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ABSTRACT

In i-vector based speaker recognition systems, back-end classifiers
are trained to factor out nuisance information and retain only the
speaker identity. As a result, variabilities arising due to gender, lan-
guage and accent (among many others) are suppressed. Inter-task
fusion, in which such metadata information obtained from automatic
systems is used, has been shown to improve speaker recognition per-
formance. In this paper, we explore a Bayesian approach towards
inter-task fusion. Speaker similarity score for a test recording is ob-
tained by marginalizing the posterior probability of a speaker. Gen-
der and language probabilities for the test audio are combined with
speaker posteriors to obtain a final speaker score. The proposed ap-
proach is demonstrated for speaker verification and speaker identifi-
cation tasks on the NIST SRE 2008 dataset. Relative improvements
of up to 10% and 8% are obtained when fusing gender and language
information, respectively.

Index Terms— Inter-task fusion, Bayesian fusion, speaker
recognition

1. INTRODUCTION

Automatic speaker verification (ASV) and identification (SID) are
among two major applications of speaker recognition technologies.
This paper focuses on both tasks. Unlike ASV, which aims at au-
thenticating the claimed identity of a speaker based on some speech
recording and enrolled speaker model, SID compares the speech
recording against the set of N speaker models. SID systems are typ-
ically deployed by law enforcement or security agencies in detecting
multiple and arbitrary identities used by criminals and terrorists [1].

System submissions in NIST SRE challenges (e.g. UTD-
CRSS system submitted in 2016 [2]) have clearly demonstrated that
speaker recognition can largely profit from system fusion. In most
typical cases, system fusion means intra-task fusion, aiming to train
a set of independent classifiers with different types of speech fea-
tures, or acoustic models, and eventually combining the classifi-
cation scores. The objective of such a fusion is to minimize the
errors made by individual systems by exploiting their complemen-
tary nature. Numerous techniques exist to combine systems at both
model level and score level. In i-vector PLDA (Probabilistic Lin-
ear Discriminant Analysis) systems [3, 4], model level fusion may
be applied while training the back-end classifier, while output level
combination may be achieved by a simple linear combination of the
scores. Logistic regression is a commonly employed technique in
score-level fusion. In Figure 1, the score combination technique is
shown for the case of multiple speaker identification systems. Other
approaches such as asynchronous fusion [5] (i.e. fusion of informa-
tion extracted from different modalities, such as audio and video) can
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Fig. 1. Block diagram showing the fusion procedure for multiple
speaker identification systems, also termed as intra-task fusion.

be included in intra-task fusion as well, since different modalities are
exploited to train systems for the same task – speaker identification.

This paper proposes an innovative approach towards information
fusion - exploiting heterogeneous systems (i,e. systems trained for
different tasks), for inter-task fusion. In strategic intelligence appli-
cations of speaker recognition, it is quite common to have access to
metadata of speakers and audios. Speaker metadata includes name,
age, gender, nationality, languages spoken, etc. Audio metadata may
include channel type (e.g. telephone, social media), language of the
recording, phone number, date of the recording, etc. The metadata
can be used to validate the speaker recognition system’s output. As
a trivial example, if a speaker identification system recognizes an
unknown speaker’s recording as someone who can speak only En-
glish while the test recording was in German, the metadata can be
used to avoid a false alarm. The goal of inter-task fusion is to ex-
ploit such information, either available through external knowledge
or through automatic systems (e.g. language identification, accent
identification, age identification), for the benefit of speaker recogni-
tion. In [6], two methods for inter-task fusion were demonstrated: a
score-level fusion based on logistic regression and a model-level fu-
sion that re-used PLDA backends trained for different tasks. Accent
identification and language identification systems were trained using
the same i-vector PLDA architecture as ASV system. Although the
proposed approach does not outperform i-vector based systems, it
offers a scalable solution with respect to amount of training data and
complementary scores which can be efficiently exploited in system
fusion. The improvements observed on NIST SRE 2008 [7] showed
that inter-task fusion can be beneficial for speaker recognition ap-
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Fig. 2. Block diagram showing the inter-task fusion procedure to-
ward enhanced speaker identification from a speech recording.

plications with access to outputs from different speech processing
systems.

The rest of the paper is organized as follows. Section 2 briefly
describes the i-vector PLDA framework for speaker recognition.
Section 3 provides motivation to the probabilistic approach to inter-
task speaker recognition and describes a generic framework to fuse
metadata with speaker recognition scores. Section 4 presents the
results of experiments conducted on the NIST SRE 2008 dataset.
Finally, the paper is summarized in 5.

