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A Differential Approach for Gaze Estimation
Gang Liu, Yu Yu, Kenneth A. Funes Mora, Jean-Marc Odobez*

Abstract—Most non-invasive gaze estimation methods regress
gaze directions directly from a single face or eye image. However,
due to important variabilities in eye shapes and inner eye
structures amongst individuals, universal models obtain limited
accuracies and their output usually exhibit high variance as
well as subject dependent biases. Thus, increasing accuracy is
usually done through calibration, allowing gaze predictions for
a subject to be mapped to her actual gaze. In this paper, we
introduce a novel approach, which works by directly training
a differential convolutional neural network to predict gaze
differences between two eye input images of the same subject.
Then, given a set of subject specific calibration images, we can
use the inferred differences to predict the gaze direction of a
novel eye sample. The assumption is that by comparing eye
images of the same user, annoyance factors (alignment, eyelid
closing, illumination perturbations) which usually plague single
image prediction methods can be much reduced, allowing better
prediction altogether. Furthermore, the differential network itself
can be adapted via finetuning to make predictions consistent
with the available user reference pairs. Experiments on 3 public
datasets validate our approach which constantly outperforms
state-of-the-art methods even when using only one calibration
sample or those relying on subject specific gaze adaptation.

I. INTRODUCTION

Gaze is an important cue of human behaviours. Gaze direc-
tions and gaze changing behaviours (such as gaze aversion, the
intentional redirection away from the face of interlocutor [1])
are good indicators of the visual attention and are also related
to internal thoughts or mental states of people. Besides, as
a non-verbal behaviour, gaze is an important communication
cue which has also been shown to be related to higher-level
characteristics such as personality. It thus finds applications in
many domains like Human-Robot-Interaction (HRI) [1], [2],
Virtual Reality [3], social interaction analysis [4], or health
care [5], or mobile phone scenarios [6]–[8].
Motivation. Non-invasive vision based gaze estimation has
been addressed with two main paradigms: geometric models
and appearance [9]. Since the former suffers from noise, image
resolution, illumination, or head pose issues, appearance-based
methods which predict gaze directly from the eye (or face)
images have attracted more attentions in recent years [10]–
[13]. Among them, deep neural networks (DNN) have been
shown to work well.

Nevertheless, even when using DNN regressors, their accu-
racy has been limited to around 5 to 6 degrees, with a high
inter person variance [10]–[16]. This is due to many factors
including dependencies on head poses, large eye shape vari-
abilities, and only very subtle eye appearance changes when
looking at targets separated by such small angle differences.
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Fig. 1: Examples of variability factors. (a) Head pose shape vari-
abilities induce different frontal head pose definition and hence vari-
abilities in eye images. (images from Pinterest.com). (b) Variabilities
across subjects of the difference between the visual axis (unobserved,
defining gaze) and the optical axis (defined by iris center, observed)
introduces gaze prediction uncertainties (image from [18]).

For instance, Fig. 1(a) shows the difficulty to define an ab-
solute head pose like a frontal pose. This has a non negligible
impact on the eye appearance. Another factor explaining the
limited accuracy when building person independent models is
that the visual axis is not aligned with the optical axis (related
to the observed iris) [17], and that such alignment differences
are subject specific (see Fig. 1(b)), with a standard deviation of
2 to 3 degrees amongst the population without eye problems.
Said differently, in theory, images of two eyes with the same
appearance but with different internal eyeball structure can
correspond to different gaze directions, demonstrating that
gaze can not be fully predicted from the visual appearance.
Altogether, in practice, such variabilities introduce confusions
for regression, as illustrated in Fig. 2 which shows that gaze
related elements (like iris location or the eyelid closing) in
eye images from different persons sharing the same gaze
directions can look quite different, while more importantly, eye
of different persons can be similar when they look at different
directions (see (a-2) and (d-3)).

A straightforward solution to this problem is to learn person-
specific models [10], [19], [20] or fine-tune a pre-trained
model [21]. Note that even regular high-end Infra-Red (IR)
devices (eg from Tobii) require users to stare at several fixed
positions before using them. However, training person-specific
appearance models may require large amounts of personal
data, especially for DNN methods and even when conducting
simple network fine tuning adaptation. Other methods rely on
fewer reference samples to train a linear regression model [22]
or an SVR [6]. Still these methods are usually not robust to
environment changes and their accuracy is heavily affected by
the number of reference samples. A too small amount can even
result in worse performance than without calibration. This is
unfortunate, as there are plenty of real scenarios in which we
can collect a few annotated samples.

