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Abstract
Face recognition is a mature field in biometrics in which several systems have been proposed

over the last three decades. Such systems are extremely reliable under controlled recording

conditions and it has been deployed in the field in critical tasks, such as in border control and

in less critical ones, such as to unlock mobile phones. However, the lack of cooperation from

the subject and variations on the pose, occlusion and illumination are still open problems

and significantly affect error rates. Another challenge that arose recently in face recognition

research is the ability of matching faces from different image domains. Use cases encompass

the matching between Visual Light images (VIS) with Near infra-red images (NIR), Visual Light

images (VIS) with Thermograms or Depth maps. This match can occur even in situations

where no real face exists, such as matching using sketches. This task is so called Hetero-

geneous Face Recognition. The key difficulty in the comparison of faces in heterogeneous

conditions is that images from the same subject may differ in appearance due to changes in

image domain.

In this thesis we address this problem of Heterogeneous Face Recognition (HFR). Our con-

tributions are four-fold. First, we analyze the applicability of crafted features used in face

recognition in the HFR task. Second, still working with crafted features, we propose that the

variability between two image domains can be suppressed with a linear shift in the Gaussian

Mixture Model (GMM) mean subspace. That encompasses inter-session variability (ISV)

modeling. Third, we propose that high level features of Deep Convolutional Neural Networks

trained on Visual Light images are potentially domain independent and can be used to encode

faces sensed in different image domains. Fourth, large-scale experiments are conducted on

several HFR databases, covering various image domains showing competitive performances.

Moreover, the implementation of all the proposed techniques are integrated into a collabo-

rative open source software library called Bob that enforces fair evaluations and encourages

reproducible research.

Keywords: Face Recognition, Heterogeneous Face Recognition, Reproducible Research, Do-

main Adaptation, Gaussian Mixture Modeling, Deep Neural Networks
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Résumé
La reconnaissance faciale est un domaine reconnu en biométrie, au sein duquel différents

systèmes ont été proposés au cours des trois dernières décennies. De tels systèmes sont

extrêmement fiables en conditions d’enregistrement contrôlées et ont été déployés sur le

terrain, pour des tâches critiques telles que le contrôle aux frontières, et dans des cas moins

critiques, par exemple pour déverrouiller des téléphones mobiles. Cependant, le manque

de collaboration du sujet et les variations de la pose, l’occlusion et l’éclairage sont encore

des problèmes ouverts qui affectent de manière significative les taux d’erreur. Un autre défi

qui a surgi récemment au sein de la recherche en reconnaissance faciale est la capacité de

faire correspondre des visages provenant de différents domaines d’image. Les cas d’utilisation

englobent la correspondance entre les images Visual Light (VIS) avec les images infrarouge

proches (NIR), les images Visual Light (VIS) avec les thermogrammes ou cartes de profon-

deur (depth maps). Cette correspondance peut se produire même dans des situations où il

n’existe aucun visage réel, telle que la correspondance avec des croquis médico-légaux. Cette

tâche est appelée Reconnaissance Faciale Hétérogène (HFR). La principale difficulté dans

la comparaison de visages en conditions hétérogènes est que les images d’un même sujet

puissent avoir une apparence différente en raison des changements de domaine d’image.

Dans cette thèse, nous abordons ce problème de Reconnaissance Faciale Hétérogène (HFR).

Nos contributions sont au nombre de quatre. Premièrement, nous analysons l’applicabilité

des caractéristiques conçues en reconnaissance faciale pour la tâche de HFR. Deuxièmement,

toujours en travaillant avec ces caractéristiques, nous proposons que la variabilité entre deux

domaines d’image puisse être supprimée par un décalage linéaire dans l’espace formé par

le centres d’un Gaussian Mixture Model (GMM) mais également par la modélisation de la

variabilité inter-session (ISV). Troisièmement, nous proposons que les caractéristiques de

haut niveau d’un Deep Convolutional Neural Network entrainées sur des images Visual Light

soient potentiellement indépendantes du domaine et puissent être utilisées pour encoder

des visages détectés dans un domaine d’image différent. Quatrièmement, des expériences

à grande échelle sont menées sur plusieurs bases de données HFR, couvrant différents do-

maines d’image montrant des performances compétitives. De plus, toutes les techniques

proposées sont intégrée dans une librairie logicielle collaborative opensource appelée Bob

qui applique des évaluations non biasées et encourage une recherche reproductible.

Mots-clés : Reconnaissance faciale, Reconnaissance de visage, Reconnaissance Faciale Hété-

rogène, Recherche Reproductible, Adaptation de domaine, Gaussian Mixture Modeling, Deep

Neural Networks
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1 Introduction

Biometrics is the field that addresses the task of identifying human beings by their physical

and/or behavioral attributes [Ross et al., 2008]. Along the history, several biometric attributes

have being researched, such as face, fingerprint, signature, voice, periocular, gait, DNA, palm

veins, hand geometry, iris, ear, among others. Some of them are largely used in the industry,

such as fingerprint, face, iris or palm veins and some are still work in progress in research

laboratories, such as gait, ear or signature.

Face biometrics, in particular, has existed as a field of research for more than 40 years and its

research has been active since the early 1990s. Such biometric trait has some advantages over

others. First, it is natural among humans; we do face recognition on a daily basis. Second, it is

non intrusive; interaction with special devices is not necessarily a requirement. Finally, it is

potentially a good candidate for covert applications.

The current state-of-the-art in automated face recognition consists of systems that work

well under relatively constrained conditions. Despite the research efforts over the last years,

automated face recognition under unconstrained conditions, where variations on the pose,

occlusion, illumination and collaboration of the subjects are not under control, is still a

challenge. Among those challenges, one of the most challenging ones is the task of comparison

of face images acquired between different image modalities (infrared images, forensic sketches,

or thermograms). This field of research is called Heterogeneous Face Recognition and their

use-cases can increase the robustness of face recognition systems in to more covert scenarios,

such as recognition at a distance or at nighttime, or even in situations where no real face exists

(forensic sketch recognition).

This thesis is a step towards the development of more robust systems for Heterogeneous Face

Recognition (HFR).

1



Chapter 1. Introduction

1.1 Background and Motivations

Due to the maturity of face recognition research, numerous applications have appeared in the

last few years. In the list below we highlight some of them:

1. Physical and Logical access control: Face recognition has been widely deployed in

border control in the so called e-gates. During the 2008 summer olympic games in

Beijing, a face recognition system was deployed into the entrance security checks for the

opening and closing ceremonies [Jain and Li, 2011]. For several years Lenovo1 allows

users to unlock their laptops using face recognition technology. The same trend was

followed by Apple that recently allowed users to unlock and authorize some transactions

in their phones using face recognition2.

2. Surveillance and Law enforcement: The large amount of closed-circuit television

(CCTV) systems deployed has led to a huge amount of information to be stored and

processed. This is of particular interest in law enforcement, since face recognition

technology can be employed to reduce the quantity of information to be processed

manually, while criminal or terrorism investigations are performed. Several police

departments around the world use software to compose sketches in eye witnesses

cases, such as Evofit (https://evofit.co.uk/), Identikit (http://identikit.net/) and Faces

(https://facialcomposites.com/) and the match of those composite sketches with large

mugshot and legacy datasets raised the attention of the research community [Klare et al.,

2011; Han et al., 2013].

3. Data Management and entertainment: Face identification has been widely used to

automatically tag photos and/or video content. Companies such as Google, Microsoft,

Facebook or Apple are already providing this feature in their image organizers and

image viewer softwares to assist users in the task of organizing visual content and

mitigate manual labor. Face identification is also applied in content personalization.

For instance, game consoles such as XBox and PlayStation 4 allow users to log in to their

online game platforms using face recognition.

The aforementioned applications can be reduced and formalized in three different tasks. (i)

- The first one is called verification, in which a person claims a particular identity, and the

system has to verify this claim given a biometric trait as input. The cardinality of this task is 1:1.

(ii) - The second task is called closed-set identification, in which the system has to identify a

person from a set N possibilities in a gallery given a biometric trait as input. The cardinality

of this task is 1:N. (iii) - The third and the last one is called open-set identification, in which

the system has to identify a person from a set N possibilities if and only if the comparison

score between the input biometric trait and the set of N elements in the gallery is higher than

1https://www.lenovo.com
2https://support.apple.com/en-us/HT208109
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1.1. Background and Motivations

a decision threshold τ. The cardinality of this task is also 1:N. These distinctions are depicted

in Figure 1.1.

Claimed
ident ity

Input
biometric  t ra it

Verificat ion

Authent icated Impostor

Input
biometric  t ra it

Closed-set
Ident ificat ion

Identity 1 Ident ity 2 Ident ity N...

Input
biometric  t ra it

Open-set
Ident ificat ion

Identity 1 Ident ity N Unknow n...

Figure 1.1 – Face recognition: Verification, Closed-set Identification and Open-set Identification tasks

The ability to recognize faces is a natural action performed by humans and make us think that

is an easy task to be generalized and statically programmed. In reality, its complexity is so high

and with so many degrees of freedom that, so far, we were not able to define a generalized

theory that is able to differentiate two random face images in any condition. For this class of

tasks, a new field of knowledge emerged as a mix of Computer Science and Statistics called

Machine Learning [Samuel, 1959]. Machine learning is a branch of artificial intelligence that

considers that a particular task/phenomena can be learnt and generalized from a reduced set

of its observations, without being explicitly programmed.

(a) (b)

Figure 1.2 – Examples of (a) low within-class variability (b) high within-class variability

As mentioned before, automatic face recognition is practically considered a solved problem for

constrained scenarios where variations in illumination, pose, expression and/or collaboration

of the subject are not “severe”. Variations in appearance on face images from the same person,
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due to the mentioned factors, are called within-class variations. These variations can be as

not as severe in the comparison between the images in Figure 1.2 (a) or can be very severe as

in the comparison between the images in Figure 1.2 (b).

The task of HFR is considered challenging due to its high within-class variability between faces

from the same subject but sensed in different image modalities. Example of these types of

comparisons are shown in Figure 1.3.

Figure 1.3 – Example images from four different heterogeneous face recognition scenarious (a)
NIR (b) Thermal (c) Viewed sketch (d) Forensic sketch.

1.2 Objectives and Contributions

The main objective of this thesis is to investigate methods to handle this high within-class

variability between faces sensed in different image modalitites and, in consequence, increase

recognition rates.

The major contributions of this thesis are as follows.

1. Domain Specific Units Framework (DSU) is proposed. We hypothesize that high level

features of Deep Convolutional Neural Networks trained on visual spectra images are

potentially domain independent and can be used to encode faces sensed in different

image domains. A generic framework for Heterogeneous Face Recognition is proposed

by adapting Deep Convolutional Neural Networks low level features and/or their biases

only. The adaptation using Domain Specific Units allow the learning of shallow feature

detectors specific for each new image domain. Furthermore, it handles its transforma-

tion to a generic face space shared between all image domains. Related papers for this

4
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contribution: [de Freitas Pereira et al., 2019] and http://vast.uccs.edu/Opensetface/.

2. Investigation of the face recognition strategies to the HFR task. We analyze and make

public available the effectiveness of some state-of-the-art face recognition systems in

the academia and commercial of the shelf (COTS) trained with visual light images only

in the HF R task. Related papers for this contribution: [de Freitas Pereira et al., 2019].

3. HFR as Gaussian Mixture Model session variability problem is proposed. We hypoth-

esize that the task of HFR can be approached with a linear shift in the Gaussian Mixture

Model (GMM) mean subspace. Such domain shifts can be estimated with inter-session

variability (ISV) modeling, joint factor analysis (JFA) and total variability (TV) modeling.

Related papers for this contribution: [de Freitas Pereira and Marcel, 2015] [de Fre-

itas Pereira and Marcel, 2016] [Sequeira et al., 2017].

4. We successfully apply the proposed approaches in several HFR databases covering six

pairs of different image modalities and the results in terms of error rates are competitive

with respect to the state of the art. Furthermore, this work is made reproducible in the

following link 3. Each one of the techniques applied in this thesis is part of the open

source framework for signal processing and machine learning called Bob 4 following

the reproducibility methodology defined in [Anjos et al., 2017]. In this methodology,

it is emphasized that a reproducible research work should be repeatable, shareable,

extensible, and stable. Related papers for this contribution: [Anjos et al., 2017].

1.3 Thesis Outline

This thesis is composed of 6 chapters.

In this chapter, the motivations, objectives and contributions of this work were briefly summa-

rized.

Chapter 2 gives an overview of related work for the tasks of face and heterogeneous face

recognition. In addition, this chapter introduces all the databases used in this work with its

corresponding evaluation methodologies, which are used to compare the proposed systems

in the experimentation chapters.

Chapter 3 presents how the state of the art face recognition systems developed in the academia

and in the industry performs in the Heterogeneous Face Recognition task. Furthermore, a

strategy base on Geodesic Flow Kernel using crafted features is introduced for HFR.

Chapter 4, the Gaussian Mixture Model framework for HFR is introduced. Consequently, the

session variability modelling techniques that are built on top of this GMM are described for

the HFR task. Moreover, experiments and analysis are presented.

3http://gitlab.idiap.ch/bob/bob.thesis.tiago
4https://www.idiap.ch/software/bob/

5
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Chapter 5 introduces the Domain Specific Units (DSU) framework which is another technique

to handle the HFR task. In this framework we hypothesize that high level features of Deep

Convolutional Neural Networks trained on Visual Light images are potentially domain in-

dependent and can be used to encode faces sensed in different image domains. Moreover,

experiments and analysis are presented.

Chapter 6 concludes this thesis by providing a summary of the major contributions and

findings. Potential directions for future work are also discussed.

6



2 Related Work

In machine learning, the task of Face Recognition is phrased as a classification problem under

the big umbrella of supervised learning [Bishop, 2006, p.3]. More generally, the classification

task can be phrased as an interpolation problem in high-dimensional space. Such task can be

described as follows: Given two random variables X and Y , where X ∈Rd (high d-dimensional

feature space) with marginal distribution P (X ) and a discrete set of labels Y ∈Z, the classi-

fication task consists in to find a model Θ where the probability of P (Y |X ,Θ) is maximized.

For the face recognition task, the variables X and Y are placeholder terms for a face dataset

X = {x1, x2, ..., xn} and their corresponding set of labels Y = {y1, y2, ..., yn}.

Along the years, several different strategies were proposed to solve this classification prob-

lem. Nevertheless, regardless the implementations, the approaches usually rely on three key

components, which are depicted in Figure 2.1.

Capture Face
Detection

Feature
extraction

Feature
Vector

Classification

Database

F
ea

tu
re

V
ec

to
r

Figure 2.1 – Basic structure of a Face Recognition System

The first component is Face Detection. This step has a major impact on the performance of

the entire face recognition system. Given either a single image or a video as input, an ideal

face detector should be able to identify and locate all present faces regardless of their position,

scale, orientation, expression and illumination conditions[Jain and Li, 2011].

The second component is Feature Extraction. Given a face image as input, an ideal feature
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extractor should be able to extract important information of the face which are both: (i) -

robust against any kind of noise, such as, illumination effects, occlusion, pose variations,

image blurring, etc; (ii) - high discriminative capability between face images from different

identities. To rephrase this, an ideal feature extractor should be able to extract features that

have low within-class variability and high between-class variability.

The third step is Classification, which is in charge of predict an identity given a feature vector.

In this chapter describes with more detail the efforts made in the literature to approach the

second and the third aforementioned items for both Face (Section 2.1) and Heterogeneous

Face Recognition (Section 2.2). Emphasizing HFR, in Section 2.3 it is described the databases

available to work on the problem. Finally, in Section 2.4 the evaluation methodologies used

for this task is introduced.

2.1 Face Recognition

Raw face images are often represented as high dimensional array of pixels of size m-by-n.

Hence, face images can be seen as a vector embedded in a Rm×n space. Due to well known

significant statistical redundancies (correlations) that such images contains, it is common

to represented them in lower dimension manifolds [Ruderman and Bialek, 1994]. In the last

decades we have witnessed numerous scientific publications that explore this direction and

applied algebraic, signal processing and statistical tools for extraction and analysis of the

underlying manifold. In face analysis this manifold has a special name and it is called face

space [Jain and Li, 2011].

In this section it is briefly described in roughly chronological order the approaches designed

along the years to build this face space.

2.1.1 EigenFaces

Turk and Pentland [1991] proposed the first feature-based automatic face recognition system

in the beginning 1990s based on Principal Component Analysis. Principal Component Analy-

sis (PCA) is a dimensionality reduction technique that uses an orthogonal transformation to

convert a set of correlated variables into a set of values of linearly uncorrelated variables called

principal components. This basis transformation is built in such a way that the vector direc-

tion of the first principal component has the largest possible variance, the second principal

component has the second largest possible variance and so on. This idea is illustrated in Figure

2.2 (a) where, in R2 space, the new basis is defined and in Figure 2.2 (b) the first component of

this new basis is preserved rather than a second and it’s used to do the projection in R1.

In short, PCA tries to create a projection matrixΘwhere the L2 reconstruction (Equation 2.1)

is minimized.

8
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x1

x 2

(a)

x1

x 2

(b)

Figure 2.2 – Principal Component Analysis (a) Definition of the new basis (b) The projection in
R1

ε(x) = ||x −
k∑

i=0
(ΘT

i x)Θi || (2.1)

There are several ways to achieve that. One of them is via the eigen decomposition of the co-

variance matrix. Given a set of samples X = {x1, x2, ..., xn} where x ∈Rd , this can be calculated

following the steps below:

µ= 1

n

n∑
i=1

xi Mean of the dataset (2.2a)

Σ= 1

n

n∑
i=1

(xi −µ)(xi −µ)> Compute the covariance (2.2b)

Compute eigenvectors U = [u1...ud ] of Σwhere (2.2c)

(Σ−e j I)u j = 0, (2.2d)

where e j is the corresponding eigenvalues and j = 1..d .

Another way to compute this face space is via singular value decomposition (SVD) of X :

U ,V = svd(X ), (2.3)

9
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where the eigenvectors is given by U and the eigenvalues is given by di ag (V ).

The Eigenfaces pipeline can be explained as the following. At training time (offline), this face

space Θ is estimated given a face dataset X = {x1, x2, ..., xn} ∈ Rd . At enrollment time, given

one enrollment face image xe ∈Rd , its projection is computed as x ′
e =ΘT xe . At scoring time,

given one probe face image xp ∈Rd its projection is computed as x ′
p =ΘT xp . To compare x ′

e

and x ′
p any distance measure can be used. Traditionally the L2 norm is employed, but other

metrics are very popular too, such as the Mahalanobis distance or the cosine similarity.

2.1.2 Fisher Linear Discriminant; “Fisherfaces”

The face space Θ trained via Principal Component Analysis, although it uncorrelates the

image input space, does not approach the desired requirements of low within-class and

high between-class variability. In unconstrained scenarios, part of the variability in the face

appearance is due to severe variations in pose, illumination, expression, etc; and the PCA face

space, possibly retains most of these variations. Belhumeur et al. [1996] propose to solve this

problem with an application of Fisher’s linear discriminant (FLD)[Fisher, 1936]. Named as

“Fisherfaces”, FLD selects aΘwhich maximizes the ratio:

ΘT SbΘ

ΘT SwΘ
(2.4)

where

Sb =
m∑

i=0
Ni (xi −µ)(xi −µ)T (2.5)

is the between scatter matrix, and

Sw =
m∑

i=0

∑
x∈Xi

(x −µi )(x −µi )T (2.6)

is the within scatter matrix.

This hypothesis explicitly finds a linear face space Θ where the within-class variability is

minimized while the between class variability is maximized. Furthermore, it also performs

dimensionality reduction.

Figure 2.3 shows how the illumination effects are retained using PCA and how it is suppressed

using FLD.

The Fisherfaces pipeline can be explained as the following. At training time (offline), this face

space Θ is estimated given a face dataset X = {x1, x2, ..., xn} ∈ Rd . At enrollment time, given

one enrollment face image xe ∈Rd its projection is computed as x ′
e =ΘT xe .

10
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(a)
front
left
right
all

(b)

front
left
right
all

Figure 2.3 – First two principal components using PCA vs FLD under four different sources of
illumination. Each color represents one of the 50 identities of the ARFACE database and each
shape is one illumination condition (a) PCA face space (b) FLD face space

At scoring time, given one probe face image xp ∈Rd its projection is computed as x ′
p =ΘT xp .

To compare x ′
e and x ′

p any distance measure can be used. Traditionally the L2 norm is used, but

other metrics are very popular too, such as the Mahalanobis distance or the cosine similarity.

2.1.3 Local Binary Patterns histograms

The aforementioned sections presented strategies to model this face space using two different

statistical hypotheses on top of the image space directly. Along the years, researchers also

tried to craft their own set of features based on other assumptions.

The Local Binary Pattern (LBP) operator was originally designed for texture description [Ojala

et al., 1996]. This operator is computed in a pixel level basis using a N ×N kernel, thresholding

the surroundings of each pixel with the central pixel value and considering the result as a

binary value. The decimal form of the LBP code is expressed as:

LBP (xc , yc ) =
N−1∑
i=0

f (Ii − Ic )2i , (2.7)

where ic corresponds to the gray intensity of the center pixel (xc , yc ), N is the number of

sampling points, in is the gray intensity of the n-th surrounding pixel and f (x) is defined as

follows:

f (x) =
{

0 if x < 0

1 if x ≥ 0
(2.8)

11



Chapter 2. Related Work

Figure 2.4 shows how a face image in encoded in terms of their LBP decimals.

(a) (b)

Figure 2.4 – Local Binary Pattern operator (a) Original image (b) LBP processed image

Ahonen et al. [2004] proposed a face recognition system by histograming the LBP output. This

method is non parametric, hence, there is nothing to be done at training time. The technique

first applies LBP encoding to each pixel of the face image and then divides the encoded face

image into a set of windows. Histograms are then obtained from each region and concatenated

to form a single feature vector. This is done at enrollment and scoring time. In Figure 2.5 it is

possible to observe the application of this operator.

;

Figure 2.5 – Local Binary Pattern histograms

Several metrics were developed to compare two LBP histograms. The most traditional one is

the chi-square distance (χ2). Given two LBP histograms X e and X p (for enrollment and for

probing) the χ2 is defined as follows:

χ2(X e , X p ) =∑
i , j

w j

(X e
i , j −X p

i , j )2

X e
i , j +X p

i , j

. (2.9)

Furthermore, several classification strategies were proposed using LBPs as front end, such

as Rodriguez and Marcel [2006a] with Gaussian Mixture Model and Pereira et al. [2012] with

Support Vector Machines.

Several different types of operators were built on top of LBPs. A good survey of all of them can

12



2.1. Face Recognition

be found in [Pietikäinen et al., 2011].

2.1.4 Gabor Wavelets

There is a class of face recognition algorithms that rely on Gabor features. Such features are

found to model the (retinal) image processing in the primary visual cortex of mamal brains

[Daugman, 1985].

A Gabor wavelet [Würtz, 1995] defined as:

ψ~k j
(~x) =

~k2
j

σ2 e−
~k2

j
~x2

2σ2

[
e i~kᵀ

j~x −e−
σ2

2

]
(2.10)

is an image filter that consists of a planar complex wave e i~kT
j ~x that is confined by an en-

veloping Gaussian and normalized to be mean free [Günther et al., 2017]. A Gabor wavelet

is parametrized by the width σ of the Gaussian, its spatial orientation ϕ and the frequency k

[Günther et al., 2017]. Commonly, a family of 40 Gabor [Shen and Bai, 2006] wavelets are used

to extract the features by discretizing the frequencies and orientations. Complex valued Gabor

features are extracted by convoluting the input image with each one of the 40 Gabor wavelets.

Traditionally, only the absolute parts of these complex valued features are taken into account

[Günther et al., 2017].

(a) EBGM (b) Grid Graph

Figure 2.6 – Different ways to organize Gabor Jets. Extracted from [Günther, 2011, p.68]

Based on Gabor wavelet responses, several algorithms were proposed. The most well-known

example is the elastic bunch graph matching (EBGM) that was proposed in the late 1990s

[Wiskott et al., 1997]. The EBGM algorithm for face recognition is non parametric; hence,

there is nothing to be computed at training time. Landmarks are detect and Gabor wavelet

responses are computed in those detected regions of the face (see Figure 2.6a). All the Gabor

wavelet responses computed in a particular region of the face are concatenated. The outcome

of this concatenation is called Gabor Jet. Commonly the Gabor Jet is a result of the concatena-
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tion of the absolute values ai and phases φi . The Gabor Jets can also be computed in a grid

graph (see Figure 2.6b). Günther et al. [2017] indicated that grid graphs on average perform

better than EBGM graphs. At enrollment time, Gabor Jets are basically stored. Finally, at

scoring time, a comparison between stored and the probed Gabor Jet is carried out.

Given a stored Gabor jet J and the probed Gabor jet J ′, with their corresponding absolute

values a and phases φ, several metrics to compare them was proposed such as:

Scalar product:

S(J ,J ′) =∑
i

ai ·a′
i (2.11)

Camberra:

S(J ,J ′) =∑
i

ai −a′
i

ai +a′
i

(2.12)

Absolute Phase:

S(J ,J ′) =∑
i

ai ·a′
i cos(φi −φ′

i ) (2.13)

Zhang et al. [2005] proposed the combination between Gabor responses and LBPs. The

technique called Local Gabor Binary Pattern Histogram Sequences (LGBPHS), applies Gabor

wavelets at multiple scales and orientations to obtain several sub-images. These sub-images

are then encoded using a standard MLBP operator and these local Gabor binary maps are then

divided into non-overlapping regions. Then, a histogram is computed on each region. This

approach is also non parametric; hence, nothing is done at training time. At enrollment time,

such histogram are stored. At scoring time, a comparison between stored and the probed

histograms is carried out using 2.9.

2.1.5 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks have shown to be very powerful machine learning tool

as they can be trained to learn complex non-linear mappings from high-dimensional data.

But before its introduction, a more simple statistical model which is an elementary building

block of those complex models shall be introduced: linear regression. Given a set of N input-

output pairs X = {(x1...xn)} and Y = {(y1...yn)}, in linear regression, it is hypothesized that

exists a linear function mapping each X ∈ Rd to Y ∈ R. Such model in this case is a linear

transformation of the inputs: f (x) =W ᵀX +β, where W is a 1×d matrix and β ∈ R is a bias

term. Different values for W and β define different linear transformations and in general the

goal is to find the parameters that minimizes some particular loss function L . For instance,

14
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such loss can be the mean square error defined as: L (W,β) = ||Y − (W ᵀX +β)||22. This is a

convex function and its global minima can be found using different methods, such as via

closed-form. One of the most popular and scalable ones is the so called gradient descend

which is depicted by the Algorithm 1.

Data: X , Y , i t ,λ
Result: W , β
W = random(dimension(X)) ; // Random initialization

β= 0 ; // Usually initialized by 0

for i=0 to it do
for j=0 to size(X) do

∂L
∂W,β = y[ j ]−x[ j ]W +β ; // Gradient

W =W +λ∂L∂W ;

β=β+λ∂L∂β ;

end
end
Algorithm 1: Gradient descent training, where X is a m ×d matrix, Y is a m ×1 matrix, i t is
the number of iterations of the algorithm and λ is the learning rate

In most of the cases, specially in real world scenario, the relation between X and Y is not linear

and a non-linear basis function g (x) that maps X to Y has to be defined [Bishop, 2006, p.137].

Hence, the same linear regression can be performed between the pair X = {(g (x1)...g (xn)}

and Y = {(y1...yn)}. These basis functions can be polynomials, logistic functions, ReLU1, etc.

This basic building block is often called Perceptron [Haykin, 2009, p.48] and its graphical

representation is depicted in Figure 2.7.

Σ g

+1

x1

x2

x3

xn

β

w
1

w2

w3

w n

g

(
n∑

i=1

wixi + β

)

...

Figure 2.7 – Classical perceptron representation

The foundation of deep neural networks can be defined by a set those perceptrons stacked

“vertically”, making W a n ×d matrix. For historical reasons, this n is coined the number of

1g (x) = max(0, x)
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neurons. Furthermore, those perceptrons can also be stacked “horizontally”, hence, the non-

linear outputs from l1 = g (W ᵀ
1 X +β1) can be provided as input to another set of non-linear

operations (called hidden layer) l2 = g (W ᵀ
2 l1 +β2) and finally this l2 can be forwarded to our

regressed output o = g (W ᵀ
3 l2 +β3). In this example, W1, W2 and W3 is n1 ×d , n2 ×n1 and

n2 ×1 matrices respectively. This mechanism of stacking those perceptrons is a very powerful

tool to solve very complex non-linear mappings and it is called Multi-Layer Perceptron (MLP)

[Haykin, 2009, p.122]. Its classical graphic representation is depicted in Figure 2.8. The process

x1

x2

x3

Input
layer

Hidden
layer

Output
layer

o

Figure 2.8 – Classical MLP representation with three inputs and one hidden layer

to learn all the possible values for W1, W2 and W3 for this non-convex function is similar to

the one defined for linear regression. The gradient of a particular loss (e.g mean square error)

with respect to each W[1..3] and β[1..3] ( ∂L
∂W[1..3],β[1..3]

) has to be propagated to all W[1..3] and β[1..3].

This is carried out by an algorithm called Back Propagation [Haykin, 2009, p.153].

MLPs can also be used for classification. One way to approach such task is by adding as much

as output peceptrons as the number of classes and make Y ∈ Zc
2, where c is the number of

classes. Figure 2.9 presents an example of MLP for a two class problem.

For image classification, the selection of features (number of layers and number of neurons)

for training a MLP is often empirical and data dependent. A possible solution to approach

this issue would be to use directly the raw data and let the MLP training algorithm (Back

Propagation) find the best feature extractors by adjusting W[1..n] and β[1..n]. The problem with

this approach is that the dimensionality of the input data is often high (specially for image

recognition), hence the number of free parameters (number of connections) is large, since

each hidden unit is fully connected. Depending of the amount of data available for training,

the neural network tends to overfit.
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x1
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Figure 2.9 – Classical MLP representation for two class classification task with three inputs
and one hidden layer

A Convolutional Neural Network (CNN) [LeCun et al., 1998] is an approach that tries to alleviate

the aforementioned problem. Base perceptrons are replaced by a local linear transformation

called convolution that is discretely defined for 1d signals as:

w ∗X =
i=d∑

i=k/2

j=k/2∑
j=−k/2

w[ j ]X [i − j ], (2.14)

where w is the convolutional operator also called kernel or filter of dimension k and X is a

1d signal of dimension d . This transformation is highly used in image processing since it

preserves spatial information of an input image. The same non-linearity hypothesis can be

hypothesized for this operation, hence, non-linear convolutions can be defined as g (w ∗X ).

Furthermore, bias terms can be added to this operation g (w ∗ X )+β. These local linear

transformations introduces a weight sharing in the neural networks that reduces drastically

the number of free parameters that needs to be learnt, reducing the capacity of the network

and improving its generalization capability. In Deep Convolutional Neural Networks, the

convolutions are often followed by pooling layers. The purpose of such operation is to locally

sub-sample the input signal by some statistical function. Figure 2.10 presents an example

of pooling. In most practical cases in image recognition, the operator max is used and such

operation is called MaxPooling. Such operations can be stacked as in the MLP and the process

of learning w is the same as for MLPs (via Back Propagation).

The success of Deep Convolutional Neural Networks (DCNN) in computer vision research,

the availability of several frameworks to instrument such networks and the possibility to work
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Figure 2.10 – Example of pooling a 2d input signal by patches of 2×2

with massive amounts of labeled data (CASIA WebFace [Yi et al., 2014], MS-Celeb [Guo et al.,

2016] and Megaface [Kemelmacher-Shlizerman et al., 2016]) made face recognition error rates

decrease steadily.

Despite the lack of deep understanding on why such neural networks work well and have

good generalization capabilities in several different pattern recognition tasks [Mallat, 2016],

practical heuristics were developed in the last five/six years to regularize the training and they

are responsible for its success in practice. In the next subsections we would like to highlight

some that, in our experience, have direct impact in decreasing face recognition error rates.

Alexnet

Krizhevsky et al. [2012] released in 2012 the AlexNet DCNN. Such work put together seminal

elements that are standard until today in any pattern recognition task that relies on DCNN,

including face recognition. Its architecture is depicted in Figure 2.11.

;

Figure 2.11 – Alexnet architecture [Krizhevsky et al., 2012]

Three seminal contributions worth mentioning in this work. First, it is about the depth of the

DCNN. This network scale up the insights from LeNet[LeCun et al., 1998] and implemented a

much deeper neural network composed by five convolutional layers and three fully connected

layers. It was also roughly demonstrated that, in the case of object detection, depth matters.

The second contribution was the usage of ReLU as activation function. In their work, the

training was 6 times faster than the t anh function. The third contribution was the usage of

dropout [Hinton et al., 2012] as one of the regularization strategies. They idea of dropout is to
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Figure 2.12 – VGG19 architecture. Image extracted from[Simonyan and Zisserman, 2014]

randomly drop connections during the training stage. This can be seen as an approximation

of bagging [Bishop, 2006, p.653].

VGG networks

The VGG networks [Simonyan and Zisserman, 2014] were the first to use small kernels in each

convolutional layer (3×3) and push forward even more the limits of depth in deep neural

networks.

Its main contribution was the usage of small convolutional kernels chained in a long sequence

of convolutions (even longer than Alexnet). Followed by sub-samplings (pooling), this archi-

tecture was able to detect image symmetries in larger areas of image that was thought possible

only via larger kernels (5×5, 9×9 or 11×11) like in Alexnet or LeNet.

Figure 2.12 presents the schematic of one of the proposed VGG architectures.

Batch normalization

Introduced by Ioffe and Szegedy [2015], batch normalization consists in shifting (usually

zero-mean) and scaling (normally one standard deviation) the output signal of each layer for

each mini-batch.
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Making this normalization part of the architecture allows the DCNN practitioners to be more

“aggressive” with the learning rates and speeding up the convergence with larger architectures.

