255 229 249 232 218 225 213
OCI-k@98 285 255 268 271 231 263 250 242 229 221

EER 19.1 18.0 18.2 18.3 18.4 16.9 16.7 16.4 15.9 16.5

Table 5.5 – Performance when combining crossmodal regularizers and intra-class loss. EER is
reported on ETAPE dev set. OCI-k is reported on REPERE.

[13] [13] + Tar. [13] + Rel. [13] + Str. [13] + MMD
Min OCI-k 214 231 226 216 209
OCI-k@98 221 244 240 228 223

EER 16.3 16.7 15.8 16.0 16.3

sample-based method, the balance in the 30% set does not improve as significantly.

Combining with intra-class regularizer

In this experiment, we explore how our crossmodal losses can be combined with the intra-class
loss as described in Chapter 4. Intra-class loss is a soft constraint on the averaged pair-wise
distance between samples from the same class. It is also a regularizer preventing the scattering of
these samples within the embedding space to increase the intra-class compactness.

In Table 5.5, we first present the results of [13] using the same benchmarks with 30% of the
training dataset. Comparing to our methods in Table 5.4, it achieves comparable results with
MMD. Subsequently, intra-class loss is linearly combined with all of our crossmodal losses to
yield the rest of Table 5.5.

One can first see that combining target transfer and intra-class loss does not give any improve-
ments. This can be explained as the face embedding has a different intra-class structure. Hence,
forcing the audio embedding to match both this structure and another explicit intra-class constraint
can be conflicting as both losses work on the sample-level granularity. Meanwhile, combining
intra-class loss with relative distance transfer and structure transfer can slightly improve EER
because these geometric properties are at inter-class level, ie. relationship across identities, and
are complementary with intra-class compactness. Finally, MMD concerns with sample density in
an unsupervised manner, it is only slightly beneficial in clustering metrics to use intra-class loss
with MMD.
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a) b)

c) d)

e)

Figure 5.9 – Result of different values of hyperparameters. The baseline is EER and OCI-k of the
standard Tristounet. (a-d) EER on ETAPE and OCI-k on REPERE of target, relative, structure,
and MMD respectively as λ changes. (e) EER on ETAPE and OCI-k on REPERE as the number
of clusters for structure transfer changes.

Parameter sensitivity analysis

In all our transfer learning settings, we need to choose one hyper parameter λ, and the number of
clusters for structure transfer setting. Hence, we perform benchmarking with different values of
λ varying as power of 2. This experiment is performed on the training set with 60% of data for
computational reason and results are reported in Figure 5.9. All of our methods are insensitive
to λ except for relative distance transfer. Target embedding transfer is the most stable one, as
its constraint is more specific than that of the rest. Each of them has a different optimal value,
which is due to the difference in the nature of each method. One possible explanation for the case
of relative distance transfer (Figure 5.9-b) when λ≥ 2 is that there is no proximity constraints
on the location of the embedded features, thus instability is not bounded and can increase at test
time. Figure5.9-(e) shows how structure transfer performs under different granularity. Further
analysis in the characteristics of clusters is presented in next subsection.
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a) b)

Figure 5.10 – Analysis of different transferring type. (a) Prec@K of cross modal id retrieval
using target transfer, (b) visualization of shared identities in 4 clusters across both modalities.

Further multimodal analysis

Cross modal retrieval. One interesting potential of target embedding transfer is the ability to
connect a voice to a face of the same identity. To explore this aspect, we formulate a retrieval
experiment: given 1 instance of the source embedding domain (voice or face), its distances
to the embedding of 1 instance with the same identity and to 9 distractors in the enrolled
domain are computed and ranked accordingly. This experiment is similar to that of crossmodal
biometrics [141, 142]. There are 4 different settings depending on the within or cross domain
retrieval: audio-audio, visual-visual, audio-visual, and visual-audio. Figure 5.10-(a) shows
the average precision of 980 different runs when choosing from the top 1 to 10 ranked results
(Prec@K). Although the cross modal retrieval settings cannot compete with their single modality
counterparts, they perform better than random chance and show consistency between the face
embedding and speaker turn embedding. This shows that though the two modalities cannot be
used as in coupled matching learning, they can be used as a regularizer of one another.

Shared clusters across modalities. Figure 5.10-(b) visualizes 4 clusters which share the most
common identities across the 2 modalities, when using the face embedding and the speaker
embedding with structure transfer. One can observe 2 distinct characteristics among the clusters
which are automatically captured: gender and age. It is noteworthy that these characteristics are
discovered without any supervision.

5.6 Conclusion

In this chapter, we have investigated 4 different methods to transfer knowledge from a source face
embedding to a target speaker turn embedding. Inspired by state-of-the-art machine learning liter-
ature, each of our approaches explore different properties of the embedding spaces. Depending on
the properties exploited, our methods can be categorized into two groups. The first group uses the
geometric features at different levels of granularity; i.e. through direct target, relative distances,
or neighborhood regularization. Meanwhile the second group uses the regularization of the
underlying common feature distribution; i.e. through regularizing maximum mean discrepancy.

82



5.6. Conclusion

The results show that our methods improved speaker turn embedding in the tasks of verification
and clustering. This is particularly significant in cases of short utterances, an important situation
that can be found in many dialog cases, e.g. TV series, debates, or in multi-party human-robot
interactions where backchannels and short answers/utterances are very frequent. The embedding
spaces can also provide potential discovery of latent characteristics and a unified crossmodal
combination.

Another advantage of the transfer learning approaches is that each modality can be trained
independently with their respective data, thus allowing future extension using advance learning
techniques or more available data. However, we have just considered the task of speaker turn
embedding, which is only the first task in speaker diarization.

In the future, experiments with more complicated tasks such as full person diarization or large
scale indexing can be performed to explore the possibilities of each proposal. The main focus
of our work is on regularization of the output spaces, thus regularizing the learning models or
the intermediate features can be complementary. It is also interesting to use the face embedding
guidance to expand the speech identification data.
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6 An Analysis of Triplet Loss Under
Label Noise

6.1 Introduction

Embedding learning methods aim at learning a parametrized mapping function from a labeled
set of samples to a metric space, in which samples with the same labels are close together and
samples with different labels are far apart. To learn such an embedding with deep neural networks,
the most common losses are contrastive loss [143] and triplet loss [96]. These losses are based
on the distances between pairs or triplets of samples respectively. Because these losses only
require the information whether 2 samples have the same or different labels, they have potential
for learning with uncertainty in sample label information. In fact, there have been an increasing
number of works that use embedding losses for unsupervised tasks by inferring the pair-wise label
relationship using other sources of information [144, 145, 146, 147, 148]. As the inferred label
information is not reliable, they can be misleading and will subvert the model during training.
This leads to our research question:

Given a dataset with unreliable labels, what are the guarantees when one learns an embedding
using triplet loss or contrastive loss?