Contributions. This paper is an extension of our paper [24].
we aim to solve the person-specific bias using a few annotated
reference samples from the specific person. To this end, two
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Fig. 2: Appearance comparison. Columns (a) to (d) show right eye
images from different persons from the EYEDIAP dataset [23]. Row
(1) to (3) correspond to gaze directions with the same pitch (5
degrees) and a yaw of 5, 10, 15 degrees respectively.
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Fig. 3: Approach overview. During training, random pairs of samples
from the same eye are used to train a differential network. At test
time, given a set of reference samples, gaze differences are computed
and used to infer the gaze of the input image. To gain higher accuracy,
the differential network can be adapted via fine-tuning using the pairs
of reference samples.

strategies have been considered and analyzed. The first one
is a baseline and consists of learning the linear relationship
between the gaze predictions from a pre-trained NN applied to
few training samples and their groundtruth gaze. Interestingly,
although simple, it is shown to achieve better results than the
state-of-the art SVR method of [6].

The second method corresponds to our main contribution,
and is as follows. Although the previous methods can reduce
the subject specific bias between the subject (test) data and the
overall training dataset, it does this by only working with the
gaze prediction or feature outputs, and does not account for the
high gaze prediction variance within each subject’s data. To
address this issue, we propose a differential gaze estimation
approach, by training a differential NN to predict the gaze
difference between two eye images instead of predicting the
gaze directly. We hypothesize such a differential approach
is less problematic than predicting gaze because the person
dependent error (such as shape, alignment errors) will be
alleviated. This is illustrated in Fig. 2, which shows that given
an eye of a person, it is easier to judge whether it is looking
more to the left or the right than a second eye image if the
latter come from the same person than if it comes from another
person (even with a similar eye shape). In Fig. 2, it is easier
to see that the eye images at the bottom look more to the right
than the eye images at top which are in the same column than
compared to images in the other columns.

Our framework is illustrated in Fig. 3. At training time,
a unified and person independent differential gaze prediction
model is built which can be used at test time for person specific
gaze inference relying on only a few calibration samples.

Thirdly, as there are many architectures that can be designed
for differential gaze (early fusion by concatenating the two
images, or fusion of feature maps of the two images at different
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Fig. 4: Baseline CNN structure for gaze estimation.

levels), we investigate and compare different architectures and
show that mid-level fusion is better than early fusion or late
fusion. Usually they have different impacts on gaze estimation.
Paper organization. We discuss related works in Section II.
In Section III, we introduce a state-of-the-art NN for gaze
prediction, illustrate the subject specific bias problem, and
present a baseline linear adaptation method to build subject
specific gaze prediction models. In Section IV, we introduce
our approach and the proposed modified siamese NN for
differential gaze prediction. Experiments are presented in
Section V, while Section VI concludes the work.

II. RELATED WORKS

Our work relates to appearance-based modeling, person
dependent calibration methods, and to some extend, to siamese
network approaches for achieving other tasks.

A. Appearance-based gaze estimation

As said earlier, geometric approaches rely on eye feature
extraction (like glints when working with infrared systems,
eye corners or iris center localization) to learn a geometric
model of the eye and then infer gaze direction using these
features [25]–[30]. However, they usually require high reso-
lution eye images for robust and accurate feature extraction,
are prone to noise or illumination perturbations, and do not
handle well head pose variabilities.

Hence, many recent methods rely on an appearance based
paradigm [10]–[13], exhibiting more robustness with low
to mid-resolution images and obtaining good generalization
performance. There, Neural networks (NN) methods have been
shown to work well due to their ability to leverage large
amount of data to train a regression network capturing the
essential features of the eye images under various conditions
like illumination and self-shadow, glasses, impact of head
pose. For instance, [10] relied on a simple LeNet shallow
network applied to eye images and first demonstrated that
NNs outperform most other methods. Very recently, a deeper
pretrained network (VGG-16 [31]) was fine-tuned for gaze
estimation and further improved the accuracy [32]. In other
directions, Krafka et. al [6] proposed to combine eye and
face together using a multi-channel network, Zhang et. al [15]
trained a weighted network to predict gaze from a full face
image. Shrivastava et. al [14] learned a model from simulated
eye images using a generative adversarial network.

B. Person dependent calibration

Person dependent calibration is critical to obtain a more
robust and accurate model for gaze estimation (this is also
the case for infrared head mounted device [33], [34]). To
solve this problem, Lu et.al [22] proposed an adaptive linear
regression method relying on few training samples, but the eye
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representation (multi-grid normalized mean eye image) is not
robust to environmental changes. Starting from a trained NN,
Krafka et.al. [6] relied on feature maps from the last layer of
a pretrained NN to train a Support-Vector-Regression (SVR)
person specific gaze prediction model from 13 reference
samples. However, SVR regression from a high dimensional
feature vector input is not robust to noise. Different from [6],
Masko tried to fine-tune the last layer of a pre-trained model
for each subject, but this requires large amounts of data. In
another direction, Zhang et.al. [35] proposed to train person-
specific gaze estimators from user interactions with multiple
devices, such as mobile phone, tablet, laptop, or smart TVs,
but this does not correspond to the majority of use cases.

However, none of the above works have proposed to
calibrate gaze by estimating gaze difference from reference
images, which as we show in this paper is a much more robust
approach requiring less reference images.