Inception modules

Szegedy et al. [2015] introduced the Inception modules. Those modules are composed by

parallel combination of different convolutional kernels (1×1, 3×3, and 5×5 normally) as

can be seen in Figure 2.13. This contribution allowed a dramatic reduction of free parameters

to be learnt, increasing the recognition accuracies and generalization for several computer

vision tasks.

Figure 2.13 – One inception module composed by four parallel modules extracted
from[Szegedy et al., 2015]

Residual Connections

As mentioned in the last subsections, practical evidences in several areas of computer vision

have shown that depth of a DCNN seems to be a crucial factor in terms for accurate learning.

One of the main obstacles to explore depth in DCNNs is the well known gradient vanishing/-

exploding [Glorot and Bengio, 2010] problem. He et al. [2016] approached this issue bypassing

the output of one intermediate layer and concatenating as the input of one of the layers ahead

(two or three layers) as we can see in Figure 2.14. Such approach allowed the training of CNNs

larger than 1000 layers[He et al., 2016].

A common way to approach the FR task using DCNNs is to, at training time, train it for

a particular face dataset (n-class classification task). Then, it is hypothesized the feature

detectors learnt for this particular classification task are generic and discriminative enough to

be applied to other set of identities unseen by this training procedure. This can be carried out

by taking the trained the DCNN and “drop” its outputs and make one of the hidden layers as

the new output. Hence, this output can be used as a feature and be directly compared using

an arbitrary metric, such as L2 norm, cosine similarity, Mahalanobis, etc. This feature is often

called embedding. Figure 2.15 presents a simple example on how this embedding generator
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Figure 2.14 – One residual connection extracted from[He et al., 2016]

is created by dropping the classification output of DCNN.

2.2 Heterogeneous Face Recognition

In the beginning of this chapter a formalization of supervised learning was presented. We

adapted the aforementioned formalization for the task of Heterogeneous Face Recognition

and it is defined as the following. Let’s assume now that we have two domains Ds = {X s ,P (X s)}

and D t = {X t ,P (X t )} called respectively source domain and target domain with both sharing

the same set of labels Y . Hence, the goal of Heterogeneous Face Recognition task is to find a

Θ, where P (Y |X s ,Θ) = P (Y |X t ,Θ).

Several assumptions to model Θ were proposed during the last years and we can organize

them in three main categories, whose details are described in the following three subsections.

2.2.1 Synthesis methods

In these methods a synthetic version of Ds is generated from D t . Once a synthetic version

from D t is generated, the matching can be done with regular face recognition approaches.

In [Wang and Tang, 2009], the authors proposed a patch based synthesis method that syn-

thesizes VIS images to sketches. Thereafter, synthesized sketches are feed into regular face

recognition systems, such as Eigenfaces, Fisherfaces, dual space LD A. At training time, a

Markov Random Field generative model, pairing patch nodes (pixel level) from source and

target domains, is build in such a way that the probability of a set patches from the source

domain given one patch from the target domain is maximized. Although there is no source

code officially available for this work, a matlab implementation can be found in2. This al-

gorithm provides very appealing reconstructions using the images from the CUHK-CUFS

(see Section 2.3.2), where the sketches are very reliable with respect to their corresponding

2https://github.com/ClaireXie/face2sketch
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(b) DCNN used at enrollment and scoring time where
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Figure 2.15 – DCNN - Example of embedding extraction

photographs. Even minimum details of shape and direction of the hair are preserved as we

can observe in Figure 2.16. However, using less reliable hand drawn sketches databases, such

as the CUHK-CUFSF (see Section 2.3.2) or other image modalities the reconstructions are very

poor as we can see in Figure 2.17.

A slightly modification of the aforementioned approach was presented in [Peng et al., 2017].

Differently from [Wang and Tang, 2009], the authors replaced the patches by superpixels

[Achanta et al., 2012] as we can observe in the Figure 2.18. An average rank one recognition

rate of 99% and 72% was reported in CUHK-CUFS and CUHK-CUFSF databases respectively.

Focusing in thermal images, Zhang et al. [2017] proposed a method based on Generative

Adversarial Networks (GANs) in order to generate thermogram images from visual spectra

images for further identification using the Pola Thermal dataset [Hu et al., 2016] (see Section

2.3.3). The identification is carried out using the Visual Geometry Group (VGG) network

embeddings that are freely available3. Such synthesized images are feed into this DCNN and

3http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
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Figure 2.16 – Realism of CUHK-CUFS database. Small details such as, the direction of the hair
and beard shape are the very similar

(a) Example from CUHK-CUFS database (b) Example from CUHK-CUFSF database

Figure 2.17 – Synthesized images generated with the method proposed by Wang and Tang
[2009]. Presented in the following order: Original photo, original sketch and synthesized
sketch

compared. Using those embeddings, the authors published an Equal Error Rate (EER) of

25.17% using the VIS-to-ThermalPolarized procotols and an EER of 27.34% using the VIS-to-

Thermal

Similarly, Zhang et al. [2018] also proposed a strategy based on GANs for the exact same task

(VIS-to-Thermal). With slightly changes in the loss they presented a rank one recognition rate

of 19.9% using the private dataset that covers the VIS-to-Thermal problem (with 29 pairs of

images to train the GAN from scratch).

2.2.2 Crafted features-based methods

In these methods raw face images from both domains (Ds and D t ) are encoded with descrip-

tors that are invariant between them.

Liao et al. [2009] proposed a very simple method for the task of VIS to NIR recognition, where

both modalities are normalized using difference of gaussian filter as we can see in Figure 2.19.

As feature descriptor, MutiScale Local Binary Patterns (MLBP)[Pietikäinen et al., 2011] (with
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(a) Patch segmentation (b) Super pixels segmen-
tation

Figure 2.18 – Different procedures to segment parts of the face experimented by Wang and
Tang [2009] and Peng et al. [2017] (images extracted from [Peng et al., 2017])

(a) RGB image (VIS) (b) RGB image filtered (c) NIR image (d) NIR image filtered

Figure 2.19 – VIS and NIR images processed with Difference of Gaussians filter. Images taken
from the CASIA NIR-VIS 2.0 database (see 2.3.1)

different radii) is used. Pairs of images VIS and NIR, processed with MLBP histograms, are

used to train F LD system (see Section 2.1). A verification rate of 67.5% was reported under a

false acceptance rate of 0.1% on the CASIA-HFB [Liao et al., 2009] database.

Liu et al. [2012] hypothesized that independent features between VIS and NIR are embedded

in a particular range of frequency bands. To approach that the authors searched a particular

range of scales of MultiScale Difference-of-Gaussian filter. This search can be seen in Figure

2.20. The authors used two different types of feature descriptor on top of this multiscaled

processed images. The first one is the Histogram of Oriented Gradients (HOG) and the Scale-

invariant feature (SIFT) descriptor is extracted. The Gentle Boost is used as a classifier [Bishop,

2006, p.657]. A rank one recognition rate of 98.51% was reported in the CASIA HFB database.

In a similar direction, Klare and Jain [2013] proposed an approach where face images from

both domains are normalized using three different image processing filters (Difference-of-

Gaussians, Center-Surround Divisive Normalization [Meyers and Wolf, 2008] and Gaussian

Filter). Afterwards, two different feature local descriptors are extracted from patches of the
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(a) VIS image (b) σ0 = 0.5 σ1 = 1.5 (c) σ0 = 1 σ1 = 2 (d) σ0 = 1.5 σ1 = 2.5 (e) σ0 = 2 σ1 = 3

(f) NIR image (g) σ0 = 0.5 σ1 = 1.5 (h) σ0 = 1 σ1 = 1.5 (i) σ0 = 1.5 σ1 = 2.5 (j) σ0 = 2 σ1 = 3

Figure 2.20 – Difference-of-Gaussians filter under different scales with VIS Images and NIR
images. Images taken from the CASIA NIR-VIS 2.0 database (see 2.3.1)

image. The first one is the MutiScale Local Binary Patterns (with r = {1,3,5,7}) and the second

one is SIFT features. This very dense preprocessing and feature extraction mechanism is

summarized in Figure 2.21.

Let I A and IB represent a pair of images from two modalities (A and B) and let fn |n = 1..6 be

the function that preprocess/feature extract I using one of the six combinations described

in figure 2.21. At training time, a vector φ made of the combination of the cosine similarities

between images from the same image modalities is built. Given the cosine similarity k and

two images from the same modality:

k( fn(Ii ), fn(I j )) = fn(Ii ) · fn(I j )

|| fn(Ii )||.|| fn(I j )|| (2.15)

the vector φ is defined for the image modality A:

φA = [k( f (I Ai ), f (I A j )), ...,k( f (I Ai ), f (I A j ))]. (2.16)

Similarly for the image modality B :

φB = [k( f (IBi ), f (IB j )), ...,k( f (IBi ), f (IB j ))]. (2.17)

A matrix X is made of the concatenation φA and φB from the training set and the FLD (see
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Figure 2.21 – Image processing and feature extraction mechanism proposed by [Klare and Jain,
2013], the probe and gallery images are thermal and VIS images respectively. Note that for one
image, six different combinations of pre-processing/features are extracted.

Section 2.1) is estimated. At scoring time, φA and φB are estimated from a pair of samples

and projected on the trained FLD. The cosine similarity is used as a metric. This approach,

called prototype random subspace (P-RS) is tested on four different heterogeneous scenarios:

NIR to VIS, thermal images to VIS, VIS to viewed sketch and forensic sketch to VIS. For the VIS

to sketch, results were reported using the CUHK-CUFS database with a rank one recognition

rate of 99%. As VIS to NIR reference, the CASIA HFB was used and a rank one recognition rate

of 98% was reported. Experimental results using thermal to VIS and the Forensic-sketch to VIS

database were reported in private databases.

With a very complex narrative around the Law of Universal Gravitation, Roy and Bhattacharjee

[2016] proposed an illumination invariant filter called Local-Gravity-Face (LG-Face), whose

implementation and final appearance is very similar to Local Binary Patterns as we can see in

the Figure 2.22.

Images preprocessed using the LG-Face filter are directly compared using L1 norm. Ex-

periments carried out with CUHK-CUFS database and the CASIA HFB showed a rank one

recognition rate of 99.96% and 99.78% respectively.

2.2.3 Feature learning based methods

Feature learning based methods, as the name suggests, proposes to learn from data feature

detectors that are domain invariant. Hence, in this hypothetical representation, images from
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Figure 2.22 – Application of LG-Face under different illumination conditions

different image modalities can be directly compared.

In Jin et al. [2015] the authors proposed a feature learning approach whose goal is to find a

pair of convolutional filters αwhere the LBP processed image difference between images from

the same person, but different modalities are the minimum. Experiments carried out with

the CASIA NIR-VIS 2 (see Section 2.3.1) showed an average rank one recognition rate of 86.2%.

With the CUHK-CUFSF (VIS-to-Sketches) they presented an average rank one recognition rate

of 81.3%.

Lu et al. [2018] propose a method that, on top of LBPs, learn simultaneously a code-book D

and a feature map W between two image modalities. The optimization function is crafted

in a such way that the modality gap between two image domains is explicitly minimized

simultaneously with within-class variability while the between class variability is maximized.

Experiments carried out using the CASIA NIR-VIS 2.0 dataset showed an average rank one

recognition rate of 86.9%.

Based on DCNNs to model the joint mapping between Ds and D t , He et al. [2017] proposes

a framework for VIS to NIR face matching where the low level feature detectors are learnt

with VIS images only. The high level feature detectors are jointly learnt with VIS and NIR

images and it is divided in: NIR layers, VIS layers and NIR-VIS shared layers (which are domain

invariant). One embedding for each image modality is generated and they are compared at

test time as we can observe in Figure 2.23. Experiments carried out using the CASIA NIR-VIS

2.0 dataset showed an average rank one recognition rate of 95.82%.

An extension of this work is presented in He et al. [2018], where the Wasserstein distance

between the NIR and VIS signal distributions is incremented to overall loss function. Ex-

periments with CASIA NIR-VIS 2.0 dataset showed an average rank one recognition rate of

98.7%.
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Figure 2.23 – DCNN architecture proposed by [He et al., 2018]

2.3 Heterogeneous Face Recognition Databases

Several databases were built along the years to support Heterogeneous Face Recognition

research. This work reports experimental results and analysis under seven different image

databases publicly available covering 4 different pairs of image domains. The next subsections

describe each one and their respective evaluation protocols.

2.3.1 Visible Light to Near Infrared

As discussed in 2.1, most face recognition systems are based on images captured in the visible

light range (VIS) of the electromagnetic spectrum (380 to 750nm).

The infrared spectrum (IR) can be further divided into several spectral bands and the bound-

aries between them can vary depending, basically, on the field involved (e.g., optical radiation,

astrophysics, or sensor technology[Miller, 1994]). It comprises of the reflected IR (active) and

the thermal IR (passive) bands. The active band (750 to 2500nm) is divided into the NIR (near

infrared) and the SWIR (shortwave infrared) spectrum (100 to 250nm) [Bourlai et al., 2010].

An schematic of the wave lengths segmentation can be found in Figure 2.24.

This subsection presents the datasets used in this work covering the VIS to NIR scenario.
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Figure 2.24 – Wave lengths schematic. Extracted from Bourlai et al. [2010]

CASIA NIR-VIS 2.0 Face Database (CASIA)

CASIA NIR-VIS 2.0 database [Li et al., 2013] offers pairs of mugshot images and their corre-

sponding NIR photos. No information about the camera used in this work is provided. The

images of this database were collected in four recording sessions: 2007 spring, 2009 summer,

2009 fall and 2010 summer, in which the first session is identical to the CASIA HFB database Li

et al. [2009].

It contains pairs of images from 715 subjects. There are from one to twenty two VIS and

from five to fifty NIR face images per subject, in a total of ≈ 21797 samples. Furthermore,

the annotations of the position of the eyes are also distributed with the images. Figure 2.25

presents some samples of that database.

Figure 2.25 – Samples from CASIA NIR VIS 2.0 Database. Extracted from [Li et al., 2013].
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This database has a well defined protocol and it is publicly available for download. It consists

of ten fold cross closed-set identification protocols. Each fold is split in a training set con-

taining 357 subjects and a test set containing 358 subjects. For reproducibility purposes, this

evaluation protocols is published in a python package format4. Hence, future researchers will

be able to reproduce exactly the same tests with the same identities in each fold. The average

rank one recognition rate in the evaluation set (called view 2) is used as evaluation metric.

Near-Infrared and Visible-Light (NIVL) Dataset

Collected between the course of two semesters (fall 2011 and spring 2012) by the University

of Notre Dame, the NIVL database [Bernhard et al., 2015] was collected with the objective to

analyse the HFR error rates using COTS systems under different pre-processing algorithms.

The VIS images were collected using a Nikon D90 camera. The Nikon D90 uses a 23.6×15.8

mm CMOS sensor and the resulting images have a 4288×2848 resolution. The images were

acquired using automatic exposure and automatic focus settings. All images were acquired

under normal indoor lighting at about a 5-foot standoff with frontal pose and a neutral facial

expression.

The NIR images were acquired using a Honeywell CFAIRS system. CFAIRS uses a modified

Canon EOS 50D camera with a 22.3×14.9 CMOS sensor. The resulting images have a resolution

of 4770×3177. All images were acquired under normal indoor lighting with frontal pose and

neutral facial expression. NIR images were acquired at both a 5ft and 7ft standoff.

The dataset contains a total of 574 subjects with 2,341 VIS and 22,264 NIR images. A total of

402 subjects had both VIS and NIR images acquired during at least one session during both

the fall and spring semesters.

As mentioned before, this dataset was designed and released with the intention of evaluate the

error rates of COTS systems in the VIS-NIR task under different image processing algorithms.

Since there is no need to train background models for commercial matchers, the original

database evaluation protocol does not have a training set. Hence, for this work, we designed a

5-fold cross-validation closed-set identification strategy, where the 574 subjects were split in

344 identities for training and 230 identities for test. The average rank one recognition rate in

the test set is used as evaluation metric.

This evaluation protocol is equally available for download in a python package5. The database

authors don’t provide any face annotation with the images. However, annotations were

manually generated during the course of this work and they are available for download in

the aforementioned python package. Figure 2.26 presents some samples of that database.

4https://pypi.python.org/pypi/bob.db.cbsr_nir_vis_2
5https://pypi.python.org/pypi/bob.db.nivl
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Figure 2.26 – Samples from NIVL Database. Extracted from [Bernhard et al., 2015].

Long Distance Heterogeneous Face Database

Long Distance Heterogeneous Face Database (LDHF-DB)[Kang et al., 2014] was built to ad-

dress the VIS to NIR HFR task concomitantly with the task of recognition at distance. To

address that, data from 100 identities (70 males and 30 females) were collected in both VIS

and NIR (at nighttime) in different standoffs: 1m, 60m, 100m and 150m. For each subject, over

the course of one month, one image was captured at each distance in daytime and nighttime.

Hence, there are in total eight images for each subject, as shown in Figure 2.27.

Figure 2.27 – Samples from LDHF-DB Database collect at . (a) 1m (b) 60m (c) 100m (d) 150m.
Extracted from [Kang et al., 2014]

The short distance (1m) VIS images were collected under a fluorescent light by using the DSLR

camera with the Canon F1.8 lens; and the NIR images were collected using the modified DSLR

camera and NIR illuminator with twenty four infrared LEDs. Long distance (over 60m) VIS

images were collected during the daytime using a telephoto lens coupled with a DSLR camera;

and NIR images were collected using the DSLR camera with NIR light provided by RayMax300

illuminator[Kang et al., 2014]. All images of a subject are frontal faces without glasses, and

collected in a single sitting.

Although this dataset has a well defined 10-fold cross-validation protocol (closed-set identifi-
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cation test), the distribution of the identities were not made publicly available. Each fold is

split in to a training set containing 50 subjects and test set containing 50 subjects. VIS Images

at 1m standoff are used at enrollment time. At scoring time, NIR images standoffs at 1m, 60m,

100m, 150m are used at probes. For reproducibility purposes, this evaluation protocols is

published in a python package format6. Hence, future researchers will be able to reproduce

exactly the same tests with the same identities in each fold.

The database authors don’t provide any face annotation with the images. However, annotations

were manually generated during the course of this work and they are available for download

in the aforementioned python package.

FARGO database

The FARGO database has been recorded across a time period of 5 months on three different

sites and differently from other databases, it is focused on the Face Verification task. The

total of 75 subjects have been recorded, among which 20 are female and 55 males. At the time

of recording, most of the subjects were aged between 20 and 30 years old - the exact age is

available as metadata. The recordings have been made using an Intel®RealSense™SR-300

device, allowing to capture classical VIS images, NIR images and depth maps video sequences

at the same time. Exemplar images derived from each stream are shown in Figure 2.28.

(a) RGB (b) NIR (c) depth

Figure 2.28 – Example of images retrieved from the different streams of the camera.

Each subject was recorded during three sessions. The first session took place in an indoor

environment with controlled lighting, ensuring the face to be well lit. Also, subjects were asked

to bind their hair or remove hats to ensure complete visibility of the face (this has not been

asked in other sessions). The second session has been recorded in a very dark room, and the

third one has been recorded outdoor, and hence contains arbitrary illumination conditions.

In each session and for each subject, four video sequences were recorded: two where the

device was mounted as a webcam on a laptop, and two where the device was mimicking the

frontal camera of a mobile phone. This was done in order to simulate a typical case of remote

authentication.

6https://pypi.python.org/pypi/bob.db.ldhf

32

https://pypi.python.org/pypi/bob.db.ldhf


2.3. Heterogeneous Face Recognition Databases

(a) controlled (b) dark (c) outdoor

Figure 2.29 – Example of images acquired in each session.

During each recording, the subject has been asked to remain still for the first five seconds, and

then to move his head to the left, to the right, to the top and to the bottom, while still looking

at the device. This has been done for two reasons: the movements in yaw will allow to address

the challenge of face recognition across pose and the movements in pitch are trying to mimic

the typical pose variations one can observe when using a front-facing smartphone camera.

Also, subjects wearing glasses were asked to remove them for at least one recording in each

session.

For all recorded face video sequences, 13 specific frames have been manually annotated.

Roughly, these frames correspond to a frontal view of the face, to the extreme positions

attained when the subject moves her/his head (left, right, top and bottom), plus two frames in

between the extreme position and the frontal view. Selected frames have been annotated with

16 keypoints corresponding to salient facial features depicted on Figure 2.30.

Figure 2.30 – The 16 annotated fiducial points.

To address the HFR verification problem, two major protocols were designed. The first one

addresses the task of matching VIS to NIR images and the second one addresses the task of

matching VIS images to depth maps. Furthermore, we have created three sub-protocols that

address each lighting condition and they are described in the Table 2.1.

These evaluation protocols for face verification are equally available for download7 with their

7https://pypi.python.org/pypi/bob.db.fargo
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Table 2.1 – Summary of the different protocols for heterogeneous face recognition: c stands
for controlled, d for dark and o for outdoor.

Training Dev Eval

Enroll Probe Enroll Probe

MC RGB+NIR+c RGB+c c c c
UD RGB+NIR+c RGB+c NIR+d RGB+c Depth+d
UO RGB+NIR+c RGB+c NIR+o RGB+c Depth+o

MC RGB+Depth+c RGB+c c c c
UD RGB+Depth+c RGB+c Depth+d RGB+c Depth+d
UO RGB+Depth+c RGB+c Depth+o RGB+c Depth+o

corresponding annotations.

2.3.2 Visible Light to Sketches

There are basically three different kinds of sketches used by law enforcement and HFR com-

munities: forensic, composite and viewed sketches. Forensic sketches are hand made by

highly trained forensics artists working with eye-witnesses that provide verbal descriptions of

a subject (usually after crimes). Composite sketches are the new trend in law enforcement,

since it doesn’t require specialized artists to make them (a well trained operator is sufficient

for the task of supporting the witness and make the sketch). This one is computed generated

using specialized software. Options on the market are: Identi-Kit8, Faces9 and Evofit10. The

last type of sketches are called viewed sketches; which is made by an artist looking at the

corresponding target photograph. Recognizing people using this type of sketches as input is a

hypothetical problem, but it is anyway investigated in the literature, specially in the HFR area,

since it’s possible to generate database with substantial amount of subjects and there are less

legal issues to deal with. In the next subsections we present the sketch databases used in this

work.

CUHK Face Sketch Database (CUFS)

CUHK Face Sketch Database (CUFS) is composed by viewed sketches. The viewed sketches

are made by an artist looking to the corresponding photograph of a subject. It includes 188

faces from the Chinese University of Hong Kong (CUHK) student database, 123 faces from the

AR database[Martinez, 1998] and 295 faces from the XM2VTS database[Messer et al., 2003].

Figure 2.31 presents some samples of that database.

There are 606 face images in total. For each face image there is a sketch drawn by an artist

8http://identikit.net/
9http://www.iqbiometrix.com/products_faces_40.html

10https://evofit.co.uk/
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Figure 2.31 – Samples from CUHK CUFS Database. Extracted from [Bernhard et al., 2015].

based on a photo taken in a frontal pose, under normal lighting condition and with a neutral

expression.

Unfortunately there is no defined evaluation protocol established for this database. Each work

that uses this database implements a different way to report results. In Wang and Tang [2008]

the 606 identities were split in three sets (153 identities for training, 153 for development, 300

for evaluation). The rank one recognition rate in the evaluation set is used as performance

measure. Unfortunately the file names for each set were not distributed. In Klare and Jain

[2013] the authors created a protocol based on a 5-fold cross validation, splitting the 606

identities in two sets with 404 identities for training and 202 for testing. The average rank

one recognition rate is used as performance measure. The authors from [Bhatt et al., 2012]

evaluated the error rates using only the pairs VIS-Sketch corresponding to the CUHK Student

Database and AR Face Database and in [Bhatt et al., 2010] the authors used only the pairs

corresponding to the CUHK Student Database. In [Jin et al., 2015] the authors created a

protocol based on a 10-fold cross validation splitting the 606 identities in two sets with 306

identities for training and 300 for testing. Also the average rank one recognition error rate in

the test is used to report the results. Finally in [Roy and Bhattacharjee, 2016], since the method

does not requires a background model, the whole 606 identities were used for evaluation and

also to tune the hype-parameters (via grid search). Fine tuning and testing using the same

cohort is not a good practice in machine learning and the results presented, in terms of error

rates, are possibly biased.

For comparison reasons, we will follow the same strategy as in [Klare and Jain, 2013] and do

5 fold cross-validation splitting the 606 identities in two sets with 404 identities for training

and 202 for testing and use the average rank one recognition rate, in the evaluation set as a

metric. For reproducibility purposes, this evaluation protocol is published in a python package

format11. Hence, future researchers will be able to reproduce exactly the same tests with the

same identities in each fold.

11https://pypi.python.org/pypi/bob.db.cuhk_cufs
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CUHK Face Sketch FERET Database (CUFSF)

The CUHK Face Sketch FERET Database (CUFSF) [Zhang et al., 2011] comprises of viewed

sketches. It includes 1,194 face images from the FERET database[Phillips et al., 1996] and

their respectively sketch drawn by an artist. There isn’t an evaluation protocol established for

this database. Each evaluation using this database implements a different way to report the

results in terms of recognition rates. In [Zhang et al., 2011] the authors split the 1,194 identities

in two sets with 500 identities for training and 694 for testing. Unfortunately the file names

for each set was not distributed. The Verification Rate (VR) considering a False Acceptance

Rate (F AR) of 0.1% is used as a performance measure. In [Lei et al., 2012] the authors split the

1,194 identities in two sets with 700 identities for training and 494 for testing. The rank one

recognition rate is used as performance measure. Figure 2.32 presents some samples of that

database.

Figure 2.32 – Samples from CUHK CUFSF Database. Extracted from [Zhang et al., 2011].

For comparison reasons, we will follow the same strategy as in [Lei et al., 2012] and do 5 fold

cross-validation splitting the 1,194 identities in two sets with 700 identities for training and

494 for testing and use the average rank one recognition rate, in the evaluation set, as a metric.

This evaluation protocol is also available for download12. The database authors don’t provide

any face annotation with the VIS images. However, annotations were manually generated

during the course of this work and they are available for download in the aforementioned

python package.

2.3.3 Visible Light to Thermograms

Polarimetric and Thermal Database (Pola Thermal)

Collected by the U.S. Army Research Laboratory (ARL), the Polarimetric Thermal Face Database

(first of this kind), contains polarimetric LWIR (long-wave infrared) imagery and simultane-

12https://pypi.python.org/pypi/bob.db.cuhk_cufsf
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ously acquired visible spectrum imagery from a set of 60 distinct subjects [Hu et al., 2016].

Figure 2.33 – Samples from Pola Thermal Database

For the data collection, each subject was asked to sit in a chair and remove the glasses, if any. A

floor lamp with a compact fluorescent light bulb rated at 1550 lumens was placed 2m in front

of the chair to illuminate the scene for the visible cameras and a uniform background was

placed approximately 0.1m behind the chair. Data was collected at three distances: Range 1

(2.5m), Range 2 (5m), and Range 3 (7.5m). At each range, a baseline condition is first acquired

where the subject is asked to maintain a neutral expression looking at the polarimetric thermal

imager. A second condition, which is referred as the “expressions” condition, was collected

where the subject is asked to count out loud numerically from one upwards. Counting orally

results in a continuous range of motions of the mouth, and to some extent, the eyes, which

can be recorded to produce variations in the facial imagery. For each acquisition, 500 frames

are recorded with the polarimeter (duration of 8.33 s at 60 fps), while 300 frames are recorded

with each visible spectrum camera (duration of 10s at 30 fps). Two types of thermal images

are provided in this database, the first one is the Conventional Thermal and the Polarimetric

Thermal. As opposed to the original protocol, that proposes a 100-fold cross-validation

evaluation, we applied a 5-fold cross validation evaluation protocol where the 60 clients are

split in 25 identities for training and 35 identities for testing. The average rank one recognition

rate in the test set is used as evaluation metric. The protocol called “overall”, which probes

data from the 3 ranges, is used in this work. This evaluation protocol is also available for

download13.

Table 2.2 summarizes relevant features of all mentioned databases.

2.4 Evaluation Metrics

The evaluation protocols proposed to measure error rates in the databases mentioned in

Section 2.3 share the same methodology, exception to FARGO database The majority of them

approach the HFR task as closed-set identification problem (see section 1.1). The FARGO

database approach the HFR task as a verification problem. Hence, for comparison reasons,

in this work, FARGO is approached as verification task and the remaining databases are

13https://pypi.python.org/pypi/bob.db.pola_thermal
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Table 2.2 – Summary of all database characteristics

Database name # Identities Annotations? Public Protocol?

VIS/Sketch
CUHK-CUFS 606 3 7

CUHK-CUFSF 1,194 7 7

VIS/NIR
CASIA 715 3 3

LDHF 100 7 7

NIVL 574 7 7

FARGO 75 3 3

VIS/Thermal
Thermal 60 3 7

PolaThermal 60 3 7

approached as closed-set identification task. This subsection describes the evaluation metrics

used for each one of the task.

2.4.1 Closed-set identification

In the closed-set identification task, every probe sample is compared with all the class-specific

models stored within the system. The decision-making process then consists of returning

the set of n-classes (models) that are similar to the one of the probe sample. In practice, this

is achieved by returning the n largest scores sorted. The identification of a probe sample is

correct when its class belongs to the returned set of n classes. If the model corresponding to

the probe sample gives the r th largest score, the rank of this probe sample is said to be equal

to r .

The closed-set identification performance of a system can be represented using a cumulative

match characteristics (CMC) curve. For each value r , the CMC curve displays how many

probe samples have a rank r or lower, normalized by the total number of probe samples. When

r = 1, the corresponding measure is known as the recognition rate (RR).

An example of this curve is presented in Figure 2.34.

2.4.2 Verification

In a verification task, the decision-making process consists of comparing a given score

s = P (x|Θ) with a particular threshold θ, where x is the input sample and Θ is the model

that corresponds to the claimed identity. In case s ≥ θ, it is assumed that the input sample

corresponds to the claimed identity. If not, the assumption is False.

The verification task can produce two different types of errors. The first one is the False Match

(FM), if the verification system has wrongly accepted a zero effort impostor. The second one is

the False Non Match (FNM) if a true claimant (also called genuine) has been rejected. Splitting
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Figure 2.34 – Cumulative Match Characteristics (CMC) curve under different scales in the
x-axis of an arbitrary biometric system

the scores into true claimant scores and zeroth effort impostor scores the False Match Rate

(FMR) and the False Non Match Rate (FNMR) can be defined as follows:

F MR(θ) = F M

# zero effort impostors
(2.18)

F N MR(θ) = F N M

# genuines
(2.19)

A limitation when reporting F MR and F N MR values for a particular threshold θ is that they

describe the performance for one specific operational point. Furthermore, the FMR and the

FNMR are correlated. Depending of the value of thet a, increasing FMR reduces FNMR, and

vice versa. To observe this trade-off between those two possible errors under different values

for θ, the Detection Error Tradeoff (DET) curve is introduced. In the DET curve FMR vs FNMR

are plotted under different values of θ in a bi-logarithm plot as can be observed in Figure 2.35.

In this work θ is estimated using the development set (only for FARGO where verification

experiments applies). The value of θ is taken once FMR is at 1% (see dashed line in Figure 2.35

(a)). Then, the FNMR(θ) in the evaluation set is estimated and reported (see the blue dot in

Figure 2.35 (b)). In this work such metric is represented as FNMR@FMR=1%(dev).
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Figure 2.35 – Example of DET curve of an arbitrary biometric system. It is possible to observe
an FNMR@FMR=1%(dev) of ≈ 5% in the Evaluation set
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3 From Face Recognition to Heteroge-
neous Face Recognition

In the previous chapter the literature review in Face and Heterogenous Face Recognition was

presented.

In the course of the last years Face Recognition researchers investigated ways to find features

that are both discriminative and robust against different sources of natural noise, such as,

illumination, pose, expression, aging. Noise introduced by these factors introduces covariate

shift in the pixel distribution and if this is not taken into account, Face Recognition error rates

substantially increase. We can observe this effect in Figure 2.3 (a) where different illumination

conditions slightly changed the distribution of the pixels. Advances in terms of algorithms

and the volume of data collected to understand these sources of covariate shift made error

rates in face recognition decrease steadily.

Along chapter 2.3 it was possible to observe differences in appearance between different

image modalities. Intuitively, those differences can be slightly severe, such as VIS to NIR

matching (see section 2.3.1) or very severe, such as VIS to Thermal or VIS to Depth (see

sections 2.3.1 and 2.3.3). Although there are clear differences in appearance between different

image modalities, the assessment on how Face Recognition trained with VIS only perform (in

terms of recognition rates) was never carried out. Furthermore, since the current state-of-the-

art face recognition approaches were created to handle certain sources of covariate shift, this

assessment is something that should be verified.

The goal of this chapter is two fold. First, baselines based on different Face Recognition

algorithms trained with only VIS images are established for the HFR task. Second, baselines

based on the current state-of-the-art algorithms for HFR are presented and integrated as part

of the software package that corresponds to this thesis that allows its reproducibility.

The experiments from this chapter can be regenerated with the software package correspond-

ing to this thesis1. More information on how to install this software package, go to the Appendix

A.

1https://gitlab.idiap.ch/bob/bob.thesis.tiago
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In Sections 3.1 and 3.2 presents the Face Recognition and the Heterogeneous Face Recognition

baselines used in this work respectively. The hyperparameter selection and implementation

specificities are described with details. In the Section 3.3, HFR experiments are introduced.

Finally Section 3.4 presents the final discussions of the chapter.

3.1 Face Recognition baselines

In this section Face Recognition systems either based on crafted features or either based on

feature learning are presented.

3.1.1 Gabor Graphs

The mechanism around Gabor wavelets was briefly introduced in Section 2.1.4. In this subsec-

tion just implementation details are presented.