This question is becoming more important as there are more datasets where labels are no longer
curated by human but by internet queries [117, 149, 106], crossmodal supervision and transfer
learning [15, 5], associated social information [150, 151], or data mining [144, 152].

To answer the question, we conducted an analysis on triplet loss under label noise from the
risk minimization perspective. Under this perspective, a loss function is said to be tolerant to
label noise of rate p if the minimizer of the risk in the noise free condition is also the minimizer
of the risk under noise. We first focus on the triplet loss without the hinged function. In this
case, we have proved the conditions so that unhinged triplet loss is robust to label noise and
shown the bound on the expected risk when there is label noise. From these analytical results, we
conjectured two main heuristics in optimizing triplet loss with label uncertainty:

• When the labels are known to be unreliable, it is better to keep the high precision when
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choosing positive pairs.
• Random semi-hard mining is more robust to label noise than fixed semi-hard mining.

We have conducted experiments on standard vision datasets to demonstrate how triplet loss
perform under label noise in practice and how different sampling strategies and noise rate can
affect the tolerance.

The rest of the chapter is organized as follows: Section 6.2 reviews the related work, Section 6.3
introduces preliminary settings for analysis, Section 6.4 presents the main analytical results,
Section 6.5 exhibits the exprimental results, and Section 6.6 presents our system to collect speaker
labels using face clusters.

6.2 Related work

While embedding losses under label noise have not been studied before, there has been a vast
literature in analyzing label noise for classification. For an in-depth introduction to label noise and
a comprehensive analysis of traditional algorithms, we refer the readers to the survey of [153].

In the context of deep learning, most effort has been dedicated to improve training networks under
label noise. One major direction is to approximate a model of noise to improve training. There
are a few examples of this direction. In [154], the authors use active learning to select clean data
from noisy training set, in [155], there are multiple iterations of training a model, formulating the
noise, and retraining, and in [156] the estimation of noisy labels is used to reweigh the training
samples. Another direction is to improve the networks directly to make them robust to label noise.
For example, one can add a noise adapting layer to correct the network for the latent noise in
training datasets [157] or augment a standard deep network with a softmax layer that models the
label noise statistics [158].

While all the above methods focus on changing the learning model or strategy, there is another
interesting body of works in analyzing the loss functions used to train the models [159, 160, 161].
Here we want to highlight one such work presented in [160]. In this work, the authors introduced
the notion of symmetric loss functions and proved that such symmetric losses are tolerant to
label noise. From the theoretical analysis, they have shown mean absolute error as a more robust
alternative for cross entropy loss in training classification deep neural networks.

Within this literature, our work can be viewed as a counterpart of [160] for embedding losses. In
our work, we not only explore how the per sample label noise affects the pair-wise and triplet-wise
labels but also provide further analysis on the impact of sampling and initialization, which are
integral parts of learning embeddings.
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6.3 Preliminaries

We will recall the losses used for deep embedding learning and then define the scope of label
noise to be used in subsequent sections.

6.3.1 Deep embedding learning and triplet loss

Given a labeled training set of {(xi , yi )}, in which xi ∈RD , yi ∈ {1,2, ..,K }, we define an embedding
function as a parameterized f (x;θ) ∈ Rd , which maps an instance x into a unit hypersphere
in a h-dimensional Euclidean space. In this new embedding space, we want the intra-class
distances d( f (xi ;θ), f (x j ;θ)), ∀xi , x j /yi = y j to be minimized and the inter-class distances
d( f (xi ;θ), f (x j ;θ)), ∀xi , x j /yi 6= y j to be maximized. 1

To achieve such embedding, one method is to learn the projection that optimizes the triplet loss
in the embedding space. A triplet consists of 3 data points: (xa , xp , xn) such that ya = yp and
ya 6= yn and thus, we would like the 2 points (xa , xp ) to be close together and the 2 points (xa , xn)

to be further away by a margin α in the embedding space. Hence, the loss for one triplet is
defined as:

l T (xa , xp , xn ;θ) = [dap −dan +α]+. (6.1)

6.3.2 Label noise

Given a sample xi with its true label yi , we assume this true label can be wrongly observed with
a probability p. Let ŷi be the observed label with the following rule:

ŷi =
{

yi with prob. 1−pxi

u with prob. pxi u ∀u 6= yi
(6.2)

in which
∑

u pxi u = pxi . If the individual noise probability is uniform and independent with the
input xi , we can simply write:

ŷi =
{

yi with prob. 1−p

u with prob. p
K−1 ∀u 6= yi

(6.3)

While the analysis can be applied on complicated distributions of noise, we assume that the label
noise on the individual sample is uniform and independent of xi . Thus we only take into account
the sample label noise rate p in Eq. 6.3.

1For shorthand, we will simply use di j to replace d( f (xi ;θ), f (x j ;θ)).
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6.3.3 Relationship between sample label noise p and pair label noise q

We want to compute given the sample label noise rate of p, what is the pair label noise rate q . In
another word, for a pair of samples with original pair label of ti j ∈ {−1,1}, we want to find the
chance that ti j is corrupted into −ti j

Negative case ti j = −1. The probability a negative pair is corrupted into a positive pair is
decomposed into 2 cases:

• one of the two samples changes its label, and the new label is the same with the other one:
2p (1−p)

K−1 .

• both samples’ labels change into 2 different labels, and both labels are the same: p2(K−2)
(K−1)2 .

Hence, in this negative case:

q−1 = 2p
(1−p)

K −1
+ p2(K −2)

(K −1)2 . (6.4)

Positive case ti j = 1. The probability a positive pair is corrupted into a negative pair is decom-
posed into when:

• one of the two samples changes its label any different label: 2p(1−p).
• both samples change into different labels: p2

(
1− 2

K−1

)
.