C. Siamese network

They have first been proposed in [36] for signature verifica-
tion, and with the deep learning revival, for tasks like feature
extraction [37], [38], image matching and retrieval [39], one-
shot recognition [40], person re-identification [41]. They con-
sist of two parallel networks with shared weights, a pair of im-
ages as input (one per network), and the distance between their
outputs is the siamese network output. Often, for classification,
the goal is to learn an embedding space, where samples from
the same class are close and samples from different classes
are far. In regression, the loss function compares the output
distance with the groundtruth one. Venturelli et.al. [42] use
such an approach for head pose estimation. However, they
use a multi-task approach in which both absolute poses and
head pose differences are used as loss function. At test time,
the pose is still directly predicted from a single image. Hence,
while several layers of our differential networks are used to
predict the gaze difference, in their case the pose differences
was only computed from the network pose prediction output.

The few-shot learning approach of [43] is closer to our
work. Authors rely on a relation network trained to compare
images. As for us, its architecture consists of an embedding
module that extracts featuremaps of images, and a relation
module using the concatenated featuremaps as input to calcu-
late a relation score. Their method however addresses a quite
different task (image classification vs gaze regression), with
a different loss function and they do not further adapt the
network using the reference samples.

III. BASELINE CNN APPROACH AND LINEAR ADAPTATION

We first introduce a standard convolution neural network
(CNN) for person independent gaze estimation. We then show
the resulting bias existing for unknown individuals, and present
a baseline linear adaptation method to solve it.

A. Gaze estimation with CNN

Network structure. Fig. 4 presents the standard NN structure
for gaze estimation. It consists of three convolutional layers
and two fully connected layers1. More precisely, the input eye

1Note that it is slightly different from [10].

image I ∈ RM×N×C , where (M,N,C) = (48, 72, 3) denote
the dimensions and number of channels of the image, is first
whitened. The convolutional layers are then applied and the
resulting feature maps are flattened to be fed into the fully-
connected layers. The predicted gaze direction gp(I) ∈ R2×1

is regressed at the last layer. The details of the network
parameters can be found in the figure.
Loss function. Denoting the gaze groundtruth of an eye image
I by ggt(I), we used the following L1 loss function:

L =
1

|D|
∑
I∈D
‖gp(I)− ggt(I)‖1, (1)

where D denotes the training dataset and | · | denotes the
cardinality operator.
Network training. For eye images in the dataset, we first
resize them into a fixed resolution s = 48 × 72. Concretely,
we up-sample the images using bilinear interpolation if their
sizes are smaller than s (MPIIGaze dataset). Otherwise, we
randomly crop patches with size s around eyes (EYEDIAP
dataset). The input has either three channels for color images
as shown in Fig. 4, or one channel for gray scale images.

The network is optimized with Adam method, with a
learning rate initially set to 0.001 and then divided by 2 after
each epoch. In our experiment, 10 epochs are applied and
proved to be sufficient. The mini batch size is 128.

B. Bias analysis and baseline linear adaptation method
Because each individual eye has specific characteristics

(including internal non-visible dimensions or structures), in
practice, we often observe a data bias between the network
regression gp(I) and the labeled groundtruth ggt(I) of the
eye images I ∈ DTest belonging to a single person. This
is illustrated in Fig. 5, which provides a scatter plot of the
(gp(I),ggt(I)) angle pairs in typical cases, which can be
compared with the identity mapping (black lines).

As can be observed, there is usually a linear relationship
between ggt(I) and gp(I), which is illustrated by the red lines
in the plots. Thus, when a set Dc of sample calibration points
of a user (usually 9 to 25 points) is available, it is possible to
learn this relation and obtain an adapted gaze model gad by
fitting a linear model

gad(I) = Agp(I) +B (2)

where A ∈ R2×2 and B ∈ R1×2 are the linear parameters of
the model which can be estimated through least mean square
error (LMSE) optimization using the calibration data.

IV. PROPOSED DIFFERENTIAL APPROACH

A. Approach overview.
The linear adaptation above allows to correct biases from the

gaze output, but this does not really account for the specificity
of a user’s eye, nor was the network trained to take into
account the presence of biases. The method we propose aims
at solving these issues. It is illustrated in Fig. 3. Its main part
is a differential network designed and trained to predict the
differences in gaze direction between two images of the same
eye. At test time, the gaze differences between the input eye
image and a calibration set of reference images are computed
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(a) (b)
Fig. 5: Scatter plot of the network regression (X-axis) and labelled groundtruth (Y-axis) of the yaw (left plot) and pitch (right plot) angles
for an individual eye taken in the (a) EYEDIAP dataset; and (b) MPIIGaze dataset.
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Fig. 6: The designed differential network.

first. Then the gaze of the eye image is estimated by adding
these gaze differences to the reference gazes. The calibration
set could further be used to adapt the network by fine-tuning so
that is makes better differential predictions between reference
sample pairs. The details of the different components are
introduced in the following paragraphs.