The approach based on Gabor graphs was introduced by [Günther et al., 2012]. In this recent

work Günther et al. [2017] exhaustively fine tuned the wavelet parameters and the dimensions

of the face for the VIS face recognition using the BANCA face database [Bailly-Bailliére et al.,

2003]. The size of detected faces were set to have a width(w) and height (h) ratio of w : h = 4 : 5.

Then, h was exhaustively tuned from 20 pixels to 200 pixels. Error rates started to stabilize

in a plateau with detected face size of 64×80 pixels. Once faces are detected, an alignment

is made using manually annotated face landmarks, such that the left eye le ye and the right

eye re ye are at le ye = ( w
4 , h

5 ) and re ye = ( 3w
4 , h

5 ) respectively. For the gabor wavelet parameters

the best similarity measure between two Gabor Jets J and J ′ that presented the lowest error

rates is the Phase Difference with the Canberra similarity which is defined as:

S(J ,J ′) =∑
j

[
a j −a′

j

a j +a′
j

+cos(φ j −φ′
j −~kT

j
~d)

]
. (3.1)

The Gabor Jets are placed in a grid at every six pixels in an image as we can see in Figure 3.1.

For the wavelet, the maximum frequency kmax was set to kmax =π with width σ= 2π.

Each baseline is implemented in the thesis software2 and, once installed, can be triggered with

a single command line. To trigger this baseline the following bash command should be typed.

1 $ bob bio htface htface_baseline gabor_graph <database >

3.1.2 Local Binary Patterns

The Local Binary Patterns system implemented in this work is an adaptation from [Ahonen

et al., 2004]. Faces are detected, cropped and aligned to be with 200× 250 pixels. Then,

LBPP=8,r=2 is computed in the aligned image for further block division of 32×32 pixels with

16 pixels of overlap at each direction. Finally, histogram for each block is computed and then
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(a) VIS (b) NIR (c) Sketch

Figure 3.1 – Gabor Jets placed in different image modalities

concatenated.

This algorithm is non parametric, hence, no action is made at training time. At enrollment

time the histogram is stored as is. Finally at scoring time the chi-square distance (χ2) between

two histograms is computed.

This baseline can be triggered with the following bash command2.

1 $ bob bio htface htface_baseline htface_classic_lbp <database >

3.1.3 Local Gabor Binary Pattern Histograms

The mechanism around Local Gabor Binary Pattern Histograms [Zhang et al., 2005] was briefly

introduced in Section 2.1.4. As before, just implementation details are presented.

In [Günther et al., 2017] the wavelet parameters, the dimensions of the detected face and

the LBP parameters were carefully tuned. Hence, we will use these parameters in our work.

Faces are detected and cropped in the same way as in 3.1.1 For the wavelets, the maximum

frequency kmax is set to kmax =π with width σ=p
π. The LBPP=8,r=2 with 8 sampling points

with radius equals to 2 was selected and the LGBP processed images are split in 4×4 blocks

with no overlap. Finally, for each block LBP histograms are computed and then concatenated

forming a single 1d vector.

This algorithm is non parametric, hence, no action is made at training time. At enrollment

time the computed histogram is stored as is. Finally at scoring time the histogram intersection

between two histograms is computed.

This baseline can be triggered with the following bash command2.

1 $ bob bio htface htface_baseline lgbphs <database >

43



Chapter 3. From Face Recognition to Heterogeneous Face Recognition

Type Filter Size/Stride, Pad Output size
Input 224×224×3
Conv1[1−3] 3×3/1,1 224×224×64
Pool1 2×2/1 112×112×64
Conv2[1−2] 3×3/1,1 112×112×128
Pool2 2×2/1 56×56×128
Conv3[1−3] 3×3/1,1 56×56×256
Pool3 2×2/1 28×28×256
Conv4[1−3] 3×3/1,1 28×28×512
Pool4 2×2/1 14×14×512
Conv5[1−3] 3×3/1,1 14×14×512
Pool5 2×2/1 7×7×512
fc6 4,096 25,088×4,096
fc7 4,096 4,096×4,096

Table 3.1 – The VGG16 architecture

3.1.4 Deep Convolutional Neural Networks

In this section it is described all approaches based on Deep Convolutional Neural Networks.

This Section encompasses models either publicly available on the internet or trained in the

context of this thesis.

VGG

Details about VGG networks was already introduced in 2.1.5. In this section just implementa-

tion details are discussed.

Parkhi et al. [2015] introduced a methodology for large scale data collection using web crawling

and, with this data collected, a model called VGG16, whose description is on Table 3.1, was

trained with input signals of size 224×224×3. Such pre-trained model is available for download

in their web page2 and an it is integrated in this thesis software with the following bash

command2.

1 $ bob bio htface htface_baseline htface_vgg16 <database >

Light CNN

Wu et al. [2018] proposed an architecture that has ten times less free parameters than the

VGG16-Face and claimed that it is naturally able to handle mislabeled data during its training

(very common in datasets mined automatically). This is achieved through the usage of a newly

introduced Max-Feature-Map (MFM) activation 3. The Max-Feature-Map operator consists

basically in the computation of the MAX between successives feature maps like in Figure 3.2.

The input signal of such network are gray scaled images of 112×112 and its architecture is

2http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
3This was implemented by myself in tensorflow https://github.com/tensorflow/tensorflow/pull/11824 and

merged to the master branch
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Type Filter Size/Stride, Pad Output size
Conv1 5×5/1,2 128×128×96
MFM1 128×128×48
Pool1 2×2/2 64×64×48
Conv2a 1×1/1 64×64×96
MFM2a 64×64×48
Conv2 3×3/1,1 64×64×192
MFM2 64×64×96
Pool2 2×2/2 32×32×96
Conv3a 1×1/1 32×32×192
MFM3a 32×32×96
Conv3 3×3/1,1 32×32×384
MFM3 32×32×192
Pool3 2×2/2 16×16×192
Conv4a 1×1/1 16×16×384
MFM4a 16×16×192
Conv4 3×3/1,1 16×16×256
MFM4 16×16×128
Conv5a 1×1/1 16×16×256
MFM5a 16×16×128
Conv5 3×3/1,1 16×16×256
MFM5 16×16×128
Pool4 2×2/2 8×8×128
fc1 512
MFM_fc1 256

Table 3.2 – The Light CNN architecture

described in Table 3.2.

Although a version of such DCNN was trained in the context of this work, thanks to my

contribution to the tensorflow stack, in this chapter, its pre-trained version provided by Wu

et al. [2018] is used4.

This baseline can be triggered with the following bash command2.

1 $ bob bio htface htface_baseline htface_lightcnn <database >

;

Figure 3.2 – Max-Feature-Map (MFM) activate, where h(x) = max(x1, x2)

Inception Resnet v1 and Inception Resnet v2

The Inception Resnet v1 and Inception Resnet v2 are implemented and trained in the context

of this thesis. Those are the closest open-source implementation of the model proposed in

4https://drive.google.com/file/d/0ByNaVHFekDPRMGlLWVBhbkVGVm8/view
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[Schroff et al., 2015], where neither training data or source code were made available and it is

inspired by the implementation of Szegedy et al. [2017]. An schematic of both architectures

can be seen in Figure 3.11 (end of the chapter).

Each one of these DCNNs are trained using VIS images gray scaled and RGB. Hence, four

different DCNNs are trained. The number of possible permutations of the hyperparameters

to train such DCNNs can take is substantially big. For instance, the batch size, optimizer,

regularization parameters, drop out, learning rate strategy, parameters of the convolution,

parameters of the pooling, inception layers setup, number of residual connections, number of

data augmentation parameters, loss function and many other things. In this thesis it is not

hypothesize anything with respect to that, instead, the same recipes used in Szegedy et al.

[2017] are followed, which presents very high recognition rates in LFW dataset.

In this work the MS-Celeb dataset is used. Such dataset contains a substantial amount of

mislabeling. Hence, in the context of this thesis, this dataset was pruned in a semi-automatic

manner and the result of this pruning is published here 5. Faces are detected, cropped, aligned

and stored using the MTCNN face detector [Zhang et al., 2016]. This face detector is also

integrated in this software thesis6. The outcome of this pruning resulted in a dataset of 8M

samples with 87,662 identities.

The RMSProp optimizer is used as a solver7 with mini-batches of 90 samples. The learning rate

is kept to 0.1 for 65 epochs. Then, it is decreased to 0.01 for 15 epochs and finally decreased

once more to 0.001 until the end of the training. In total all the DCNNs are trained for 250

epochs.

The embeddings of these four DCNNs are 128d and to train them they were fed into a hot-

encoded fully connected layer with 87,662 outputs. The weight sum between the center and

cross entropy loss proposed by Wen et al. [2016] (see Equation (5) in the paper) is used as loss

function.

The assessment on how those DCNNs perform in different large scale VIS image databases

can be found in the Appendix B.

This baseline is integrated in the thesis software and can be triggered with the following

command:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_rgb <database >

2 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray <database >

3 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_rgb <database >

4 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray <database >

5http://gitlab.idiap.ch/tiago.pereira/bob.db.msceleb
6https://gitlab.idiap.ch/bob/bob.ip.mtcnn
7tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
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DCNN for Face Recognition

The FR task using the systems described in Sections 3.1.4, 3.1.4 and 3.1.4 is approached using

their embeddings as described in chapter 2.1.5. Those DCNNs are already trained, hence, no

action is made at training time. At enrollment time the embeddings are stored as is. Finally

at scoring time, the cosine similarity is applied as score. Given two arbitrary embeddings xe

and xp , such metric is defined as the following:

s(xe , xp ) = xe · xp

||xe ||||xp ||
(3.2)

3.2 Heterogeneous Face Recognition baselines

In this Section it is described the baselines that are implemented in this thesis. The baselines

either consists in source code that is integrated in the software thesis or that is implemented

by extracting the informations on the corresponding papers.

3.2.1 Heterogeneous face recognition from local structures of normalized appear-
ance

This section describes the details of version of the work proposed by Liao et al. [2009]. Focused

in the task of VIS to NIR, the authors hypothesized that differences between VIS and NIR

modalities can be suppressed using Difference-of-Gaussian (DoG). The DoG filter consists in

the subtraction of two Gaussian convolved images. Given a 1d signal I the DoG output can be

defined as:

DoGσ1,σ2 (x) = I ∗ 1

σ1
p

2π
e−(x2)/2σ2

1 − I ∗ 1

σ2
p

2π
e−(x2)/2σ2

2 , (3.3)

where σ1,2 are the standard deviation of each Gaussian. The outcome of this normalization

can be seen in Figure 2.19. For this work σ1 = 1 and σ2 = 2.

In this work, images are cropped to 120×120 and Local Binary Patterns with 8 sampling points

and radius equals to 2, LBP8,2 is used as feature descriptor, hence the same pattern is set. The

way that block division was made is not described in the paper. Hence, a fine tuning using the

CASIA-NIR-VIS 2.0 database is carried out varying the block size from 8×8 to 64×64 pixels.

A good trade-off between error rate and dimensionality of the feature vector was found with

blocks with 32 pixels. The classification is carried out using FLD (see Section 2.1.2).

This baseline can be triggered with the following bash command2.

1 $ bob bio htface htface_baseline htface_mlbphs <database >

47



Chapter 3. From Face Recognition to Heterogeneous Face Recognition

3.2.2 Heterogeneous face image matching using multi-scale features

In this section it is described the details of our version of the work proposed by Liu et al. [2012],

which is also focused on the task of VIS to NIR HFR. In this work the authors hypothesized

that independent features between VIS and NIR are embedded in a particular range of fre-

quency bands and this can be approached also via Difference-of-Gaussian filter. There is no

information about the number of DoG filters used and how each convolutional filter is set. In

this thesis it is selected a range of 3 different values for the pair σ1,2, respectively σ1 = [1,1.5,2]

and σ2 = [2,2.5,3] and two values for the kernel size (patched of 3×3 and 4×4).

In Figure 3.3 it is possible to observe the selected setup in the different image modalities.

(a) VIS image (b) σ1,2 = (1,2),K = 4 (c) σ1,2 = (1,2),K = 5 (d) σ1,2 = (1.5,2.5),K = 4 (e) σ1,2 = (1.5,2.5),K = 5

(f) NIR image (g) σ1,2 = (1,2),K = 4 (h) σ1,2 = (1,2),K = 5 (i) σ1,2 = (1.5,2.5),K = 4 (j) σ1,2 = (1.5,2.5),K = 5

Figure 3.3 – Difference-of-Gaussians filter crafted under different values for σ1,2 and different
kernel scales K

In this thesis, images are cropped to 120×120 pixels and a combination of HOG and MLBP

features are used. A combination of PC A and F LD is used in the classification stage.

This baseline can be triggered with the following bash command2.

1 $ bob bio htface htface_baseline htface_multiscale_features <database >

3.2.3 Geodesic Flow Kernel

The Geodesic Flow Kernel (GFK) proposed by Gong et al. [2012] explicitly models the source

and target domain in individual d-dimensional linear subspaces and then embeds them onto
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a Grassmann manifold. A Grassmann manifold G(d ,D) is the collection of all d-dimensional

subspaces of the feature vector space RD . Given two arbitrary linear subspaces Ps ,Pt ∈RD×d

(which are data points into a Grassmann manifold), the GFK approach explicitly construct an

infinite-dimensional feature space φ(t ) that maps those two subspaces. Features from both

image modalities are then projected into these subspaces forming a feature vector of infinite

dimensions:

z∞ =φ(t )ᵀx : t ∈ [
0,1

]
, (3.4)

where φ(0) = Ps and φ(1) = Pt . For other values of t :

φ(t ) = PsU1Γ(t )−RsU2Σ(t ), (3.5)

where Rs ∈ RD×(D−d) denotes the orthogonal complement to Ps with Rᵀ
s Ps = 0 (a.k.a null

space), U1 ∈Rd×d and U2 ∈R(D−d)×d are orthonormal matrices that are given by the following

pair of SVDs:

Pᵀ
s Pt =U1ΓV ᵀ,Rᵀ

s Pt =−U2ΣV ᵀ (3.6)

Using this new representation forces classifiers to use domain invariant features. Given two

samples xs and xt from both source and target domains, the infinite-dimensional feature

vector is handled conveniently by their inner product that gives rise to a positive semi-definite

kernel defined on the original features:

x∞
s · x∞

t = xs

∫ 1

0
φ(t )φ(t )ᵀxt d t = xᵀ

s Gxt (3.7)

G can be computed efficiently using generalized singular value decomposition8.

This strategy was implemented in the context of this thesis and it is the only Python-C++

implementation available9.

Any type of crafted feature can be used to compose Ps and Pt . In this thesis, the absolute

values of Gabor Jets (see section 3.1.1) are used, which was the same strategy implemented in

[Sequeira et al., 2017]. Then Ps and Pt are defined as basis of PCA (see chapter 2.1.1) linear

subspace.

At training time, Ps , Pt and G are estimated. At enrollment time, Gabor jets are computed

and stored as is. Finally, at scoring time, the absolute values of a pair of Gabor Jets (J and

8https://www.idiap.ch/software/bob/docs/bob/bob.math/stable/py_api.html#bob.math.gsvd
9https://www.idiap.ch/software/bob/docs/bob/bob.learn.linear/stable/py_api.html#bob.learn.linear.

GFKTrainer
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J ′) are compared via kernalized dot product as the following:

S(J ,J ′) =
∑N

n=1 Jn ·G·J ′
n

N
. (3.8)

This baseline can be triggered with the following bash command2.

1 $ bob bio htface htface_baseline htface_gfkgabor <database >

3.3 Experiments and Analysis

In this section recognition rates assessment of FR Baselines and HFR Baselines, either im-

plemented in the context of this work or directly depicted in publications, are presented. To

make easier the interpretation of the recognition rates, all the tables in this section (Tables

3.3, 3.4, 3.5 and 3.7) are split in three parts. FR Baselines corresponds to all FR baselines

described in the Section 3.1. Reproducible Baselines corresponds to all HFR baselines de-

scribed in the Section 3.2 and it was implemented or integrated in the context of this work.

Finally, Non Reproducible Baselines corresponds to HFR baselines whose source code was

not made publicly available and its average rank one recognition rate was picked directly from

its corresponding publication.

3.3.1 Visible Light to Sketches

In this subsection it is described experiments with two sketch databases: CUHK-CUFS and

CUHK-CUFSF. Table 3.3 presents the average rank one recognition rate for each face recogni-

tion baseline using those databases.

Sketches are basically composed by shapes and, because of that, have lots of high frequency

components. Moreover, all the texture from one sketch comes from the texture either from

paper where the sketch was drawn which is the case for the CUHK-CUFS and CUHK-CUFSF

databases. Hence, it is reasonable to hypothesize that all the tested FR Baselines are not

suitable for VIS-Sketch task.

Experiments carried out with CUHK-CUFS database demonstrates that the aforementioned

hypothesis can’t be confirmed for the FR Baselines, which present an average rank one recog-

nition rates way above a hypothetical random classifier. For instance, the FR systems based on

Gabor Graph and LGBPHS, present the highest average rank one recognition rates, respectively

81.29% and 92.97%. Those baselines present higher recognition rates than two Reproducible

HFR baselines; MLBP baseline, introduced by [Liao et al., 2009], presents an average rank

one recognition rate of 62.27% and the MultiScale features introduced by [Liu et al., 2012]

presents an average rank one recognition rate of 64.16%. The GFK presents an average rank

one recognition rate of 93.27%. Finally, the FR baselines based on DCNNs vary from ≈ 70% to

≈ 80% and the best one is Incep. Resnet v2 with 80.29%.
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Figure 3.4 – CUHK-CUFS Baselines - Average CMC curves (with error bars)

Figure 3.4 presents the average CMC for all the baselines that was possible to be executed with

their respective standard deviations. It is possible to observe that the system based on LGBHS

presents an average rank 10 recognition rate above 98%, which is surprising since this system

has no knowledge about how to represent sketches. Same trends can be observed for other

FR systems, where their average rank 10 recognition rate are also increased. However, those

baselines are not better the state-of-the-art published by Klare and Jain [2013] which presents

an average rank one recognition rate of 99%.

Experiments carried out with CUHK-CUFSF shows a different reality if compared with CUHK-

CUFS. It is possible to observe that the best FR Baseline for CUHK-CUFS (LGBPHS) presents

an average rank one recognition rate of 25.38% on CUHK-CUFS. The best DCNN FR Baselines

is the VGG 16 with an average rank one recognition rate of 32.99%. Other DCNN FR Baselines

present similar performance using the same figure of merit. Among the Reproducible HFR

baselines, the best one is GFK that presents an average rank one recognition rate of 41.01%.

It is possible to observe, that despite the fact such DCNNs don’t have any prior knowledge

about the target modality (D t ), the feature detectors of such models are still able to detect

discriminant features in of all them (above a hypothetical random classifier). As before, those

recognition rates are lower than the state-of-the-art recognition rates for the CUHK-CUFSF

database (which consider a joint modeling of both Ds and D t ). The state-of-the art in this

database is the one implemented by Galea [2018]. The DEEPs, system, which is based on

DCNNs, presents an average rank one recognition rate of 82.92%.
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Table 3.3 – VIS to Sketches - Average rank one recognition rate under different Face Recognition
CNN systems.

# FR Algorithm CUHK-CUFS CUHK-CUFSF

FR Baselines
1 Gabor-Graph 81.29%(2.4) 19.39%(1.0)
2 LGBPHS 92.97%(2.2) 25.38%(1.5)
3 LBP 16.33%(1.9) 6.23%(1.8)
4 Light CNN 76.63%(2.9) 25.87%(1.5)
5 VGG 16 73.17%(1.6) 32.99%(1.1)
6 Incep. Res. v1 - gray scaled 72.57%(3.7) 24.49%(0.5)
7 Incep. Res. v1 - RGB 65.24%(4.7) 20.93%(1.2)
8 Incep. Res. v2 - gray scaled 80.29%(1.5) 29.51%(0.7)
9 Incep. Res. v2 - RGB 77.13%(3.2) 31.05%(1.4)

Reproducible Baselines
10 MLBP [Liao et al., 2009] 62.27%(3.8) 9.11%(1.7)
11 MultiScale feat. [Liu et al., 2012] 64.16%(2.5) 6.76%(0.7)
12 GFK [Gong et al., 2012; Sequeira et al., 2017] 93.27%(1.4) 41.01%(1.8)

Non Reproducible Baselines
13 P-RS as in [Klare and Jain, 2013] 99%(n/a) -
14 TP-LBP [Wolf et al., 2008] - 59.7%(n/a)
15 CDFL Jin et al. [2015] - 81.3%(n/a)
16 DEEPS [Galea, 2018] - 82.92%(1.3)
17 LGMS [Galea, 2018] - 78.19%(0.5)
18 Face VACS in [Klare and Jain, 2013] 89%(n/a)

Figure 3.5 presents the average CMC for all baselines that was possible to execute with their

respective standard deviations. It is possible to observe that for our best tested system (VGG

16), average rank 10 is ≈ 65% and average rank 100 is ≈ 90% which is still lower than the

state-of-the-art for this database (using rank one as a reference).

Considering the FR Baselines, there is a big gap, in terms of average rank one recognition rate,

between CUHK-CUFS and CUHK-CUFSF. This could be explained by the realism and lack of

distortions of the CUHK-CUFS sketches. With respect to shape, the pairs photos-sketches

from this dataset are quite realistic as it can be observed in the Figure 3.6. Details such as

expression, proportion of the face and volume of the hair are presented in both image domains.

This realism is not presented in the CUHK-CUFSF database and the FR Baselines can’t model

such within class variability properly.

3.3.2 Visible Light to Near Infrared

This subsection describes experiments on four different image databases: CASIA, NIVL, FARGO

and LDHF (see section 2.3.1). Table 3.4 presents the average rank one recognition rate for each

face recognition baseline which uses this benchmark as a reference.

Experiments using hand-crafted features presented the lowest recognition rates. For instance,
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Figure 3.5 – CUHK-CUFSF Baselines - Average CMC curves (with error bars)

Figure 3.6 – Realism of CUHK-CUFS database

experiments using the FR systems based on Gabor wavelets, such as Gabor Graph and LGBPHS,

present an average rank one recognition rate of 16.41% and 30.98% using the NIVL dataset.

Using CASIA dataset as a reference, the Gabor Graph and LGBPHS FR systems present an

average rank one recognition rate of 21.49% and 22.24% respectively; for the LDHF it is

achieved 21.8%(1.4) and 34.9% respectively. The FR system based on Local Binary Patterns

presents an average rank one recognition rate of 3.37%, 14.56% and 13.4% for the databases

CASIA, NIVL and LDHF respectively.

Among the Reproducible HFR Baselines, the MultiScale features from [Liu et al., 2012] presents

higher rank one recognition rate for the CASIA and LDHF databases with respectively 70.33%

and 26.6%. For the NIVL, the MLBP proposed by [Liao et al., 2009] presents 90.34% using the

same figure of merit.
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FR systems based on DCNNs present the highest average rank one recognition rates. Surpris-

ingly, for some DCNNs, such benchmarks are better than some marked as Non Reproducible

Baselines (see Table 3.4). The Light CNN presents an average rank one recognition rate of

65.17%, 86.24% and 41.7% for the databases CASIA, NIVL and LDHF respectively. The VGG16

follows the same trend with 67.92%, 90.34% and 70.4% for the same databases respectively.

The recent Inception Resnet DCNNs present the highest average rank one recognition rates.

For the CASIA database the best systems are the Incep. Res. v1 and Incep. Res. v2 using RGB

inputs with 74.25% and 73.80% respectively. For the NIVL database the best systems are the

Incep. Res. v2 using RGB and gray scaled images as input with 91.09% and 88.14% respectively.

Finally for the LDHF the best systems is the Incep. Res. v2 - RGB with 53.8%.

Table 3.4 – VIS to NIR - Average rank one recognition rate under different Face Recognition
systems

# FR Algorithm CASIA NIVL LDHF

FR Baselines
1 Gabor-Graph 21.49%(1.1) 16.41%(0.9) 21.8%(1.4)
2 LGBPHS 22.24%(1.6) 30.98%(3.3) 34.9%(1.7)
3 LBP 3.68% (0.6) 13.72%(1.5) 13.40%(2.1)
4 Light CNN 65.17%(0.6) 86.24%(1.4) 41.7%(3.3)
5 VGG 16 67.92%(1.4) 90.34%(1.3) 70.4%(2.3)
6 Incep. Res. v1 - gray 74.25%(1.3) 91.09%(0.3) 51.5%(1.2)
7 Incep. Res. v1 - RGB 55.46%(1.4) 77.61%(0.8) 45.1%(1.5)
8 Incep. Res. v2 - gray 73.80%(1.2) 88.14%(0.6) 45.2%(0.9)
9 Incep. Res. v2 - RGB 60.01%(1.7) 86.06%(0.7) 53.8%(0.9)

Reproducible Baselines
10 MultiScale feat. [Liu et al., 2012] 70.33%(1.2) 85.35%(1.1) 26.6%(2.4)
11 MLBP [Liao et al., 2009] 67.54%(1.7) 90.34%(1.3) 22.1%(2.9)
12 GFK [Gong et al., 2012; Sequeira et al., 2017] 26.98%(0.9) 63.08%(2.2) 29.9%(4.4)

Non Reproducible Baselines
13 IDR in [He et al., 2017] 95.82%(0.7) - -
14 CDL in [Wu et al., 2017] 98.62%(0.2) - -
15 WCNN in [He et al., 2018] 98.70%(0.3) - -
16 DSIFT in [Dhamecha et al., 2014] (Table II) 73.28%(1.1) - -
17 FaceVACS in [Dhamecha et al., 2014](Table I) 58.56%(1.2) - -
18 Gabor+RBM [Jin et al., 2015] (Table I) 86.1% (0.1) - -
19 PCA+SYM+HCA [Li et al., 2013] 23.7% (1.9) - -
20 CDFL [Jin et al., 2015](Table I) 71.5% (1.4) - -
21 TRIVET in [Liu et al., 2016] 95.74%(0.5) - -

Figure 3.7 presents the average CMC curves for the CASIA and NIVL databases. The observation

of this benchmark corroborates with the observations made in the Table 3.4, that DCNN

baselines presents the highest recognition rates in these tests, even for rank equals to 10 and

100. For the NIVL specially the Incep. Res v2 gray achieves an average rank 10 recognition

rate of 100%. In this dataset VIS and NIR images are both high resolution and close-ups as is

can be observed in Figure 3.8 and this possibly is playing an important role in the recognition

rates. For the CASIA, however, such benchmarks are not better than the ones published and
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considered the state-of-the-art. For instance the recent WCNN proposed by He et al. [2018]

presents an average rank one recognition rate of 98.70%.
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Figure 3.7 – VIS to NIR Baselines - Average CMC curves (with error bars)

(a) VIS (b) NIR

Figure 3.8 – VIS and NIR images from NIVL dataset

The dataset LDHF was designed to approach the problem of surveillance in nighttime. Thus,

Kang et al. [2014] collected NIR images in four different distances in indoor and outdoor set

ups. Indoor acquisitions were taken from 1m; the outdoors were taken at nighttime from 60m,

100m and 150m (see 2.3.1 for more details). Table 3.4 presents the average rank one recognition

rates summarized; to assess the recognition rate under different standoffs, Table 3.5 presents

them for each distance in isolation. From this table it is possible to observe the same trends

as before; FR systems based on DCNNs presents the highest recognition rates. Moreover,

recognition rates steadily decreases once probe images are taken from further distances. For
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instance, using Incep. Res. v1 - gray as reference, the average rank one recognition rate varies

from 94.8% to 4.8% with probe images taken from 1m and to 150m respectively.

From Figure 2.27 it is possible to observe severe differences in resolution between 1m and

150m standoffs. As a matter of fact, using the MTCNN10 face detector the average detected

faces from 1m stand-off is 738×897 pixels and from 150m stand-off is 60×60 pixels. It is

possible to suggest that the up-scaling distortions are affecting the effectiveness of the FR

Baselines. The same trend is observed for the CASIA dataset where the stand-offs are more

unconstrained.

Table 3.5 – LDHF average rank one recognition rates under different standoffs

# FR Algorithm 1m 60m 100m 150m

FR Baselines
1 Gabor-Graph 54.80%(3.7) 15.6(1.497) 15.2(3.487) 1.6(1.96)
2 LGBPHS 72.4%(4.3) 32.0%(2.9) 26.0%(3.6) 9.2%(3.2)
3 LBP 34.0%(3.3) 7.2%(2.0) 7.6%(3.2) 4.8%(1.6)
4 Light CNN 77.2%(4.5) 54.4%(6.1) 30.4%(6.4) 4.8%(1.0)
5 VGG 16 98.8%(1.6) 91.2%(2.0) 67.6%(5.5) 24.0%(3.3)
6 Incep. Res. v1 - gray 94.8%(2.0) 78.0%(4.4) 28.4%(1.5) 4.8%(1.6)
7 Incep. Res. v1 - RGB 82.4%(2.6) 60.8%(6.5) 30.4%(3.4) 6.8%(2.4)
8 Incep. Res. v2 - gray 92.8%(2.7) 75.6%(2.9) 9.6%(1.5) 2.8%(1.6)
9 Incep. Res. v2 - RGB 90.4%(1.5) 75.2%(2.7) 41.2%(3.0) 8.4%(1.5)

Reproducible Baselines
10 MLBP [Liao et al., 2009] 67.2%(7.0) 23.2%(3.0) 10.0%(2.8) 6.0%(1.789)
11 Multiscale Feat. [Liu et al., 2012] 74.4%(3.4) 43.2%(3.7) 22.0%(4.5) 14.8%(3.0)
12 GFK [Gong et al., 2012; Sequeira et al., 2017] 73.6%(4.3) 31.2%(7.2) 12.0%(2.8) 2.8%(3.0)

FARGO database was designed to assess the task of heterogeneous face verification (see Figure

1.1) under different illumination conditions (controlled, dark and outdoor). Hence, a specific

set of protocols to assess verification recognition rates were designed and specific set of

metrics were defined. In this work we reproduce the same metrics used in [Heusch et al.,

2019], where error rates are assessed using Detection Error Trade-off (DET) curves. As scalar

reference, it is used the False Non Match Rate (FNMR) at False Match Rate (FMR) of 1% (see

chapter 2.4).

Table 5.8 presents the FNMR@FMR=1%(dev) for all FR Baselines and Reproducible Baselines.

The same trend observed for the other three databases can be observed in this database.

Under controlled conditions (mc), whose setup is similar to the NIVL dataset and LDHF

dataset (1m stand-off), the DCNNs perform better than the FR Baselines based on crafted

features. FR baselines based on Gabor Wavelets, such as Gabor Graphs and LGBPHS, presents

very high error rates; FNMR of 57.20% and 45.80% in the evaluation set respectively. For the

DCNN baselines, the best ones are the ones based on Incep. Res. v1 and Incep. Res. v2, both

using gray scaled images which achieved an FNMR of 2.80% and 4.40%. Light CNN and VGG

10http://gitlab.idiap.ch/bob/bob.ip.mtcnn
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16 achieve both 26.60% and 12.40% respectively. The reproducible baselines, surprisingly

presents higher error rates than the DCNN ones. MLPB and MultiScaled features present a

FNMR of 81.40% and 88.60%.

Table 3.6 – Fargo database - FNMR@FMR=1%(dev) taken from the development set
#

FR Algorithm
mc ud uo

dev eval dev eval dev eval

FR Baselines
1 Gabor-Graph 56.80 57.20 64.40 59.90 64.80 76.80
2 LGBPHS 45.80 45.80 59.80 66.40 62.00 72.80
3 LBP 92.80 86.80 97.90 90.70 90.00 91.10
4 Light CNN 32.60 26.60 34.30 47.10 24.00 33.90
5 VGG 16 14.00 12.40 14.10 21.10 15.40 35.40
6 Incep. Res. v1 - gray scaled 0.40 2.80 6.70 11.90 0.40 9.00
7 Incep. Res. v1 - RGB 15.40 10.80 25.10 27.00 11.90 16.30
8 Incep. Res. v2 - gray scaled 0.00 4.40 0.80 4.00 0.50 2.00
9 Incep. Res. v2 - RGB 1.20 4.80 10.90 11.80 1.40 5.60

Reproducible Baselines
10 MultiScale feat. [Liu et al., 2012] 83.40 88.60 86.30 89.90 88.40 96.60
11 MLBP [Liao et al., 2009] 71.80 81.40 89.40 91.90 88.50 96.10
12 GFK [Gong et al., 2012; Sequeira et al., 2017] 46.20 62.00 68.00 74.00 86.80 89.70

For the dark acquisitions protocol (ud), the same trends are observed, with the DCNN present-

ing the lowest error rates. FR baselines based on Gabor Wavelets, such as Gabor Graphs and

LGBPHS, presents very high error rates; FNMR of 59.90% and 66.40% in the evaluation set. For

the DCNN baselines, the best ones are the ones based on Incep. Res. v1 and Incep. Res. v2,

both using gray scaled images which achieves an FNMR of 11.90% and 4.00%. Light CNN and

VGG 16 achieve both 47.10% and 21.10% respectively. Finally, MLPBs and MultiScaled features

(Reproducible HFR Baselines) presents FNMR of 89.90% and 91.90%. The GFK HFR Baselines

presents an average rank one recognition rate of 74.00%.

In the outside acquisitions protocol (uo), the same trends are observed, with the DCNN

presenting the lowest error rates. FR baselines based on Gabor Wavelets, such as Gabor

Graphs and LGBPHS, presented very high error rate; FNMR of 76.80% and 72.80% in the

evaluation set respectively. For the DCNN baselines, the best ones are the ones based on Incep.

Res. v1 and Incep. Res. v2. Both gray scaled DCNNs achieve an FNMR of 9.80% and 2.00%

respectively. Light CNN and VGG 16 achieved both 33.90% and 35.40% respectively. MLPBs

and MutiScale features presented FNMR of 96.60% and 96.10%. The GFK HFR Baselines

presents an average rank one recognition rate of 89.70%. Figure 3.9 presents the DET plots in

the development set and evaluation set for all the three illumination conditions.