2. I-VECTOR PLDA FRAMEWORK

Conventional speaker recognition systems are built around the i-
vector PLDA framework, where speaker models are extracted by
projecting Gaussian mean supervectors on a low-dimensional sub-
space called total variability space (TVS) [3]. The variability model
underlying i-vector extraction is given by:

s = m + Tw, (1)

where s is the supervector adapted with respect to UBM-GMM from
a speech recording. The vector m is the mean of the supervectors,T
is the matrix with its columns spanning the total variability subspace
and w is the low-dimensional i-vector representation. I-vectors
model the average information content in the audio. In the above
model, the i-vector is assumed to have a standard Normal distribu-
tion as prior.

LDA, WCCN [8, 3] and PLDA [9, 10] together form the back-
end of the i-vector system. The back-end is responsible for project-
ing the i-vectors in a speaker discriminative space. Two i-vectors are
compared as belonging to the same class or as belonging to two dif-
ferent classes, thus generating a likelihood ratio (LR) to score a pair
of speech utterances.

Similar to speaker recognition, information such as language
and gender can be obtained in an automatic way from language iden-
tification and gender identification systems (as shown in Figure 2),
respectively.

In this paper, we use a Bayesian approach to use language and
gender information as virtual evidence to improve speaker recogni-
tion performance. The use of the Bayesian approach provides a fast
and simple way, by the nature of the approach, to integrate metadata
information. We test our approach on the cross-lingual condition in
NIST SRE 2008 dataset [7].

3. BAYESIAN FUSION

In inter-task fusion for speaker recognition, we focus on the scenario
where we have access to the output of speech processing systems
that analyse the same audio for different characteristics. We use two
such systems in this paper: language identification (LID) and gender
identification (GID) systems. Using the output of these systems as
metadata of the audio, we propose to improve speaker recognition
(i.e. identification and verification) performance.

In [6], this was achieved by training an LID and an accent iden-
tification (AID) system, and fusing either the i-vectors or the scores
with the i-vector system modelling speakers. The i-vector fusion was
developed by projecting the speaker i-vectors on PLDA trained for
speaker discriminability and language discriminability (i.e. for LID
fusion), or accent discriminability (i.e. for AID fusion) and append-
ing another stage of PLDA classification. The score-level fusion was
represented by a logistic regression on speaker and language (or ac-
cent) scores. In this paper, we generalize the score fusion using a
probabilistic framework based on marginal distribution and Bayes’
theorem for combining probabilities. The proposed technique ad-
dresses the following scenario where we can have an access to GID
and LID systems (e.g. as auxiliary information/metadata provided
along with audio). One trivial way to gain such access is to retrain
the backend of the i-vector system trained for ASV/SID with tar-
get classes as languages for LID and gender for GID. The objective
is to identify or verify a speaker using additional information from
metadata.

Given that we have access to the categories of GID and LID
engines, the problem of integrating the outputs of speaker identifica-
tion, LID and GID identification can be formulated as the computa-
tion of the following probability term:

P (s|L,G,X), (2)

where s is the target speaker, L is the language recognized by LID,
G is the gender recognized by GID and X are the features obtained
from the test observations. The features can be frame-level features
such as traditional Mel Frequency Cepstral Co-efficients (MFCC),
or speaker models such as i-vectors. The term is generic and in-
dependent of any speaker recognition framework. Interpreting the
posterior probability as a belief network, we observe that the model
assumes a speaker’s identity dependent on the audio and metadata
(language and gender in this case).

When using a standalone speaker recognition system, we are
interested in (i) comparing two speaker models for speaker verifica-
tion, or (ii) finding the closest enrolled speaker in speaker identifi-
cation. The posterior probability of a speaker can be easily used in
the latter, while in the former the likelihood ratios can be derived
from the posterior. Thus, for a standalone system we are interested
in computing (directly or indirectly):

P (s|X). (3)

When having access to auxiliary information for the same audio, we
marginalize this probability as follows:

P (s|X) =
∑

m∈M

P (s,m|X), (4)

where M represents the sample space of metadata in the discrete
case.

If we assume that metadata can be provided independent of the
speaker identity, then:

P (s|X) =
∑

m∈M

P (s|X,m)P (m|X). (5)
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Fig. 3. Block diagram showing the proposed fusion technique to
fuse language information in speaker recognition system.

The conditional probability P (s|X,m) can be interpreted as a
speaker recognition system developed for the domain represented
by the metadata m. A domain refers to an instance in the metadata
sample space. For example, if m is one of the languages supported
by the language identification engine, then the conditional term rep-
resents a speaker recognition system developed for the language m,
that is, a language-dependent speaker recognition system.