B. Differential network architecture.

The network we use is illustrated in Fig. 6. Each branch
in the parallel structure is composed of three convolutional
neural layers, all of them followed by batch normalization
and ReLU units. Max pooling is applied after the first and
second layers for reducing the image dimensions. After the
third layer, the feature maps of the two input images are
flatted and concatenated into a new tensor. Then two fully-
connected layers are applied on the tensor to predict the
gaze difference between the two input images. Thus, where
traditional siamese approaches would predict the gaze for each
image, and compute the differences from these predictions, our
approach uses neural network layers to predict this difference
from an intermediate eye feature representation.

The architecture we propose has several advantages. First,
it is a good trade-off between prediction capacity and running-
time. Secondly, while we could directly provide the two
images as input to the network, this could increase the com-
putational cost and not necessarily provide better prediction.
We demonstrate this in the experimental section.

C. Loss function, network training and adaptation
The differential network is trained using a set of random

image pairs (I, J) coming from the same eye in the training
data. Denoting by dp(I, J) the gaze difference predicted by
the network, we can define the loss function as:

Ldiff =
∑

I, J∈Dk

‖dp(I, J)−
(
ggt(I)− ggt(J)

)
‖1, (3)

where Dk is the subset of D that only contains images of the
same eye of person k.

Network training. Optimization is done with the Adam
method and an initial learning rate of 0.001 which is divided
by 2 after each epoch. In experiments, 20 epochs are applied.
The mini batch size is 128. To reduce the number of possible
image pairs, we have constructed the dataset of pairs by using
each image I ∈ Dk as first image and randomly selecting the
second image J in Dk.

Network adaptation. At test time, since we are given a small
calibration set Dc of reference images, we can fine-tune our
network by selecting pair of samples (I, J) ∈ Dc and apply
the same loss function (3). In experiments, all possible pairs
from Dc were used, and the same fine-tuning of 10 epochs
with a fixed learning rate of 2e-4 was applied in all cases.

D. Gaze inference at test time.
Given the calibration dataset Dc of the user’s eye, we

can first adapt the differential network (this is optional) as
seen above. Then, we use the network to predict the gaze
difference dp (I , F ) between the test image I and the reference
images F , and combine these gaze difference with the gaze
groundtruth ggt (F ) to infer the gaze direction of the test
image as ggt (F )+ dp (I , F ). More formally:

gsm(I) =

∑
F∈Dc

w (dp(I, F )) · (ggt(F ) + dp(I, F ))∑
F∈Dc

w (dp(I, F ))
, (4)

where w(·) is weighting the importance of each prediction.
Intuitively, if the reference eye image is more similar to the

test eye image, we should be more confident about the gaze
difference. Thus the weight has been defined as a function
of dp(I, F ), which is a good indication of such similarity.
In practice, we simply use a zero-mean Gaussian N (0, σ) as
weight function. If σ is too small, reference samples with large
gaze difference will have no contribution. While if σ is too
large, reference samples will almost all have equal weights. In
experiments, σ = 0.1 radian (5.7 degrees) has been used on
all datasets, although better values could be searched for per
dataset using validation datasets within the training data.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we thoroughly evaluate our algorithms and
compare them with the-state-of-the-art methods on public
datasets. In a second step, we discuss the impact of several
important factors: choice and number of reference images,
weighting scheme, architecture design, and model complexity.
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A. Datasets
Since our method is designed for dealing with eye image

alone, without extra information from the face, we considered
the three following public eye-gaze datasets for validation.
EYEDIAP. It contains 94 videos from 16 subjects [23].
Videos belong to three categories: continuous screen (CS)
target, discrete screen (DS) target or floating target (FT). The
CS videos were used in our experiments, which comprises
static pose (SP) recordings (subjects approximately maintain
the same pose while looking at targets), and dynamic poses
(MP, subjects perform additional important head movements
while looking). From this data, we cropped around 80K im-
ages of the left and right eyes and frontalized them according
to [13]. The labeled world gaze groundtruth was converted
accordingly in the Headpose Coordinate System (HCS).
MPIIGaze. This dataset [10] contains 1500 left and right eye
images of 15 subjects, which were recorded under various
conditions in head pose or illuminations and contains people
with glasses. The provided images are gray scale and approx-
imately of size 36 × 60 pixels, and are already frontalized
relying on the head pose yaw and pitch. The provide gaze
is labeled in Headpose Coordinate System (HCS). Note that
although in [10] the head pose was used as input for gaze
prediction, this did not improve our results in experiments so
it was not used for the experiments reported below.
UT-Multiview. This dataset [19] comprises 23040 (1280 real
and 21760 synthesized) left and right eye samples for each of
the 50 subjects (15 female and 35 male). It was collected under
laboratory condition, with various head poses. Eye images are
gray scale and of size 36×60 pixels. They are not frontalized
but accurate headpose and gaze in HCS are provided. Thus, in
experiments, we concatenated the head pose in the network as
described in [10]. More precisely, we concatenated the head
pose h(I) ∈ R1×2 of the input I image with the last fully-
connected layers for the baseline CNN (Fig. 4), and did the
same for the differential network, i.e. we concatenated the two
head pose h(I) and h(J) of the input pair (I, J) with the last
fully-connected layer in Fig. 6.