3.3.3 Visible Light to Thermograms

In this subsection it is described experiments using two different databases, both subsets

of the Pola Thermal database (see section 2.3.3). Table 3.7 presents the average rank one

recognition rate for each face recognition baseline which uses this benchmark as a reference.
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Figure 3.9 – DET curves for the FARGO database verification experiments under the three
illumination conditions MC (controlled), UD (dark) and UO (outdoor). The column on the left
presents DET curves for the development set and the columns on the right presents DET curves
for the evaluation set.

If compared with other image modalities, a different trend can be observed in the two experi-

mented databases. The DCNN feature detectors don’t present the highest recognition rates.
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Figure 3.10 – VIS to Thermogram Baselines - Average CMC curves (with error bars)

For the Thermal dataset, experiments using the FR systems based on Gabor wavelets, such

as Gabor Graph and LGBPHS, presented an average rank one recognition rate of 17.46% and

43.71%. On the other hand the best DCNN baseline, Incep. Res. v2 - RGB presents an average

rank one recognition rate of 31.09%. Among the reproducible baselines, the MLBP presents

the highest recognition rates with 36.80%.

Same trend can be observed for the Pola Thermal dataset, experiments using the FR systems

based on Gabor wavelets, Gabor Graph and LGBPHS, presented an average rank one recog-

nition rate of 8.46% and 35.73%. The best DCNN baseline is again the Inception Resnet v2,

but with gray scaled inputs. Such DCNN presented an average rank one recognition rate

of 27.29%. Among the Reproducible HFR Baselines, the MultiScaled features presented the

highest recognition rates with 20.81%.

All the presented FR baselines presented way lower recognition rates than the state-of-the art

Figure 3.10 shows the CMC curve for all the FR and Reproducible HFR baselines. It’s possible

to observe that even for rank 10 our FR baselines are not able to achieve the same recognition

rate as in the rank one or the Paper HFR baselines.

3.4 Discussion

In this chapter it was assessed the effectiveness of different FR systems (FR Baselines) in

several databases split in three different image modalities, each one with its idiosyncrasies

and some trends could be observed. In general, it was possible to observe that in all image

modalitites the FR systems presented recognition rates higher than an hypothetical random
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Table 3.7 – VIS to Thermograms - Average rank one recognition rate under different Face
Recognition systems.

# FR Algorithm Thermal Pola Thermal

FR Baselines
1 Gabor-Graph 17.46%(1.9) 8.46%(1.1)
2 LGBPHS 43.71%(3.7) 35.73%(1.8)
3 LBP 12.56%(1.6) 3.64%(1.0)
4 Light CNN 22.35%(3.6) 18.42%(1.7)
5 VGG 16 15.42%(2.6) 7.12%(1.8)
6 Incep. Res. v1 - gray scaled 20.55%(4.2) 18.69%(2.1)
7 Incep. Res. v1 - RGB 20.55%(2.0) 15.26%(1.2)
8 Incep. Res. v2 - gray scaled 31.09%(4.1) 27.29%(0.8)
9 Incep. Res. v2 - RGB 27.21%(1.4) 23.91%(1.2)

Reproducible Baselines
10 MLBP [Liao et al., 2009] 36.80%(3.5) 15.61%(2.9)
11 Multiscale Feat. [Liu et al., 2012] 26.89%(3.5) 20.81(3.4)
12 GFK [Gong et al., 2012; Sequeira et al., 2017] 34.07%(2.9) 26.17%(2.5)

Non Reproducible Baselines
13 PLS [Hu et al., 2016] 53.05% (n/a) 58.67% (n/a)
14 DPM [Hu et al., 2016] 75.31% (n/a) 80.54% (n/a)
15 CpNN [Hu et al., 2016] 78.72% (n/a) 82.90% (n/a)

classifier, despite the fact those models don’t have any prior knowledge about a target modality

(D t ). In special, it is worth noting the recognition rates of the FR Baselines based on DCNNs;

although DCNNs have a high capability to overfit into the training data (VIS images in this

case), such DCNNs are still able to detect discriminant features between different domains.

Possible regularities between them can be suggested.

HFR recognition rates using sketches degrades once its shape get very degraded. For instance,

a very simple and non parametric system based on Gabor Wavelets (LBPHS) was able to

achieve an average rank one recognition rate of 92.97% using the CUHK-CUFS, which is closer

to the current state-of-the-art (P-RS in [Klare and Jain, 2013]). Once shapes are distorted,

recognition rates drops drastically. The best FR Baseline for CUHK-CUFSF (Incep. Res. v2

RGB) achieved an average recognition rate of 31.05%.

HFR recognition rates using NIR images as probes, presented the highest recognition rates.

It was possible to observe that once images are taken in close up, very high recognition

rates are achieved. In this scenario, the FR Baselines based on DCNN achieved the highest

recognition rates, sometimes higher than some Non Reproducible and Reproducible HFR

Baselines. For instance it was possible to achieve an average rank one recognition rate of

91.09% (Incep. Res. v1 - gray) using the NIVL dataset. Using the subset 1m from LDHF

database it was possible to achieve 98.8% using the same figure of merit. Same trend observed

in the FARGO database using the controled subset (mc) with an FNMR of 4.40% (FMR@1%).

This is particularly surprising and in the best of our knowledge, these observations were never
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made in the literature. However, once differences on pose (CASIA), distance (LDHF) and

different illumination conditions (FARGO) are into play, recognition rates drops, although

those DCNNs have samples containing such source of variability in the VIS domain. Average

rank one recognition rate dropped to 24% using pictures of probes at 150m in the LDHF

database.

The most challenging task seems to be the VIS-Thermal domain. Among the FR Baselines, the

ones based on Gabor Wavelets presented the highest rank one recognition rates. For instance,

LGBPHS presented 35.73% and 43.71% for Thermal and Pola Thermal databases respectively.

Among the DCNNs, the best one the is once more the Incep. Res. v2. Its gray level version

presented an average rank one recognition rate of 31.10% using the Thermal database and

27.29% using the Pola Thermal version of the database.

In this chapter it was also presented some baselines that will guide this work (Reproducible

HFR Baselines). Such baselines, MLBP from [Liao et al., 2009] and Multi Scale features from

[Liu et al., 2012] were introduced for the VIS to NIR task. However, in this work, it is extended

to other image modalities. Surprisingly, for the VIS to NIR task, once those baselines are

tested to VIS to NIR databases, where variations, such as unconstrained illumination (FARGO),

unconstrained pose and expression (CASIA) and different stand-offs (LDHF) are presented,

recognition rates decreases. For the task of VIS to Thermograms, such baselines presented

higher recognition rates than the DCNN FR Baselines.
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Figure 3.11 – Inception Resnet architectures. Implementation inspired by Szegedy et al. [2017]
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4 Heterogeneous Face Recognition as a
Session Variability Problem

In Chapter 2 several sources of session variability for FR was introduced, such as variations on

pose, illumination, expression and aging. HFR introduces another source of variability which

is the image modality.

In this chapter the task of HFR is modeled using crafted features and Gaussian Mixture

Models (GMM). In the last few years, several strategies to improve robustness against different

sources of variability of recognition systems based on GMMs were proposed [Vogt et al., 2005;

Kenny et al., 2007; Dehak et al., 2011]. Mostly applied for speaker recognition systems, such

frameworks are able to suppress variations in different channels of audio data using the same

type of crafted features (Mel-Frequency Cepstrum Coefficients(MFCC)). In this chapter Inter-

Session Variabiliry (ISV) modeling is investigated. ISV aim to explicitly model and suppress

within-class variation in a low-dimensional subspace using Gaussian Mixture Models as a

basis.

4.1 Gaussian Mixture Models

A GM M consists of a probabilistic model for density estimation. It is hypothesized that

observed data is generated from a mixture of a finite number of Gaussian distributions. More

formally, a GMM is composed by a weighted sum of C multivariate gaussian components

[Bishop, 2006, p.430]

p(x|Θg mm) =
C∑

c=1
wcN (x;µc ,Σc ), (4.1)

where Θg mm = {wc ,µc ,σc }{c=1...C } are the weights, means and the covariances of the model.

Moreover, wc must satisfy these two constrains 0 ≤ wc ≤ 1 and
C∑

c=1
wc = 1.

Biometric recognition using GMM consists in to estimate one GMM per identity at enrollment

time. Then, given a sample x the scoring function is given by P (x|Θi denti t y ).
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One of the challenges in biometric recognition in general is that very often the number of

samples for enrollment is limited. For instance, in face recognition it can be one sample

only. Several methods and different hypotheses are proposed in the literature to estimate

Θg mm when the number of samples are limited. For both face [Cardinaux et al., 2006] and

speaker recognition [Reynolds et al., 2000] a very effective method is to first estimate a subject

independent GMM, as a prior, and then from this prior, adapt to a particular identity at

enrollment time. In biometric recognition such prior is called Universal Background Model

(UBM) [Reynolds et al., 2000]. Several strategies were proposed in the literature to estimate

the parameters of such GMM [McLachlan and Basford, 1988; McLachlan and Peel, 2000]; in

this chapter it is focused on the ones used in this thesis.

Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) is one of the most popular strategies to estimate

the GMM parameters[Bishop, 2006, p.435] and the UBM[Reynolds et al., 2000]. In statistics,

maximum likelihood estimator (MLE) is a method of estimating the parameters of a statistical

model given observations by finding the Θ that maximizes P (X |Θg mm)|X ∈ {x1, ..., xn}. No

closed form solution exists for maximizing this function. However, this optimization can be

carried out by the Expectation-Maximization (EM) algorithm [Dempster et al., 1977].

The MLE estimation of the GMM parameters using EM begins with an initial estimation

Θ0. In practice this initialization is carried out by using a clustering algorithm, such as k-

means [Reynolds et al., 2000]. Then, EM alternates between the following expectation (E)

and Maximization (M) steps. During the E-step the probabilities of the training samples are

evaluated and accumulated using the current Θ. During the M-step the parameters of Θ

are updated using the accumulated probabilities computed during the E-Step. These steps

are repeated for certain number of iterations or until some convergence criteria is fulfilled.

Algorithm 2 illustrates howΘg mm is estimated using MLE.

Maximum a posteriori Estimator (MAP)

In biometrics, the Maximum a posteriori estimator for GMM is applied once a class spe-

cific GMM needs to be derived from an UBM. As mentioned before, this is very suitable at

enrollment time when the number of samples are limited.

As for MLE, no closed form solution exists for maximizing P (X |Θidentity)|X ∈ {x1, ..., xn}. Hence,

its estimation is carried out via EM similarly to MLE. OnceΘubm has been trained (usually via

MLE), a class specific GMM is derived by adapting the parameters wc ,µc ,Σc for a particular

subject. This is described in the Algorithm 3.

Practical evidences shows that the adaptation only of the means (µc,map in Algorithm 3) is

effective for both face and speaker recognition [Reynolds et al., 2000; Cardinaux et al., 2006;

McCool and Marcel, 2009; McCool et al., 2013]. Hence, in this work MAP adaptation refers

directly to mean-only adaptation.
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4.1. Gaussian Mixture Models

Data: Θ0 = {w0
c ,µ0

c ,Σ0
c }c=1...C , X = {x1, x2, ..., xn}

Result: Θ= {wc ,µc ,Σc }
while convergence do

#E-Step;
for i=0 to size(X) do

nc = 0;
fc = 0;
sc = 0;
#Computing posterior for each sample;

rc (xi ) = wcN [xi |µc ,Σc ]
C∑

c=1
wcN [xi |µc ,Σc ]

; // Computing responsibilities

#Accumulating statistics;
nc = nc + rc (xi ) ; // 0th order stats

fc = fc +nc · xi ; // 1st order stats

sc = sc +nc · (xi · xi ) ; // 2nd order stats

end
#M-Step;
wc = nc

si ze(X ) ; // New weights

µc = fc

nc
; // New means

Σc = sc
nc

; // New variances

end
Algorithm 2: MLE Algorithm to estimate GMM parameters

A convenient way to write MAP adaptation is by using the GMM mean-supervector notation

[Vogt and Sridharan, 2008; McCool et al., 2013]. The GMM mean-supervector notation consists

of taking means of the GMM and create a single vector to represent them. Follow below an

example on how to represent an UBM with this mean-supervector notation:

mubm = [
µ1,µ2, ...,µC

]
(4.2)

Then, the mean-MAP adaptation can be represented as:

mmap = mubm +d , (4.3)

where mmap is the class specific model and d is the class specific offset from the UBM

(mubm)[Vogt and Sridharan, 2008] defined as:

dmap = Dzmap. (4.4)

Here D is a diagonal matrix of size (C dimx ×C dimx ) where I = τDᵀΣ−1D . Σ is a block diagonal

covariance of the UBM and z is the latent variable of the client offset which is assumed to

be normally distributed, z ∼N (0, I ). Since the MAP adaptations applies only for the GMM

means, it is possible to write 4.3 as:

Θmap =Θubm +d (4.5)
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One possible way of computing scores using Θmap is to directly compute P (x|Θmap). In

practical applications to have zero centered scores is suitable. One way to achieve that is via

the Log-Likelihood Ratio (LLR) betweenΘmap andΘubm. This is computed as the following:

score = l n(P (X |Θmap)− l n(P (X |Θubm). (4.6)

Here, given an arbitrary GMM Θg mm and a sequence of samples X = {x1, x2...xn} ∈ RD the

ln(P (X |Θg mm) is defined as:

ln(P (X |Θg mm) =
N∑

i=0
ln(P (xi |Θg mm)). (4.7)

Data: Θubm = {wc;ubm,µc;ubm,Σc;ubm}c=1...C , X = {x1, x2, ..., xn},R ∈R
Result: Θmap = {wc;map,µc;map,Σc;map}
#E-Step;
for i=0 to size(X) do

nc = 0;
fc = 0;
sc = 0;
#Computing posterior for each sample;

rc (xi ) = wc;ubmN [xi |µc;ubm,Σc;ubm]
C∑

c=1
wc;ubmN [xi |µc;ubm,Σc;ubm]

; // Computing responsibilities

#Accumulating statistics;
nc = nc + rc (xi ) ; // 0th order stats

fc = fc +nc · xi ; // 1st order stats

sc = sc +nc · (xi · xi ) ; // 2nd order stats

end
#M-Step;
αc = nc

nc+R ; // Adjusting adaptation factor

wc;map = αc nc
si ze(X ) + (1−αc )wc;ubm ; // New weights

uc;map = (αc fc )+ (1−αc )µc;ubm ; // New means

Σc;map = (αc sc )+ (1−αc )(Σc;ubm + (µc;ubm)2 − (µc;map)2) ; // New Covariance
Algorithm 3: MAP Algorithm to estimate class specific GMM parameters

4.2 Intersession Variability Modeling

Built on top of GMMs, Intersession Variability Modeling (I SV ) [Vogt and Sridharan, 2008]

proposes to explicitly model the with class variability and compensate them during enrollment

and test time. The I SV approach hypothesizes that within-class variability is embedded in a

linear subspace of the GMM mean super-vector space, which is defined as:

u =U w, (4.8)
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where U is the low-dimensional subspace of size (C dimx ,DU ) that contains all possible within-

class variations and w is a latent session variable, which is assumed to be normally distributed

w ∼ N (0, I ). Like in the MAP adaptation, this modeling also has the class specific offset d

defined as:

d = Dz. (4.9)

This class specific latent variable z is not the same as the one defined by the MAP adaptation.

Here, z is jointly estimated with w . This estimation is explained further.

To summarize, ISV hypothesizes that a given mean-supervector µ can be decomposed as an

UBM offset of a session factor and a client specific factor as the following:

µ=Θubm +U w +Dz. (4.10)

Hence, a class specific model, free of session variability is defined as:

Θisv =Θubm +Dz. (4.11)

The scoring is defined as the LLR between the client-specific model and the UBM. Given an

arbitrary enrolled modelΘisv, a UBMΘubm and a sequence of samples X = {x1, x2...xn} ∈RD

the LLR is defined as:

score =
N∑

i=1

[
ln

( p(xi |Θi sv +U w)

p(xi |Θubm +U w

)]
(4.12)

For a given gaussian component c, a set of identities I and a set of input samples from each

identity J , the subspace U is estimated by solving the following system of equations.

Uc

( I∑
i=0

J∑
j=0

ni , j ;c E [wi , j wᵀ
i , j ]

)
=

I∑
i=0

( J∑
j=0

fi , j ;c −ni , j ;c (−Dc zi )E [wi , j ]ᵀ
)
, (4.13)

where ni , j ;c and fi , j ;c are the 0th and 1st order statistics of a MAP adapted GMM (see Algorithm

3). Dc is the client specific offset defined as:

Dc

( I∑
i=0

ni , j ;c E [zi zᵀ
i ]

)
=

I∑
i=0

( J∑
j=0

[
fi , j ;c −ni , j ;c (−Uc wi , j )

])
E [zi ]ᵀ, (4.14)

E [zi zᵀ
i ] is computed as:

E [zi zᵀ
i ] =

(
I +Σ−1ni

)−1
+E [zi ]E [zi ]ᵀ, (4.15)
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where E [zi ] is defined as:

E [zi ] =
(
I +DᵀΣ−1ni D

)−1
DᵀΣ−1

[
fi −ni −

J∑
j=1

ni , jU wi , j
]

(4.16)

Finally, E [wi , j wᵀ
i , j ] is computed as:

E [wi , j wᵀ
i , j ] =

(
I +UᵀΣ−1ni , jU

)−1
+E [wi , j ]E [wi , j ]ᵀ, (4.17)

where E [wi , j ] is computed:

E [wi , j ] =
(
I +UᵀΣ−1ni , jU

)−1
UᵀΣ−1

[
fi , j −ni , j Dzi

]
. (4.18)

4.3 InterSession Variability modeling for Heterogeneous Face Recog-

nition

This section is defined by the following hypothesis:

Hypothesis 4.1 Given Xs = {xs1, xs2, ..., xsn} and X t = {xt1, xt2, ..., xtn} being a set of crafted fea-

tures from Ds and D t , respectively, with their corresponding shared set of labels Y = {y1, y2, ..., yn}

andΘ being an arbitrary GMM, possible within-class variations from different image modalities

can be suppressed in the GMM mean-supervector space using InterSession Variability modeling.

In this section ISV is formulated for HFR task as the following. A given mean-supervector µ

can be decomposed as an UBM offset of a session factor and a client specific factor as the

following:

µ=ΘDsDt +UDsDt w +DDsDt z, (4.19)

whereΘDsDt is a UBM jointly estimated from samples two image modalities Ds and Dt using

MLE. UDsDt is the subspace that contains all possible session effects that image modalities

may introduce to crafted features, w is its associated latent session variable, while DDsDt z

represents the client offset (modality free offset). Both ΘDsDt and UDsDt are estimated at

training time using algorithm 2 and equation 4.13 respectively.

At enrolment time, given Xs = {xs1, xs2, ..., xsn} ∈ Ds the GMM free of modality variability is

obtained by estimating:

Θenroll =ΘDsDt +DDsDt z. (4.20)

Finally, at scoring time given a set of samples X t = {xt1, xt2, ..., xt j } ∈ D t the LLR score is
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computed as the following:

score =
J∑

j=1

[
ln

( p(xt ; j |Θenroll +UDsD t wt ; j )

p(xt ; j |ΘDsD t +UDsD t wt ; j )

)]
. (4.21)
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Figure 4.1 – ISV Intuition (a) Estimation of m and U (background model) (b) Enrollment
considering the session varibility using one sample

Figures 4.1 and 4.2 presents an intuition on how ISV models heterogeneous data in a toy

heterogeneous dataset. Let’s assume that the data points in the Figure 4.1 (a) are a training
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Figure 4.2 – ISV Intuition (a) Scoring using ISV (b) Scoring using MAP adaptation

set. This training set is composed by samples from 2 identities represented by the colors

red and blue. The dots in the figure are samples from Ds and the triangles are samples from
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Dt . In Figure 4.1 (a) it is possible to observe the U B M means estimated with two gaussian

components trained with the MLE estimator (see Algorithm 2). Once this U B M is trained, the

U subspace is then estimated (see Equation 4.13). The direction of session variations with

respect to each gaussian component can be seem in Figure 4.1(a) with the black arrows (U1

and U2). To be able to plot them in 2d, the rank of U is set to one. Those are the main variables

estimated at training time.

Figure 4.1(b) demonstrates the enrollment process. Let’s consider that the green dot in the

Figure 4.1 (b) is one data sample of an unknown identity from Ds . Then, the enrollment is

carried out using Equation 4.20. The output mean super-vector from this enrollment process

can also be decomposed in terms of each Gaussian component. This is represented by the

cyan diamonds in Figure 4.1 (b).

In Figure 4.2 demonstrates the scoring process. Let’s consider that the green triangle in Figure

4.2 (a) is one data sample of the same unknown identity, but now from Dt . The magenta

diamonds represents the mean super-vector decomposition with respect to each Gaussian

component by doingΘenroll +UDsD t wt ; j (see Equation 4.21). It is possible to observe that the

magenta diamonds are almost overlapped with the cyan diamonds. This is an indicator of a

high LLR using Equation 4.21.

For the sake of comparison, figure 4.2 (b) illustrates the MAP client adaptation using the

same sample (green triangle) as input. The mean-supervector decomposition using MAP

adaptation (see Equation 3) is illustrated with the orange diamonds. MAP doesn’t consider

possible session effects (within-class variations) in its modeling, hence, their estimated means

are severely shifted with respect to the cyan diamonds (the reference used during at enrollment

time). This is an indicator of a low LLR using the Equation 4.6.

4.4 Implementation details

In this thesis two types of crafted features are evaluated as input to this framework. The first

one is the LBP histograms (see chapter 2.1.3). The Local Binary Patterns system implemented

in this work is an adaptation from [Rodriguez and Marcel, 2006b]. First, faces are detected,

cropped and aligned to be with 64×80 pixels. Then, LBPP=8,r=2 is computed in the aligned

image for further patch division of 32×32 pixels with 31 pixels of overlap at each direction.

Differently from chapter 2.1.3, those patches are not concatenated in one single vector, but

treated independently. Hence, P (X |Θi sv ) is a result of the accumulation of the LLR scores for

each patch. The second type of crafted feature is the DCT coefficients. Each cropped and

geometric normalized face image from each modality is sampled in patches of 12×12 pixels

moving the sampled window in one pixel (11 pixels of overlap). Then each patch is mean and

variance normalized and the first 45 DCT coefficients are extracted. The first coefficient (DC

component) is discarded resulting in a feature vector of 44 elements per patch. This setup is an

adaptation from [McCool et al., 2013]. Each sampled patch is considered as an independent

observation. A schematic of such patch division is illustrated in Figure 4.3.
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Input image Patch division

2D-DCT/LBP histograms per block

......

(a) Processing VIS

Input image Patch division

2D-DCT/LBP histograms per block

......

(b) Processing Sketch

Figure 4.3 – Feature extraction of the proposed approach

The most relevant hyper-parameters for ISV are the number of Gaussian components of

the UBM and the rank of U . For both databases we will tune first the number of Gaussian

components keeping the rank of U = 50. Then, the rank of U is fine tuned for some databases.

4.5 Experiments and Analysis

In this section the experiments assessing the session variability hypothesis is presented. To

make it easier the interpretation of the recognition rates, all the tables in this section (4.1,

4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8) are split in three parts. FR Baselines corresponds to all

FR baselines described in the Section 3.1. Reproducible Baselines corresponds to all HFR

baselines described in the Section 3.2 and it was implemented or integrated in the context of

this work. Finally, Non Reproducible Baselines corresponds to HFR baselines whose source

code was not made publicly available and its average rank one recognition rate was picked

directly from its corresponding publication.
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4.5.1 Visible Light to Sketches

In this subsection it is described experiments with two sketch databases: CUHK-CUFS and

CUHK-CUFSF.

CUHK-CUFS

Figure 4.4 (a) presents the CMC curves varying the number of Gaussians using DCT coefficients.

Using 64 Gaussians it is possible to achieve an average rank one recognition rate of ≈ 87%.

This figure of merit is increased to ≈ 91% with 128 gaussians and to ≈ 93% with 256 gaussians.

Experiments with 512 gaussians get its best average rank one recognition rate with 96.53%.

With 1024 gaussians the average rank on recognition rate is decreased to ≈ 94%. Figure 4.4

(b) presents the CMC curves varying the number of Gaussians using LBP histograms as input.

Using LBPs as crafted features it is possible to observe that the average rank one recognition

rates stabilizes in ≈ 16% while the number of gaussians varies from 64 to 512 gaussians. Hence,

the same trends observed with DCT coefficients can’t be observed with LBP histograms.
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(b) LBP Histograms

Figure 4.4 – CUFS - Average CMC curves (with error bars) using DCT coefficients and LBP histograms
varying the number of gaussians fromΘubm

Experiments in Figure 4.4 (a) are conducted with the rank of U set to 50 and it is possible to

observe that the highest rank one recognition rate is observed with 512 gaussians. Figure 4.5

presents the same experiment, but varying the rank of U from 10 to 200 while the number of

gaussians is set to 512. Using rank equals to 10 it is achieved an average rank one recognition

rate of ≈ 93%. This figure of merit is increased to 96.53% with rank equals to 50 and then

decreases to ≈ 95% for ranks equals to 100 and 160 respectively. In this database the highest

average rank-one recognition rate is achieved with rank equals to 50. This value presents
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a good trade-off between complexity and accuracy. Hence, this value is kept for the next

experiments using this image modality.
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Figure 4.5 – CUFS - Average CMC curves (with error bars) using DCT coefficients varying the
rank of U

Table 4.1 shows the average rank one recognition rate comparing the experiments using the

two different types of features (the one with the highest recognition rate for each setup) with

the FR, Reproducible and the Non Reproducible baselines. The approach based on ISV with

DCT coefficients achieved an average rank one recognition rate of 96.53%, which is lower than

P-RS (Non Reproducible baselines). However, this approach presents higher recognition rate

than the Reproducible and the FR Baselines. For instance, a variation of GFK presents 93.27%

and LGBPHS presents 92.97% using the same figure of merit.

With this set of experiments it was possible to observe highest recognition rates using DCT

coefficients. Using these coefficients it was possible to confirm Hypothesis 4.1.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 cuhk -cufs

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.

CUHK-CUFSF

Figure 4.6 (a) presents the CMC curves varying the number of Gaussians using DCT coefficients.

Using 64 Gaussians it is possible to achieve an average rank one recognition rate of ≈ 36%.

This figure of merit is increased to ≈ 44% with 128 gaussians and to ≈ 54% with 256 gaussians.

Experiments with 512 gaussians get its best average rank one recognition rate with 55.58%.
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Table 4.1 – CUHK-CUFS - Average rank one recognition rate under different feature setups for
ISV

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray scaled 72.57%(3.7)
2 Incep. Res. v2 - gray scaled 80.29%(1.5)
3 Gabor-Graph 81.29%(2.4)
4 LGBPHS 92.97%(2.2)

Reproducible Baselines
5 MLBP [Liao et al., 2009] 62.27%(3.8)
6 MultiScale feat. [Liu et al., 2012] 64.16%(2.5)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 93.27%(1.4)

Non Reproducible Baselines
8 P-RS as in [Klare and Jain, 2013] 99%(n/a)
9 Face VACS in [Klare and Jain, 2013] 89%(n/a)

ISV
10 DCT - ISV 512 Gaussians 96.53%(0.8)
11 LBP - ISV 256 Gaussians 16.83%(1.2)

Figure 4.6 (b) presents the CMC curves varying the number of Gaussians using LBP histograms

as input. Using LBPs as crafted features it is possible to observe that the average rank one

recognition rates stabilizes in ≈ 5% while the number of gaussians varies from 64 to 512

gaussians. Hence, the same trends observed with DCT coefficients can’t be observed with LBP

histograms.

Table 4.2 shows the average rank one recognition rate comparing the experiments using the

two different types of features (the one with the highest recognition rate for each setup) with

the FR, Reproducible and the Non Reproducible baselines. The approach based on ISV with

DCT coefficients achieved an average rank one recognition rate of 55.58%, which is lower

than most of the Non Reproducible baselines. For instance, the DEEPS system [Galea, 2018]

presents an average rank one recognition rate of 82.92%. However, this approach presents

higher recognition rate than the Reproducible and the FR Baselines. For instance, a variation

of GFK presents 41.01% and Incep. Res. v2 presents 29.51% using the same figure of merit.

With this set of experiments it was possible to observe highest recognition rates using DCT

coefficients. These are the same trends observed previously. Using these coefficients it was

possible to confirm Hypothesis 4.1 although the recognition rates are lower than the state-of-

the-art.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 cuhk -cufsf

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To
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Figure 4.6 – CUFSF - Average CMC curves (with error bars) using DCT coefficients and LBP histograms
varying the number of gaussians fromΘubm

check how to train other setups see2.

4.5.2 Visible Light to Near Infrared

In this subsection it is described experiments with four NIR databases: CASIA, NIVL, LDHF

and FARGO.

CASIA

Figure 4.7 (a) presents the CMC curves varying the number of Gaussians using DCT coefficients.

Using 64 Gaussians it is possible to achieve an average rank one recognition rate of ≈ 38%.

This figure of merit is increased to ≈ 47% with 128 gaussians and to ≈ 54% with 256 gaussians.

Experiments with 512 gaussians get its best average rank one recognition rate with 72.67%.

With 1024 gaussians the average rank on recognition rate is decreased to ≈ 62%. Those

experiments are conducted with the rank of U set to 50 and it is possible to observe that the

highest rank one recognition rate is observed with 512 gaussians. Figure 4.8 presents the

same experiment, but varying the rank of U from 10 to 200 while the number of gaussians

is set to 512. Using rank equals to 10 it is achieved an average rank one recognition rate of

≈ 39%. This figure of merit is increased to 72.67% with rank equals to 50 and then decreases

to ≈ 71%, ≈ 68% and ≈ 58% for rank equals to 100, 160 and 200 respectively. The highest

average rank-one recognition rate is achieved with rank equals to 50. Hence, this value is kept

for the next experiments using this image modality (while varying the number of gaussians).

This value presents a good trade-off between complexity and accuracy. Moreover, since no
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Table 4.2 – CUHK-CUFSF - Average rank one recognition rate under different feature setups
for ISV

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray scaled 24.49%(0.5)
2 Incep. Res. v2 - gray scaled 29.51%(0.7)
3 Gabor-Graph 19.39%(1.0)
4 LGBPHS 25.38%(1.5)

Reproducible Baselines
5 MLBP in [Liao et al., 2009] 9.11%(1.7)
6 MultiScale feat. in [Liu et al., 2012] 6.76%(0.7)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 41.01%(1.8)

Non Reproducible Baselines
8 TP-LBP [Wolf et al., 2008] 59.7%(not available)
9 CDFL [Jin et al., 2015] 81.3%(not available)

10 DEEPS [Galea, 2018] 82.92%(1.25)
11 LGMS [Galea, 2018] 78.19%(0.52)

ISV
11 DCT - ISV 512 Gaussians 55.58%(1.2)
12 LBP - ISV 256 Gaussians 5.71%(0.6)
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Figure 4.7 – CASIA - Average CMC curves (with error bars) using DCT coefficients and LBP histograms
varying the number of gaussians fromΘubm

improvements (in terms of error rates) could be observed beyond 512 gaussians, in the next

experiments this fine tuning is carried out until 512 gaussians.

Figure 4.4 (b) presents the CMC curves varying the number of Gaussians using LBP histograms
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Figure 4.8 – CASIA - Average CMC curves (with error bars) using DCT coefficients varying the
rank of U

as input. Using 64 Gaussians it is possible to achieve an average rank one recognition rate of

≈ 14%. This figure of merit is increased to ≈ 15% with 128 gaussians and to 15.15% with 256

gaussians. With 512, the average rank one recognition rate decreases to 15.00%. Hence, the

same trends observed with DCT coefficients can’t be observed with LBP histograms.

Table 4.3 shows the average rank one recognition rate comparing the experiments using the

two different types of features (the one with the highest recognition rate for each setup) with

the FR, Reproducible and the Non Reproducible baselines. The approach based on ISV with

DCT coefficients achieved an average rank one recognition rate of 72.67%, which is higher

than all Reproducible baselines. For instance, the MLBP strategy proposed by Liao et al.

[2009] achieved an average rank one recognition rate of 70.33%. Although this could confirm

Hypothesis 4.1, the average rank one recognition rate is lower than some FR Baselines that

doesn’t rely on NIR data in its training. For instance, the DCNNs Incep. Res. v1 gray and Incep.

Res. v2 gray achieved and average rank one recognition rate of 74.25% and 73.80% respectively.

The proposed approach with ISV presents an average rank one recognition rate ≈ 26% lower

than the state-of-the-art approaches. The Non Reproducible baselines CDL [Wu et al., 2017]

and WCCN [He et al., 2018] presents respectively 98.62% and 98.70%.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 casia

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.
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Table 4.3 – CASIA - Average rank one recognition rate under different Face Recognition systems

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray 74.25%(1.3)
2 Incep. Res. v2 - gray 73.80%(1.2)
3 Gabor-Graph 21.49%(1.1)
4 LGBPHS 22.24%(1.6)

Reproducible Baselines
5 MLBP in [Liao et al., 2009] 70.33%(1.2)
6 Multiscale Feat. in [Liu et al., 2012] 67.54%(1.7)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 26.98%(0.9)

Non Reproducible Baselines
8 IDR in [He et al., 2017] 95.82%(0.7)
9 CDL in [Wu et al., 2017] 98.62%(0.2)

10 WCNN in [He et al., 2018] 98.70%(0.3)
11 TRIVET in [Liu et al., 2016] 95.74%(0.5)

ISV
12 DCT - ISV 512 Gaussians 72.67%(1.0)
13 LBP - ISV 256 Gaussians 15.15%(1.5)

NIVL

Figure 4.9 (a) presents the CMC curves varying the number of Gaussians using DCT coefficients.

