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ABSTRACT
State of the art solutions to query by example spoken term

detection (QbE-STD) rely on bottleneck feature representa-
tion of the query and audio document. Here, we present a
study on QbE-STD performance using several monolingual
as well as multilingual bottleneck features extracted from feed
forward networks. In contrast to previous works, we use mul-
titask learning to train the multilingual networks which per-
form significantly better than the concatenated monolingual
features. Additionally, we propose to employ residual net-
works (ResNet) to estimate the bottleneck features and show
significant improvements over the corresponding feed for-
ward network based features. The neural networks are trained
on GlobalPhone corpus and QbE-STD experiments are per-
formed on a very challenging QUESST 2014 database

Index Terms— Multilingual feature, Bottleneck feature,
Residual network, Multitask learning, Query by example spo-
ken term detection

1. INTRODUCTION

Query-by-example spoken term detection (QbE-STD) is the
task of detecting audio documents from an archive, which
contain a spoken query provided by a user. In contrast to tex-
tual queries in keyword spotting, QbE-STD requires spoken
queries enabling a language independent search without the
need of a full speech recognition system. The search is per-
formed in the acoustic feature domain without any language
specific resources, making it a zero-resource task.

The QbE-STD systems primarily involve the following
two steps: (i) extract acoustic feature vectors from both the
query and the audio document and (ii) employ those features
to compute the likelihood of the query occurring somewhere
in the audio document as a sub-sequence. Different types of
acoustic features have been used for this task: spectral fea-
tures [1,2], posterior features (posterior probability vector for
phone or phone-like units) [3, 4, 5] as well as bottleneck fea-
tures [6, 7]. The matching likelihood is generally obtained by
computing a frame-level similarity matrix between the query
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and each audio document using the corresponding feature
vectors and employing a dynamic time warping (DTW) [3,6]
or convolutional neural network (CNN) based matching tech-
nique [8]. Several variants of DTW have been used: Segmen-
tal DTW [1, 9], Slope-constrained DTW [10], Sub-sequence
DTW [11], Subspace-regularized DTW [12,13] etc. Subspace
detection of posterior features using sparse recovery has also
been used for frame level query detection [4, 12, 14]. State of
the art performance has been achieved using bottleneck fea-
tures with DTW [6].

Bottleneck features [15, 16, 17] are low-dimensional rep-
resentation of data generally obtained from a hidden bottle-
neck layer of a feed forward network (FFN). This bottleneck
layer has a smaller number of hidden units compared to the
size of other layers. The smaller sized layer constrains in-
formation flow through the network which enables it to fo-
cus on the information that is necessary to optimize the fi-
nal objective. Bottleneck features have been commonly esti-
mated from auto-encoders [15] as well as FFNs for classifica-
tion [16]. Language independent bottleneck features can be
obtained using multilingual objective function [17].

In this work, we present a performance analysis of differ-
ent types of bottleneck features for QbE-STD. For this pur-
pose, we train FFNs for phone classification using five lan-
guages to estimate five distinct monolingual bottleneck fea-
tures. We also train multilingual FFNs using multitask learn-
ing principle [18] in order to obtain language independent
features. We used a combination of three and five languages
to analyze the effect of increasing the language variation for
training.

Previous studies have shown the effectiveness of convolu-
tional neural network (CNN) for acoustic modeling in speech
recognition [19, 20]. Residual networks (ResNet) is a spe-
cial kind of CNN which is effective for learning deeper ar-
chitectures and has been shown to be very successful for im-
age classification [21] as well as speech recognition [22, 23].
This inspired us to use ResNets instead of FFNs to estimate
monolingual and multilingual bottleneck features for QbE-
STD. To the best of our knowledge, this is the first attempt
to use ResNets for bottleneck features estimation.

In the rest of the paper, we present the multitask learning
approach used to train the multilingual networks in Section 2.



Then, we explain the monolingual and multilingual architec-
tures using FFNs and ResNets in Sections 3 and 4 respec-
tively. Later, we describe the experimental setup in Section 5,
and we evaluate and analyze the performance of our mod-
els using QUESST 2014 database in Section 6. Finally, we
present our conclusions in Section 7.