B. Experimental protocol

Cross-Validation. For the EYEDIAP and MPIIGaze datasets,
we applied a leave-one-subject-out protocol, while due to its
size, we used a 3-fold cross-validation protocol for the UT-
Multiview dataset. Note that for this dataset, we train with
real and synthesis data, but only test on real data. Note that
the protocols for MPIIGaze and UT-Multiview are the ones
from the original paper and followed by other researchers.
Performance measure. Although nothing in the method pre-
vents from using a single model for the left and right eyes
through eye image mirroring, in experiments we trained and
tested models for the left and right eyes separately. We noticed
that there were some asymmetrical factors on the EYEDIAP
dataset (see baseline results in Tab. I for instance) probably
caused by differences in the preprocessing (e.g. the face mesh
may fit closer or further away on different parts of the face
depending on the viewpoint, which can affect the eye image
normalization). Following the above protocols, the error was

TABLE I: Average angular error (degree) on three public datasets.
‘L, R, Avg’ denote the left, right eyes and the average of them. Note
that the Baseline method does not require calibration data.

EYEDIAP MPIIGaze UT-multiview

L R Avg L R Avg L R Avg

GazeNET [16] - - - - - 5.5 - - 4.4

Baseline [10] 5.37 6.63 6.00 5.97 6.25 6.11 6.08 5.83 5.95

SVR-Ad [6] 4.14 4.06 4.10 5.71 5.78 5.75 5.61 6.02 5.82

Lin-Ad 3.88 3.81 3.84 5.68 5.66 5.67 4.57 4.56 4.56

Diff-NN 3.23 3.23 3.23 4.69 4.62 4.64 4.17 4.08 4.13

Diff-NN-Ad 2.99 3.01 3.00 4.61 4.56 4.59 3.82 3.73 3.77

Diff-NNwo 3.37 3.35 3.36 4.73 4.61 4.67 4.41 4.24 4.33

Diff-VGG 3.19 3.06 3.12 3.88 3.73 3.80 3.88 3.68 3.78

defined as the average of the average gaze angular error
computed for each fold, according to [10].

Selection of reference samples. For the linear adaptation
and the differential NN methods, unless stated otherwise, we
randomly selected 9 points as reference samples in the test set
DTest for 200 times, and reported the average error computed
for each random selection as defined above.

Tested models. Several methods were tested for comparison.
• Baseline: it corresponds to the generic model introduced

in Section 2, and is our implementation of the neural
network in [10], which achieves similar or better results
than [10]. Note that [16] updates the result from [10]
using a much deeper VGG-16 network. For real-time
purpose, we use shallow networks, so we use our generic
model as baseline for a fair comparison.

• SVR-Ad is our implementation of the SVR adaptation
method of [6] built upon the Baseline model above. More
precisely, following [6], the featuremap F2 (last layer
before the output, see Fig. 4) is extracted as eye image
features. A SVR model is trained using the reference
image features and their gaze groundtruth.

• Lin-Ad corresponds to the Baseline model followed by
linear adaptation (Section 2.2).

• Diff-NN: our differential network, with the default pa-
rameters introduced in the paper.

• Diff-NN-Ad: differential network adapted via parameter
finetuning using reference samples (Section IV-C).

• Diff-NNwo differential network Diff-NN without the
Gaussian kernel averaging (corresponds to [24]).

• Diff-VGG differential network with a pre-trained VGG-
16 backbone (same learning parameters as Diff-NN).

C. Experimental results
The experimental results are presented in Table I.

Baseline model. First, let us note that under the same protocol,
our Baseline model works slightly better than [10], which
reported an error of 6.3◦ on MPIIGaze, and of 5.9◦ on UT-
Multiview. This is probably due to our network architecture
being slightly more complex, while still avoiding overfitting.

Linear and SVR Adaptation. Results demonstrate that,
as expected, calibration helps and that the linear adaption
method can greatly improve the baseline results, with an error
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decrease of (for the left and right eyes): 27.7% and 43.3% on
EYEDIAP, 24.7% and 21.8% on UT-Multiview, and 4.9% and
9.4% on MPIIGaze. The difference in gain is most probably
due to the recording protocols. While the EYEDIAP and UT-
Multiview datasets were mainly recorded over the course of
one session, the MPIIGaze dataset was collected in the wild,
over a much longer period of time, and with much more
lighting variability (but less head pose variability). This can
be observed in Fig. 5 showing typical scattering plots of
the EYEDIAP and MPIIGaze datasets. The EYEDIAP plots
follow a more straight and compact linear relationship than
those on the MPIIGaze dataset, reflecting the higher variability
within the last dataset. Seen differently, we can interpret the
results as having a session-based adaptation in the EYEDIAP
and UT-Multiview cases, whereas in MPIIGaze, the adaptation
is more truly subject-based.