In this positive case:

q1 = 2p(1−p)+p2
(
1− 2

K −1

)
. (6.5)

6.4 Triplet loss under label noise

A triplet is chosen based on the observed labels, ŷa , ŷp , and ŷn . However, as these labels can be
noisy, the true labels can be one of 3 following cases:

• ya = yp = yn ,
• ya 6= yp 6= yn ,
• ya 6= yp and ya = yn .

The determine the condition for triplet loss to be robust to label noise, we first decompose it into
a combination of auxiliary pair-wise losses and consider the unhinged triplet loss.
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6.4.1 Auxiliary pair-wise and unhinged triplet loss

Definition 1. We define an auxiliary pair-wise loss l A as:

l A(xi , x j , ti j ;θ) =
{

di j ti j if ti j = 1

dmax +di j ti j if ti j =−1
(6.6)

in which dmax = 2 is the maximum distance between 2 points on the hypersphere. Note the
property that:

l A
i j (−ti j ;θ) = dmax − l A

i j (ti j ;θ),∀i , j . (6.7)

Definition 2. We define the label-dependent weighted version of the auxiliary loss as when each
pair (xi , x j , ti j ) is weighted differently by wti j , in which the weight only depends on the pair
label. Under noise, when a pair changes its pair label from ti j into −ti j , its weight only changes
from wti j into w−ti j .

Definition 3. For a given triplet of xa , xp , xn/ya = yp ∧ ya 6= yn , we define the unhinged triplet
loss lU , which can be decomposed into auxiliary pair-wise loss, as:

lU (xa , xp , xn ;θ) = dmax +dap −dan +α
= l A

ap (tap ,θ)+ l A
an(tan ,θ)+α.

(6.8)

Definition 4. We define a 1-1 sampling scheme for triplet loss as when for a given positive pair,
out of all possible negative pairs of the anchor, only 1 negative pair is chosen.

6.4.2 Risk minimization

From the risk minimization perspective, one might aim at optimizing the expected loss over all
triplets:

RL(θ) = Exa ,xp ,xn [l (xa , xp , xn ;θ)]. (6.9)

As the unhinged triplet loss lU can be decomposed as a linear combination of auxiliary pair loss
l A , the unhinged expected risk can be rewritten as:

RlU (θ) = Exa ,xp ,xn [lU (xa , xp , xn ;θ)]

= Exi ,x j ,ti j [Ni j l A(xi , x j , ti j ,θ)].
(6.10)

where Ni j is the weight as each pair can be chosen multiple times in triplet loss. Assuming
that there are uniformly s samples per every class and there are K classes, then N i j = (K −1)s

if ti j = 1 (each positive pair can be combined with (K −1)s negative pairs) and N i j = s −1 if
ti j =−1 (each negative pair can be combined with s −1 positive pairs).
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When a 1-1 sampling scheme is applied, each positive pair is chosen only once, while the
probability that one negative pair is chosen is approximately 1

K if each class has a uniform number
of samples. After the sampling scheme, we can rewrite the risk to be:

RlU (θ) = Exi ,x j ,ti j [wti j l A(xi , x j , ti j ,θ)]. (6.11)

where wti j is the weight associated to the probability each pair is chosen:

wti j =
{

1 if ti j = 1
1
K if ti j =−1

(6.12)

Under label noise, the pair label ti j can be corrupted into t̂i j . Then, the expected risk unhinged
triplet loss under noise R̂lU (θ) is:

R̂lU (θ) = Exi ,x j ,t̂i j
[wti j l A(xi , x j , ti j ,θ)]

= Exi ,x j Eti j |xi ,x j Et̂i j |xi ,x j ,ti j
[wti j l A(xi , x j , t̂i j ,θ)].

(6.13)

Using the probability qti j of a pair label changing from ti j into −ti j , we replace the term
Et̂i j |xi ,x j ,ti j

[wti j l A(xi , x j , t̂i j ,θ)] in the expected risk to have:

R̂lU (θ) = Exi ,x j ,ti j

[
wti j (1−qti j )l A(xi , x j , ti j ,θ)+w−ti j qti j l A(xi , x j ,−ti j ,θ)

]
. (6.14)

Here we will use the fact that l A
i j (−ti j ;θ) = dmax − l A

i j (ti j ;θ) in Def. 1 to expand the risk under
noise as:

R̂lU (θ) = Exi ,x j ,ti j

[
wti j (1−qti j )l A(xi , x j , ti j ,θ)+w−ti j qti j

(
dmax − l A(xi , x j , ti j ,θ)

)]
= Exi ,x j ,ti j

[(
1−qti j −qti j

w−ti j

wti j

)
wti j l A(xi , x j , ti j ,θ)+w−ti j qti j dmax

]
= Exi ,x j ,ti j

[
Qti j wti j l A(xi , x j , ti j ,θ)+w−ti j qti j dmax

]
.

(6.15)

For short notation, we have set:

Qti j = 1−qti j −qti j

w−ti j

wti j

. (6.16)

Remark. In Equation 6.15, one can see that in the expected risk under noise R̂lU (θ), we actually
only need the clean loss l A(xi , x j , ti j ,θ). We will use this fact to show that the minimizer of the
expected risk under noise will also be the minimizer of the clean expected risk.
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6.4.3 Unhinged triplet loss under label noise

Proposition 1. A minimizer θ∗ of the expected risk with unhinged triplet loss in the noise free
condition RlU (θ) is also the minimizer of the expected risk with unhinged triplet loss under noise
R̂lU (θ) if:

1. A 1-1 sampling scheme is used.
2. θ∗ is also the minimizer of 2 expected risk S + and S − over the distributions of positive

pairs and negative pairs respectively:
• S + = Exi ,x j ,ti j=1 l A(xi , x j , ti j ,θ).
• S − = Exi ,x j ,ti j=−1 l A(xi , x j , ti j ,θ).

3. minti j {Qti j } = minti j

(
1−qti j −qti j

w−ti j

wti j

)
≥ 0.