2. MULTITASK LEARNING

Multitask learning [17, 18] have been used to exploit similar-
ities across tasks resulting in an improved learning efficiency
when compared to training each task separately. Generally,
the network architecture consists of a shared part and sev-
eral task-dependent parts. In order to obtain multilingual bot-
tleneck features, we model phone classification for each lan-
guage as different tasks, thus we have a language independent
part and a language dependent part. The language indepen-
dent part is composed of the first layers of the network which
are shared by all languages forcing the network to learn com-
mon characteristics. The language dependent part is modeled
by the output layers (marked in orange in Figures 1 and 2),
and enables the network to learn particular characteristics of
each language. In the following sections we present different
architectures that we use to obtain the multilingual bottleneck
features as well as monolingual ones for comparison.

3. FEED FORWARD NETWORKS

Feed forward networks have been traditionally used to obtain
bottleneck features for speech related tasks [6, 16, 17]. Here,
we describe the different architectures employed in this study
as shown in Figure 1:

(a) Monolingual: our monolingual FFN architecture, con-
sists of 3 fully connected layers of 1024 neurons each,
followed by a linear bottleneck layer of 32 neurons, and
a fully connected layer of 1024 neurons. The final layer
feeds to the output layer of size ci corresponding to
number of classes (e.g. phones) of the i-th language.

(b) Multilingual (3 languages): this architecture consists of
4 fully connected layers having 1024 neurons each, fol-
lowed by a linear bottleneck layer of 32 neurons. Then,
a fully connected layer of 1024 neurons feeds to 3 out-
put layers corresponding to the different training lan-
guages. The 3 output layers are language dependent
while the rest of the layers are shared among the lan-
guages.

(c) Multilingual (5 languages): this architecture is similar
to the previous one except it uses an additional fully
connected layer of 1024 neurons, and two extra output
layers corresponding to the 2 new languages.

The increased number of layers are intended at modeling the
extra training data gained by adding new languages.

Fig. 1. Monolingual and multilingual feed forward network
(FFN) architectures for extracting bottleneck features using
multiple languages. ci is the number of classes for the i-th
language and n is the size of input vector.

Fig. 2. Monolingual and multilingual residual network
(ResNet) architectures for extracting bottleneck features us-
ing multiple languages. ci is the number of classes for the
i-th language. ‘/2’ indicates down-sampling using a convo-
lution layer of stride 2. The dashed shortcut connection is a
linear 1× 1 convolution layer.



4. RESIDUAL NETWORKS

A Residual Network [21] is a CNN with shortcut connections
between its stacked layers. Skipping layers effectively simpli-
fies the training and gives flexibility to the network. Given an
input matrix x and an output matrix y, it models the function
y = f(x)+x in each stacked layer, where f(.) represents two
convolutional layers with a non-linearity in-between. In case
the size of the output of f does not match the size of x, one
linear convolutional layer is applied to x (implemented using
1× 1 convolutions) to match the number of feature maps be-
fore the addition operation. Finally, a non-linearity is applied
to the summed output y.

Similar to FFNs, we implemented 3 different architec-
tures depending on the number of languages used for training.
Those architectures are shown in Figure 2. We use 3×3 filters
for all convolution layers throughout the network. Every time
we reduce the feature map size by half (using a convolution
layer of stride 2), we double the number of filters. Then we
perform a global average pooling to obtain 256 dimensional
vector. These vectors are passed through a fully connected
linear bottleneck layer which feeds to another layer of size
256. This goes to a single or multiple output classes depend-
ing on type of network: monolingual or multilingual. Smaller
number of layers are used here in comparison to [21] due to
the limited amount of training data.

5. EXPERIMENTAL SETUP

In this section, we describe the databases and the pre-
processing steps to perform the experiments. Then, we
present the details of training different neural networks.

5.1. Databases

GlobalPhone Corpus: GlobalPhone [24] is a multilingual
speech database consisting of high quality recordings of
read speech with corresponding transcription and pronun-
ciation dictionaries in 20 different languages. In this work,
we use French (FR), German (GE), Portuguese (PT), Span-
ish (ES) and Russian (RU) to train monolingual as well
as multilingual networks and estimate the corresponding
bottleneck features for QbE-STD experiments. These lan-
guages were chosen to have a complete mismatch between
the training and test languages, in contrast to previous
works [3,6,8,12] when there was partial overlap (e.g. Czech
was present in both training and test languages). We have
an average of ∼20 hours of training and ∼2 hours of devel-
opment data per language.