Results also show that the linear adaptation Lin-Ad method
is working better than the SVR-Ad adaption approach [6], with
an average gain of 6.3%, 1.4% and 21.5% on the EYEDIAP,
MPIIGaze, and UT-Multiview datasets, respectively. The main
reason might be that in SVR-Ad, the regression weights from
the feature layer F2 are not exploited, in spite of their
importance regarding gaze prediction. In addition, finding an
appropriate kernel in the 256 dimensional space of F2 might
not be so easy, when using only 9 samples.
Differential methods. Our approach Diff-NN performs much
better than the other two adaptation methods which, on average
over the 3 datasets, have an error 17.4% (Lin-Ad) and 30.6%
(SVR-Ad) higher than ours. Interestingly, our method improves
for all datasets and users on average2 compared to SVR-
Ad, and similarly compared to Lin-Ad with the exception of
2 users (out of 50) in UT-Multiview. In particular, we can
note that the gain is particularly important on the MPIIGaze
dataset (22.2% compared to Lin-Ad), demonstrating that our
strategy of directly predicting the gaze differences from pairs
of images -hence allowing to implicitly match and compare
these images- using our differential network is more powerful,
and more robust against eye appearance variations across time,
places, or illumination, than adaptation methods relying on
gaze predictions only (Lin-Ad), or on compact eye image rep-
resentations (SVR-Ad). To considering an even more realistic
case, we randomly sampled the 9 reference samples from a
single day and tested on the other days. The performance only
dropped from 4.64 to 4.83◦ error, showing the robustness of
our method on this more ’subject-based’ adaptation dataset.
On other more ’session-based’ datasets, the linear adaptation
method is already doing well, so that the gain is lower (around
10% on average). Note that removing the weighting scheme of
Eq. 4 (Diff-NNwo method) when combining per-reference gaze
predictions [24] results in lower performance (around 0.2◦),
as further discussed in Sec. V.F.

Further gains can be obtained with our differential method.
First, looking at the Diff-NN-Ad results, we see that even
with few reference samples (9) a systematic finetuning of the
differential network can further improve the results: results of
Diff-NN are 7.5%, 1% and 9.5% higher than those of Diff-NN-

2As for some bad calibration sample selections, results can be worse.

Ad on EYEDIAP, MPIIGaze and UT-Multiview, respectively.
Secondly and importantly, by simply using the deeper VGG-
16 backbone to extract feature maps of the eye (instead of the
C1-C3 CNN blocks, see Fig. 6), we can reduce the errors by
4, 9 and 18% on the EYEDIAP, UT-Multiview and MPIIGaze
datasets, respectively. This is obtained at the cost of a higher
memory footprint and computational complexity. It makes the
model competitive with respect to the state of the art: for
instance the adaptation method in [44] reported an error of 4.2◦

on the MPIIGaze dataset, compared to 3.8◦ in our case. The
Diff-VGG results are similar to those of Diff-NN-Ad (except on
MPIIGaze where it works much better). It is left as future work
to see whether finetuning would further improve the results.

D. Cross-dataset experiments.
Such experiments are important and can be conducted to

show a method generalization, as long as the preprocessing
and task formulation are equivalent (e.g. addressing gaze
estimation from face images, and using face datasets with
the same gaze definition). Unfortunately, when working with
existing cropped eye image datasets, there are factors which
can limit the validity of cross-dataset experiments, as they
clearly introduce systematic domain biases [45]. Such factors
include using different gaze coordinate systems and data
preprocessing methods, like geometric normalization relying
on different head pose estimators or cropping paradigms.

Nevertheless, as our method relies on image pairs, one
could hope that it would be robust to these domain shifts.
To evaluate this, we trained methods using UT-Multiview and
tested on MPIIGaze, which share a similar normalization goal
(compared to EYEDIAP) but not the same pre-processing.
Previous methods were reporting errors of 13.9◦ [10] and
8.9◦ [46] without any reference samples. This paper baseline
method achieves an angular error of 17.8◦. Errors of the Lin-
Ad, SVR-Ad and Diff-NN methods are respectively 9.2, 9.7
and 9.8 using 9 reference samples, 8.4, 8.1 and 8.4 with 50
samples. While all adaptation methods improve the baseline
results significantly, their performance remain far from the
within dataset results (between 3.8 and 5.6). We believe this
to be due in great part to preprocessing discrepancies, and
significant head and eye poses distributions difference between
the two datasets. Unfortunately, our approach does not provide
additional robustness against such geometric domain shifts.
Handling them require methods of its own which can leverage
more (labeled or no) target domain data.