Proof. The proof is provided in the Appendix C. The proof sketch is as follows. We first consider
θ∗ be the optimizer of the clean risk RlU (θ), which gives us RlU (θ∗)−RlU (θ) ≤ 0 ∀θ. We
apply the same θ∗ into the noisy risk case R̂lU (θ∗)− R̂lU (θ), then use Eq. 6.15 and condition 2 to
expand it to have:

R̂lU (S,θ∗)− R̂lU (S,θ) ≤ min
ti j

{Qti j }
(
RlU (S,θ∗)−RlU (S,θ)

)
. (6.17)

Hence, θ∗ will also be the minimizer of the noisy risk R̂lU (S,θ) if this condition is satisfied

min
ti j

{Qti j } = min
ti j

(
1−qti j −qti j

w−ti j

wti j

)
≥ 0. (6.18)

Proposition 2. Let θ̂∗ be a minimizer of the noisy expected risk with unhinged triplet loss R̂lU (θ).
Let θ∗ be a minimizer of the clean expected risk with unhinged triplet loss RlU (θ). Then, when an
1-1 sampling is used, RlU (θ̂∗) is upper bounded by:

RlU (θ̂∗) ≤
maxti j {Qti j }

minti j {Qti j }
RlU (θ∗)

Proof. Because θ̂∗ be the optimizer of the noisy risk R̂lU (θ), which gives us:

R̂lU (θ̂∗)− R̂lU (θ∗) ≤ 0

⇒Exi ,x j ,ti j

[
Qti j wti j l A(xi , x j , ti j , θ̂∗)

]
−Exi ,x j ,ti j

[
Qti j wti j l A(xi , x j , ti j ,θ∗)

]
≤ 0

⇒min
ti j

{Qti j }RlU (θ̂∗)−max
ti j

{Qti j }RlU (θ∗) ≤ 0

⇒RlU (θ̂∗) ≤
maxti j {Qti j }

minti j {Qti j }
RlU (θ∗).

(6.19)
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A model can achieve the condition 2 in Proposition 1 that θ∗ is the minimizer of S + and S −

when on average, all the positive pairs are as close as they can be and the negative pairs are as
far as they can be. In other words, an ideal noise free model learned with triplet loss should be
sufficiently good at separating inputs into their respective clusters to guarantee that the model
learned under noise will be robust to noise. However, this condition is only satisfied if the data is
trivial to be separated and is not practical.

In the pratical case when condition 2 is not satisfied, one will reach a different minimizer θ̂∗. The
Proposition 2 provided the bound on the difference of expected risks in this case. Essentially, we

want the ratio
maxti j {Qti j }

minti j {Qti j } to be as close to 1 as possible. This ratio is affected by 2 factors: the

noise rate pti j and the weight ratio
w−ti j

wti j
.

We first consider the noise rate pti j . One can use the values in Eq. 6.4 and 6.5 to show that it is
the positive noise rate p+1 that impacts minti j {Qti j }. Intuitively, a wrong positive pair is always
sampled while a wrong negative pair may not be sampled at all. Hence, we can have the heuristic
about learning with label noise:

When the labels are known to be unreliable, it is better to keep the high precision when choosing
positive pairs.

We will consider the weight ratio
w−ti j

wti j
together with the hinged triplet loss in the next part.

6.4.4 Triplet loss and semi-hard mining

When applying triplet loss in practice, there are 2 main differences from the theoretical unhinged
version: the hinge function and semi-hard triplet mining. We first consider the hinge function.
By setting a threshold in choosing the triplets, it gives higher weights to harder negative pairs
and lower weights to easier negative pairs with respect to the positive distance. Concretely, for
ti j =−1, wi j can be ηi j

K for the harder pairs and 1
ηi j K for easier pairs, with ηi j being some value

greater than 1.

Let η= max{ηi j }, the bigger η is, the bigger the ratio
maxti j {Qti j }

minti j {Qti j } in the bound of Proposition 2,

which also means the loss is less robust to noise by a factor of η. Intuitively, because noisy
negative pairs have smaller distances, they are more likely to be chosen by a factor of η. This
makes triplet loss less resistant to label noise also by a factor of η. Though η cannot be computed
in practice, ideally the more uniformly negative pairs are sampled, the smaller the value of η is.

η and sampling strategies. Due to the fact that the way negative pairs are sampled depends on
the mining strategy used, we now investigate 2 different variants of semi-hard triplet mining,
namely random semi-hard and fixed semi-hard, as follows:

• Random semi-hard: for every positive pair, we randomly sample one negative pair so that
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the corresponding triplet loss is non negative [96]. Concretely, given the positive pair
xa , xp , the negative index n∗ is chosen as:

n∗ = rand
n

{n/dap −dan +α> 0}. (6.20)

• Fixed semi-hard: for every positive pair, we sample the hardest negative pair so that the
corresponding triplet loss is still less than α (ie. the hardest semi-hard negative pair) [97].
Thus, given the positive pair xa , xp , the negative index n is chosen as:

n∗ = argmin
n/dap<dan

dan . (6.21)

One can observe that both semi-hard mining strategies are 1-1 sampling schemes. The negative
pairs sampled by fixed semi-hard mining will be more concentrated in the harder range than
the negative pairs sampled by random semi-hard mining. Therefore, we can conjecture that
fixed semi-hard mining will have a larger skew value η than that of random semi-hard, or
ηr and < η f i xed , or as another heuristic:

Random semi-hard mining is more robust to label noise than fixed semi-hard mining.

In the experiments, we will show further how the value of η varies based on the sampling scheme
in the investigated datasets.

6.5 Experiments

6.5.1 Preliminary settings

Datasets. We illustrate the guarantees through experiments on 3 datasets: Stanford online product
(SOP) dataset [149], CUB-200-2011 bird dataset [162], and Oxford-102 Flowers dataset [163].

Metrics. For the image retrieval task, we use the Recall@K as in [149]. For the clustering task,
we use the Normalized Mutual Information (NMI) score to evaluate the quality of clustering
alignments given a labled groundtruth clustering [97]. We use K-means algorithm for clustering.

Architecture and training. We use the ResNet architecture with 34 layers [4]. The optimizer is
RMSProp [107] and the minibatch size is 60 (12 classes x 5 images). For the CUB and Flowers
datasets, we use the pretrained classification model on ImageNet.