Using 64 Gaussians it is possible to achieve an average rank one recognition rate of ≈ 49%.

This figure of merit is increased to ≈ 58% with 128 gaussians and to ≈ 67% with 256 gaussians.

Experiments with 512 gaussians get its best average rank one recognition rate with 76.73%.

The same trends are not followed with LBP histograms as can be observed in Figure 4.9 (b).

Using 64 Gaussians it is possible to achieve an average rank one recognition rate of ≈ 9%.

This figure of merit is decreased to ≈ 7% with 128 gaussians and increased to 9.70% with 256

gaussians. Experiments with 512 gaussians achieved and average rank one recognition rate of

5.6%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline isv_g512_u50 nivl

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.

Table 4.4 shows the average rank one recognition rate comparing the experiments using the

two different types of features (the one with the highest recognition rate for each setup) with

the FR, Reproducible and the Non Reproducible baselines. The approach based on ISV with

DCT coefficients achieved an average rank one recognition rate of 76.73%, which is lower

than all Reproducible baselines. For instance, the MLBP strategy proposed by Liao et al.
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Figure 4.9 – NIVL - Average CMC curves (with error bars) using DCT coefficients and LBP histograms
varying the number of gaussians fromΘubm

Table 4.4 – NIVL - Average rank one recognition rate under different Face Recognition systems

# FR Algorithm Average Rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray 91.09%(0.3)
2 Incep. Res. v2 - gray 88.14%(0.6)
3 Gabor-Graph 16.41%(0.9)
4 LGBPHS 30.98%(3.3)

Reproducible Baselines
5 MLBP [Liao et al., 2009] 85.35%(1.1)
6 Multiscale Feat. [Liu et al., 2012] 90.34%(1.3)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 63.08%(2.2)

ISV
8 DCT - ISV 512 Gaussians 76.73%(2.0)
9 LBP - ISV 256 Gaussians 9.70%(3.4)

[2009] achieved an average rank one recognition rate of 85.35%. Although this could confirm

Hypothesis 4.1, the average rank one recognition rate is lower than some FR Baselines that

doesn’t rely on NIR data in its training. For instance, the DCNNs Incep. Res. v1 gray and Incep.

Res. v2 gray achieved and average rank one recognition rate of 91.09% and 88.14% respectively.
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LDHF

Table 4.5 presents the average rank one recognition rates using DCT coefficients as input.

Analysing the 1m stand-off it is possible to observe an average rank one recognition rate of

from 75.2% with 64 gaussians. Using 128 and 256 gaussians this value increases to 84.8%

and 96.0% respectively. Finally, for 512 gaussians this values drops to 94.8%. Analysing the

60m stand-off it is possible to observe an average rank one recognition rate of 30.8% with 64

gaussians. With 128 and 256 gaussians this value increases to 34.4% and 59.2% respectively.

Finally, for 512 gaussians this values drops to 51.2%. For 100m stand-off it is possible to

observe an average rank one recognition rate of 11.2% with 64 gaussians. With 128 and 256

gaussians this value increases to 12.8% and 37.2% respectively. Using 512 gaussians this values

drops to 27.2%. Finally, for 150m stand-off it is possible to observe an average rank one

recognition rate of 4.0% with 64 gaussians. With 128 gaussians this value increases to 4.4%.

This figure of merit has a substantial increase with 256 and 512 gaussians with 14.4% and

13.6% respectively.

Table 4.5 – LDHF - average rank one recognition rates under different ISV setups
# FR Algorithm 1m 60m 100m 150m

FR Baselines
1 Incep. Res. v1 - gray 94.8%(2.0) 78.0%(4.4) 28.4%(1.5) 4.8%(1.6)
2 Incep. Res. v2 - gray 92.8%(2.7) 75.6%(2.9) 9.6%(1.5) 2.8%(1.6)
3 Gabor-Graph 54.8%(3.7) 15.6%(1.5) 15.2(3.5) 1.6%(2.0)
4 LGBPHS 72.4%(4.3) 32.0%(2.9) 26.0%(3.6) 9.2%(3.2)

Reproducible Baselines
5 MLBP in [Liao et al., 2009] 67.2%(7.0) 23.2%(3.0) 10.0%(2.8) 6.0%(1.8)
6 Multiscale Feat. in [Liu et al., 2012] 74.4%(3.4) 43.2%(3.7) 22.0%(4.5) 14.8%(3.0)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 73.6%(4.3) 31.2%(7.2) 12.0%(2.8) 2.8%(3.0)

DCT coefficients
8 ISV 64 gaussians 75.2%(3.5) 30.8%(3.2) 11.2%(2.7) 4.0%(2.8)
9 ISV 128 gaussians 84.8%(3.5) 34.4%(4.9) 12.8%(2.7) 4.4%(2.6)

11 ISV 256 gaussians 96.0%(1.3) 59.2%(6.0) 37.2%(7.4) 14.4%(6.6)
10 ISV 512 gaussians 94.8%(3.5) 51.2%(3.2) 27.2%(2.4) 13.6%(2.0)

LBP Histograms
12 ISV 64 gaussians 32.8%(3.2) 25.6%(1.5) 22.8%(4.5) 17.6%(5.8)
13 ISV 128 gaussians 28.4%(5.4) 20.8%(2.7) 22.5%(3.5) 15.2%(2.0)
14 ISV 256 gaussians 23.6%(3.0) 22.4%(5.1) 17.2%(4.6) 14.8%(2.4)
15 ISV 512 gaussians 24.8%(5.0) 21.2%(7.2) 16.8%(3.6) 15.2%(3.3)

Table 4.5 presents also the average rank one recognition rates using LBP histograms as input.

Analysing the 1m stand-off it is possible to observe an average rank one recognition rate of

from 32.8% with 64 gaussians. Using 128 and 256 gaussians this value decreases to 28.4%

and 23.6% respectively. Finally, for 512 gaussians this values drops to 24.8%. Analysing the

60m stand-off it is possible to observe an average rank one recognition rate of 25.6% with 64

gaussians. With 128 and 256 gaussians this value decreases to 20.8% and 22.4% respectively.

Finally, for 512 gaussians this values drops to 21.2%. For 100m stand-off it is possible to

observe an average rank one recognition rate of 22.8% with 64 gaussians. With 128 and 256
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gaussians this value increases to 22.5% and 17.2% respectively. Using 512 gaussians this

values drops to 16.8%. Finally, for 150m stand-off it is possible to observe an average rank

one recognition rate of 17.6% with 64 gaussians. With 128 gaussians this value decreases to

15.2%. This figure of merit decreases 14.8% and 15.2% respectively for 256 and 512 gaussians.

Differently from the previous experiment, in this one it is possible to observe, in average, a

rank one recognition rate of ≈ 15% with 150m stand-off, with is higher than the one with DCT

coefficients.

With this set of experiments it was possible to observe highest recognition rates using DCT

coefficients. These are the same trends observed previously. Using these coefficients it was

possible to confirm Hypothesis 4.1.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 ldhf

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.

FARGO

Table 4.6 presents the FNMR@FMR=1%(dev) using the ISV approach with DCT coefficients

and LBP histograms as inputs.

Under the controlled protocol (mc), using DCT coefficients presents a FNMR of 46.00% using

64 gaussians. For 128 gaussians such figure of merit is reduced to 44.60% and to 40.00%

for 256 gaussians. Finally with 512 gaussians such figure of merit drastically decreases to

29.60%. In the same experiment, using the protocol dark (ud) presents a FNMR of 65.40%

using 64 gaussians. For 128 gaussians such figure of merit is increased to 67.6% and to 61.2%

with 256 gaussians. Finally with 512 gaussians such figure of merit decreases to 56.00%.

Experiments using the protocol outside (uo) presents a FNMR of 65.60% using 64 gaussians.

For 128 gaussians such figure of merit is increased to 65.80% and decreases to 63.10% with 256

gaussians. Finally, with 512 gaussians such figure of merit decreases to 59.90%.

Under the controlled protocol (mc), using LBP histograms presents a FNMR of 72.40% using

64 gaussians. For 128 gaussians such figure of merit is reduced to 71.20% and to 72.00% for

256 gaussians. Finally with 512 gaussians such figure of merit increases to 73.20%. In the same

experiment, using the protocol dark (ud) presents a FNMR of 79.30% using 64 gaussians. For

128 gaussians such figure of merit is decreased to 78.60% and to 75.50% with 256 gaussians.

Finally with 512 gaussians such figure of merit increases to 78.90%. Experiments using the

protocol outside (uo) presents a FNMR of 91.20% using 64 gaussians. For 128 gaussians such

figure of merit is decreased to 90.20% and increases to 91.70% with 256 gaussians. Finally, with

512 gaussians such figure of merit increases once more to 91.80%.
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Table 4.6 – Fargo database - FNMR@FMR=1%(dev) taken from the development under different
ISV setups

#
FR Algorithm

mc ud uo
dev eval dev eval dev eval

FR Baselines
1 Incep. Res. v1 - gray scaled 0.40 2.80 6.70 11.90 0.40 9.00
2 Incep. Res. v2 - gray scaled 0.00 4.40 0.80 4.00 0.50 2.00
3 Gabor-Graph 56.80 57.20 64.40 59.90 64.80 76.80
4 LGBPHS 45.80 45.80 59.80 66.40 62.00 72.80

Reproducible Baselines
5 MultiScale feat. [Liu et al., 2012] 20.80 23.00 26.70 23.70 32.30 42.40
6 MLBP [Liao et al., 2009] 23.80 21.40 29.00 27.30 34.10 51.60
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 16.80 15.60 21.60 19.60 25.30 30.70

DCT coefficients
8 ISV 64 gaussians 32.80 46.00 63.60 65.40 49.50 65.60
9 ISV 128 gaussians 28.00 44.60 57.80 67.60 42.60 65.80

10 ISV 256 gaussians 27.40 40.00 49.50 61.20 35.00 63.10
11 ISV 512 gaussians 22.60 29.60 43.30 56.00 30.70 59.90

LBP Histograms
12 ISV 64 gaussians 74.00 72.40 89.90 79.30 91.30 91.20
13 ISV 128 gaussians 74.40 71.20 90.50 78.60 94.50 90.20
14 ISV 256 gaussians 74.00 72.00 92.20 75.50 93.50 91.70
15 ISV 512 gaussians 76.20 73.20 94.30 78.90 94.40 91.80

With these set of experiments it was possible to observe very high FNMR for all conditions

using both DCT coefficients and LBP histograms. Compared with Reproducible baselines the

system based on GFK [Gong et al., 2012; Sequeira et al., 2017], under the controlled protocol

(mc), presents a FMR of 15.60% compared with 29.60% using ISV with DCT coefficients (512

gaussians). This figure of merit decreases even more with FR Baselines based on DCNN. For

instance, the Incep. Res. v1 presents an FNMR of 2.80%. It was also possible to observe

a severe impact, in terms of FNMR, using the protocol dark and outside (ud and uo). For

instance, compared with the Reproducible baselines the system based on GFK [Gong et al.,

2012; Sequeira et al., 2017] presents a FNMR of 19.60% and 30.70% respectively compared with

56.00% and 59.90% using ISV with DCT coefficients. As before, this figure of merit decreases

steadily using DCNN baselines. The DCNN Incep. Res. v2 presents an FNMR of 4.00% and

2.00% respectively. The same trends can be observed in Figure 4.10 where the DET plots for

both input features are presented.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 fargo

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.
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Figure 4.10 – FARGO - DET curves for verification experiments under the three illumination
conditions MC (controlled), UD (dark) and UO (outdoor) trained with ISV. The column on the
left presents DET curves using DCT coefficients as input and the column on the right presents
DET curves using LBP histograms as a basis
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4.5.3 Visible Light to Thermograms

In this subsection it is described experiments with two subsets of the Pola Thermal database:

Thermal and Pola Thermal.

Thermal

Figure 4.11 (a) presents the CMC curves varying the number of Gaussians using DCT coeffi-

cients. Using 64 Gaussians it is possible to achieve an average rank one recognition rate of

≈ 18%. This figure of merit is increased to ≈ 20% with 128 gaussians and to ≈ 23% with 256

gaussians. Experiments with 512 gaussians get its best average rank one recognition rate with

23.86%. Figure 4.11 (b) presents the CMC curves varying the number of Gaussians using LBP

histograms as input. Using LBPs as crafted features it is possible to observe an average rank

one recognition rate of ≈ 4% with 64 gaussians. This figure of merit is increased to ≈ 5% with

128 gaussians and it stabilizes in ≈ 6% with 256 and 512 gaussians. For both types of features

as input it is possible to observe very low recognition rates.
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Figure 4.11 – Thermal - Average CMC curves (with error bars) using DCT coefficients and LBP his-
tograms

Table 4.7 shows the average rank one recognition rate comparing the experiments using the

two different types of features (the one with the highest recognition rate for each setup) with

the FR, Reproducible and the Non Reproducible baselines. The approach based on ISV with

DCT coefficients achieved an average rank one recognition rate of 23.86%, which is lower

than all of the Non Reproducible baselines. For instance, the CpNN system [Hu et al., 2016]

presents an average rank one recognition rate tree times higher (78.72%). The same trend

observed with DPM system [Hu et al., 2016] with an average rank one recognition rate of
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75.31%. Furthermore, all Reproducible Baselines presents higher average rank one recognition

rate than the best ISV system (with DCT coefficients). A variation of GFK [Gong et al., 2012;

Sequeira et al., 2017] presents an average rank one recognition rate of 34.07%. Using the same

figure of merit the MLBP [Liao et al., 2009] and Multiscale features [Liu et al., 2012] presents

36.80% and 26.89 respectively. The same trends are followed by the FR Baselines. The LGBPHS

system presents an average rank one recognition rate of 43.71% while the Incep. Res. v2

31.09%.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 thermal

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.

Table 4.7 – Thermal database - Average rank one recognition rate under different feature setups
for ISV

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray scaled 20.55%(4.2)
2 Incep. Res. v2 - gray scaled 31.09%(4.1)
3 Gabor-Graph 17.46%(1.9)
4 LGBPHS 43.71%(3.7)

Reproducible Baselines
5 MLBP in [Liao et al., 2009] 36.80%(3.5)
6 Multiscale Feat. in [Liu et al., 2012] 26.89%(3.5)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 34.07%(2.9)

Non Reproducible Baselines
8 PLS [Hu et al., 2016] 53.05% (n/a)
9 DPM [Hu et al., 2016] 75.31% (n/a)

10 CpNN [Hu et al., 2016] 78.72% (n/a)

ISV
11 DCT - ISV 512 Gaussians 23.86%(1.3)
12 LBP - ISV 512 Gaussians 6.35%(0.9)

Pola Thermal

Figure 4.12 (a) presents the CMC curves varying the number of Gaussians using DCT coeffi-

cients. Using 64 Gaussians it is possible to achieve an average rank one recognition rate of

≈ 9%. This figure of merit is increased to ≈ 10% with 128 gaussians and to ≈ 10% with 256

gaussians. Experiments with 512 gaussians get its best average rank one recognition rate with

11.0%. Figure 4.11 (b) presents the CMC curves varying the number of Gaussians using LBP

histograms as input. Using LBPs as crafted features it is possible to observe an average rank

one recognition rate of 4.75% with 64 gaussians. Then, this figure of merit stabilizes to ≈ 4%

86



4.5. Experiments and Analysis

with 128, 256 and 512 gaussians. For both types of features as input it is possible to observe

very low recognition rates. Those are the same trends observed in the Thermal database.
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Figure 4.12 – Pola Thermal - Average CMC curves (with error bars) using DCT coefficients and LBP
histograms

Table 4.8 shows the average rank one recognition rate comparing the experiments using the

two different types of features (the one with the highest recognition rate for each setup) with

the FR, Reproducible and the Non Reproducible baselines. The approach based on ISV with

DCT coefficients achieved an average rank one recognition rate of 11.0%, which is lower than

all of the Non Reproducible baselines. For instance, the CpNN system [Hu et al., 2016] presents

an average rank one recognition rate tree times higher (82.90%). The same trend observed

with DPM system [Hu et al., 2016] with an average rank one recognition rate of 80.54%. All

Reproducible Baselines presents higher average rank one recognition rate than the best ISV

system (with DCT coefficients). The GFK system with Gabor Jets [Gong et al., 2012; Sequeira

et al., 2017] presents an average rank one recognition rate of 34.43%. Using the same figure of

merit the MLBP [Liao et al., 2009] and Multiscale features [Liu et al., 2012] presents 36.80%

and 26.89 respectively. The same trends are followed by the FR Baselines. The LGBPHS system

presents an average rank one recognition rate of 35.73% while the Incep. Res. v2 27.29%.

Using the thesis software this strategy can be triggered with the following bash command:

1 $ bob bio htface htface_baseline isv_g512_u50 thermal

This command lines demonstrates just how to train the ISV setup using DCT coefficients. To

check how to train other setups see2.
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Table 4.8 – Pola Thermal database - Average rank one recognition rate under different feature
setups for ISV.

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray scaled 18.69%(2.1)
2 Incep. Res. v2 - gray scaled 27.29%(0.8)
3 Gabor-Graph 8.46%(1.1)
4 LGBPHS 35.73%(1.8)

Reproducible Baselines
5 MLBP in [Liao et al., 2009] 15.61%(2.9)
6 Multiscale Feat. in [Liu et al., 2012] 20.81%(3.4)
7 GFK [Gong et al., 2012; Sequeira et al., 2017] 34.43%(2.3)

Non Reproducible Baselines
8 PLS [Hu et al., 2016] 58.67% (n/a)
9 DPM [Hu et al., 2016] 80.54% (n/a)

10 CpNN [Hu et al., 2016] 82.90% (n/a)

ISV
11 DCT - ISV 512 Gaussians 11.0%(1.6)
12 LBP - ISV 128 Gaussians 4.74%(0.6)

4.6 Discussion

It this chapter one hypothesis was drawn. Hypothesis 4.1 argue that given an arbitrary set

of crafted features, possible within-class variations from different image modalities can be

suppressed in the GMM mean-supervector space using InterSession Variability modeling.

Experiments were carried with two different types of crafted features, DCT coefficients and

LBP histograms, and three different images modalities. In Section 4.5 it was possible to

observe that experiments with DCT coefficients provided substantially higher recognition

rates compared with LBP histograms for all experiments. Recognition rates using ISV with

LBP features also presented lower recognition rates compared with other strategies based on

LBPs, such as, MLBP from Liao et al. [2009] and Multiscale Feat. from Liu et al. [2012]. Both

strategies are patch based and their histograms are concatenated forming one feature vector

only per image, preserving possible spacial relations in the face. In the strategy based on ISV,

the LBP histograms are not concatenated; the LLR (see Equation 4.12) is accumulated for

each image patch independently. With this set of experiments, it is possible to suggest that

the spacial ordering is a factor that must be preserved while using LBP features. This effect

couldn’t be observed using DCT coefficients and the recognition rates were higher. Hence,

next paragraphs refers only to experiments using DCT coefficients.

In the VIS to Sketches task it was possible to observe best recognition rates using 512 gaussians

keeping the rank of U to 50. For instance, experiments with CUHK-CUFS, where the sketches

are very reliable, the highest average rank one recognition rate is 96.53%. For CUHK-CUFSF,
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where the sketch line is not aligned with its corresponding photo, the average rank one

recognition is 55.58%.

For the VIS to NIR task, more data are available for experimentation and such data was

captured under different conditions. Hence, different analysis can be made. Under con-

strained conditions, where subjects are closer to the camera, with neutral expression and no

pose/illumination variations it was possible to observe high recognition rates. For instance,

experiments with LDHF, considering 1m stand-off only it was possible to observe an average

rank one recognition rate of 96.0% with 256 gaussians. Experiments with NIVL database, the

average rank one recognition rate with 512 gaussians is 76.73%. Finally, experiments using

the FARGO dataset, considering only the controlled protocol (mc) the ISV model with 512

gaussians presented a F N MR@F MR = 1% of 29.6%.

Under the same task, it was possible to observe severe degradation under more uncontrolled

scenarios. For instance, experiments with CASIA database, where NIR face images with several

variations in pose and expression are recorded the ISV with 512 gaussians presented an average

rank one recognition rate of 72.67%. Experiments using the FARGO dataset, considering the

protocol dark (ud) it was posssible to achieve a F N MR@F MR = 1% of 56.00% and considering

the protocol outside it was posssible to achieve 59.9% using the same figure of merit.

Experiments using VIS to Thermal presented the lowest recognition rates. For instance, using

the Thermal database it was possible to achieve an average rank one recognition rate of 23.86%

(see Table 4.7). The same trend is followed using the Pola Thermal database where an average

rank one recognition rate of 11.00% was achieved (see Table 4.8).

In the next chapter it is considered the learning of features that are specific to one particular

image modality instead of relying on crafted ones.
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Many researchers pointed out that DCNNs progressively compute more powerful feature

detectors as depth increases [Mallat, 2016; Krizhevsky et al., 2012; Simonyan and Zisserman,

2014]. Practical evidences of this were extensively discussed in Chapter 2. Yosinski et al. [2014]

and Li et al. [2015] empirically demonstrated that feature detectors that are closer to the input

signal (called low level features) are base features that resemble Gabor features, color blobs,

edge detectors, etc. On the other hand, features that are closer to the end of the DCNN (called

high level features) are considered to be more task specific and carry more discriminative

power.

In Chapter 3, it was possible to observe that feature detectors from DCNNs trained only with

VIS images have some discriminative power over all target domains tested; with VIS to NIR

task being the “easiest” ones under certain conditions and the VIS to Thermograms being the

most challenging ones. In this Chapter, a strategy that leverages from this prior discriminative

power is introduced. Called Domain Specific Units (DSU), such strategy hypothesizes that

high level features from a DCNN encode general facial feature detectors that are independent

of the image modality. Hence, feature detectors from low level layers can be adapted to better

suit a particular image modality. Experiments carried out under different image modalities

shows that some image modalities can be encoded with less than 1,000 free parameters and

have its recognition rate increased.

5.1 Introduction

This section is defined by the following hypothesis:

Hypothesis 5.1 Given Xs = {xs1, xs2, ..., xsn} and X t = {xt1, xt2, ..., xtn} being a set of samples

from Ds and D t , respectively, with their corresponding shared set of labels Y = {y1, y2, ..., yn}

andΘ being all set of DCNN feature detectors from Ds (already learnt), there are two consecutive

subsets: one that is domain dependent, θt , and one that is domain independent, θs , where

P (Y |Xs ,Θ) = P (Y |X t , [θs ,θt ]). Such θt , that can be learnt via back-propagation, is so called

Domain Specific Units.
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A possible assumption one can make is that θt is part of the set of low level features, directly

connected to the input signal. In this chapter this assumption is extensively tested and has

practical advantages. First, low level features are less dense than high level ones, since for

most DCNN architectures they are composed by convolutional filters. This may reduce the

number of hyperparameters that needed to be learnt. Second it is possible to make all image

modalities share the same face space, which is particularly interesting for future deployment

and further classification.

....

VIS

NIR

Sketch

Domain Specific

Units

Domain Independent

Feature Detectors

Figure 5.1 – Domain Specific Units - General Schematic

Figure 5.1 presents a general schematic of the proposed approach where each image domain

has its own specific set of feature detectors (low level features) and further share the same face

space (high level features). Such face space is previously estimated using VIS images only.

In this approach, the free parameters from each target domain (θt ) are jointly estimated with

VIS images (source domain). To jointly train such DSUs, two different strategies are proposed

and they are described as follows.

Siamese Networks

The first strategy is based on Siamese Networks [Chopra et al., 2005] and it is depicted in

Figure 5.2. During the forward pass, Figure 5.2 (a), a pair of face images, one from each image

modality is forwarded to the DCNN. Those pair of images can either be from the same identity

or not. VIS images (xs) are forwarded using the DCNN pre-trained for FR (the one at the top
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in Figure 5.2 (a)); and images from the target domain (xt ) are first forwarded to its domain

specific set of feature detectors and then amended to the DCNN trained for VIS images (where

the hypothesized domain independent features are). During the backward pass, Figure 5.2

(b), errors are backpropagated only for θt . With such structure only a small subset of feature

detectors are learnt, reducing the capacity of the joint model. The loss L is defined as [Chopra

et al., 2005]:

L (Θ) = 0.5

[
(1−Y )D(xs , xt )+Y max(0,m −D(xs , xt ))

]
, (5.1)

where m is the contrastive margin, Y is the label (1 when xs and xt belong to the same subject

and 0 otherwise) and D is defined as:

D(xs , xt ) = ||φ(xs)−φ(xt )||22, (5.2)

where φ are the embeddings from the jointly trained DCNN.

L([θs, θt])....xs

Domain Specific
Units

xt

L([θs, θt])
∂L
∂θs

...∂L
∂θs

...∂L
∂θs

....

λ∂L∂θt
Figure 5.2 – Domain Specific Units learnt with Siamese Neural Networks given a pair of
samples xs and xt from source and target domain respectively. (a) Forward pass behaviour (b)
Backward pass behaviour
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Triplet Networks

The second strategy is based on Triplet Networks [Schroff et al., 2015] and it is depicted in

Figure 5.3. During the forward pass, Figure 5.3 (a), a triplet of face images are forwarded to the

network. xa
s corresponds to VIS images inputs; xp

t and xn
t corresponds to face images sensed

in the target domain in such a way that xa
s and xp

t are from the same identity and xa
s and xn

t

are from different identities. The training procedure is similar as with Siamese Networks. VIS

images (xa
s ) are forwarded using the DCNN pre-trained for FR (the one at the top in Figure 5.3

(a)); face images from the target domain (xp
t and xn

t ) are forwarded first to its domain specific

set of feature detectors and then amended to the DCNN trained for VIS images (where the

hypothesized domain independent features are). During the backward pass, Figure 5.3 (b),

errors are back-propagated only for θt , that is shared between the inputs xp
t and xn

t . With

such structure only a small subset of features are learnt, reducing the capacity of the model.

The loss L is defined as:

L (θ) = ||φ(xa
s )−φ(xp

t )||22 −||φ(xa
s )−φ(xn

t )||22 +λ, (5.3)

where λ is the triplet margin and φ are the embeddings from the DCNN.

During a DCNN training, two types of free parameters are updated (see Chapter 2). The first

one corresponds to the feature detectors variables, such as convolutional/deconvolutional

filters or the weights of linear combinations. The second are the biases terms added to those

operations. With these basic operations (feature detectors and biases), a secondary hypothesis

is derived and it is the following.

Hypothesis 5.2 Face recognition DCNNs automatically craft feature detectors that are both

robust against different sources of noise and discriminative. Since the target structure that those

feature detectors model is shared among domains (they are face images), θt might be embedded

in the subset of biases (β) of those detectors.

To approach Hypothesis 5.2 during the DSU training, the gradients from θt corresponding to

all structural operations (convolutions, deconvolutions, linear combinations) are discarded.

Hence, only the gradients corresponding to the biases are considered.

Algorithm 4 presents a generic pseudo-code of the training procedure that is independent

of training method and DCNN architecture. It is worth noting that only the Domain Specific

Units (θt ) are updated.
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L([θs, θt])....xas

x
p
t

xnt
Domain Spe-

cific Units

∂L
∂θs

...∂L
∂θs

...∂L
∂θs

L([θs, θt])

λ∂L∂θt

....

Figure 5.3 – Domain Specific Units learnt with Triplet Neural Networks given a triplet of
samples: xa

s from Ds , and xp
t and xn

t from Dt . (a) Forward pass behaviour (b) Backward pass
behaviour

5.2 Implementation details

It was possible to observe in Chapter 3 that, among the DCNNs tested, the ones based on

Inception Resnet presented the highest recognition rates overall. Hence, experiments are

carried out with Incep. Res. v1 and Incep. Res. v2 architectures both in gray scaled versions.

Such DCNNs were previously trained with a pruned version of the MSCeleb and presented an

average FNMR of 99% on LFW dataset. and in the IJB-C unconstrained protocol. Appendix B

presents the implementation details of such DCNN.

The goal of DSU is to find the set of low level feature detectors, θt , that maximizes recogni-

tion rates for each image domain. To find such set, both DCNNs are exhaustively adapted

increasing the adaptation depth at every test using either Siamese or Triplet Networks as

training strategy. Five possible θt sets are analysed and they are called θt [1−1], θt [1−2], θt [1−4],

θt [1−5] and θt [1−6]. Table 5.1 presents the variables that are adapted for each one of the tested
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Data: Θs , L , n_l ayer s
Result: θt

θt =Θs[1 : n_l ayer s] ; // Domain Spec. Units

θs =Θs[n_l ayer s :] ; // Domain Indep. Units

while has_data do
batch = get_batch();

[∂L∂θs
, ∂L∂θt

] = forward_backward(batch, θs , θt , L );

θt [β] = θt [β]+λ∂L∂θt
[β];

if adapt_kernels then
θt [W ] = θt [W ]+λ∂L∂θt

[W ]

end
end
Algorithm 4: Training strategy given a pretrained DCNNΘs , loss function L and the number
of layers to be adapted n_l ayer s. θt is split between the convolutional kernels W and the
biases β

architectures. Those names match the ones presented in Figure 3.11. It is worth noting that all

operations listed in this table are convolutional operations.

One characteristic of both DCNNs is that once a signal is forwarded through one operation,

this signal is batch normalized (see Section 2.1.5). For convolutions, such batch normalization

step is defined, for each layer i , as the following:

h(x) =βi + g (Wi ∗x)+µi

σi
, (5.4)

where β is the batch normalization offset (role of the biases), W is the convolutional kernel, g

is the non-linear function applied to the convolution (ReLU activation), µ is the accumulated

mean of the batch and σ is the accumulated standard deviation of the batch. In the Equation

5.4, two variables are updated via backpropagation, the values of the kernel (W ) and the offset

(β).

To address the hypotheses 5.1 and 5.2 two groups of experiments are carried out. Each one is

conducted using the two architectures (Incep. Res. v1 and Incep. Res. v2) and the two training

mechanisms (Siamese and Triplet). The first one addresses more specifically Hypothesis 5.2

and it tests if DSUs are embedded in biases only. For this one, only the corresponding βs are

updated during the DSU training. The second group assess if the feature detectors are also

domain specific. To address that both, W and β, are updated during the DSU training. To

train such DSUs, the same procedure adopted for training the prior DCNN is adopted. The

RMSProp optimizer is used as a solver1 with mini-batches of 90 samples. The learning rate is

kept to 0.1 for 65 epochs. Then it was decreased to 0.01 for 15 epochs and finally decreased

1tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
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Layers considered as θt Incep. Res. v1 Incep. Res. v2
θt [1−1] Conv2d_1a_3x3 Conv2d_1a_3x3

θt [1−2]

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1

θt [1−4]

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1,
Conv2d_4a_3x3, Conv2d_4b_3x3

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1,
Conv2d_4a_3x3

θt [1−5]

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1,
Conv2d_4a_3x3, Conv2d_4b_3x3,

Block35

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1,
Conv2d_4a_3x3,

Mixed_5b

θt [1−6]

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1,
Conv2d_4a_3x3, Conv2d_4b_3x3,

block35,
Mixed_6a

Conv2d_1a_3x3,
Conv2d_2a_3x3, Conv2d_2b_3x3,

Conv2d_3b_1x1,
Conv2d_4a_3x3,

Mixed_5b,
block35

Table 5.1 – List of variables adapted for each one the tested architectures

once more to 0.001 until the end of the training. In total all the DCNNs were trained for 250

epochs. This procedure is carried out at training time. At enrollment time, VIS images (Ds)

are forwarded to the VIS specific DCNN and then the embeddings are stored as is. Finally at

scoring time, images from the target domain (Dt ) are forwarded first to its domain specific

set of feature detectors (θt ) and then to the domain independent set of feature detectors

(θs). Those embeddings are directly compared with the enrolled ones using cosine similarity

defined in equation 5.5.

d(φ(xs),φ(xt )) = φ(xs) ·φ(xt )

||φ(xs)||||φ(xt )|| (5.5)

5.3 Experiments and Analysis

In this section the experiments assessing the two hypotheses using two different DCNNs

and two different training mechanisms are presented. To make it easier the interpretation

of the recognition rates, all the tables in this section (Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,

5.10, 5.11) are split in three parts. FR Baselines corresponds to all FR baselines described in

the Section 3.1. Reproducible Baselines corresponds to all HFR baselines described in the

Section 3.2 and it was implemented or integrated in the context of this work. Furthermore,

the best recognition rates reported in Chapter 4 are also reported. Finally, Non Reproducible

Baselines corresponds to HFR baselines whose source code was not made publicly available

and its average rank one recognition rate was cherry picked directly from its corresponding

publication.
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5.3.1 Visible Light to Sketches

In this subsection it is described experiments with two sketch databases: CUHK-CUFS and

CUHK-CUFSF.