Query by Example Search on Speech Task (QUESST):
QUESST dataset [25] is part of MediaEval 2014 bench-
marking initiative and is used here to evaluate the
performance of different bottleneck features for QbE-STD.
It consists of ∼23 hours of audio recordings (12492

files) in 6 languages as search corpus: Albanian, Basque,
Czech, non-native English, Romanian and Slovak. The
development and evaluation set includes 560 and 555
queries respectively which were separately recorded than
the search corpus. The development queries are used
to tune the hyperparameters of different systems. There
are three types of occurrences of a query defined as a
match in this dataset. Type 1: exactly matching the lexical
representation of a query, Type 2: slight lexical variations
at the start or end of a query, Type 3: multiword query
occurrence with different order or filler content between
words. (See [25] for more details)

5.2. Neural Networks Training

We use mel frequency cepstral coefficients (MFCC) with cor-
responding ∆ and ∆∆ features as input to the neural net-
works. We chose these features to keep consistency with ear-
lier works [6, 8, 12]. The outputs are mono-phone states (also
known as pdfs in Kaldi [26]) corresponding to each language
as presented in Section 5.1. The training labels for these net-
works are generated using GMM-HMM based speech rec-
ognizers [27, 28]. The number of classes corresponding to
French, German, Portuguese, Spanish and Russian are 124,
133, 145, 130, 151 respectively. Note that, we also trained
these networks using tri-phone based senone classes, how-
ever they perform worse than the mono-phone based training.
All neural network architectures in this work is implemented
using Pytorch [29]1.

Feed Forward Networks: The input to the FFNs is MFCC
features with a context of 6 frames (both left and right) re-
sulting in a 507 dimensional vector. We apply layer nor-
malization [30] before the linear transforms and use rec-
tifier linear unit (ReLU) as non-linearity after each linear
transform except in the bottleneck layer. We train those
networks with batch size of 255 samples and dropout of
0.1. In case of multilingual training, we use equal number
of samples from each language under consideration. Adam
optimization algorithm [31] is used with an initial learning
rate of 10−3 to train all networks by optimizing cross en-
tropy loss. The learning rate is halved every time the devel-
opment set loss increases compared to the previous epoch
until a value of 10−4. All the networks were trained for 50
epochs.

Residual Networks: We construct the input for ResNet
training using MFCC features with a context of 12 frames
(both left and right) resulting in a 39× 25 size matrix with
single channel in contrast to the 3 channel RGB images
generally used in image classification tasks. We also con-
ducted experiments by arranging the input MFCC features
in 3 channels: static, ∆ and ∆∆ values [19], however the
1https://github.com/idiap/multilingual_

bottleneck_features



performance was worse. Batch normalization [32] is ap-
plied after every convolution layer and ReLU is used as
non-linearity. The networks are trained with batch size of
255 samples and dropout of 0.05 for 50 epochs. We use
the same learning rate schedule as the FFNs with initial and
final learning rate of 10−3 and 10−4 respectively.

The number of layers for both FFN and ResNet architectures
for different monolingual and multilingual networks are opti-
mized using the development queries to give best QbE-STD
performance. The input context size for these networks are
optimized as well by varying it from 4 to 14. We observed the
optimal context size corresponding to FFN and ResNet are
6 and 12 respectively. We also performed experiments using
batch normalization instead of layer normalization for FNN
and the other way for ResNet. We noticed that batch nor-
malization yields better performance with convolution layers
while layer normalization is better with fully connected lay-
ers. The performance gain of the ResNet models over FFN
models (as we will see in Section 6) indicates that ResNets
are better equipped to capture information from longer tem-
poral context than the FFNs.

5.3. DTW for Template Matching

The trained neural networks are used to estimate bottleneck
features for DTW. As a pre-processing step, we implement
a speech activity detector (SAD) by utilizing silence and
noise class posterior probabilities obtained from three differ-
ent phone recognizers (Czech, Hungarian and Russian) [33]
trained on SpeechDAT(E) database [34]. Those posterior
probabilities are averaged and compared with rest of the
phone class probabilities to find and remove the noisy frames.
Audio files with less than 10 frames after SAD are not uti-
lized for detection experiments, but those are considered dur-
ing evaluation.