Reference topline. As having noisy labels means there are fewer correct data points for training.
Hence, to disentangle the effect of lacking data, we compare the result of learning with noise rate
p with the topline result of learning with only 1−p remaining random data samples. We also
perform analysis on the marginal loss (a generalized contrastive loss) [97] for comparison.
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a) b) c)

d)

Figure 6.1 – Retrieval results reported on Standford Online Products dataset. x-axis: noise rate p.
(a-c) y-axis: Rec@1 of triplet loss with random semi-hard mining, fixed semi-hard mining, and
marginal loss with random semi-hard mining, respectively. (d) y-axis: the ratio of Rec@1 for
noise rate p over Rec@1 when there are 1−p data samples (topline) for all three cases.

a) b) c)

d)

Figure 6.2 – Retrieval results reported on CUB-200-2011 birds dataset. x-axis: noise rate p.(a-c)
y-axis: Rec@1 of triplet loss with random semi-hard mining, fixed semi-hard mining, and
marginal loss with random semi-hard mining, respectively. (d) y-axis: the ratio of Rec@1 for
noise rate p over Rec@1 when there are 1−p data samples (topline) for all three cases.
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6.5.2 Analysis

Triplet loss. In image retrieval task, triplet loss is robust to label noise less than 20% and varies
differently based on each dataset. When there is no label noise, triplet loss with fixed semi-hard
mining performs slightly better than with random semi-hard mining. However, when there is
label noise, fixed semi-hard deteriorates faster. In SOP dataset (Fig. 6.1-a, b), the gap between
learning with noise and learning with fewer clean labels widen significantly after 30% for fixed
semi-hard mining while random semi-hard mining still retains good relative performance after
50%. The difference can be examined directly by comparing the ratio between accuracy with
noise over accuracy with fewer samples in Fig. 6.1-d, where fixed semi-hard mining is clearly
below random semi-hard mining. The same behaviour is observed in CUB dataset (Fig. 6.2-a, b,
d) and Flowers dataset (Fig. 6.3-a, b, d) This result shows how different sampling strategies affect
the robustness to label noise differently. It also corroborates our conjecture that η f i xed > ηr and .

Marginal loss. Compared to triplet loss, marginal loss exhibits a higher variance of robustness
across datasets in image retrieval task. In SOP, marginal loss degrades much faster than both
versions of triplet loss, as shown in Fig. 6.1-c,d. Meanwhile in CUB dataset, marginal loss is
relatively as robust as triplet loss with random semi-hard mining, with the breakpoint of 50%
comparing to 60% in triplet loss (Fig. 6.2-c,d). In Flowers dataset, even though the performance of
marginal loss decreases slightly faster than that of triplet loss, it may due to the fact that marginal
loss performs worse with fewer data rather than due to noise (Fig. 6.3-c). When comparing the
relative noise, it still shows the same relative robustness with triplet loss. Because in CUB and
Flower datasets, we start with the pretrained model, which means the initial θ is already good
and the final θ∗ is probably reachable through local optimizing steps.

Additional results on clustering tasks. In Fig. 6.4, we show the ratios of the NMIs under noise
rate p over the NMIs of missing rate p of data (topline) for all investigated methods in all 3
datasets. Overall, the results in the clustering task agree with our conclusions from the image
retrieval task. Using random semi-hard mining with triplet loss yields more diverse negative
pairs, making it more robust to label noise than fixed semi-hard mining. Marginal loss with good
initialization shows a statistically similar level of robustness with triplet loss. More detailed
figures on the clustering task are provided in the supplementary.

6.6 Speaker embedding learning using face cluster labels

As we saw in Chapter 4, data is very important to learn a good speaker embedding for clustering
or recognition. However, data annotation is very costly because we cannot use search engine for
voice or do mass annotation like images. Therefore, there has been work in using face recognition
as the proxy task to collect voice data [5] but this method is limited to only well known people
with pretrained face models. We propose to alleviate this problem by using face clusters as
indicators to collect positive pairs and negative pairs to train a speaker embedding.
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a) b) c)

d)

Figure 6.3 – Retrieval results reported on Oxford-102 flowers dataset. x-axis: noise rate p.(a-c)
y-axis: Rec@1 of triplet loss with random semi-hard mining, fixed semi-hard mining, and
marginal loss with random semi-hard mining, respectively. (d) y-axis: the ratio of Rec@1 for
noise rate p over Rec@1 when there are 1−p data samples (topline) for all three cases.

a) b)

c)

Figure 6.4 – Clustering results x-axis: noise rate p, y-axis: the ratio of NMI for noise rate p over
NMI when there are 1−p data samples (topline) for triplet loss with random semi-hard sampling,
fixed semi-hard mining, and marginal loss with random semi-hard sampling. (a-c) results on the
SOP, CUB, and Flowers datasets, respectively
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Figure 6.5 – An example of our label collection method. Cluster 1 and cluster 4 are from the
same identity but are not merged due to low resolution and different lighting. Meanwhile, cluster
3 contains a track which should have been merged into cluster 2 and a track from a different
identity. The positive pair C is true positive while pair E is a positive label noise. The negative
pair B is true negative while pairs A and D are negative label noise.

6.6.1 Label collection settings

Here, we assume that a collection of videos without any labels is given. Face tracking and face
clustering are first performed using the methodology from Chapter 2. Each face track is then
divided based on speaker turn segmentation and talking face detection is applied. After this
step, we yield a set of talking face tracks and their respective clusters. Hence, the talking face
tracks from the same clusters can be considered to have the same label. Hence, the corresponding
voice segments can be sampled to create positive pairs. Similarly, voice segments from different
clusters can be sampled to create negative pairs. However, face clustering can have supoptimal
results and create wrong pair labels, or label noise. For example, 2 face tracks with different
lighting conditions or poses can end up in different clusters. Figure. 6.5 illustrates the method
and its potential label noise. We use this practical dataset with label noise to demonstrate our
analysis from the previous section.

6.6.2 Experimental settings

In this demonstrating experiment, we use the VoxCeleb training set without using the labels. We
perform face clustering on a minibatch of 10 videos. Negative pairs are sampled from clusters
of different videos only. For the positive pairs, we vary the maximum distance of hierarchical
face clustering for analysis. These pairs are used to form triplets to train a speaker embedding
with ResNet-34, similarly to the experiments in Chapter 4. We report metrics for 3 tasks: similar
instance retrieval (Rec@K), clustering (NMI), and verification (EER) on the VoxCeleb test set.
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Table 6.1 – Results of instance retrieval (Rec@K), clustering (NMI), and verification (EER) on
the VoxCeleb test set. We report models learned with weak face labels at different clustering
thresholds. ’Supervised’ denotes the performance of the model learned with the clean labels for
the VoxCeleb training set.