CUHK-CUFS

Figure 5.4 (a) presents the CMC curves with adaptation of the biases only for the Incep. Res

v2 using the Siamese Networks. Such DCNN, with no adaptation, has an average rank one

recognition rate of 67.03%. Adapting only the biases (β in Equation 5.4) of the first layer

(θt [1−1](β) in the plots) it is possible to get this benchmark improved to ≈ 70%. The biases

adaptation for θt [1−2] and θt [1−4] improves the average rank one recognition rate to ≈ 78% for

both. Experiments with θt [1−5] get its best average rank one recognition rate with 82.2%. For

θt [1−6] the average rank one recognition rate drops drastically to ≈ 55%. A possible overfitting

can be suggested for θt [1−6]. Figure 5.5 shows the plot of the average rank one recognition

rates and the number of parameters learnt as a function of θt [1−n] for the Siamese Networks

using the Incep. Res. v2 as a basis. It is possible to observe a drop, in terms of average rank

one recognition rate, from θt [1−5] to θt [1−6] when the number of parameters learnt drastically

grows (from 928 to 3328). Due to this increasing, a possible overfitting can be suggested for

θt [1−6]. Figure 5.6, shows the training loss (L ) for the first fold of the θt [1−6] training. It is

possible to observe that L quickly converges and stabilizes to 0.
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Figure 5.4 – CUFS - Average CMC curves (with error bars) for the adaptation of biases only

As in the other chapters this strategy is implemented in the thesis software and can be triggered

with the following bash commands:

1 $ bob bio htface htface_baseline
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htface_idiap_msceleb_inception_v2_centerloss_gray cuhk -cufs --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm cuhk -cufs #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm cuhk -cufs

These command lines demonstrate just how to train θt [1−1](β). To check how to train other

DSUs, check2.
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Figure 5.5 – Average rank one recognition rate vs number of parameters learnt

The same trend can be observed for Incep. Res. v1 using Siamese Networks (see Figure 5.4

(b)). The average recognition rates increase once depth is increased. With no adaptation, such

DCNN has an average rank one recognition rate of 69.8%. The adaptation of the biases (β in

Equation 5.4) for θt [1−1] improves the average rank one recognition rate to ≈ 74%. For θt [1−2] it

was achieved ≈ 80%. Experiments with θt [1−4] get its best average rank one recognition rate

with 84.7%. For θt [1−5] and θt [1−6] the average rank one recognition rates drops drastically

to ≈ 54% and ≈ 53%, respectively. In this case, the number of parameters learnt drastically

grows from 656 (θt [1−4](β)) to 1,616 (θt [1−5](β)) and 2,640 (θt [1−6](β)). Due to this increasing,

the same overfitting hypothesis can be suggested for θt [1−5] and θt [1−6].

Using the thesis software this strategy can be triggered with the following bash commands:

2https://gitlab.idiap.ch/bob/bob.thesis.tiago
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Figure 5.6 – CUHK-CUFS - Training loss for θt [1−6] using Siamese Networks. Check points at
every 100 steps.

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray cuhk -cufs --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm cuhk -cufs #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm cuhk -cufs

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

The same trends are observed using Triplet Networks as training strategy. Adapting θt [1−1]

for both, Incep. Res. v1 and Incep. Res. v2, the average rank one recognition rates are

improved to ≈ 75% and ≈ 72% respectively. For θt [1−2] the improvements are ≈ 80% and ≈ 78%

respectively. For θt [1−4] the average rank one recognition rates are improved to ≈ 80% and

≈ 79% respectively. Using Incep. Res. v1 the average rank one recognition rate drops to ≈ 39%

and ≈ 24% for θt [1−5] and θt [1−6] respectively (same trend as Siamese). For Incep. Res. v2 the

average rank one recognition rate improved to ≈ 83% for θt [1−5] and it drastically drops to

≈ 59% for θt [1−6].

With this set of experiments it was possible to observe that the adaptation of batch normal-

ization offsets (βs) improved recognition rates. This confirms both Hypotheses, that there
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are DSUs and such DSUs are embedded in the biases (β). To investigate if there are domain

specific feature detectors, in the next set of experiments the same experimental procedure is

performed, but instead of adapting only β, it is adapted β and W (Equation 5.4).

Figure 5.7 (a) presents the CMC curves with adaptation of convolutional kernels and biases for

the Incep. Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, presents

an average rank one recognition rate of 67.03%. Adapting both, biases and kernels (β and

W in Equation 5.4), of the first layer (θt [1−1](β+W ) in the plots) it is possible to improve this

benchmark to ≈ 74%. The adaptation for θt [1−2] and θt [1−4] improves the average rank one

recognition rates to ≈ 87% and ≈ 89% respectively. Experiments with θt [1−5] get its best average

rank one recognition rate with 97.7%. For θt [1−6] the average rank one recognition rate drops

drastically to ≈ 60%. The same aforementioned overfitting can be suggested for θt [1−6].

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray cuhk -cufs --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm cuhk -cufs # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_nonshared_batch_norm cuhk -cufs

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

The same trend can be observed for Incep. Res. v1 using the Siamese Networks (see Figure

5.7 (b)). The average recognition rate increases once depth is increased. With no adaptation,

such DCNN has an average rank one recognition rate of 69.8%. The adaptation of β and W

for θt [1−1] leads to an average rank one recognition rate of ≈ 76%. For θt [1−2] it is achieved

≈ 89%. Experiments with θt [1−4] get its best average rank one recognition rate with 90.7%. For

θt [1−5] and θt [1−6] the average rank one recognition rate drops drastically to ≈ 56% and ≈ 44%,

respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray cuhk -cufs --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm cuhk -cufs # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm cuhk -cufs

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, with the Siamese Networks, the same trends are observed using Triplet Networks as
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training strategy. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average rank

one recognition rate improves to ≈ 73% and ≈ 75% respectively. For θt [1−2] the improvements

are ≈ 77% and ≈ 78% respectively. For θt [1−4] the average rank one recognition rates are

improved to ≈ 80% and ≈ 81% respectively. Using Incep. Res. v1 the average rank one

recognition rates drop to ≈ 51% and ≈ 46% for θt [1−5] and θt [1−6] respectively (same trend as

Siamese). For Incep. Res. v2 the average rank one recognition rate improved to 81.5% for

θt [1−5] and it drastically drops to ≈ 51% for θt [1−6].

With these set of experiments it was possible to observe that, despite the adaptation of only

the β′s increase the recognition rates, the joint adaptation of β and W increases even more

such figure of merit. It is possible to suggest that there are domain specific feature detectors,

therefore confirming once more Hypothesis 5.1.

From the experiments above, the best average rank one recognition rate is achieved with Incep.

Res v2 trained using Siamese Networks. The model θt [1−5] achieved an average recognition

rate of 97.72%(1.0).
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Figure 5.7 – CUFS - Average CMC curves (with error bars) for the adaptation of kernel and biases

Table 5.2 shows the average rank one recognition rate comparing different configurations

of the DSU approach (the one with the highest recognition rate for each setup) with the

Reproducible and the Non Reproducible baselines.

Comparing the DSU approach with P-RS, in terms of average rank one recognition rate, the

difference is ≈ 1%, which represents ≈ 2 miss classifications. The HFR approach implemented

in P-RS is composed by a score a fusion of 180 different face recognition systems (6 systems

with 30 bags each; see Chapter 2). Compared with the DSU approach, which is composed

by only one system instead of 180 complex systems (several bags, different types of feature,
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different image processing algorithms), the difference of 2 miss classifications is marginal. The

DSU approach presents slightly higher recognition rates than the Reproducible Baselines. For

instance, the approach based on ISV presents an average rank one recognition rate of 96.53%

and a variation of GFK presents 93.27%.

Table 5.2 – CUHK-CUFS - Average rank one recognition rate under different DSU training.

# FR Algorithm Average rank one rec. rate (std. dev.)

FR Baselines
1 Incep. Res. v1 - gray scaled 72.57%(3.7)
2 Incep. Res. v2 - gray scaled 80.29%(1.5)

Reproducible Baselines
3 MLBP [Liao et al., 2009] 62.27%(3.8)
4 MultiScale feat. [Liu et al., 2012] 64.16%(2.5)
5 GFK [Gong et al., 2012; Sequeira et al., 2017] 93.27%(1.4)
6 ISV (see Table 4.1 ) 96.53% (0.8)

Non Reproducible Baselines
7 P-RS as in [Klare and Jain, 2013] 99%(n/a)
8 Face VACS in [Klare and Jain, 2013] 89%(n/a)

DSU Adapt β
9 Siam. Incep. Res. v1 θt [1−4] 84.7% (3.6)

10 Siam. Incep. Res. v2 θt [1−5] 82.2% (1.7)
11 Trip. Incep. Res. v1 θt [1−4] 80.5% (2.9)
12 Trip. Incep. Res. v2 θt [1−5] 82.9% (2.3)

DSU Adapt β + W
13 Siam. Incep. Res. v1 θt [1−4] 90.7% (1.6)
14 Siam. Incep. Res. v2 θt [1−5] 97.7% (1.0)
15 Trip. Incep. Res. v1 θt [1−4] 81.6% (2.4)
16 Trip. Incep. Res. v2 θt [1−5] 81.5% (2.9)

CUHK-CUFSF

Figure 5.8 (a) presents the CMC curves with adaptation of the biases only for the Incep. Res.

v2 using the Siamese Networks. Such DCNN, with no adaptation, presents an average rank

one recognition rate of 29.51%. Adapting only the biases (β in Equation 5.4) of the first layer

(θt [1−1](β) in the plots) it is possible to get this benchmark improved to ≈ 32%. The biases

adaptation for θt [1−2] improved this figure of merit to ≈ 37%. Adapting θt [1−4] it is improved to

≈ 58% (its best). Adapting θt [1−5] such figure of merit decreases to 46% For θt [1−6] the average

rank one recognition rate drops drastically to ≈ 1%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray cuhk -cufsf --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm cuhk -cufsf #
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Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm cuhk -cufsf

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.
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Figure 5.8 – CUFSF - Average CMC curves (with error bars) for the adaptation of biases only

It is possible to observe the same trends for Incep. Res. v1 using Siamese Networks (see 5.8

(b)). The average recognition rates increase once depth is increased. With no adaptation, such

DCNN has an average rank one recognition rate of 24.49%. The adaptation of the biases (β in

Equation 5.4) for θt [1−1](β) leads to an average rank one recognition rate of ≈ 25%. For θt [1−2]

such figure of merit is increased to ≈ 28%. Experiments with θt [1−4] get its best average rank

one recognition rate with 54.57%. For θt [1−5] and θt [1−6] the average rank one recognition rates

drop drastically to ≈ 16% and ≈ 14%, respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray cuhk -cufsf --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm cuhk -cufsf #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm cuhk -cufsf

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.
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Training with Triplet Networks the same trends are observed. Adapting θt [1−1] for both, Incep.

Res. v1 and Incep. Res. v2, the average rank one recognition rates improved to ≈ 24% and

≈ 35% respectively. For θt [1−2] the improvements are ≈ 34% and ≈ 35% respectively. For θt [1−4]

the average rank one recognition rate improves to ≈ 41% and ≈ 44%. Using Incep. Res. v1 the

average rank one recognition rates drops to ≈ 12% and ≈ 7% for θt [1−5] and θt [1−6] respectively

(same trend as Siamese). For Incep. Res. v2 the average rank one recognition rate is ≈ 44% for

θt [1−5] and it drastically drops to ≈ 27% for θt [1−6].

The same trends observed in the previous experiments are observed in this database. The

adaptation of the batch normalization biases (β) only do improve the recognition rates con-

firming Hypothesis 5.2. In the next set of experiments it is investigated if there are domain

specific feature detectors by adapting β and W (Equation 5.4).

Figure 5.9 (a) presents the CMC curves with adaptation of convolutional kernels and biases for

the Incep. Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, presents

an average rank one recognition rate of 29.51%. Adapting both, biases and kernels (β and

W in Equation 5.4), of the first layer (θt [1−1](β+W ) in the plots) it is possible to get this

benchmark improved to ≈ 36%. The adaptation for θt [1−2](β+W ) improves the average rank

one recognition rate to ≈ 61%. The best average rank one recognition rate is achieved with

θt [1−4](β+W ) with 85.05%. With θt [1−5] the average rank one recognition rate decreases to

58.18%. For θt [1−6] the average rank one recognition rate drops drastically to ≈ 2%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray cuhk -cufsf --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm cuhk -cufsf # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_nonshared_batch_norm cuhk -cufsf

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

The same trends can be observed for Incep. Res. v1 training with Siamese Networks (see

Figure 5.9 (b)). The average recognition rate increases once depth is increased. With no

adaptation, such DCNN has an average rank one recognition rate of 24.49%. The adaptation

of β and W for θt [1−1] and θt [1−2] leads to an average rank one recognition rates of ≈ 27% and

≈ 54% respectively. With θt [1−4] the average rank one recognition rate is increased to 84.45%

(its best). Finally, for θt [1−5] and θt [1−6] the average rank one recognition rate drops drastically

to ≈ 22% and ≈ 15%, respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray cuhk -cufsf --preprocess -
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training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm cuhk -cufsf # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm cuhk -cufsf

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, with Siamese Networks, the same trends are observed using Triplet Networks as

training strategy. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average rank

one recognition rate improves to ≈ 26% and ≈ 38% respectively. For θt [1−2] such benchmark

is improved to ≈ 38% and ≈ 44% respectively. Using Incep. Res. v1 the average rank one

recognition rate is improved to ≈ 53% for θt [1−4] and drastically drops to ≈ 41% and ≈ 20%

for θt [1−5] and θt [1−6] respectively. For Incep. Res. v2 the average rank one recognition rates

are improved to 61.9% and ≈ 46% for θt [1−4] and θt [1−5] respectively and it drastically drops to

≈ 31% for θt [1−6].
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Figure 5.9 – CUFS - Average CMC curves (with error bars) for the adaptation of kernel and biases

With this set of experiments it was possible to observe that, despite the adaptation of only the

βs increase the recognition rates, confirming Hypotheses 5.2, the joint adaptation of β and W

increase even more such figure of merit. It is possible to suggest that there are domain specific

feature detectors and such feature detectors need to be taken into account for the HF R task.

Table 5.3 shows the average rank one recognition rate comparing different configurations of

DSU approach jointly with the FR baselines, Reproducible baselines and the Paper baselines.

The best setup found is the Incep. Res. v2 trained with Siamese Networks (model θt [1−5](β+
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Table 5.3 – CUHK-CUFSF - Average rank one recognition rate under different DSU training.

# FR Algorithm Average rank one rec. rate (std. dev.)

FR Baselines
1 Incep. Res. v1 - gray scaled 24.49%(0.5)
2 Incep. Res. v2 - gray scaled 29.51%(0.7)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 9.11%(1.7)
4 MultiScale feat. in [Liu et al., 2012] 6.76%(0.7)
5 GFK [Gong et al., 2012; Sequeira et al., 2017] 41.01%(1.8)
6 ISV (see Table 4.2) 55.59%(1.2)

Non Reproducible Baselines
7 TP-LBP [Wolf et al., 2008] 59.7%(not available)
8 CDFL [Jin et al., 2015] 81.3%(not available)
9 DEEPS [Galea, 2018] 82.92%(1.25)

10 LGMS [Galea, 2018] 78.19%(0.52)

DSU β

11 Siam. Incep. Res. v1 θt [1−4] 81.88%(2.9)
12 Siam. Incep. Res. v2 θt [1−5] 42.3% (1.5)
13 Trip. Incep. Res. v1 θt [1−4] 41.21%(1.2)
14 Trip. Incep. Res. v2 θt [1−4] 44.61%(2.9)

DSU β + W
15 Siam. Incep. Res. v1 θt [1−4] 84.45%(3.4)
16 Siam. Incep. Res. v2 θt [1−5] 85.05%(2.1)
17 Trip. Incep. Res. v1 θt [1−4] 53.59%(8.6)
18 Trip. Incep. Res. v2 θt [1−5] 61.90%(0.8)

W )). Such model achieved an average rank one recognition rate of 85.05% with 2.1 of standard

deviation. It is possible to observe that this model presents higher rank one recognition rate

compared with Galea [2018]. With respect to the Reproducible Baselines, the DSU strategy

performs substantially better.

5.3.2 Visible Light to NIR

In this subsection it is described experiments with four NIR databases: CASIA, NIVL, LDHF

and FARGO.

CASIA

Figure 5.10 (a) presents the CMC curves with adaptation of the biases only for the Incep.

Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, presents an average

rank one recognition rate of 73.80%. Adapting only the biases (β in Equation 5.4) of the first

layer (θt [1−1](β) in the plots) it is possible to improve this benchmark to ≈ 77%. The biases

adaptation for θt [1−2] and θt [1−4] improve the average rank one recognition rates to ≈ 83% and
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≈ 86% respectively. Experiments with θt [1−5] get its best average rank one recognition rate

with 88.5%. For θt [1−6] the average rank one recognition rate drops drastically to ≈ 35%. The

same overfitting hypothesis suggested before can be applied for θt [1−6].

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray casia -nir -vis -2 --

preprocess -training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm casia -nir -vis -2 #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm casia -nir -vis -2

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

The same trends can be observed for Incep. Res. v1 using Siamese Networks (see Figure 5.10

(b)). Average recognition rates increase once depth is increased. With no adaptation, such

DCNN presents an average rank one recognition rate of 74.25%. The adaptation of the biases

(β in Equation 5.4) for θt [1−1] leads to an average rank one recognition rate of ≈ 78%. For

θt [1−2] it is achieved ≈ 84%. Experiments with θt [1−4] get its best average rank one recognition

rate with 89.5%. For θt [1−5] and θt [1−6] the average rank one recognition rate drops drastically

to ≈ 28% and ≈ 27%, respectively.
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Figure 5.10 – CASIA - Average CMC curves (with error bars) for the adaptation of biases only

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray casia -nir -vis -2 --
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preprocess -training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm casia -nir -vis -2 #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm casia -nir -vis -2

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

In this particular experiment, the same trend couldn’t be observed using Triplet Networks

as training strategy. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average

rank one recognition rates drops to ≈ 73% and ≈ 75% respectively. For θt [1−2] the it drops to

≈ 70% and ≈ 74% respectively. For θt [1−4] the average rank one recognition rates is decreased

to ≈ 64% and ≈ 60% respectively. Using Incep. Res. v1 the average rank one recognition rate

drop to ≈ 52% and ≈ 68% for θt [1−5] and θt [1−6] respectively (same trend as Siamese). For Incep.

Res. v2 the average rank one recognition rate drops to ≈ 57% for θt [1−5] and it drastically drops

to ≈ 15% for θt [1−6].

The same trends observed in the previous experiments are observed in this database. The

adaptation of the batch normalization biases (β) only do improve the recognition rates con-

firming both Hypotheses. In the next set of experiments it is investigated if there are domain

specific feature detectors by adapting β and W (Equation 5.4).

Figure 5.11 (a) presents the CMC curves with adaptation of convolutional kernels and biases

for the Incep. Res. v2 using Siamese Networks. Such DCNN, with no adaptation, presents an

average rank one recognition rate of 73.8%. Adapting both, biases and kernels (β and W in

Equation 5.4), of the first layer (θt [1−1] in the plots) it is possible to get this benchmark improved

to ≈ 80%. The adaptation for θt [1−2] and θt [1−4] improves the average rank one recognition

rates to ≈ 91% and ≈ 93% respectively. Experiments with θt [1−5] get its best average rank one

recognition rate with 96.3%. For θt [1−6] the average rank one recognition rate drops drastically

to ≈ 49%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray casia -nir -vis -2 --

preprocess -training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm casia -nir -vis -2 #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_nonshared_batch_norm casia -nir -vis -2

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

The same trend can be observed for Incep. Res. v1 trained with Siamese Networks (see 5.11
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(b)). The average recognition rates increases once depth is increased. With no adaptation,

such DCNN has an average rank one recognition rate of 74.25%. The adaptation of β and W

for θt [1−1] leads to an average rank one recognition rate of ≈ 83%. For θt [1−2] it is achieved

≈ 92%. Experiments with θt [1−4] get its best average rank one recognition rate with 93.9%. For

θt [1−5] and θt [1−6] the average rank one recognition rates drops drastically to ≈ 44% and ≈ 38%,

respectively.
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Figure 5.11 – CASIA - Average CMC curves (with error bars) for the adaptation of biases and kernels

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray casia -nir -vis -2 --

preprocess -training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm casia -nir -vis -2 #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm casia -nir -vis -2

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, with Siamese Networks, it is also observed the same trends using Triplet Networks

as training strategy. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average

rank one recognition rates are improved to ≈ 75% and ≈ 76% respectively. For θt [1−2] the

improvements are ≈ 76% and ≈ 79% respectively. For θt [1−4] the average rank one recognition

rate is improved to ≈ 88% and ≈ 89% respectively. Using Incep. Res. v1 the average rank one

recognition rate drops to ≈ 50% and ≈ 49% for θt [1−5] and θt [1−6] respectively (same trend as

Siamese Networks). For Incep. Res. v2 the average rank one recognition rate improves to
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90.1% for θt [1−5] and it drastically drops to ≈ 51% for θt [1−6].

With this set of experiments it was possible to observe that, despite the adaptation of only the

βs increase the recognition rates, confirming Hypothesis 5.2, the joint adaptation of β and W

increase even more such figure of merit, reinforcing both Hypotheses. It is possible to suggest

that there are domain specific feature detectors and such feature detectors need to be taken

into account for the HF R task.

Table 5.4 – CASIA - Average rank one recognition rate under different Face Recognition systems

# FR Algorithm Average rank one rec. rate (std. dev.)

FR Baselines
1 Incep. Res. v1 - gray 74.25%(1.3)
2 Incep. Res. v2 - gray 73.80%(1.2)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 70.33%(1.2)
4 Multiscale Feat. in [Liu et al., 2012] 67.54%(1.7)
5 GFK [Gong et al., 2012; Sequeira et al., 2017] 26.98%(0.9)
6 ISV (see Table 4.3 72.67%(1.8)

Non Reproducible Baselines
7 IDR in [He et al., 2017] 95.82%(0.7)
8 CDL in [Wu et al., 2017] 98.62%(0.2)
9 WCNN in [He et al., 2018] 98.70%(0.3)

10 TRIVET in [Liu et al., 2016] 95.74%(0.5)

DSU Adapt β
11 Siam. Incep. Res. v1 θt [1−4] 89.5% (1.2)
12 Siam. Incep. Res. v2 θt [1−5] 88.5% (1.1)
13 Trip. Incep. Res. v1 θt [1−2] 70.0% (1.6)
14 Trip. Incep. Res. v2 θt [1−1] 73.8% (2.0)

DSU Adapt β + W
15 Siam. Incep. Res. v1 θt [1−4] 93.9% (0.3)
16 Siam. Incep. Res. v2 θt [1−5] 96.3% (0.4)
17 Trip. Incep. Res. v1 θt [1−4] 87.7% (1.5)
18 Trip. Incep. Res. v2 θt [1−5] 90.1% (2.9)

Table 5.4 shows the average rank one recognition rate comparing different configurations of

DSU approach jointly with the FR baselines, Reproducible baselines and Non Reproducible

baselines. In terms of average rank one recognition rate, different setups of the DSU proposed

approach are substantially better than the Reproducible baselines. The best DSU setup (96.3%

with the model θt [1−5](β+W ) trained with Siamese Neural Networks and Incep. Res. v2),

presents a slightly better recognition performance compared with the TRIVET system in Liu

et al. [2016] (95.74%). However, the systems CDL[Wu et al., 2017] and WCNN [He et al., 2018]

present a slight better average rank one recognition rate with 98.76% and 98.70% respectively.
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NIVL

Figure 5.12 (a) presents the CMC curves with adaptation of the biases only for the Incep.

Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, has an average rank

one recognition rate of 88.14%. Adapting only the biases (β in Equation 5.4) of the first

layer (θt [1−1](β) in the plots) it is possible to improve this benchmark to ≈ 89%. The biases

adaptation for θt [1−2] improves the average rank one recognition to≈ 92%. Adapting θt [1−4] and

θt [1−5] improves this benchmark to 92.7% and 92.8% respectively. For θt [1−6] the average rank

one recognition rate drops drastically to ≈ 51%. The same overfitting hypothesis suggested

before can be verified for θt [1−6].

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray nivl --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm nivl # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm nivl

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.
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Figure 5.12 – NIVL - Average CMC curves (with error bars) for the adaptation of biases only

The same trend can be observed for Incep. Res. v1 using the Siamese Networks (see Figure

5.12 (b)). The average recognition rate increases once depth is increased. With no adaptation,

such DCNN has an average rank one recognition rate of 87.48%. The adaptation of the biases

(β in Equation 5.4) for θt [1−1](β) leads to an average rank one recognition rate of ≈ 90%. For
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θt [1−2] it is achieved ≈ 93%. Experiments with θt [1−4] get its best average rank one recognition

rate with 93.4%. For θt [1−5] and θt [1−6] the average rank one recognition rates drops drastically

to ≈ 53% and ≈ 56%, respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray nivl --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm nivl # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm nivl

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

Training with Triplet Networks the same trends are observed. Adapting θt [1−1] for both, Incep.

Res. v1 and Incep. Res. v2, the average rank one recognition rate gets improved to ≈ 91% and

≈ 90% respectively. For θt [1−2] the improvements are ≈ 92% and ≈ 91% respectively. For θt [1−4]

the average rank one recognition rate for the Incep. Res. v1 decreased to ≈ 83% and improves

to ≈ 92% Incep. Res. v2. Using Incep. Res. v1 the average rank one recognition rates drops to

≈ 12% and ≈ 14% for θt [1−5] and θt [1−6] respectively (same trend as Siamese). For Incep. Res.

v2 the average rank one recognition rate decreases to ≈ 90% for θt [1−5] and it drastically drops

to ≈ 30% for θt [1−6].

The same trends observed before was observed for this database. The adaptation of the batch

normalization offsets (β) only do improve the recognition rates confirming both Hypotheses.

In the next set of experiments it is investigated if there are domain specific feature detectors

by adapting β and W (Equation 5.4).

Figure 5.13 (a) presents the CMC curves with adaptation of convolutional kernels and biases

for the Incep. Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, has

an average rank one recognition rate of 88.14%. Adapting both, biases and kernels (β and

W in Equation 5.4), of the first layer (θt [1−1](β+W ) in the plots) it is possible to get this

benchmark improved to ≈ 91%. The adaptation for θt [1−2] and θt [1−4] improves the average

rank one recognition rates to ≈ 94% and ≈ 94% respectively. Experiments with θt [1−5] get its

best average rank one recognition rate with 94.5%. For θt [1−6] the average rank one recognition

rate drops drastically to ≈ 59%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray nivl --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm nivl # Training DSU

3 $ bob bio htface htface_baseline
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siamese_inceptionv2_first_layer_nonshared_batch_norm nivl

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, the same trends are observed for Incep. Res. v1 trained with Siamese Networks

(see Figure 5.13 (b)). The average recognition rate increases once depth is increased. With no

adaptation, such DCNN has an average rank one recognition rate of 87.48%. The adaptation of

β and W for θt [1−1] and θt [1−2] leads to average rank one recognition rates of 92.7% and 94.8%

respectively. The average rank one recognition rate slightly increases to 94.9% for θt [1−4] (its

best). Finally, for θt [1−5] and θt [1−6] the average rank one recognition rates drop drastically to

≈ 60% and ≈ 32%, respectively.

1 10 100

Rank

20

30

40

50

60

70

80

90

100

Id
en

ti
fi

ca
ti

on
ra

te
(%

)

No Adaptation

θt[1−1](β +W )

θt[1−2](β +W )

θt[1−4](β +W )

θt[1−5](β +W )

θt[1−6](β +W )

(a) Incep. Res. v2

1 10 100

Rank

20

30

40

50

60

70

80

90

100

Id
en

ti
fi

ca
ti

on
ra

te
(%

)

No Adaptation

θt[1−1]

θt[1−2]

θt[1−4]

θt[1−5]

θt[1−6]

(b) Incep. Res. v1

Figure 5.13 – NIVL - Average CMC curves (with error bars) for the adaptation of kernel and biases

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray nivl --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm nivl # Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm nivl

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, with Siamese Networks, the same trends using Triplet Networks as training strategy

are observed. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average
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rank one recognition rates gets improved to ≈ 92% and ≈ 90% respectively. For θt [1−2] such

benchmark stabilizes to ≈ 92% and ≈ 90% respectively. Using Incep. Res. v1 the average rank

one recognition rate drops to ≈ 89% for θt [1−4] and drastically drops to ≈ 48% and ≈ 45% for

θt [1−5] and θt [1−6] respectively. For Incep. Res. v2 the average rank one recognition rates are

improved to ≈ 92% for θt [1−4] and θt [1−5] and it drastically drops to ≈ 54% for θt [1−6].

With this set of experiments it was possible to observe that, despite the adaptation of only βs

increase the recognition rates, the joint adaptation of β and W slightly increased such figure

of merit confirming both Hypotheses.

Table 5.5 – NIVL - Average rank one recognition rate under different Face Recognition systems

# FR Algorithm Average Rank one rec. rate (std. dev.)

FR Baselines
1 Incep. Res. v1 - gray 91.09%(0.3)
2 Incep. Res. v2 - gray 88.14%(0.6)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 85.35%(1.1)
4 Multiscale Feat. in [Liu et al., 2012] 90.34%(1.3)
5 ISV (see Table 4.4) 76.73%(2.0)
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 63.08%(2.2)

DSU Adapt β
5 Siam. Incep. Res. v1 θt [1−4] 93.4%(1.3)
6 Siam. Incep. Res. v2 θt [1−5] 92.8%(1.2)
7 Trip. Incep. Res. v1 θt [1−2] 92.0%(0.8)
8 Trip. Incep. Res. v2 θt [1−5] 91.9%(1.8)

DSU Adapt β + W
9 Siam. Incep. Res. v1 θt [1−4] 94.9%(1.0)

10 Siam. Incep. Res. v2 θt [1−5] 94.5%(1.2)
11 Trip. Incep. Res. v1 θt [1−1] 91.9%(1.6)
12 Trip. Incep. Res. v2 θt [1−5] 92.2%(1.4)

Table 5.5 shows the average rank one recognition rate comparing different configurations of

DSU approach jointly with the FR baselines, Reproducible baselines and Non Reproducible

baselines. As mentioned in Chapter 2.3.1, there is no official evaluation protocol for this

database. In terms of average rank one recognition rate the DSU approach is slightly better

than the Reproducible baselines. The best setup is the model θt [1−4] trained with Siamese

Neural Networks using the Incep. Res. v1 as a basis and achieved a recognition rate of 94.9%.

LDHF

Table 5.6 presents the average rank one recognition rates with adaptation of the biases only

for different stand-offs. The same trends observed for the other VIS to NIR databases can be

observed for this one, for all base DCNNs (Incep. Res. v1 and Incep. Res. v2) and for all base

trainers (Siamese and Triplet Networks).
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Analysing the 1m stand-off it is possible to observe an improvement from 94.8% to 99.6%

using the Incep. Res. v1 and Siamese Networks for θt [1−1]. For θt [1−2] and θt [1−4] this value

decreases to 97.6% and 98.4% respectively. Finally, for θt [1−5] and θt [1−6] this values drops

to 34.0% and 30.4%. Analysing the 60m stand-off it is possible to observe an impressive

improvement from 78.8% to 94.0% using the Incep. Res. v1 and Siamese Networks for θt [1−1]

and to 94.4% for θt [1−2]. For θt [1−4] this value decreases to 92.7%. Finally, for θt [1−5] and

θt [1−6] this values drops to 28.4% and 26.4%. For 100m stand-off it is possible to observe an

improvement from 28.4% to 45.2% using the Incep. Res. v1 and Siamese Networks for θt [1−1].

The best recognition rate is achieved with θt [1−4] with 68.0%. Finally for 150m stand-off it is

possible to observe an improvement from 4.8% to 19.2% using the Incep. Res. v1 and Siamese

Networks for θt [1−1]. The best recognition rate is achieved with θt [1−4] with 22.8%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray ldhf --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm ldhf # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm ldhf

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

Analysing the 1m stand-off it is possible to observe an improvement from 92.8% to 97.6% using

the Incep. Res. v2 and Siamese Networks for θt [1−1]. For θt [1−2], θt [1−4] and θt [1−5] this value

increases to 96.4%, 96.0% and 94.8% respectively. Finally, for θt [1−6] this values drops to 15.6%.

Analysing the 60m stand-off it is possible to observe an impressive improvement from 75.6%

to 87.2% for θt [1−1] and to 90.8% for θt [1−2]. For θt [1−4] this value decreases to 83.6%. Finally,

for θt [1−5] and θt [1−6] this values drops to 86.0% and 9.2%. For 100m stand-off it is possible to

observe an improvement from 9.6% to 27.6% for θt [1−1]. The best recognition for this stand-off

rate is achieved with θt [1−5] with 51.6%. Finally for 150m stand-off it is possible to observe an

improvement from 2.8% to 13.2% for θt [1−1]. The best recognition rate is achieved with θt [1−5]

with 21.2%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray ldhf --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm ldhf # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm ldhf

These command lines demonstrates just how to train θt [1−1](β). To check how to train other
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DSUs, check2.

The same trends are followed by using Triplet Networks as a training method as can be

observed in Table 5.6.

With this set of experiments it was possible to observe that the adaptation of batch normaliza-

tion offsets (βs) improved recognition rates for all stand-offs. This confirms both Hypotheses,

that there are DSUs and such DSUs are embedded in the biases (β). To investigate if there

are domain specific feature detectors, the next set of experiments the same experimental

procedure is performed, but instead of adapting only β, it is adapted β and W (Equation 5.4).