The DTW system presented in [3] is used here to com-
pute the matching score for a query and audio document pair.
It utilizes cosine similarity to obtain the frame-level distance
matrix from a query and an audio document. This DTW al-
gorithm is similar to slope-constrained DTW [10] where the
optimal warping path is normalized by its partial path length
at each step and constraints are imposed so that the warping
path can start and end at any point in the audio document.
The scores generated by the DTW system are normalized to
have zero-mean and unit-variance per query in order to reduce
variability across different queries [3].

5.4. Evaluation Metrics

Minimum normalized cross entropy (Cmin
nxe ) is used as pri-

mary metric and maximum term weighted value (MTWV )
is used as secondary metric to compare performances of dif-
ferent bottleneck features for QbE-STD [35]. The costs of
false alarm (Cfa) and missed detection (Cm) for MTWV are

considered to be 1 and 100 respectively. One-tailed paired-
samples t-test is conducted to evaluate the significance of per-
formance improvement. Additionally, detection error trade-
off (DET) curves are used to compare the detection perfor-
mance of different systems for a given range of false alarm
probabilities.

6. EXPERIMENTAL ANALYSIS

In this section, we report and analyze the QbE-STD perfor-
mance using various bottleneck features estimated from our
FFN and ResNet models. Previously, the best performance on
QUESST 2014 database was obtained using monolingual bot-
tleneck features estimated using FFNs [6]. We implemented
those models to compare with multilingual features as well as
corresponding ResNet based models.

6.1. Monolingual Feature Performance

We train five different monolingual networks for both archi-
tectures: FFN and ResNet, corresponding to PT, ES, RU, FR,
GE languages from GlobalPhone database. We evaluate the
features estimated with these networks using QbE-STD as de-
scribed in Section 5.3. Similar to [6], we did not employ any
specific strategies to deal with different types of queries in
QUESST 2014. The results are presented using Cmin

nxe and
MTWV metrics in Table 1. We can see that the ResNet based
bottleneck features perform better than most of the FFN based
features in terms of Cmin

nxe metric, except for T3 queries with
FR, ES and RU features, where the performances are close.
We also observe that PT features perform best for both FFN
and ResNet models.

6.2. Multilingual Feature Performance

We present the results of our multitask learning based multi-
lingual systems and compare their performance with a simple
monolingual feature concatenation approach.

Multitask Learning: We implement two multilingual net-
works corresponding to each FFN and ResNet architec-
tures discussed in Sections 3 and 4 using 3 languages (PT,
ES, RU) and 5 languages (PT, ES, RU, FR, GE). The 3
language network uses the best performing monolingual
training languages. Performance of the features extracted
from these networks are shown in Table 1. Clearly, ResNet
based bottleneck features provide significant improvement
over the corresponding FFN based features. We also ob-
serve that PT-ES-RU-FR-GE features significantly outper-
form PT-ES-RU features for both FFN and ResNet model
indicating that additional languages for training provide
better language independent features.

Feature Concatenation: Another way of utilizing training
resources from multiple languages is to concatenate the



Table 1. Performance of the QbE-STD system in QUESST 2014 database using various monolingual and multilingual bot-
tleneck features for different types of evaluation queries. Cmin

nxe (lower is better) and MTWV (higher is better) is used as
evaluation metric.

M
on

ol
in

gu
al

Fe
at

ur
e

Training System T1 Queries T2 Queries T3 Queries
Language Cmin

nxe ↓ MTWV ↑ Cmin
nxe ↓ MTWV ↑ Cmin

nxe ↓ MTWV ↑

Portuguese (PT) FFN 0.5582 0.4671 0.6814 0.3048 0.8062 0.1915
ResNet 0.5405 0.4698 0.6607 0.2747 0.7954 0.1802

Spanish (ES) FFN 0.5788 0.4648 0.7074 0.2695 0.8361 0.1612
ResNet 0.5718 0.4465 0.7043 0.2613 0.8465 0.1462

Russian (RU) FFN 0.6119 0.4148 0.7285 0.2434 0.8499 0.1385
ResNet 0.5728 0.4405 0.7017 0.2481 0.8525 0.1346

French (FR) FFN 0.6266 0.4242 0.7462 0.2086 0.8522 0.1249
ResNet 0.5957 0.4225 0.7017 0.2216 0.8540 0.1267

German (GE) FFN 0.6655 0.3481 0.7786 0.1902 0.8533 0.1038
ResNet 0.6389 0.3803 0.7511 0.2230 0.8497 0.1166

C
on

ca
t.