Max dist. Rec@1 Rec@10 NMI EER
0.1 87.9 97.6 50.3 29.3
0.4 82.2 96.1 47.0 33.2
0.6 67.3 91.9 40.4 33.1

Supervised 94.7 99.2 82.0 11.7

6.6.3 Analysis

Table 6.1 reports result at different maximum distance for merging face clusters. For each
different maximum distance of hierarchical clustering, one receives a different face clustering.
The smaller the maximum distance is, the purer each cluster is. Hence, when sampling for
the positive pairs, smaller maximum distance will give pairs with higher probability of being
correct. Theoretically, this means better resistance against label noise. Comparing different
models learned with different face clustering in Table 6.1 confirms the theoretical insights. The
more precise we sample the positive pairs, the better the performance across all tasks.

In comparison to the full supervised model, for the similar instance retrieval task, models learned
with weak supervision can achieve very high recall (87.9% vs. 94.7% in Rec@1). This shows
that face clustering can provide reliable label information with respect to the closest instances.
On the other hand, in the verification task, there is a signification gap from the top line to the
weakly supervised models. This means that face clustering cannot yield instances with large
intra-class variation for training. Also, each minibatch contains only 10 videos. Therefore, the
models fail to learn an embedding that can generalize across recording conditions. The result
creates a conundrum: we want pure clusters to be more resistant against label noise but we also
want each cluster to cover sufficient within class variation. This is an interesting problem for
future research.

6.7 Conclusion

We have provided the analysis of the common triplet loss for embedding learning. Our analytical
results show a dependence between the sampling strategies and the resistance against label noise
in embedding learning. We also analyze and provide practical guidelines for practical tasks when
we want to learn a good embedding (without any change in the algorithm or network architecture)
even if the training set labels are noisy. We demonstrate our results on standard image retrieval
datasets and apply these insights in the task of learning a speaker embedding with pseudo-labels
collecting from face clustering. The performance of the speaker models agrees with the findings
while presenting interesting future research problem. There are several other potential research
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directions to extend our work. The first one is to investigate other sampling strategies such as
in [97, 164]. Other embedding losses, for example quadruple loss [165], N-pair loss [166], or
marginal loss with learnable β [97].

99





7 Conclusion

Contributions

The massive amount of multimedia contents produced everyday presents many challenges as
well as many opportunities for research in video indexing and understanding. In this thesis, we
addressed the challenge of indexing people in videos and explored the opportunity of multimodal
learning across audio and visual domains. The contributions can be summarized as follows:

• In Chapter 2, we proposed a face tracking framework which leverages the costly but
accurate face detector with a tracking-by-detection CRF-based method. This framework
enabled skipping frames to reduce complexity while achieving state-of-the-art results.
Furthermore, we accelerated face clustering using shot context and improved the accuracy
by combining 2 complementary face similarity measures.

• In Chapter 3, we solved the problem of face and voice association by proposing a multi-
modal framework that uses a recurrent neural network to learn the temporal representation
from the correlation component projection. It was then integrated in a person naming
system which won two evaluation campaigns.

• In Chapter 4, a regularizer called intra-class loss was introduced to increase the compactness
of speaker embedding features, leading to improvement in speaker recognition.

• In Chapter 5, several methods for transfer learning from a facial domain to a speech domain
were explored. These methods constrain different properties of an embedding space such
as its geometric arrangement or the its feature distribution. The results were positive and
the analysis showed potential for future work.

• In Chapter 6, the problem is how to use face clustering results as pseudo-labels to collect
training data to learn speaker recognition models. This problem requires the understanding
of learning an embedding with triplet loss under label noise. We made an analysis of
embedding learning under label uncertainty and studied how to make models more resistant
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to such noise. We used the results to build a framework to learn speaker models with
supervision from the facial domain.

Limitations and perspectives

Below, we discuss the limitations of our methods and possible directions for future research
within 4 main topics.

Person diarization. The main focus of our framework was to significantly reduce the compu-
tational cost for processing large databases. Hence, we have utilized mostly primitive features
(color, position) as well as local features (SURF, DCT) that are fast to compute. Provided
that there have been rapid advances in high performance hardware as well as in deep learning
architectures, the focus can be shifted to investigating more advance learning algorithms and
features. For instance, the main idea of our tracking framework is to use the long term sensitive
multi-cue CRF, this can be easily expanded with more advanced deep features and similarity
measures. The divide-and-conquer clustering strategy using shot context can also be used in other
video analysis tasks in complementary with other representations.

Multimodal sequence representation. In our dubbing detection work, there are 2 main limita-
tions. First, we only consider visual features within the mouth region. This leads to the loss of
person attributes information. Therefore, we consider further experiments in using full facial or
upper body motions as input. Second, the dataset is relatively small and is restricted to only TV
broadcast. To alleviate this issue, a few possible directions are to create artificial dubbing data
through cross video mixing or to use associated meta data to quickly collect more positive data.
Another potential aspect is to use deep canonical analysis or stacked LSTMs for more powerful
correlation learning. Nevertheless, our multmodal framework to detect asynchrony has been
adopted in the biometrics problem of detecting video tampering [167, 168, 169].

Audio-visual person embedding learning. Recently, we have observed more works in learning
joint recognition models using audio-visual data [170, 171]. These works also consider the
regularization of the output spaces or the correlation of features between the 2 domains. Going
beyond this, we hypothesize that using similar structures and imposing constrains on the model
weights can bring further improvement.

Weakly supervised learning with audio-visual data. Our recent findings on the resistance of
triplet loss under noise offer several interesting directions. In practice, we have observed the
trade-off between having more precise labels and obtaining more training variation within a
class. Hence, formalizing this trade-off and designing an effective sampling method are crucial
to achieve good performance. As our analysis only has guarantees on the minimizers of the loss
functions, optimizing these losses under noise is another vital factor, which includes research on
the stability of training or a loss correction method.
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Experiments on Multi-Object Tracking (MOT) Challenge 2016

In [2], the original model was evaluated on the CAVIAR, TUD sequences, PETS-S2L1, Town-
Center, and ParkingLot sequences and was providing top results. The new MOT16 benchmark
contains 14 sequences with more crowded scenarios, more scene obstacles, different view-
points and camera motions and weather conditions, making it quite challenging for the method
which did not incorporate specific treatments to handle some of these elements (camera motion,
scene occluders). The MOT16 challenge thus allows to better evaluate the model under these
circumstances.

Parameter setting

For each test sequence, there is a training sequence in similar conditions. As explained earlier,
we have used the training sequences to learn Potts models, and used them on the test data. Other
parameters (e.g. for reliability factors) were set according to [2] and early results on the training
data. Unless stated otherwise, the default parameters (used as well on test data) are: Tw = 24,
∆sk = 3 (i.e. only frame 1, 4, 7, ... are processed), dmin = 12 (short tracks with length below
dmin were removed), Td pm =−0.4, and linear interpolation between detections were produced to
report results.