Table 5.6 – LDHF - average rank one recognition rates under different stand-offs adapting β
only

# FR Algorithm 1m 60m 100m 150m

FR Baselines
1 Incep. Res. v1 - gray 94.8%(2.0) 78.0%(4.4) 28.4%(1.5) 4.8%(1.6)
2 Incep. Res. v2 - gray 92.8%(2.7) 75.6%(2.9) 9.6%(1.5) 2.8%(1.6)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 67.2%(7.0) 23.2%(3.0) 10.0%(2.8) 6.0%(1.8)
4 Multiscale Feat. in [Liu et al., 2012] 74.4%(3.4) 43.2%(3.7) 22.0%(4.5) 14.8%(3.0)
5 ISV (see Table 4.5) 96.0%(1.3) 59.2%(6.0) 37.2%(7.4) 14.4%(6.6)
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 73.6%(4.3) 31.2%(7.2) 12.0%(2.8) 2.8%(3.0)

Siamese Networks training
7 Incep. Res. v1 θt [1−1] 99.6%(0.8) 94.0%(3.3) 45.2%(4.1) 19.2%(3.0)
8 Incep. Res. v1 θt [1−2] 97.6%(0.8) 94.4%(3.2) 68.0%(3.3) 16.8%(2.7)
9 Incep. Res. v1 θt [1−4] 98.4%(0.8) 92.8%(3.7) 59.6%(3.4) 22.8%(2.7)

10 Incep. Res. v1 θt [1−5] 34.0%(4.7) 28.4%(4.4) 22.8%(2.0) 13.2%(3.2)
11 Incep. Res. v1 θt [1−6] 30.4%(2.9) 26.4%(4.1) 21.6%(1.5) 16.8%(3.5)

12 Incep. Res. v2 θt [1−1] 97.6%(1.5) 87.2%(6.0) 27.6%(3.4) 13.2%(2.4)
13 Incep. Res. v2 θt [1−2] 96.4%(2.3) 90.8%(2.7) 33.6%(4.8) 14.4%(1.5)
14 Incep. Res. v2 θt [1−4] 96.0%(1.2) 83.6%(3.8) 39.2%(5.8) 14.8%(4.1)
15 Incep. Res. v2 θt [1−5] 94.8%(1.6) 86.0%(3.3) 51.6%(6.5) 21.2%(1.0)
16 Incep. Res. v2 θt [1−6] 15.6%(3.4) 9.2%(1.6) 9.6%(1.4) 10.0%(2.53)

Triplet Networks training
17 Incep. Res. v1 θt [1−1] 99.1%(0.4) 94.8%(3.7) 47.2%(2.7) 25.2%(2.7)
18 Incep. Res. v1 θt [1−2] 98.4%(1.5) 88.0%(1.8) 57.2%(8.6) 21.2%(4.0)
19 Incep. Res. v1 θt [1−4] 93.6%(3.9) 70.0%(8.8) 37.6%(6.4) 12.0%(2.8)
20 Incep. Res. v1 θt [1−5] 34.4%(3.4) 30.4%(3.4) 16.4%(4.8) 12.0%(1.8)
21 Incep. Res. v1 θt [1−6] 33.6%(6.6) 23.6%(4.4) 16.8%(2.7) 14.8%(3.7)

22 Incep. Res. v2 θt [1−1] 92.4%(7.1) 69.2%(17.2) 29.2%(6.0) 11.2%(2.4)
23 Incep. Res. v2 θt [1−2] 96.4%(2.6) 80.4%(11.5) 30.4%(7.9) 17.2%(3.0)
24 Incep. Res. v2 θt [1−4] 94.4%(3.8) 76.0%(10.5) 28.0%(4.7) 19.2%(1.6)
25 Incep. Res. v2 θt [1−5] 64.0%(8.5) 48.4%(16.5) 28.0%(8.6) 19.2%(2.7)
26 Incep. Res. v2 θt [1−6] 14.0%(3.3) 16.4%(1.4) 12.4%(2.3) 12.8%(4.3)

Table 5.7 presents the average rank one recognition rates with adaptation of the W +β for

different stand-offs. The same trends observed for the other VIS to NIR databases can be

observed for this one, for all base DCNNs (Incep. Res. v1 and Incep. Res. v2) and for all base

trainers (Siamese and Triplet Networks).
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Analysing the 1m stand-off it is possible to observe an improvement from 94.8% to 100.0%

using the Incep. Res. v1 and Siamese Networks for θt [1−1] (the highest for this experiment).

For θt [1−2] and θt [1−4] this value decreases to 98.0% and 98.4% respectively. Finally, for θt [1−5]

and θt [1−6] this values drops to 33.2% and 31.1%. Analysing the 60m stand-off it is possible to

observe an impressive improvement from 78.8% to 90.8% for θt [1−1] and to 98.0% for θt [1−2].

For θt [1−4] this value decreases to 92.8%. Finally, for θt [1−5] and θt [1−6] this values drops to

28.8% and 24.4%. For 100m stand-off it is possible to observe an improvement from 28.4%

to 51.6% using the Incep. Res. v1 and Siamese Networks for θt [1−1]. The best recognition rate

is achieved with θt [1−4] with 59.6%. Finally for 150m stand-off it is possible to observe an

improvement from 2.8% to 21.6% using the Incep. Res. v1 and Siamese Networks for θt [1−1].

The best recognition rate is achieved with θt [1−4] with 22.8%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray ldhf --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm ldhf # Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_nonshared_batch_norm ldhf

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

Analysing the 1m stand-off it is possible to observe an improvement from 92.8% to 99.2%

using the Incep. Res. v2 and Siamese Networks for θt [1−1] (the highest for this experiment).

For θt [1−2], θt [1−4] and θt [1−5] this value decreased to 96.8%, 95.6% and 86.0% respectively.

Finally, for θt [1−6] this values drops to 13.6%. Analysing the 60m stand-off it is possible to

observe an impressive improvement from 75.6% to 85.2% for θt [1−1] and to 84.0% for θt [1−2].

For θt [1−4] this value decreased to 82.0%. Finally, for θt [1−5] and θt [1−6] this values drops to

78.4% and 12.4% respectively. For 100m stand-off it is possible to observe an improvement

from 9.6% to 40.4% for θt [1−1]. The best recognition for this stand-off rate is achieved with

θt [1−5] with 52.8%. Finally for 150m stand-off it is possible to observe an improvement from

2.8% to 12.8% for θt [1−1]. The best recognition rate is achieved with θt [1−2] with 21.2%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray ldhf --preprocess -training -

data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm ldhf # Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm ldhf

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.
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The same trends are observed by using Triplet Networks as a training method as can be

observed in Table 5.7.

With this set of experiments it was possible to confirm both hypotheses. Furthermore, it

was possible to observe similar recognition rates between β and β+W adaptations. This is

particularly advantageous from the storage points of view. For instance, in the experiments

using Incep. Res. v1 trained with Siamese Networks the model θt [1−1](β) presents an average

rank one recognition rate of 99.6%. Such model corresponds to the learning of only 32 new

free parameters.

Table 5.7 – LDHF - average rank one recognition rates under different stand-offs adapting
β+W

# FR Algorithm 1m 60m 100m 150m

FR Baselines
1 Incep. Res. v1 - gray 94.8%(2.0) 78.0%(4.4) 28.4%(1.5) 4.8%(1.6)
2 Incep. Res. v2 - gray 92.8%(2.7) 75.6%(2.9) 9.6%(1.5) 2.8%(1.6)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 67.2%(7.0) 23.2%(3.0) 10.0%(2.8) 6.0%(1.8)
4 Multiscale Feat. in [Liu et al., 2012] 74.4%(3.4) 43.2%(3.7) 22.0%(4.5) 14.8%(3.0)
5 ISV (see Table 4.5) 96.0%(1.3) 59.2%(6.0) 37.2%(7.4) 14.4%(6.6)
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 73.6%(4.3) 31.2%(7.2) 12.0%(2.8) 2.8%(3.0)

Siamese Networks training
7 Incep. Res. v1 θt [1−1] 100.0%(0.0) 90.8%(2.4) 51.6%(3.0) 21.6%(1.5)
8 Incep. Res. v1 θt [1−2] 98.0%(0.1) 98.0%(0.3) 56.0%(4.1) 18.8%(2.7)
9 Incep. Res. v1 θt [1−4] 98.4%(0.8) 92.8%(3.7) 59.6%(3.4) 22.9%(2.0)

10 Incep. Res. v1 θt [1−5] 33.2%(7.9) 28.8%(4.8) 22.4%(4.4) 12.4%(2.6)
11 Incep. Res. v1 θt [1−6] 31.2%(6.5) 24.4%(3.0) 21.2%(2.7) 15.2%(3.2)

12 Incep. Res. v2 θt [1−1] 99.2%(0.9) 85.2%(5.1) 40.4%(6.0) 12.8%(3.7)
13 Incep. Res. v2 θt [1−2] 96.8%(1.0) 84.0%(2.5) 50.4%(3.9) 21.2%(5.6)
14 Incep. Res. v2 θt [1−4] 95.6%(1.5) 82.0%(2.8) 51.6%(4.4) 19.2%(5.8)
15 Incep. Res. v2 θt [1−5] 86.0%(3.8) 78.4%(3.4) 52.8%(6.8) 21.2%(3.7)
16 Incep. Res. v2 θt [1−6] 13.6%(1.9) 12.4%(1.5) 14.4%(3.4) 10.8%(1.6)

Triplet Networks training
17 Incep. Res. v1 θt [1−1] 99.6%(0.8) 91.2%(5.3) 48.8%(6.9) 22.8%(3.0)
18 Incep. Res. v1 θt [1−2] 96.0%(2.8) 70.8%(8.6) 42.0%(8.1) 18.0%(5.5)
19 Incep. Res. v1 θt [1−4] 86.4%(5.6) 70.0%(6.1) 50.0%(4.6) 20.8%(2.0)
20 Incep. Res. v1 θt [1−5] 38.8%(1.6) 31.2%(4.7) 20.4%(3.4) 14.0%(4.6)
21 Incep. Res. v1 θt [1−6] 38.8%(2.7) 26.4%(3.4) 19.6%(5.0) 14.8%(1.0)

22 Incep. Res. v2 θt [1−1] 92.4%(7.1) 69.2%(7.2) 29.2%(6.0) 11.2%(2.4)
23 Incep. Res. v2 θt [1−2] 42.0%(11.2) 27.6%(5.6) 20.0%(5.2) 14.4%(1.5)
24 Incep. Res. v2 θt [1−4] 41.6(11.412) 33.2(6.765) 22.8(2.713) 15.6(2.653)
25 Incep. Res. v2 θt [1−5] 46.8%(6.2) 32.4%(3.4) 24.8%(4.3) 19.2%(4.8)
26 Incep. Res. v2 θt [1−6] 14.8(3.709) 8.8(2.04) 12.4(1.96) 10.8(2.04)

Compared to all Reproducible Baselines, the approach based on DSU presented higher recog-

nition rates for all stand-offs.

It is worth noting that the training set of this database contains VIS and NIR images from

1m stand-off only. Even when samples from 60m, 100m and 150m are not presented, it was
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possible to observe improvements in the recognition rates in these stand-off by only having a

proper DSUs crafted for NIR. Furthermore, different from other databases, for this one the

best model was the Incep. Res. v1 trained with Siamese Networks

FARGO

Table 5.8 presents the FNMR@FMR=1%(dev) with adaptation of the biases only using both

based architectures (Incep. Res. v1 and Incep. Res. v2) and both training methods (Siamese

and Triplet networks). The same trends observed before can be observed in this experiment.

Under the controlled protocol (mc), the adaptation of the biases presented a FNMR decrease

in the evaluation set from 4.40% to 4.00% using Incep. Res. v1 and Siamese Networks θ[1−1].

For θ[1−2] such figure of merit is reduced to 0.6% and to 0.6% for θ[1−4]. Finally for θ[1−5]

and θ[1−6] such figure of merit drastically increases to 80.20% and 76.20% respectively. In

the same experiment, using the protocol dark (ud), the adaptation of the biases presented a

FNMR reduction in the evaluation set from 11.90% to 8.40% for θ[1−1]. For θ[1−2] such figure

of merit is decreased to 7.9% and to 4.5% for θ[1−4]. Finally for θ[1−5] and θ[1−6] such figure of

merit drastically increases to 77.60% and 83.10% respectively. Experiments using the protocol

outside (uo), the adaptation of the biases presented a FNMR reduction in the evaluation set

from 9.00% to 7.40% using Incep. Res. v1 and Siamese Networks θ[1−1]. For θ[1−2] such figure

of merit is increased to 8.3% and to 13.6% for θ[1−4]. Finally for θ[1−5] and θ[1−6] such figure of

merit drastically increases to 77.70% and 88.50% respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray fargo --preprocess -training

-data # generating prior

2 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray fargo --preprocess -training

-data # generating prior

3 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm fargo # Training

DSU

4 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm fargo # Training

DSU

5 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm fargo

6 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm fargo

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

The same trends can be observed for Incep. Res. v2 and Siamese Networks. Under the

controlled protocol (mc), the adaptation of the biases presented a FNMR decrease in the

evaluation set from 4.40% to 4.20% for θ[1−1]. For θ[1−2] such figure of merit is decreased to
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Figure 5.14 – FARGO - Adaptingβ only - DET curves for verification experiments under the three
illumination conditions MC (controlled), UD (dark) and UO (outdoor) trained with Siamese
Networks. The column on the left presents DET curves using Incep. Res. v1 as a basis and the
column on the right presents DET curves using Incep. Res. v2 as a basis.

121



Chapter 5. Domain Specific Units

3.20% and to 3.20% for θ[1−4]. Finally for θ[1−5] such figure of merit decreases to 1.8% and

drastically increases to 95.40% to θt [1−6]. In the same experiment, using the protocol dark

(ud), the adaptation of the biases presents a FNMR increase in the evaluation set from 4.00%

to 4.40% for θ[1−1]. For θ[1−2] such figure of merit is increased to 4.8% and increased to 4.30%

for θ[1−4]. Finally for θ[1−5] such figure of merit decreases to 3.0% and drastically increases to

89.70% to θt [1−6]. In experiments using the protocol outside (uo), the adaptation of the biases

presented a FNMR decrease in the evaluation set from 2.00% to 1.70% using for θ[1−1]. For

θ[1−2] such figure of merit is increased to 2.2% and to 2.5% for θ[1−4]. Finally for θ[1−5] and

θ[1−6] such figure of merit drastically increases to 4.5% and 96.20% respectively. Figure 5.14

presents the DET plots for the this evaluation set using Incep. Res. v1 and Incep. Res. v2. The

same observation can be made for different operational points.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray fargo --preprocess -training

-data # generating prior

2 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray fargo --preprocess -training

-data # generating prior

3 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm fargo # Training

DSU

4 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm fargo # Training

DSU

5 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm fargo

6 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm fargo

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

The same trends are observed by using Triplet Networks as a training method as can be

observed in Table 5.8.

With this set of experiments it was possible to observe that the adaptation of batch normaliza-

tion offsets (βs) improved recognition rates in all conditions (controlled, dark and outside).

This confirms both Hypothesis, that there are DSUs and such DSUs are embedded in the biases

(β). To investigate if there are domain specific feature detectors, the next set of experiments

the same experimental procedure is performed, but instead of adapting only β, it is adapted β

and W (Equation 5.4).

Table 5.9 presents the FNMR@FMR=1%(dev)% with adaptation of the kernels and the biases

using both based architectures (Incep. Res. v1 and Incep. Res. v2) and both training methods

(Siamese and Triplet networks). The same trends observed before can be observed in this

experiment.
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Table 5.8 – Fargo database - FNMR@FMR=1%(dev) taken from the development set adapting
β only

#
FR Algorithm

mc ud uo
dev eval dev eval dev eval

FR Baselines
1 Incep. Res. v1 - gray scaled 0.40 2.80 6.70 11.90 0.40 9.00
2 Incep. Res. v2 - gray scaled 0.00 4.40 0.80 4.00 0.50 2.00

Reproducible Baselines
3 MultiScale feat. [Liu et al., 2012] 20.80 23.00 26.70 23.70 32.30 42.40
4 MLBP [Liao et al., 2009] 23.80 21.40 29.00 27.30 34.10 51.60
5 ISV 10.80 8.40 12.00 14.10 8.00 39.50
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 16.80 15.60 21.60 19.60 25.30 30.70

Siamese Networks training
7 Incep. Res. v1 θt [1−1] 0.80 4.00 5.50 8.40 0.00 7.40
8 Incep. Res. v1 θt [1−2] 1.60 0.60 4.70 7.90 1.90 8.30
9 Incep. Res. v1 θt [1−4] 2.80 0.60 1.30 4.50 1.80 13.60

10 Incep. Res. v1 θt [1−5] 71.20 80.20 74.20 77.60 83.60 77.70
11 Incep. Res. v1 θt [1−6] 64.20 76.20 78.90 83.10 86.20 88.50

12 Incep. Res. v2 θt [1−1] 0.00 4.20 2.40 4.40 0.80 1.70
13 Incep. Res. v2 θt [1−2] 0.00 3.20 1.00 4.80 2.00 2.20
14 Incep. Res. v2 θt [1−4] 0.20 3.20 0.50 4.30 0.70 2.50
15 Incep. Res. v2 θt [1−5] 0.00 1.80 0.60 3.00 1.10 4.50
16 Incep. Res. v2 θt [1−6] 99.20 95.40 97.30 89.70 99.90 96.20

Triplet Networks training
17 Incep. Res. v1 θt [1−1] 0.40 4.00 6.50 9.10 0.00 7.40
18 Incep. Res. v1 θt [1−2] 1.00 1.00 4.20 8.60 2.00 11.00
19 Incep. Res. v1 θt [1−4] 4.60 3.20 6.30 12.20 2.20 17.10
20 Incep. Res. v1 θt [1−5] 71.40 84.00 87.80 78.30 87.60 89.50
21 Incep. Res. v1 θt [1−6] 89.40 89.20 92.80 96.10 90.00 89.30

22 Incep. Res. v2 θt [1−1] 0.00 3.80 2.00 5.80 0.90 2.10
23 Incep. Res. v2 θt [1−2] 0.00 4.80 0.60 4.00 4.40 9.00
24 Incep. Res. v2 θt [1−4] 0.20 3.80 1.00 5.10 1.40 7.80
25 Incep. Res. v2 θt [1−5] 0.00 4.20 3.80 7.90 6.60 13.40
26 Incep. Res. v2 θt [1−6] 98.40 97.40 95.50 99.20 97.80 97.80

Under the controlled protocol (mc), the adaptation of the kernel and biases presented a

FNMR increase in the evaluation set from 2.80% to 3.80% using Incep. Res. v1 and Siamese

Networks θ[1−1]. For θ[1−2] such figure of merit is reduced to 1.6% and to 0.4% for θ[1−4]. Finally

for θ[1−5] and θ[1−6] such figure of merit drastically increases to 73.60% and 80.00% respectively.

In the same experiment, using the protocol dark (ud), the adaptation of the biases presented a

FNMR increase in the evaluation set from 4.00% to 6.70% for θ[1−1]. For θ[1−2] such figure of

merit is increased to 4.9% and decreased to 2.7% for θ[1−4]. Finally for θ[1−5] and θ[1−6] such

figure of merit drastically increases to 74.10% and 85.10% respectively. Experiments using

the protocol outside (uo), the adaptation of the biases presented a FNMR reduction in the

evaluation set from 9.00% to 8.40% using Incep. Res. v1 and Siamese Networks θ[1−1]. For

θ[1−2] such figure of merit is reduced to 9.4% and to 14.00% for θ[1−4]. Finally for θ[1−5] and

θ[1−6] such figure of merit drastically increases to 78.00% and 81.00% respectively.
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Figure 5.15 – FARGO - Adapting W +β - DET curves for verification experiments under the three
illumination conditions MC (controlled), UD (dark) and UO (outdoor) trained with Siamese
Networks. The column on the left presents DET curves using Incep. Res. v1 as a basis and the
column on the right presents DET curves using Incep. Res. v2 as a basis
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The same trends can be observed for Incep. Res. v2 and Siamese Networks. Under the

controlled protocol (mc), the adaptation of the biases presented a FNMR decrease in the

evaluation set from 4.40% to 3.40% for θ[1−1]. For θ[1−2] such figure of merit is reduced to

1.8% and to 0.8% for θ[1−4]. For θ[1−5] it is reduced to 0.6%. Finally for θ[1−6] such figure of

merit drastically increases to 98.40% respectively. In the same experiment, using the protocol

dark (ud), the adaptation of the biases presented a FNMR reduction in the evaluation set

from 4.00% to 2.90% for θ[1−1]. For θ[1−2] such figure of merit is reduced to 2.4% and to 2.60%

for θ[1−4]. Finally for θ[1−5] and θ[1−6] such figure of merit drastically increases to 5.40% and

100.0% respectively. Experiments using the protocol outside (uo), the adaptation of the kernel

an biases presented a FNMR increase in the evaluation set from 2.00% to 2.50% using Incep.

Res. v2 and Siamese Networks for θ[1−1]. For θ[1−2] such figure of merit is increased to 6.0%

and to 8.0% for θ[1−4]. Finally for θ[1−5] and θ[1−6] such figure of merit drastically increases to

14.20% and 95.44% respectively. Hence, no improvements are observed in this experiment.

Figure 5.15 presents the DET plots for the evaluation set using Inception Res. v1 and Inception

Res. v2.

The same trends are observed by using Triplet Networks as a training method as can be

observed in Table 5.9.

With these set of experiments it was possible to observe that, despite the adaptation of only

the β′s increase the recognition rates, the joint adaptation of β and W increases even more

such figure of merit. It is possible to suggest that there are domain specific feature detectors,

therefore confirming once both hypotheses.

Compared to all Reproducible Baselines, the approach based on DSU presented higher recog-

nition rates for all conditions. It is worth noting that the training set of this database contains

VIS and NIR images from under the controlled environment only. Even if samples from uo

and ud are not presented, it was possible to observe improvements in the recognition rates in

these conditions by just making the adaptation for the NIR channel.

5.3.3 Visible Light to Thermograms

In this subsection it is described experiments with two subsets of the Pola Thermal database:

Thermal and Pola Thermal.

Thermal

Figure 5.16 (a) presents the CMC curves with adaptation of the biases only for the Incep.

Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, has an average rank

one recognition rate of 31.09 %. Adapting only the biases (β in Equation 5.4) of the first

layer (θt [1−1](β) in the plots) it is possible to improve this benchmark to ≈ 33%. The biases

adaptation for θt [1−2] and θt [1−4] achieves an average rank one recognition to ≈ 48% and ≈ 47%

respectively. Adapting θt [1−5] the average rank one recognition rates increases to ≈ 59%. For
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Table 5.9 – Fargo database - FNMR@FMR=1% adapting W +β
#

FR Algorithm
mc ud uo

dev eval dev eval dev eval

FR Baselines
1 Incep. Res. v1 - gray scaled 0.40 2.80 6.70 11.90 0.40 9.00
2 Incep. Res. v2 - gray scaled 0.00 4.40 0.80 4.00 0.50 2.00

Reproducible Baselines
3 MultiScale feat. [Liu et al., 2012] 20.80 23.00 26.70 23.70 32.30 42.40
4 MLBP [Liao et al., 2009] 23.80 21.40 29.00 27.30 34.10 51.60
5 ISV 10.80 8.40 12.00 14.10 8.00 39.50
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 16.80 15.60 21.60 19.60 25.30 30.70

Siamese Networks Trainer
7 Incep. Res. v1 θt [1−1] 1.20 3.80 4.00 6.70 0.50 8.40
8 Incep. Res. v1 θt [1−2] 0.40 1.60 3.30 4.90 2.00 9.40
9 Incep. Res. v1 θt [1−4] 2.00 0.40 0.90 2.70 2.80 14.00

10 Incep. Res. v1 θt [1−5] 71.20 73.60 79.30 74.10 88.70 78.00
11 Incep. Res. v1 θt [1−6] 83.00 80.00 82.60 85.10 91.00 81.00

12 Incep. Res. v2 θt [1−1] 0.00 3.40 1.20 2.90 1.20 2.50
13 Incep. Res. v2 θt [1−2] 0.20 1.80 1.40 2.40 3.60 6.00
14 Incep. Res. v2 θt [1−4] 0.60 0.80 2.20 2.60 4.20 8.00
15 Incep. Res. v2 θt [1−5] 1.40 0.60 1.00 5.40 5.50 14.20
16 Incep. Res. v2 θt [1−6] 98.20 98.40 98.50 100.0 97.70 95.00

Triplet Networks Trainer
17 Incep. Res. v1 θt [1−1] 0.80 3.80 4.00 8.20 3.90 7.80
18 Incep. Res. v1 θt [1−2] 6.80 2.60 45.00 33.00 12.90 16.10
19 Incep. Res. v1 θt [1−4] 17.80 10.00 22.70 20.90 12.30 25.80
20 Incep. Res. v1 θt [1−5] 89.80 84.00 89.90 85.60 84.80 92.00
21 Incep. Res. v1 θt [1−6] 85.40 94.40 90.90 91.80 88.90 92.07

22 Incep. Res. v2 θt [1−1] 0.00 3.20 1.30 7.60 1.80 3.90
23 Incep. Res. v2 θt [1−2] 82.40 75.00 75.00 60.10 20.60 30.40
24 Incep. Res. v2 θt [1−4] 35.60 26.80 11.80 20.10 18.60 22.30
25 Incep. Res. v2 θt [1−5] 8.80 10.60 48.80 31.90 19.30 22.60
26 Incep. Res. v2 θt [1−6] 95.60 98.20 99.10 98.40 95.80 99.30

θt [1−6] the average rank one recognition rate drops drastically to ≈ 6%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm thermal #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm thermal

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, see2.

The same trend can be observed for Incep. Res. v1 (see Figure 5.16 (b)). The average recogni-
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Figure 5.16 – Thermal - Average CMC curves (with error bars) for the adaptation of biases

tion rates increase once depth is increased. With no adaptation, such DCNN has an average

rank one recognition rate of 20.55%. The adaptation of the biases (β in Equation 5.4) for

θt [1−1](β) leads to an average rank one recognition rate of ≈ 24%. For θt [1−2] it is achieved

≈ 45%. Experiments with θt [1−4] get its best average rank one recognition rate with 68.53%.

For θt [1−5] and θt [1−6] the average rank one recognition rates drop drastically to ≈ 18% and

≈ 15%, respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm thermal #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm thermal

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

Training with Triplet Networks same trends are observed. Adapting θt [1−1] for both, Incep.

Res. v1 and Incep. Res. v2, the average rank one recognition rate gets improved to ≈ 30% and

≈ 42% respectively. For θt [1−2] the improvements are ≈ 40% and ≈ 48% respectively. For θt [1−4]

the average rank one recognition rate for the Incep. Res. v1 is improved to ≈ 30% and to ≈ 50%

for Incep. Res. v2. Using Incep. Res. v1 the average rank one recognition rates drops to ≈ 15%

and ≈ 13% for θt [1−5] and θt [1−6] respectively (same trend as Siamese). For Incep. Res. v2 the

average rank one recognition rate increases to ≈ 49% for θt [1−5] and it drastically drops to ≈ 5%
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for θt [1−6].
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Figure 5.17 – Thermal - Average CMC curves (with error bars) for the adaptation of kernel and biases

The same trends observed in the previous subsections were observed in this database. The

adaptation of the batch normalization offsets only improve the recognition rates, confirming

both hypothesis. In the next set of experiments it is investigated if there are domain specific

feature detectors by adapting β and W (Equation 5.4)

Figure 5.17 (a) presents the CMC curves with adaptation of convolutional kernels and biases

for the Incep. Res. v2 using Siamese Networks. Such DCNN, with no adaptation, presents an

average rank one recognition rate of 31.09%. Adapting both, biases and kernels (β and W in

Equation 5.4), of the first layer (θt [1−1](β+W ) in the plots) it is possible to get this benchmark

improved to ≈ 38%. The adaptation for θt [1−2] improves this benchmark to ≈ 75%. For θt [1−4]

this benchmark is improved to 77.74% (its best). With θt [1−5] the average rank one recognition

rate drops to ≈ 67%. For θt [1−6] the average rank one recognition rate drops drastically to ≈ 9%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm thermal # Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_nonshared_batch_norm thermal

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

The same trends can be observed for Incep. Res. v1 trained with Siamese Networks (see 5.17
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(b)). The average recognition rates increase once depth is increased. With no adaptation,

such DCNN has an average rank one recognition rate of 20.55%. The adaptation of β and W

for θt [1−1] improves this benchmark to ≈ 29%. Adapting θt [1−2] this benchmark is improved

to 72.41%. With θt [1−4] the average rank one recognition rate decreases to ≈ 68% Finally, for

θt [1−5] and θt [1−6] the average rank one recognition rates drops drastically to ≈ 23% and ≈ 20%,

respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm thermal # Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm thermal

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, with Siamese Networks, the same trends using Triplet Networks as training strategy

is observed. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average rank

one recognition rate improves to ≈ 30% and ≈ 28% respectively. For θt [1−2] such benchmark

is improved to ≈ 53% and ≈ 42% respectively. Using Incep. Res. v1 the average rank one

recognition rate drops to ≈ 42% for θt [1−4] and drastically drops to ≈ 17% and to ≈ 13% for

θt [1−5] and θt [1−6] respectively. For Incep. Res. v2 the average rank one recognition rates

improves to ≈ 48% for θt [1−4] and to ≈ 51% for θt [1−5] and it drastically drops to ≈ 27% for

θt [1−6].

With this set of experiments it was possible to observe that, despite the adaptation of only the

βs increase the recognition rates, the joint adaptation of β and W increased even more such

figure of merit, confirming both hypotheses. It is possible to suggest that there are domain

specific feature detectors and such feature detectors need to be taken in to account for the VIS

to Thermal task.

Table 3.7 shows the average rank one recognition rate comparing different configurations of

DSU approach jointly with the FR baselines, Reproducible baselines and Non Reproducible

baselines. In terms of average rank one recognition rate the proposed approach based on

DSU presented competitive recognition rates. The best setup is the model θt [1−4] trained with

Siamese Neural Networks using the Incep. Res. v1 as a basis and achieved a recognition rate of

77.73%. Compared with the Non Reproducible baselines, this is slightly lower than the CpNN

system proposed by Hu et al. [2016].
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Table 5.10 – Thermal database - Average rank one recognition rate under different Face Recog-
nition systems.

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray scaled 20.55%(4.2)
2 Incep. Res. v2 - gray scaled 31.09%(4.1)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 36.80%(3.5)
4 Multiscale Feat. in [Liu et al., 2012] 26.89%(3.5)
5 ISV 23.86%(1.3)
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 34.07%(2.9)

Non Reproducible Baselines
7 PLS [Hu et al., 2016] 53.05% (n/a)
8 DPM [Hu et al., 2016] 75.31% (n/a)
9 CpNN [Hu et al., 2016] 78.72% (n/a)

DSU Adapt β
10 Siam. Incep. Res. v1 θt [1−4] 68.54% (7.4)
11 Siam. Incep. Res. v2 θt [1−5] 58.83% (4.0)
12 Trip. Incep. Res. v1 θt [1−4] 46.24%(6.3)
13 Trip. Incep. Res. v2 θt [1−4] 50.21%(2.3)

DSU Adapt β+ W
14 Siam. Incep. Res. v1 θt [1−2] 72.42% (3.2)
15 Siam. Incep. Res. v2 θt [1−5] 77.74% (2.6)
16 Trip. Incep. Res. v1 θt [1−2] 52.98%(4.4)
17 Trip. Incep. Res. v2 θt [1−4] 57.97%(3.1)

Pola Thermal

Figure 5.18 (a) presents the CMC curves with adaptation of the biases only for the Incep.

Res. v2 using the Siamese Networks. Such DCNN, with no adaptation, has an average rank

one recognition rate of 27.29 %. Adapting only the biases (β in Equation 5.4) of the first

layer (θt [1−1](β) in the plots) it is possible to improve this benchmark to ≈ 32%. The biases

adaptation for θt [1−2] achieves an average rank one recognition to ≈ 37%. Adapting θt [1−4] and

θt [1−5] the average rank one recognition rates increases to ≈ 36% and 39.67% respectively. For

θt [1−6] the average rank one recognition rate drops drastically to ≈ 4%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray pola_thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm pola_thermal #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_betas_nonshared_batch_norm pola_thermal
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These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.
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Figure 5.18 – Pola Thermal - Average CMC curves (with error bars) for the adaptation of biases

It is possible to observe the same trends for Incep. Res. v1 using the Siamese Networks (see

5.18 (b)). The average recognition rates increase once depth is increased. With no adaptation,

such DCNN has an average rank one recognition rate of 18.69%. The adaptation of the biases

(β in Equation 5.4) for θt [1−1](β) leads to an average rank one recognition rate of ≈ 22%. For

θt [1−2] it is achieved ≈ 26%. Experiments with θt [1−4] gets its best average rank one recognition

rate with ≈ 42%. For θt [1−5] and θt [1−6] the average rank one recognition rates drops drastically

to ≈ 12% and ≈ 13%, respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray pola_thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm pola_thermal #

Training DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_betas_nonshared_batch_norm pola_thermal

These command lines demonstrates just how to train θt [1−1](β). To check how to train other

DSUs, check2.

Training with Triplet Networks the same trends are observed. Adapting θt [1−1] for both, Incep.

Res. v1 and Incep. Res. v2, the average rank one recognition rate get improved to ≈ 23% and

≈ 30% respectively. For θt [1−2] the improvements are ≈ 26% and ≈ 32% respectively. For θt [1−4]

the average rank one recognition rate for the Incep. Res. v1 are improved to ≈ 26% and to
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≈ 32% for Incep. Res. v2. Using Incep. Res. v1 the average rank one recognition rates drops to

≈ 12% and ≈ 13% for θt [1−5] and θt [1−6] respectively (same trend as Siamese). For Incep. Res.

v2 the average rank one recognition rate increases to ≈ 30% for θt [1−5] and it drastically drops

to ≈ 4% for θt [1−6].
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Figure 5.19 – Pola Thermal - Average CMC curves (with error bars) for the adaptation of kernel and
biases

The same trends observed in the previous subsections were observed in this database. The

adaptation of the batch normalization offsets only improve the recognition rates confirming

both hypotheses. In the next set of experiments it is investigated if there are domain specific

feature detectors by adapting β and W (Equation 5.4)

Figure 5.19 (a) presents the CMC curves with adaptation of convolutional kernels and biases

for the Incep. Res. v2 using Siamese Networks. Such DCNN, with no adaptation, presents an

average rank one recognition rate of 27.29%. Adapting both, biases and kernels (β and W in

Equation 5.4), of the first layer (θt [1−1](β+W ) in the plots) it is possible to get this benchmark

improved to ≈ 35%. The adaptation for θt [1−2] and θt [1−4] improves the average rank one

recognition rate to ≈ 52% and 55.15% (its best) respectively. With θt [1−5] the average rank

one recognition rate drops to ≈ 53%. For θt [1−6] the average rank one recognition rate drops

drastically to ≈ 6%.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v2_centerloss_gray pola_thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv2_first_layer_nonshared_batch_norm pola_thermal # Training

DSU
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3 $ bob bio htface htface_baseline

siamese_inceptionv2_first_layer_nonshared_batch_norm pola_thermal

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

It is possible to observe the same trends for Incep. Res. v1 trained with Siamese Networks

(see Figure 5.19 (b)). The average recognition rates increase once depth is increased. With no

adaptation, such DCNN has an average rank one recognition rate of 18.69%. The adaptation

of β and W for θt [1−1] and θt [1−2] leads to an average rank one recognition rate of ≈ 26% and

≈ 34% respectively. With θt [1−4] the average rank one recognition rate decreases to ≈ 42%

Finally, for θt [1−5] and θt [1−6] the average rank one recognition rates drops drastically to ≈ 21%

and ≈ 17%, respectively.