Fe
at

ur
e PT-ES-RU FFN 0.5450 0.4957 0.6665 0.2985 0.8053 0.1869

ResNet 0.5072 0.5164 0.6374 0.3162 0.7965 0.1899

PT-ES-RU-FR-GE FFN 0.5457 0.4965 0.6715 0.2903 0.8079 0.1930
ResNet 0.5040 0.5201 0.6309 0.3212 0.7941 0.1914

M
ul

til
in

g.
Fe

at
ur

e PT-ES-RU FFN 0.4828 0.5459 0.6218 0.3626 0.7849 0.2057
ResNet 0.4554 0.5666 0.6009 0.3529 0.7650 0.2201

PT-ES-RU-FR-GE FFN 0.4606 0.5663 0.6013 0.3605 0.7601 0.2138
ResNet 0.4345 0.5962 0.5703 0.3815 0.7387 0.2487

Table 2. Number of parameters for different mono and multi
lingual models using FFN and ResNet architecture.

Model FFN ResNet
Monolingual ∼ 1.8M ∼ 663K

Multilingual: 3-lang ∼ 3.1M ∼ 1.4M
Multilingual: 5-lang ∼ 4.4M ∼ 3.0 M

monolingual bottleneck features to perform DTW. We per-
form two sets of experiments by concatenating monolin-
gual features from PT-ES-RU and FR-GE-PT-ES-RU lan-
guages corresponding to both FFN and ResNet. The re-
sults are presented in Table 1. We can see that there is
marginal improvement over the best monolingual feature
(PT) from FFN model, a similar observation was presented
in [6]. On the other hand, ResNet based feature (PT-ES-
RU) perform significantly better than the corresponding PT
features. However, there is no significant performance dif-
ference between the ResNet based 3 and 5 language feature
concatenation.

We also observe that the multitask learning based features
significantly outperform the monolingual feature concatena-
tion, indicating the importance of multitask learning for uti-
lizing training resources from multiple languages. The bold
numbers in Table 1 show the best performance for each type
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Fig. 3. DET curves showing the performance of monolingual
and multilingual features estimated using FFNs and ResNets
for T1 queries of QUESST 2014.

of query and performance metric.
The number of parameters for different models are shown

in Table 2. We observe that the FFNs have more parameters
than the ResNet architectures. The improved performance of
ResNet models in comparison to FFNs indicate that ResNet
architecture produces better bottleneck features in spite of
having less parameters.



Fig. 4. Comparison of QbE-STD performance of language
specific evaluation queries (T1 query) using Cmin

nxe values

6.3. Monolingual vs Multilingual Feature

The 3 language multilingual feature provides an average ab-
solute gain of 5.2% and 5.8% (in Cmin

nxe ) for FFN and ResNet
model respectively in comparison to the corresponding best
monolingual features (PT). Further 2.3% and 2.5% absolute
improvements are observed while using 2 more languages for
training. In order to compare the missed detection rates for
a given range of false rates we present the DET curves cor-
responding to these systems in Figure 3. We see a similar
trend of performance improvement here as well. We also ob-
serve that the performance gain is higher from 1 language to
3 languages than 3 languages to 5 languages. It is due to our
use of the best performing languages to train the 3 language
network.

6.4. Language Specific Performance

We compare the language specific query performance of
ResNet based monolingual and multilingual features as it per-
forms better than the FFN counterparts. We use Cmin

nxe values
of T1 query performance to show this comparison in Figure 4.
We observe that the performance improves with more lan-
guages used for training, however the amount of improvement
varies with language of the query. The smaller performance
gain from 3 to 5 languages for some queries (e.g. Albanian,
Czech, Slovak) can be attributed to much worse performance
of FR and GE features compared to rest of the monolingual
features.

7. CONCLUSIONS

We proposed a ResNet based neural network architecture
to estimate monolingual as well as multilingual bottleneck
features for QbE-STD. We present a performance analysis
of these features using both ResNets and FFNs. It shows
that additional languages for training improves performance
and ResNets perform better than FFNs for both monolingual
and multilingual features. Further analysis shows that the
improvement is consistent throughout queries of different
languages. In future, we plan to train deeper ResNets with

more languages to compute and analyze language indepen-
dence of those features. The improved bottleneck features
can be used for other relevant tasks e.g. unsupervised unit
discovery. The codes are available at:
https://github.com/idiap/multilingual_
bottleneck_features
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