Tracking evaluation

We use the metrics (and evaluation tool) of the MOT challenge. Please refer to [172] for details.
In general, except the detection filtering, results (MOTA) were not affected much by parameters
changes.

Detection filtering. Tab. A.1 reports the metrics at detection level and tracking level when
applying the linear height filtering and with different detection threshold Td pm . The filter gives a
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Raw detection Filtered detection
Td pm =−0.5 Td pm =−0.5 Td pm =−0.4 Td pm =−0.3

Detection Recall 35.4 35.1 34 32.4
Detection Precision 78.3 86.1 89.9 92.4

MOTA 25.2 29.1 29.8 29.3
MOTP 74.1 74.2 74.3 74.6

Table A.1 – Detection filtering. Detection precision-recall and tracking performance (nota: tracks
are not interpolated in results).

Parameters Rec. Pre. FAR MT PT ML IDS FM MOTA MOTP
Default 38.7 85.9 1.32 49 180 288 211 634 32.1 74.7
Tw =12 35.9 90.5 0.78 39 181 297 275 636 31.9 75.1
∆sk =1 40.5 82.8 1.74 52 188 277 273 1199 31.8 73.7
∆sk =3 38.7 85.9 1.32 49 180 288 211 634 32.1 74.7
∆sk =6 35.5 88.9 0.92 33 177 307 217 459 30.8 75.1

Unsup. models 38.0 86.6 1.22 43 183 291 237 692 31.9 74.7
W/o match. sim. 36.6 89.5 0.89 48 157 312 210 555 32.2 75
With match. sim. 37.2 88.8 0.98 49 161 307 203 638 32.3 74.8

Table A.2 – Evaluation of our tracking framework with various configurations. Results with
the default parameters are shown first, and then performance obtained when varying one of the
parameters (provided in first column) are provided.

boost in precision with a small decrease in recall and all tracking metrics are improved thanks
to fewer false alarms. We can also observe that threshold Td pm =−0.4 provides an appropriate
trade-off between precision and recall and good tracking performance.

Tracking window Tw and step size ∆sk . Different configurations are reported in Tab. A.2. One
can observe that with longer tracking context Tw (default Tw = 24 vs shorter Tw = 12), tracks
are more likely to recover from temporary occlusions or missed detections, resulting in higher
MT, ML. When detector is applied scarcely (e.g. ∆sk = 3 or 6), we observe a performance
decrease (e.g. decrease of MT, increase of ML). Nevertheless, applying the detection every
∆sk = 3 frames reduces the false alarms and improves IDS and FM metrics. Since detection is
one of the computation bottlenecks, this provides a good trade-off between performance and
speed. When ∆sk = 3, the overall tracking speed also is increased by up to 6 times.

Supervised vs unsupervised models. The “Unsup. model’s’ line in Tab. A.2 provides the
results when using association models trained from the raw detection in an unsupervised fashion
as in [2], which can be compared against of the default ones obtained using tracking models
trained from the labeled GT boxes provided in MOTChallenge 2016. Interestingly, although the
unsupervised approach suffer from missing detections and unstable bounding boxes, it performs
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FAR MT ML IDS FM MOTA MOTP
LTTSC_CRF 2.0 9.6 % 55.2 % 481 1012 37.6 75.9

Table A.3 – Results on the MOT 2016 test data.

very close to the supervised models in most tracking metrics.

Matching similarity. Because of the complexity, we used Tw = 15 for sequence MOT16-04, the
rest use the default parameters. Although SURF matching can be discriminative for objects, it is
less effective in human tracking because of clothing similarity, and data resolution where most
features are found on human boundaries rather than within. This is reflected in Tab. A.2, where
only minor improvement in IDS, ML, MT, and PT are observed. In future work, better tracking
oriented cues could be used, such as those developed for re-identification.

Evaluation on test sequences

The results of the method configured with detection filtering and the default parameters for the
tracker are reported in Tab. A.3. Overall, the performance are better, showing that the method
generalizes well (with its limitation) and qualitative results are aligned with those of the training
sequences. The comparison with other trackers can be found in the MOT website1. Overall, our
tracker achieved fair ranking in comparison to other methods. Considering methods based on the
public detections, our tracker exhibit a good precision (rank 5th/20 on the IDS metric and 8th/20

on Frag metric) but is penalized by a low recall, resulting on a ranking of 11th/20 for MOTA. It
is important to note that our modeling framework was taken as is from previous paper, and not
adapted or over-tuned to the MOT challenge (e.g. for camera motion or viewpoints). In addition,
as our framework can leverage any cue in a time-sensitive fashion, other state-of-the-art features
like those based on supervised re-identification learning can be exploited and would positively
impact performance.

1https://motchallenge.net/results/MOT16/
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Results in the MediaEval Challenge 2015

The task is described in details in [173]. We evaluated 3 methods: SpkDia, FaceDia, and SpkFace.
In SpkDia (primary submission), we apply naming based on audio information only (this is
equivalent to assumption that all speakers which are associated with a name are visible and
speaking). This is our primary submission for the challenge. Second, in FaceDia, we apply
naming based on visual information only, and assume that all visible faces (which are associated
with a name) are talking. Third, in SpkFace, we apply naming based on audio information
only, but validate if there exists visible faces during the speech segments (if not, the segment is
discarded). Because our approaches are monomodal and fully unsupervised, we did not use the
information provided by leaderboard to improve performance.