In this paper, we consider two possibilities for M: one where
M is the set of all languages and another where M is the gender
set. Figure 3 illustrates the fusion of scores from LID with language-
dependent speaker recognition system. There are multiple ways
to train a system to model the conditional probability P (s|X,m).
One strategy is to use PLDA adaptation from a domain-independent
model to a domain-dependent model. When sufficient data is avail-
able, the domain-dependent PLDA can be directly trained without
any adaptation. We employ this strategy for all our systems in this
paper.

3.1. Metadata from groundtruth

A trivial example of an implementation of Eq. 5 is the development
of gender-dependent speaker recognition systems. According to the
model above, P (m = male|X) is 1.0 for male speakers. Similarly,
P (m = female|X) is 1.0 for female speakers. In general, this is
the case when metadata is available as a part of data collection. For
instance, we may have access to information that the data belongs
to one particular language. Thus, P (m|X) is 1 for the value of m
matching the domain (language in this example) and 0 for the rest
of the domains. The model can also been seen as a generalization of
score fusion where the values of P (m|X) are estimated for optimal
performance.

3.2. Virtual evidence as metadata

To integrate the scores obtained from LID and GID with an objective
to improve speaker recognition, we employ the concept of virtual ev-
idence from Bayesian networks (Chapter 3 in [11]). Virtual evidence

helps modelling the uncertainty in the observation. In cases when
we cannot guarantee a speech processing system’s output to be com-
pletely accurate, we can incorporate the uncertainty in the output in
Eq. 5. If the output of a language identification system (or a gender
identification system) is m̃, virtual evidence is the probability that
the true value is m, that is P (M|m̃). Therefore, Eq. 5 becomes:

P (s|X) =
∑

m∈M

P (s|X,m)P (m|m̃,X). (6)

The term P (m|m̃,X) is the probability that the true value is m
given that the engine corresponding to the metadata has predicted
it to be m̃.

3.3. Speaker posteriors

Until now we have discussed two different ways to estimate and use
P (m|X). The remaining term P (s|X,m) can be obtained from an
i-vector PLDA based speaker recognition system. PLDA systems
are usually implemented to produce log likelihood ratios and not
posterior probabilities. We can obtain posterior probabilities by ap-
plying softmax over likelihoods from enrolled speakers or a cohort
set and assuming uniform speaker priors [12]. Given a cohort set C,
the softmax for ASV in the i-vector PLDA framework is given by:

P (s|X,m) =
exp (P (X,ws|Λm))∑

c∈C∪{s} exp (P (X,wc|Λm))
, (7)

where ws is the ivector of the enrolled speaker s, Λm are the hy-
perparameters of the i-vector PLDA system, and P (X,ws|Λm) is
the probability that the speaker in the test recording and the enrolled
speaker s are the same. The same scoring technique can be used in
SID systems by replacing the {s} by the set of enrolled speakers.

For the purposes of system evaluation, we circumvent the soft-
max computation and use logarithmic addition, which is a function
to obtain log(a + b) given log(a) and log(b).

4. EXPERIMENTS

Both ASV and SID are conducted on condition 6 of the NIST SRE
2008 data [13]. This condition is best suited to evaluate the effect
of cross-lingual trials. The same condition can also be used to see
the benefits of incorporating gender information as both male and
female trials are available. The evaluation set has 1’788 unique
enrollments, 2’569 test files and 35’896 trials across both genders.
The Equal Error Rate (EER) of the systems are compared for ASV
task. Expected Rank (ER) proposed in [6] is used to report the per-
formance for SID task. ER indicates the average rank of the true
speaker. In the results presented here, the minimum possible value
of ER is set to 1.0. ASV results are reported on the trials available
from the core condition. SID experiments are performed assuming
all enrolled speakers are accessible.

4.1. I-vector PLDA configuration

The configuration of the speaker recognition system follows our
setup in [14]. Feature vectors consist of 19 dimensional MFCCs ex-
tracted every 10 ms over a 25 ms sliding window and post-processed
using cepstral mean and variance normalization followed by feature
warping over a 3 s long sliding window [15]. A 2’048 component
UBM-GMM and 400 dimension i-vector extractor were trained for
each system presented using data from Fisher English Parts I and



Table 1. Results on the fusion of speaker and gender informa-
tion. The results are reported in terms of EER for ASV and ER for
SID (Equal Error Rate in % and Expected Rank respectively). (GI-
PLDA: Gender-independent PLDA, GD-PLDA: Gender-dependent
PLDA.)

System Male Female

GI-PLDA 2.8, 1.0 5.6, 2.6
GD-PLDA 3.0, 1.1 5.4, 2.5
Metadata fusion 2.8, 1.0 5.0, 1.0
Fusion with virtual evidence 2.8, 1.0 5.1, 2.3

II, Switchboard Cellular, Switchboard Phase I, II and III, NIST SRE
2004, 2005 and 2006.