E. Impact of reference samples
In this section, we discuss the impact of the selection and

number of reference samples on performance.
Calibration data variability. The performance of the adap-
tation methods are computed as the average over 200 random
selections of 9 calibration samples. Depending on the selection
(samples might be noisy, or not distributed well on the gaze
grid), results may differ. The left plot of Fig. 7(a) shows the
histogram of the angular error of Lin-Ad and Diff-NN for the
different trials of one subject and the right plot shows the
cumulative histogram (percentage of trials whose performance
is below a threshold). Fig. 7(b) does the same using the
performance results of all users.
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(a) (b)
Fig. 7: Histogram and cumulative histogram of angular errors (in degree) due to the random selection of the calibration images, for (a) a
given user and (b) all users of the MPIIGaze dataset, and for different methods: Diff-NN (green curve), Lin-Ad (blue curve), Baseline (red;
in (b) the average result per user is used for the plot).

Fig. 8: The average prediction error of the yaw in function of the
absolute difference in yaw between the reference and test samples
(green curve), and similarly for the pitch and gaze.

Fig. 7(a) shows an example where there is a relatively large
bias for the given subject. In that case, whatever the selection
of the calibration samples, the results of both Lin-Ad and
Diff-NN are better than the baseline. However, importantly,
our Diff-NN approach is much less sensitive to the choice
of calibration points than Lin-Ad, as can be seen from the
higher and concentrated peaks in the error distributions. In
other examples, the baseline is better (the red bar is within or
more towards the peaks of the variability histograms), but the
behaviors and relative placements of the Lin-Ad and Diff-NN
curves remain the same, as shown by looking at the statistics
over all users in Fig. 7(b).
Reference sample selection. We can analyze the impact of the
reference samples by measuring the error when using a single
sample. To do so, for each user, we randomly select 200 times
one sample as reference, and then compute the errors for all
test samples. The resulting statistics for all users are shown
in Fig. 8, in which we plot the average angular error of the
yaw prediction (respectively pitch and gaze) in function of
the difference in yaw (respectively pitch and gaze) between
the test and reference samples.

As expected, we observe that predictions are more accurate
when test samples are closer to the reference sample (red
curve) which justifies the use of the weighted sum in Eq. (4).
Interestingly, we also notice that the error profile of the yaw
is relatively flat, while that of the yaw is increasing. An expla-
nation is that when comparing two eye images, aligning them
laterally relies on relatively stable structures (eye corners), and
the iris horizontal location (related to yaw) can be estimated
reliably from strong vertical edges. However, visually, pitch
estimation is much harder: the vertical alignment relies on
eyelid contours, which are moving structures (correlated with
the pitch, but only partially), and as the iris top and bottom
parts are often hidden, the iris vertical position needs to be
estimated from the shape of the iris vertical sides.
Discussion about the number of references. Fig. 9 presents
adaptation results on the EYEDIAP dataset using different
number of reference images. When given few reference sam-

Fig. 9: Comparison of average angular error in degree (average of
the left right eyes) for different methods in function of the number
of reference images on EYEDIAP dataset. Note that the Baseline
method does not require calibration data.

ples, the SVR-Ad and Lin-Ad underperform the Baseline, which
is mainly due to the noise illustrated in Fig. 5, which introduce
a high variability (and error) in the fitting process, especially
for Lin-Ad. As the number of reference samples increases, the
error of Lin-Ad decreases significantly because more accurate
linear parameters can be obtained for adaptation. The error of
SVR-Ad decreases more slowly at the beginning, but catches up
that of Lin-Ad when using more samples, due to the inherent
ability of SVR-Ad at leveraging more reference samples.

The Diff-NN outperforms the other methods for small num-
bers even when using only one reference samples. This is not
surprising because Diff-NN does not learn any model or pa-
rameter from the reference samples, but rather relies on richer
information (the image context) to infer the difference rather
than just the predicted gaze. However, with more samples, the
SVR-Ad method works better, as the Support Vector principle
might better handles larger amounts of data compared to our
simpler weighting scheme, and the Diff-NN network prediction
bias (and high variance) remains unchanged with more data.
Our network adaptation strategy Diff-NN-Ad does not have
this limitation, and indeed better leverage the availability of
more reference samples. While for small amount of reference
samples the improvement over Diff-NN is small (7.5%), with
25 samples, results of the Diff-NN and SVR-Ad methods are
23% and 29% higher than that of Diff-NN-Ad, and with 50
samples they are 35% and 27% higher.

F. Reference weighting scheme
We analyse here the weighting scheme combining the

predictions made from each reference image (see Eq. (4)) as
well as the influence of the Gaussian kernel bandwidth σ.
Intuitively, when σ is too small, mainly the closest reference
sample will contribute to the prediction. Conversely, when σ
is too large, reference samples will have similar contributions.

Results are shown in Fig. 10. When σ varies from 5.7 to
22.8 degrees, the error stays low, changing in a narrow range
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Fig. 10: Average angular error (degree) on EYEDIAP dataset with
different Gaussian kernel bandwidth σ (in degree).
TABLE II: Average angular error (degree) on EYEDIAP dataset for
different systems (see text).