The results using the challenge performance measures are reported in Tab. B.1 for the REPERE
test 2 data [44] as the initial development data and in Tab. B.2 for the challenge testing part of the
INA dataset. SpkDia is the most robust and performs the best even without any face information,
which might be explained by two points. First, there is usually only one speaker at a time, and
not much noise in the challenge data. Meanwhile, face diarization can be difficult due to multiple
faces, facial variation, missed detections, etc. Hence, speech clusters tend to be more reliable
than face clusters. Second, when a speaker is not visible, it is often the anchor of the show, who
is counted as one query equally to those appearing for short duration. Therefore, SpkDia is not
penalized much by the visibility of speakers. We can observe this effect more in the last column
of Tab. B.2 which shows the number of person presence with names predicted by each scheme.
Using faces to filter 1/3 of speech segments does not help to increase precision because these

Method EwMAP MAP C #(2485)
Baseline 49.98 50.32 58.75 617
SpkDia 65.31 66.70 72.50 2817
FaceDia 66.38 67.98 71.67 1691

Table B.1 – Results on REPERE test 2 (dev set)
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Method EwMAP MAP C #(21963)
Baseline 78.35 78.64 92.71 12066
FaceDia 83.04 83.33 90.77 7237
SpkDia∗ 89.75 90.14 97.05 30583
SpkFace 89.53 89.90 96.52 20601
∗ Primary submission

Table B.2 – Results on INA (test set)

segments correspond to a small number of repetitive speakers. Also, though face diarization
gives only 1/3 of possible names, these names are precise person-wise. This interesting fact may
provide outlook on combining 2 modalities.
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Proof of Proposition 2

Recall that the expected risk unhinged triplet loss under noise R̂lU (θ) is:

R̂lU (θ) = Exi ,x j ,ti j

[
Qti j wti j l A(xi , x j , ti j ,θ)+w−ti j qti j dmax

]
. (C.1)

Let θ∗ be the optimizer of the clean risk RlU (θ), which gives us:

RlU (θ∗)−RlU (θ) ≤ 0 ∀θ. (C.2)

We consider the same θ∗ in the noisy risk R̂lU (θ∗)− R̂lU (θ), and then apply 6.15:

R̂lU (θ∗)− R̂lU (θ) = Exi ,x j ,ti j

[
Qti j

(
wti j l A(xi , x j , ti j ,θ∗)−wti j l A(xi , x j , ti j ,θ)

)]
. (C.3)

The set of pairs (i , j ) can be divided into the positive pairs, ti j = 1, and negative pairs, ti j =−1.
Hence the risk difference can be also split into:

R̂lU (θ∗)− R̂lU (θ) = p(ti j = 1)Exi ,x j ,ti j=1

[
Q+1wti j

(
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

)]
+p(ti j =−1)Exi ,x j ,ti j=−1

[
Q−1wti j

(
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

)]
=Q+1p(ti j = 1)Exi ,x j ,ti j=1

[
wti j

(
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

)]
+Q−1p(ti j =−1)Exi ,x j ,ti j=−1

[
wti j

(
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

)]
.

(C.4)

From the condition, we have θ∗ is also the minimizer of S + and S −, or:

Exi ,x j ,ti j=1

[
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

]
≤ 0,

Exi ,x j ,ti j=−1

[
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

]
≤ 0.

(C.5)
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Using this fact to upper bound Eq. C.3 we can come to:

R̂lU (S,θ∗)− R̂lU (S,θ)

≤ min
ti j

{Qti j }
[

p(ti j = 1)Exi ,x j ,ti j=1

[
wti j

(
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

)]
+p(ti j =−1)Exi ,x j ,ti j=−1

[
wti j

(
l A(xi , x j , ti j ,θ∗)− l A(xi , x j , ti j ,θ)

)]]
,

(C.6)

or:

R̂lU (S,θ∗)− R̂lU (S,θ) ≤ min
ti j

{Qti j }
(
RlU (S,θ∗)−RlU (S,θ)

)
. (C.7)

This upper bound in Eq. C.7 is reached when the following condition is satisfied:

min
ti j

{Qti j } = min
ti j

(
1−qti j −qti j

w−ti j

wti j

)
≥ 0. (C.8)

From C.2 and C.7, we have:

R̂lU (θ∗)− R̂lU (θ) ≤Q(RlU (θ∗)−RlU (θ)) ≤ 0. (C.9)

Hence, θ∗ will also be the minimizer of the noisy risk R̂lU (S,θ) if the condition Eq. 6.18 is met.
This concludes the proof.

Clustering experiment

In the clustering tasks, we use the Normalized Mutual Information (NMI) metrics to quantify
the clustering quality. N M I = I (Ω,C )/

p
H(Ω)H(C ), with C = c1, ...,cn being the clustering

alignments, and Ω=ω1, ...,ωn being the given groundtruth clusters (ie. class labels). Here I (ů, ů)

and H(ů) denotes mutual information and entropy respectively. We use K-means algorithm for
clustering.

Because measuring clustering quality takes into account all nearby neighbors instead of just the
nearest one, the difference in NMI between methods are narrower than in Rec@1. Still, the
results in the clustering task agree with our conclusions from the image retrieval task. Using
random semi-hard mining with triplet loss is more robust to label noise than fixed semi-hard
mining and good minimziation helps to make marginal loss more robust to label noise.

In SOP dataset (Fig. C.1), the deterioration of triplet loss with fixed semi-hard mining increases
after 40% while random semi-hard mining still retains good relative performance after 50%.
Meanwhile marginal loss degrades much faster than both versions of triplet loss. The difference
is easier to view when we compare the ratios between the NMI under noise and the NMI with
few data.
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a) b) c)

d)

Figure C.1 – Clustering results reported on Standford Online Products dataset. x-axis: noise rate
p, y-axis: NMI.(a-c) NMI of triplet loss with random semi-hard mining, fixed semi-hard mining,
and marginal loss with random semi-hard mining, respectively. (d) the ratio of NMI for noise
rate p over NMI when there are 1−p data samples (topline) for all three cases.

a) b) c)

d)

Figure C.2 – Clustering results reported on CUB-200-2011 birds dataset. x-axis: noise rate p,
y-axis: NMI.(a-c) NMI of triplet loss with random semi-hard mining, fixed semi-hard mining,
and marginal loss with random semi-hard mining, respectively. (d) the ratio of NMI for noise
rate p over NMI when there are 1−p data samples (topline) for all three cases.
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a) b) c)

d)

Figure C.3 – Clustering results reported on Oxford-102 flowers dataset. x-axis: noise rate p,
y-axis: NMI.(a-c) NMI of triplet loss with random semi-hard mining, fixed semi-hard mining,
and marginal loss with random semi-hard mining, respectively. (d) the ratio of NMI for noise
rate p over NMI when there are 1−p data samples (topline) for all three cases.

In CUB and Flower datasets (Fig. C.2 and Fig. C.3), we observe the same difference between
triplet loss with fixed or random semi-hard mining. On the other hand,marginal loss is relatively
as robust as triplet loss with random semi-hard mining. This fact, as shown in the paper, can be
contributed by initialization with pretrained models.
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