For the fusion experiments with GID, we train both gender-
dependent (GD-PLDA) and gender-independent (GI-PLDA) sys-
tems. Gender-dependent (LI-PLDA) systems are trained for fusion
experiments with LID. All systems are trained using Kaldi [16]. The
i-vector systems are trained using the implementation in [17].

4.2. Fusing gender information

In this section, we discuss the results obtained after fusing gender
information using techniques presented in Section 3. The results,
presented in Table 1, are split by gender. However, the evaluation
does not have any cross-gender trials. We noticed that errors intro-
duced by cross-gender trials are insignificant.

In Table 1, the performance of the gender-dependent and gender-
independent ASV/SID baselines are presented first. The results
for “Metadata fusion”, where gender information is assumed to be
known, indicate reduced overall error rate over the baseline for in-
dividual systems. However, there are no changes to EER or ER for
male speakers suggesting that the errors in the ASV/SID baseline are
not due to modelling the gender information. The improvements on
the female subset is significant. An relative improvement of 10% in
EER for ASV task is observed when compared with GI-PLDA. This
shows the importance of conditioning the back-end classifier to the
domain and that the gender independent system may be imbalanced
towards the male subsystem.

The performance achieved using virtual evidence is also promis-
ing. There is a graceful degradation of 0.1% in EER with respect to
metadata fusion. However, the ASV results on the female subset are
still significantly better than the female GI-PLDA baseline.

In terms of ER for SID task, metadata fusion outperforms both
GI-PLDA and GD-PLDA baselines reducing from 2.6 to 1.0, which
is the optimal rank that can be obtained. For the system using virtual
evidence ER reduces from 2.6 to only 2.3 giving a relative improve-
ment of 11%.

4.3. Fusing language information

In this section, we fuse the language information obtained from LID
or that available from groundtruth to improve speaker recognition.
The results are presented in Table 2 for male and female speakers.
Comparing the results of gender-dependent systems in LI-PLDA and
gender-specific performance of GI-PLDA or GD-PLDA, it can be
seen that domain-independent training does not always achieve opti-
mal performance. LI-PLDA is trained with multilingual data, that is
some speakers may have samples from two (or more) languages. The
LID problem is simplified by having only two classes: English and

Table 2. Results on the fusion speaker and language information for
male speakers. The results are reported in terms of EER for ASV and
ER for SID (Equal Error Rate in % and Expected Rank respectively).
(LI-PLDA: Language Independent PLDA).

System Male Female

LI-PLDA 2.4, 1.0 4.8, 3.2
Metadata fusion 2.2, 1.0 4.6, 3.0
Fusion with virtual evidence 2.2, 1.0 4.6 , 3.0

non-English. A dot-product based similarity measure is employed to
decide if a speech recording is English or not. This reduction to a
two-class problem was necessary to simplify the training of domain-
dependent back-ends as non-English languages in the dataset do not
have sufficient number of examples to estimate the hyperparameters
independently. To handle cross-language trials, we use the LI-PLDA
system as it has seen both classes.

For the male system, the ER does not change as the SID base-
line performance has already saturated. The EER improves for both
fusion approaches by 0.2% absolute and 8% relative. Similar im-
provements in EER can be observed for female speakers where the
ER also improves by 0.2 absolute. An analysis of the scores obtained
from all the systems shows that the ER improves as result of the tar-
get speaker’s rank improving in 4% of the test cases. Importantly,
fusion with virtual evidence is effective and a reliable substitute for
metadata fusion.

5. SUMMARY

A probabilistic approach to fuse metadata information available ei-
ther from groundtruth or automatic systems for processing language
and gender information was presented. A generic framework to fuse
the scores from the gender and language identification systems with
speaker posteriors was developed. The framework is capable of ei-
ther using metadata or virtual evidence when there is uncertainty
in the observation about metadata. Results presented on NIST SRE
2008 demonstrate that the ASV/SID systems are effective in utilising
such side-information when available.

The proposed inter-task fusion has been successfully tested on
real operational data (i.e. a case work) during a field-test under
SiiP (Speaker identification integrated project1). As criminal ac-
tivities have increasingly become a cross-border, law enforcement
agencies need to deal with cross-lingual data. The analysed case-
work has considered this type of data. More specifically, the basic
speaker identification engine was first adapted toward target domain
(i.e. YouTube recordings). Around 1000+ speakers (from VoxCeleb)
were enrolled for the subsequent evaluations. As evaluation data, we
had tens of speakers with cross-lingual (English and Arabic) speech
recordings. The developed framework of speaker and language iden-
tification fusion with virtual evidence was applied. The results reveal
that the expected rank has notably improved for most of the target
speakers.
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