Sys-1-early Sys-2-proposed Sys-3-late Sys-4-siamese Sys-5

3.40 3.23 3.47 3.40 3.76

of 0.1. It indicates that the Diff-NN is very robust w.r.t the
weights, as also observed on MPIIGaze and UT-Multiview.

G. System design
Designing the network architecture can be motivated by

several factors and principles. The main idea behind the
differential network is that it can implicitly register and align
images of the same eyes and from there better compute
the (differential) elements (iris location, eye corners, eyelid
closing) which really matters for gaze estimation than when
abstracting these from a single image. We thus investigated
different levels at which to fuse the information coming from
the two eye images. Early fusion is achieved by using concate-
nated eye images as input to the network (See Fig. 4). It allows
a direct comparison of the raw signals but suffers from increase
complexities in (i) performing an implicit eye alignment if eyes
are too far apart in the input images; (ii) abstracting important
eye structures for gaze difference prediction, because the
information coming from the two eyes is mixed in the layers.
Also, the complexity increases, as all (input, reference) image
pairs need to be fully processed. At the other end, late fusion
can be conducted by concatenating the F2 feature maps of
the two images. The F2 eye representation might contain high
level eye representations tuned to the prediction of differential
gaze, but there might be a loss of localization information.

Our proposed network lies in between. It relies on inter-
mediate representations of each eye allowing in principle the
implicit registration of the two eyes from the processed images
while extracting high level information relevant for differential
gaze regression. To verify the intuition behind the proposed
scheme, we compared the following systems:

1) Sys-1 - early fusion: concatenate the two images;
2) Sys-2 - proposed : concatenate the F1 feature maps;
3) Sys-3 - late fusion: concatenate the F2 feature map;
4) Sys-4 - siamese: two parallel Baseline networks with

shared weights trained to only predict gaze differences.
5) Sys-5 - multi-task with adaptation: it corresponds to

Sys-4 but trained to predict both the absolute gaze and
the difference (as in [42] for head pose). The trained
network is further adapted using the Lin-Ad scheme.

Results are shown in Table II, and show that our architecture
achieves the best results. Note that Sys-5 (approach of [42]
followed by Lin-Ad) is worse than all other systems, demon-
strating the advantage of predicting differential gaze over

TABLE III: Run-times (in ms) between the Baseline and our Diff-NN
method, using mini-batch (Diff-NN ∗) computation or not.

CPU GPU

Baseline Diff-NN Diff-NN ∗ Baseline Diff-NN Diff-NN ∗

Run-time 2.5 7.6 3.5 1.4 4.0 1.5

absolute gaze. The results of the Sys-1,3,4 are close but still
outperformed by our system Sys-2, showing that intermediate
fusion is better than early or late fusion. We believe this is due
to the ability of the CNN network layers to do some filtering
and alignment of the two images, while the fully-connected
layers combine this information to infer gaze differences.

H. Algorithm complexity
The Diff-NN adaptation method does not have the same

complexity as the others. Compared to the CNN Baseline,
the linear adaptation only requires the computation of Eq.(2),
which has negligible computational cost. Our Diff-NN ap-
proach, however, requires to predict the gaze differences
between the test sample and Nc reference images. Fortunately,
its complexity is not Nc times that of the Baseline thanks to
our differential architecture (see Fig. 6). Indeed, we can pre-
compute and save the feature maps at the last convolutional
neural layer of all the reference images. Thus, the complexity
reduces to the computation of the feature maps of the input
image and of Nc gaze differences from the feature maps,
which can be done in parallel within a mini-batch.

Table III compares the running time (in ms) for the Baseline
and the different Diff-NN options (and Nc = 9). They have
been obtained by computing the average run-time of process-
ing 5000 images. The CPU is an Intel(R) Core(TM) i7-5930K
with 6 kernels and 3.50GHz per kernel. The GPU is an Nvidia
Tesla K40. The program is written in Python and Pytorch.
Note that as the Pytorch library will call multiple kernels for
computation, the CPU-based run-time is also short. From this
Table, we can see that our Diff-NN method and architecture
has a computational complexity close to the Baseline.

VI. CONCLUSION

This paper aims to improve appearance-based gaze estima-
tion using subject specific models built from few calibration
images. Our main contribution is to propose a differential NN
for predicting gaze differences instead of gaze directions to
alleviate the impact of annoyance factors like illumination,
cropping variability, variabilities in eye shapes. Experimental
results on three public and commonly used datasets prove
the efficacy of the proposed methods. More precisely, while
standard linear adaptation method can already boost the results
on single session like situations, the differential NN method
produces even more robust and stable results across different
sessions of the same user, but costs some more run-time
compared to a baseline CNN. Further fine-tuning of the
network using the reference samples provide as well as very
good mean to leverage larger amounts of calibration samples.
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