Using the thesis software this strategy can be triggered with the following bash commands:

1 $ bob bio htface htface_baseline

htface_idiap_msceleb_inception_v1_centerloss_gray pola_thermal --preprocess -

training -data # generating prior

2 $ bob bio htface htface_train_dsu

siamese_inceptionv1_first_layer_nonshared_batch_norm pola_thermal # Training

DSU

3 $ bob bio htface htface_baseline

siamese_inceptionv1_first_layer_nonshared_batch_norm pola_thermal

These command lines demonstrates just how to train θt [1−1](β+W ). To check how to train

other DSUs, check2.

As before, with Siamese Networks, it is also observed the same trends using Triplet Networks as

training strategy. Adapting θt [1−1] for both, Incep. Res. v1 and Incep. Res. v2, the average rank

one recognition rate improves to ≈ 23% and ≈ 30% respectively. For θt [1−2] such benchmark

is improved to ≈ 24% and ≈ 27% respectively. Using Incep. Res. v1 the average rank one

recognition rate drops to ≈ 26% for θt [1−4] and drastically drops to ≈ 11% and to ≈ 12% for

θt [1−5] and θt [1−6] respectively. For Incep. Res. v2 the average rank one recognition rates

improves to ≈ 32% for θt [1−4] and to ≈ 30% for θt [1−5] and it drastically drops to ≈ 5% for

θt [1−6].

With this set of experiments it was possible to observe that, despite the adaptation of only the

βs increase the recognition rates, the joint adaptation of β and W drastically increased even

more such figure of merit confirming both hypotheses. It is possible to suggest that there are

domain specific feature detectors and such feature detectors need to be taken in to account

for the VIS to Pola Thermal task.

Table 5.11 shows the average rank one recognition rate comparing different configurations of

the DSU approach. The best DSU (Incep. Res. v2 model θt [1−4](W +β) trained with Siamese

Networks) presented an average rank one recognition rate of 55.15%. Although this recognition

rate is substantially higher than all the Reproducible Baselines, it is substantially lower than
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Table 5.11 – Pola Thermal database - Average rank one recognition rate under different Face
Recognition systems.

# FR Algorithm Average rank one rec. rate

FR Baselines
1 Incep. Res. v1 - gray scaled 18.69%(2.1)
2 Incep. Res. v2 - gray scaled 27.29%(0.8)

Reproducible Baselines
3 MLBP in [Liao et al., 2009] 15.61%(2.9)
4 Multiscale Feat. in [Liu et al., 2012] 20.81%(3.4)
5 ISV 9.63%(1.2)
6 GFK [Gong et al., 2012; Sequeira et al., 2017] 34.43%(2.3)

Non Reproducible Baselines
7 PLS [Hu et al., 2016] 58.67% (n/a)
8 DPM [Hu et al., 2016] 80.54% (n/a)
9 CpNN [Hu et al., 2016] 82.90% (n/a)

DSU Adapt β
10 Siam. Incep. Res. v1 θt [1−4] 42.08%(1.4)
11 Siam. Incep. Res. v2 θt [1−4] 55.15%(1.3)
12 Trip. Incep. Res. v1 θt [1−4] 26.04%(1.4)
13 Trip. Incep. Res. v2 θt [1−5] 32.04%(4.1)

DSU Adapt β + W
14 Siam. Incep. Res. v1 θt [1−4] 42.07%(1.4)
15 Siam. Incep. Res. v2 θt [1−4] 55.15%(1.3)
16 Trip. Incep. Res. v1 θt [1−4] 26.06%(2.2)
17 Trip. Incep. Res. v2 θt [1−5] 32.23%(2.0)

all Non Reproducible Baselines. For instance, the DPM and CpNN systems introduced by Hu

et al. [2016] presents an average rank one recognition rate of 80.54% and 82.90% respectively.

5.4 Discussion

It this chapter two hypotheses were drawn. Hypothesis 5.1 argue that high level feature detec-

tors from DCNNs trained with VIS images are potentially domain independent and that low

level feature detectors are potentially domain dependent and the task of HFR can be assessed

by adapting the low level layers for a particular target image modality. Hypothesis 5.1 argue

that such domain dependent feature detectors might be embedded in the biases set of each

low level feature detector. To approach these hypotheses a method called Domain Specific

Units (DSU) was introduced. Given pairs of face images from different image modalities, this

approach jointly learns specific features for a particular image modality.

Two methods to train such DSU were introduced and experiments were carried our using

two different DCNN architectures trained, in the context of this thesis, with VIS images.

Compared to a DCNN with no adaptation, the DSU approach systematically improved the
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HF R recognition rates for all tested image domains, confirming Hypothesis 5.1. By applying

DSU on the biases only, recognition rates were also improved, confirming Hypothesis 5.2.

Moreover, such improvements were observed independently of the base DCNN architecture

(Incep. Res. v1 or Incep. Res. v2) and training method (Siamese or Triplet training). By

incrementally applying the DSU approach layer by layer (θt [1−n]), it was possible to observe

improvements, in terms of rank one recognition rate until gets to a point of overfit. Overall,

for the Incep. Res. v1 it was possible to observe improvements until the layer set θt [1−4]; for

Incep. Res. v2 such improvements could be observed until the layer set θt [1−5]. In both cases,

the recognition rates started to decrease concomitantly when the number of free parameters

started to exponentially grow (see Figure 5.5). Such models are possibly overfitted. Table 5.12

presents the number of free parameters that need to be learnt for each θt [1−n] and for both

base architectures.

Table 5.12 – Number of free parameters learnt for each base DCNN adapting either β or β+W

Incep. Res. v1 Incep. Res. v2
Adapt β Adapt β+W Adapt β Adapt β+W

θt [1−1] 32 320 32 320
θt [1−2] 208 33,264 208 33,264
θt [1−4] 656 614,320 400 171,696
θt [1−5] 1,616 1,000,560 928 439,488
θt [1−6] 2,640 2,709,616 3,328 1,668,768

With respect to the training methods and the base architectures, it was observed that the Incep.

Res. v2 associated with the Siamese training presented the highest recognition rates for most

of the evaluated databases. This is possibly related with the fact that such DCNN presents the

highest recognition rates for VIS images.

In the VIS to Sketches task, most of the improvements, in terms of recognition rates, were

observed once adaptation were carried out with W +β. For instance, experiments with

CUHK-CUFS, where the sketches are very reliable, the average rank one recognition rate was

improved from 80.29% to 97.7%. For CUHK-CUFSF, where the sketch line is not aligned with

its corresponding photo, the average rank one recognition rate was improved from 29.51% to

85.05%.

In the VIS to NIR task, more data are available and, for some databases, such data was captured

in different conditions. Hence, different analysis can be made. Under constrained conditions,

where subjects are closer to the camera, with neutral expression and no pose/illumination

variations, most of the recognition rate improvements can be observed by adapting only β.

For instance, experiments with NIVL database, the average rank one recognition rate with

no adaptation using Incep. Res. v2 is 90.00%. By doing the θt [1−4](β) adaptation, which

corresponds to 400 free parameters only, such figure of merit was improved to 92.5% (see 5.5).

Experiments with LDHF, considering only 1m stand-off only, the θt [1−1](β) DSU adaptation
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using Incep. Res. v1 as a basis improved such figure of merit from 94.8% to 99.6% (see Table

5.6). This adaptation corresponds to 32 free parameters only. Finally, experiments using the

FARGO dataset, considering only the controlled protocol (mc), the θt [1−2](β) DSU adaptation

using Incep. Res. v1 as a basis improved the F N MR@F MR = 1% from 4.4% to 0.6%. This

adaptation corresponds to 208 free parameters only.

Improvements could also be observed under more unconstrained scenarios. For instance,

experiments with CASIA database, where NIR face images with several variations in pose

and expression are recorded, the θt [1−5](β+W ) DSU adaptation using Incep. Res. v2 as a

basis improved the average rank one recognition rate from 73.8% to 96.3% (see Table 5.4).

Experiments with LDHF, considering stand-offs above 1m, the DSU strategy improved such

figure of merit from 75.6% to 98% from 60m stand-off. Considering 100m stand-off, such

improvement was from 9.6% to 56.0% and from 2.8% to 22.8% for 150m (see 5.7). All those

recognition rates were observed with Incep. Res. v1 as a basis. Finally, experiments using the

FARGO dataset, considering the protocol dark (ud), the θt [1−2](β+W ) DSU adaptation using

Incep. Res. v2 as a basis improved the F N MR@F MR = 1% from 4.0% to 2.4%. Considering

the protocol outside (uo), improvements were marginal. For instance, the θt [1−1](β) DSU

adaptation using Incep. Res. v1 as a basis improved the F N MR@F MR = 1% from 2.0% to

1.7% (see Table 5.9).
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Figure 5.20 – t-SNE scatter plots from the test set of the Thermal database before and after DSU
adaptation. Each color is one different identity and each shape is one of the two image modalities

Improvements could also be observed in the VIS to Thermal task. For instance, experiments

with the Pola Thermal database, the θt [1−4](β+W ) DSU adaptation using Incep. Res. v2 as a

basis, improved the average rank one recognition rate from 27.29% to 55.15% (see Table 5.11).

Experiments with the Thermal database, the θt [1−5](β+W ) DSU adaptation using Incep. Res.

v2 as a basis, improved the average rank one recognition rate from 31.09% to 77.74% (see Table
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5.10).

It was possible to observe the discriminability power of DSUs using different benchmarks, such

as CMC, DET curves, FNMR and rank one recognition rate. Figure 5.20 illustrates how the 128d

embeddings from some samples of the test set using the Thermal database are distributed

before (Figure 5.20 (a)) and after (Figure 5.20 (b)) the θt [1−4](β+W ) DSU adaptation using as a

reference the Incep. Res. v2 architecture. This scatter plot is generated using t-Distributed

Stochastic Neighbor Embedding (t-SNE) [Maaten and Hinton, 2008], which is a non-linear

dimensionality reduction technique well suited for the visualization of high-dimensional

data. In the t-SNE plots, each color is a different identity and each shape is a different image

modality. It is possible to observe how image modalities are allocated in two big clusters (one

for each image modality) in Figure 5.20 (a). On the other hand, in Figure 5.20 (b) it is possible

to observe that most of the embeddings are clustered by the identities. Same effect can be

observed in Figures 5.21 (a) and (b) using the embeddings from the CUHK-CUFSF databases

before and after the θt [1−5](β+W ) DSU adaptation using as a reference the Incep. Res. v2

architecture. This highlights the effectiveness of the DSU adaptation. Furthermore, those

embeddings can potentially be used as a front-end to another layer of classification. An use

case of this is carried out in Appendix C.
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Figure 5.21 – t-SNE scatter plots from the test set of the CUHK-CUFSF database before and after DSU
adaptation. Each color is one different identity and each shape is one of the two image modalities

To better visualise the output of the DSU feature detectors a possible interpretation is offered

in Figure 5.22, where the layer Conv2d_1a_3x3 from Incep. Res. 2 is analysed. This layer

contains 32 convolutional filters. In Figure 5.22 (a) presents a VIS input with its corresponding

FFT (Fast Fourier Transform) response after the convolution of the 12th layer. The same output

is presented in Figure 5.22 (b), but now the input is a Thermal image from the same identity.

Finally, Figure 5.22 (c) presents the output of the same filter on the same layer, but now DSU
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adapted for thermal images. It is possible to observe that the FFT output from (a) and (c)

presents similar frequecy responses than compared with (a) and (b). The same trend can

be observed with the 18th filter from the same layer and same DCNN, where Figure 5.22 (d)

presents the FFT from a VIS input and Figures 5.22 (e) and (f) presents the FFT responses

considering thermal images as input with and without DSU adaptation respectively.

(a) VIS (b) Thermal (c) DSU adapted

(d) VIS (e) Thermal (f) DSU adapted

Figure 5.22 – Fourier transform over the Incep. Res. v2 Conv2d_1a_3x3 convoluted images.
(a) and (d) corresponds to VIS images convoluted with feature detectors from θs . (b) and (e)
corresponds to Thermal images convoluted with feature detectors from θt before the DSU
adaptation. (c) and (f) corresponds to Thermal images convoluted with feature detectors from
θt after the DSU adaptation.
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6 Conclusions and Future Work

The field of research coined as Heterogeneous Face Recognition (HFR) consists in matching

face images from different image modalities, such as photographs with sketches, infra-red

images, thermograms, etc. The key difficulty in the comparison of faces in this conditions is

that images from the same subject may differ in appearance due to changes in image domain.

Robust solutions for the HFR task can increase recognition rates in more covert scenarios,

such as recognition at a distance or at nighttime, or even in situations where no real face exist

(face search using sketches).

In this thesis the HFR task was addressed in three different directions. First, the assessment of

some state-of-the-art face recognition systems (trained with VIS images only) was carried out

for the HFR task. To the best of our knowledge, such extensive evaluation was never carried

out in the literature. Second, an approach that leverages from well stablished crafted features

was proposed. In this approach it was hypothesized that within class variations between faces

sensed in different image modalities can be modelled and suppressed in the Gaussian Mixture

Models mean-supervector space. Third, a strategy that leverages from very accurate DCNNs

trained using VIS images only was proposed. In the approach coined as Domain Specific

Units (DSU), it was hypothesized that high level feature detectors from those DCNNs are

domain independent and their low level features detectors can be adapted from a particular

image modality. Furthermore, all these approaches are publicly available in the thesis software

package1 and were implemented within Bob framework2, an open source framework for signal

processing and machine learning maintained and developed during my thesis.

6.1 Experimental Findings

The proposed techniques were applied on three different image modalities covering eight

different databases. Each approach with its respective performances was presented in details.

Furthermore, each baseline is reproducible via a command line interface along the software

1https://gitlab.idiap.ch/bob/bob.thesis.tiago
2https://www.idiap.ch/software/bob/
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package that comes with this thesis.

The experimental findings of this thesis are listed below.

1. Face Recognition baselines based on the recently published DCNNs architectures

trained with large scale set of VIS images presented some discriminative power in

all image domains. Considering each task individually:

(a) VIS to Sketch: High recognition rates could be observed in sketches where few

shape distortions are perceived. However, recognition rates degrades once such

distortions gets increased.

(b) VIS to NIR: High recognition rates could be observed once constrained NIR images

are used as probes. For instance, such constrained scenarios encompass mugshot

images taken in irregular illuminated environments, with no variations in pose and

expression. Once the aforementioned factors are into play, recognition rates starts

to decrease.

(c) VIS to Thermal: This is the most challenging task and, although these DCNN models

does not use thermal images, recognition rates of ≈ 30% could be observed.

2. Compared with the Face Recognition Baselines, Reproducible Baselines, some Non

Reproducible Baselines (see Chapter 3) and Session Variability Modeling approach

(see Chapter 4), the DSU strategy presented the highest recognition rates in all image

modalities. Considering each task individually:

(a) VIS to Sketch: Compared with its prior DCNN, recognition rate improvements could

be observed adapting the convolutional kernels and biases (W +β). For instance, for

the CUHK-CUFSF dataset, where the sketches are more challenging, it was possible

to observe the average rank one recognition rate to be improved from 29.51% to

85.05%.

(b) VIS to NIR: High recognition rates could be observed adapting only the biases (β)

once constrained (no illumination, pose and expression variations) NIR images

are used as probes. For some cases, substantial improvements could be observed

adapting only 32 free parameters. Once the aforementioned factors are into play,

substantial improvements could be observed adapting both, convolutional kernels

and biases (W +β). For instance, it was possible to observe an improvement from

73.8% to 96.3% using the CASIA database.

(c) VIS to Thermal: Substantial improvements could also be observed in this challeng-

ing task. By adapting the convolutional kernel and biases it was possible to observe

the average rank one recognition rate to be improved from 31.09% to 77.74% using

the thermal database.

3. The GMM Intersession Variability Modeling approach (ISV) presented high recognition

rates only in the VIS to NIR task once constrained NIR images are used as probes.
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6.2 Related Publications

During the course of this thesis we have published/submitted the following publications:

Journal Articles

• T. d. F. Pereira, A. Anjos and S. Marcel, "Heterogeneous Face Recognition Using Do-

main Specific Units," in IEEE Transactions on Information Forensics and Security. doi:

10.1109/TIFS.2018.2885284

• Guillaume Heusch, Tiago de Freitas Pereira, and Sebastien Marcel. A comprehensive

exper- imental and reproducible study on selfie biometrics in multistream and hetero-

geneous settings. (Paper Submitted to) - IEEE Transactions on Biometrics, Behavior,

and Identity Science, 2019

Conference Proceedings

• FREITAS PEREIRA, TIAGO, and SÉBASTIEN MARCEL. "Heterogeneous Face Recognition

using Inter-Session Variability Modelling." Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. 2016.

• FREITAS PEREIRA, TIAGO, and SÉBASTIEN MARCEL. "Periocular biometrics in mobile

environment." Biometrics Theory, Applications and Systems (BTAS), 2015 IEEE 7th

International Conference on. IEEE, 2015.

• ANJOS, A.; GUNTER, M.; de FREITAS PEREIRA, T.; KORSHUNOV, P.; MOHAMMADI, A.

and MARCEL, S. (2017). "Continuously reproducing toolchains in pattern recognition

and machine learning experiments."

• SEQUEIRA, ANA, et al. "Cross-Eyed 2017: Cross-Spectral Iris/Periocular Recognition

Competition." IEEE/IAPR International Joint Conference on Biometrics. No. EPFL-

CONF-233586. IEEE, 2017.

• BEVERIDGE, J. ROSS, et al. "The ijcb 2014 pasc video face and person recognition

competition." Biometrics (IJCB), 2014 IEEE International Joint Conference on. IEEE,

2014.

6.3 Related Software

During the course of this thesis I contributed to several open source communities related to

open science. In this section it is described the most relevant ones.
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6.3.1 Bob

Bob3 is a free machine learning and signal processing library created by the Biometric Security

and Privacy Group of Idiap Research Institute whose continuous development and collabo-

ration was carried out during the period of my thesis. This is an open source and extensible

toolbox which provides efficient implementations of several machine learning algorithms as

well as a framework to help researchers to conduct reproducible research publications.

As of today Bob is composed of 102 components and most of them are focused on biometric

related tasks such as: face/heterogeneous face recognition, speaker recognition, finger/-

palm vein recognition, presentation attack detection, template protection, diarization among

others.

In the subsections below it is listed a set of related software packages developed and main-

tained in context of this thesis

API for databases

Bob provides an API to programmatically query and access samples, protocols and metadata

for any kind of pattern recognition task. Those packages are called database packages4. Follow

below a list of all database packages developed in the context of this thesis:

• bob.db.cuhk_cufs5 https://gitlab.idiap.ch/bob/bob.db.cuhk_cufs

• bob.db.cuhk_cufsf 5: https://gitlab.idiap.ch/bob/bob.db.cuhk_cufs

• bob.db.nivl 5: https://gitlab.idiap.ch/bob/bob.db.nivl

• bob.db.cbsr_nir_vis_2: https://gitlab.idiap.ch/bob/bob.db.cbsr_nir_vis_2

• bob.db.ldhf 5: https://gitlab.idiap.ch/bob/bob.db.ldfh

• bob.db.pola_thermal 5: https://gitlab.idiap.ch/bob/bob.db.pola_thermal

• bob.db.fargo: https://gitlab.idiap.ch/bob/bob.db.fargo

• bob.db.ijba: https://gitlab.idiap.ch/bob/bob.db.ijba

• bob.db.ijbc: https://gitlab.idiap.ch/bob/bob.db.ijbc

• bob.db.msceleb: https://gitlab.idiap.ch/bob/bob.db.msceleb

• bob.db.pericrosseye: https://gitlab.idiap.ch/bob/bob.db.pericrosseye

• bob.db.eprip: https://gitlab.idiap.ch/bob/bob.db.eprip

3https://www.idiap.ch/software/bob/
4https://www.idiap.ch/software/bob/docs/bob/docs/stable/#database-interfaces
5First public protocol for this database
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Other software components

Follow below a list of other software components developed and maintained along the course

of this thesis. Those software components encompass the implementation and/or integration

of machine learning and signal processing algorithms:

• bob.bio.htface: https://gitlab.idiap.ch/bob/bob.bio.htface

• bob.bio.base: https://gitlab.idiap.ch/bob/bob.bio.base

• bob.bio.face: https://gitlab.idiap.ch/bob/bob.bio.face

• bob.bio.face_ongoing: https://gitlab.idiap.ch/bob/bob.bio.face_ongoing

• bob.bio.gmm: https://gitlab.idiap.ch/bob/bob.bio.gmm

• bob.bio.spear: https://gitlab.idiap.ch/bob/bob.bio.spear

• bob.bio.caffe_face: https://gitlab.idiap.ch/bob/bob.bio.caffe_face

• bob.learn.tensorflow: https://gitlab.idiap.ch/bob/bob.learn.tensorflow

• bob.ip.tensorflow_extractor: https://gitlab.idiap.ch/bob/bob.ip.tensorflow_extractor

• bob.learn.em: https://gitlab.idiap.ch/bob/bob.learn.em

• bob.ip.mtcnn: https://gitlab.idiap.ch/bob/bob.ip.mtcnn

• bob.ip.dlib: https://gitlab.idiap.ch/bob/bob.ip.dlib

• bob.bio.challenge_uccs: https://gitlab.idiap.ch/bob/bob.bio.challenge_uccs

• bob.paper.tifs2018_dsu: https://gitlab.idiap.ch/bob/bob.paper.tifs2018_dsu

• bob.thesis.tiago: https://gitlab.idiap.ch/bob/bob.thesis.tiago

• bob.math: https://gitlab.idiap.ch/bob/bob.math

• bob.learn.linear: https://gitlab.idiap.ch/bob/bob.learn.linear

6.3.2 Contributions to other software libraries

Along the course of this thesis, contributions to other open source software libraries was also

carried out. Follow below the list of the most relevant ones:

1. Tensorflow: https://github.com/tensorflow/tensorflow/pull/11824

2. Caffe: https://github.com/BVLC/caffe/pull/4194

3. Scikit Learn: https://github.com/scikit-learn/scikit-learn/pull/4761
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6.4 Directions for Future Work

The following items are some possible directions for future extensions of this thesis.

1. The loss functions used to train the DSU approach (see Chapter 5) expects pairs of

images from the same identity sensed in different image modalities. This limit the

extensibility of this approach to other image domains, since a data collection needs to

be carried out taking into account this requirement and this can be time consuming.

Strategies to “break” this requirement shall be studied. This raises a fundamental

question on what is domain and what is identity. One possibility approach this issue

would be to craft a specific loss function that relies in other outputs of the DCNN rather

than its embedding.

2. The embeddings from the DSU approach could be used as a front-end to another layer

of classification, such as PLDA [El Shafey et al., 2013], Extreme Value Machine (EVM)

[Rudd et al., 2018] and specially the ISV approach from Chapter 4. This might increase

recognition rates.

3. The prior DCNNs used in this thesis were trained using a large scale VIS image dataset

which presents high recognition rates in the VIS task using several databases as bench-

mark. The impact of the quality of this prior DCNN in the HFR task (in terms of recogni-

tion rates) shall be studied.

4. In Chapter 5 a glimpse about what the DSU feature detectors are learning was introduced

using FFTs. A deep analysis about the interpretability of those feature detectors shall

be studied. One possibility would be the usage of Layer-wise Relevance Propagation

[Montavon et al., 2018].
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A Thesis Software Package

In this appendix installation details of the thesis software package is provided.

The thesis software is based on conda1 and it is compatible with Linux and MacOS 64-bit

operating systems. The first step is to install conda >= 4.4 (miniconda is preferred) in the

target computer.

Once conda is installed, go to the terminal and type:

1 $ conda create --name bob_thesis_tiago --override -channels \

2 -c https ://www.idiap.ch/software/bob/conda -c defaults \

3 python =3 bob_thesis_tiago

This will create a new conda environment and install the thesis software and all its dependen-

cies.

Once the software is installed, the second step is to activate the environment that was just

created with the aforementioned command line:

1 $ conda activate bob_thesis_tiago

Finally, the last step is to test the command line interface with the following command:

1 $ bob bio htface --help

The sequence of command lines to reproduce all the experiments of this thesis is available at:

https://gitlab.idiap.ch/bob/bob.thesis.tiago.

1https://conda.io/
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B Training Inception Resnet for VIS
Face Recognition

In this appendix details on how to train the Incep. Res. v1 and Incep. Res. v2 models with VIS

images used in the chapters 3 and 5 are provided. Both architectures are depicted in Figure

3.11 and were training with RGB and gray scaled images.

As mentioned in Chapter 3, the detected faces from MS-Celeb[Guo et al., 2016] dataset are used.

Such dataset contains a substantial amount of mislabeling as can be observed in Figure B.1. In

the context of this thesis, this dataset was pruned in a semi-automatic manner. First, only face

images detected with the MTCNN face detector [Zhang et al., 2016] are considered. All those

faces are detected, cropped, aligned and stored. Then, all the detected faces from a particular

identity are pruned using the DBScan clustering algorithm [Ester et al., 1996]. Only samples

from high density (minimum of 10 samples) are considered and the rest is discarded. Finally,

those pruned set of samples were again pruned, but in this stage the pruning was manual. The

outcome of this pruning resulted in a dataset of 8M samples with 87,662 identities. For both

architectures 160×160 cropped faces are used. This pruning strategy as well as the annotation

tool is published here 1.

Both architectures were crafted using tensorflow2 and they are available on the Bob Framework

via this component3. The RMSProp optimizer is used as a solver4 with mini-batches of 90

samples. The learning rate is kept to 0.1 for 65 epochs. Then, it is decreased to 0.01 for 15

epochs and finally decreased once more to 0.001 until the end of the training. In total all the

DCNNs are trained for 250 epochs. The weight sum between the center and cross entropy loss

proposed by Wen et al. [2016] is used as loss function.

With the software thesis a command line interface is provided to train such DCNNs and an

example on how to trigger this tool is described in the code snippet below.

1 bob tf train <CONFIG >

1http://gitlab.idiap.ch/bob/bob.db.msceleb
2https://www.tensorflow.org/
3https://gitlab.idiap.ch/bob/bob.learn.tensorflow
4tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
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Appendix B. Training Inception Resnet for VIS Face Recognition

(a) Wrong labels - paintings and statues marked as the same identity

(b) Correct labels - Samples marked as the same identity

Figure B.1 – Samples from the MSCeleb dataset

Developed in the context of this thesis, the input of this command line program is a python

script. In this script details of loss, solver, inputs, etc needs to be provided. The code in the

end of this appendix is an example of script used as input.

Experiments on VIS images database

Experiments under three different face databases are presented. The first one is the MOBIO

database [Marcel et al., 2010]. The MOBIO database is made of videos recorded from 152

people in 6 different sites from 5 different countries. Such database is focused in the task

of face/speaker verification using mobile phones. The second database is the Label Faces

in the Wild (LFW) [Learned-Miller et al., 2016]. This database is one of the main references

in unconstrained face recognition. In this appendix the unconstrained set of protocols are

used. Finally, the last database is the IARPA Janus Benchmark C (IJB-C) database 5. The IJB-C

database is a mixture of frontal and non-frontal images and videos (provided as single frames)

from 3531 different identities. The verification protocol is used in this work

Table B.1 presents the Half Total Error Rates (HTER) in the development and evaluation set

using the MOBIO database. The same protocol applied in Günther et al. [2016] is applied in

this experiment. Please, refer to Günther et al. [2016] for further details.

5https://www.nist.gov/programs-projects/face-challenges
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Table B.1 – Mobio - HTER% using the mobio-male protocol
#

FR Algorithm
Sets

dev eval

FR Baselines
1 Incep. Res. v1 - gray scaled 1.35 0.53
2 Incep. Res. v1 - rgb 2.07 0.73
3 Incep. Res. v2 - gray scaled 0.94 0.37
4 Incep. Res. v2 - rgb 0.33 0.29
5 Baseline from [Günther et al., 2016] 3.20 7.50

Table B.2 presents the ten fold average True Positive Identification Rate (TPIR), as well as with

its standard deviation, under different thresholds (estimated under different FMR operation

points) using the unrestricted protocol from the LFW database. [Learned-Miller et al., 2016].

Table B.2 – LFW - TPIR% under different FMR thresholds
#

FR Algorithm
FMR thresholds

0.1 0.01 0.001

FR Baselines
1 Incep. Res. v1 - gray scaled 98.12 (0.39) 97.18 (0.6) 67.75 (8.01)
2 Incep. Res. v1 - rgb 99.41 (0.29) 98.95 (0.35) 81.15 (9.30)
3 Incep. Res. v2 - gray scaled 99.01 (0.25) 98.88 (0.50) 80.01 (12.12)
4 Incep. Res. v2 - rgb 99.77 (0.19) 99.18 (0.43) 77.75 (30.82)
5 Facenet from [Schroff et al., 2015] 99.6 (0.66) 98.37 (0.82) 93.13 (3.71)

Table B.3 presents the True Positive Identification Rate (TPIR) under different thresholds

(estimated under different FMR operation points) using the IJB-C database.

Table B.3 – LFW - TPIR% under different FMR thresholds
#

FR Algorithm
FMR thresholds

0.1 0.01 0.001

FR Baselines
1 Incep. Res. v1 - gray scaled 98.5 92.05 59.10
2 Incep. Res. v1 - rgb 99.1 92.45 65.10
3 Incep. Res. v2 - gray scaled 97.1 90.01 60.40
4 Incep. Res. v2 - rgb 99.0 91.55 62.53
5 Facenet from [Schroff et al., 2015] 97.14 85.94 64.98

In all three experiments, under constrained and unconstrained scenarios, it is possible to

observe very high recognition rates. Those recognition rates are competitive with respect

to the open source state of the art in face recognition. All these baselines are available for

reproducibility in the following package6.

6https://gitlab.idiap.ch/bob/bob.bio.face_ongoing
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Appendix B. Training Inception Resnet for VIS Face Recognition

1 from bob.learn.tensorflow.network import inception_resnet_v2_batch_norm

2 from bob.learn.tensorflow.estimators import LogitsCenterLoss

3 from bob.learn.tensorflow.dataset.tfrecords import

shuffle_data_and_labels_image_augmentation

4 from bob.learn.tensorflow.utils.hooks import LoggerHookEstimator

5 from bob.learn.tensorflow.utils import reproducible

6 import tensorflow as tf

7

8 # HYPER PARAMETERS

9 learning_rate = 0.1

10 data_shape = (182, 182, 3) # size of atnt images

11 output_shape = (160, 160)

12 data_type = tf.uint8; batch_size = 90; epochs = 65

13 architecture=inception_resnet_v2_batch_norm

14

15 alpha =0.90; factor =0.02; steps = 2000000

16

17 model_dir = "./"

18 tf_record_path = "./"

19 n_classes = 87662

20

21

22 # Creating the tf record

23 def train_input_fn ():

24 return shuffle_data_and_labels_image_augmentation(tf_record_path , data_shape ,

data_type , batch_size , epochs=epochs ,

25 output_shape=output_shape ,

26 buffer_size =2*(10**4) ,

27 random_flip=True ,

28 random_brightness=False ,

29 random_contrast=False ,

30 random_saturation=False ,

31 per_image_normalization=

True ,

32 random_rotate=True ,

33 gray_scale=True)

34

35 session_config , run_config ,_,_,_ = reproducible.set_seed(log_device_placement=

False)

36 run_config = run_config.replace(save_checkpoints_steps =2000)

37

38 optimizer = tf.train.RMSPropOptimizer(learning_rate , decay =0.9, momentum =0.9,

epsilon =1.0)

39 estimator = LogitsCenterLoss(model_dir=model_dir ,

40 architecture=architecture ,

41 optimizer=optimizer ,

42 n_classes=n_classes ,

43 embedding_validation=embedding_validation ,

44 validation_batch_size=validation_batch_size ,

45 alpha=alpha ,

46 factor=factor ,

47 config=run_config)

48

49 hooks = [tf.train.SummarySaverHook(save_steps =1000 ,

50 output_dir=model_dir ,

51 scaffold=tf.train.Scaffold (),

52 summary_writer=tf.summary.FileWriter(model_dir

) )]
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C Domain Specific Units, Special Case
for Unconstrained Face Recognition

In this appendix an use case of the DSU approach for unconstrained and open set face

recognition is presented. This work was submitted as part of the 2nd Unconstrained Face

Detection and Open Set Recognition Challenge presented in the ECCV 2018 1.

The UCCS dataset used in this challenge was collected over several months using Canon 7D

camera fitted with Sigma 800mm F5.6 EX APO DG HSM lens, taking images at one frame per

second, during times when many students of the University of Colorado were walking on the

sidewalk. The images captured cover various weather conditions such as sunny versus snowy

days and also contain various occlusions such as sunglasses, winter caps or even occlusion

due to tree branches or poles as can be seen in Figure C.1.

Figure C.1 – Example images of the UCCS dataset1

In total around 70,000 face regions were manually cropped and part of those were labeled into

1,732 identities. This data was split into training, validation and test set where the training and

the validation sets were provided for fine tune possible submissions. The test set is used to

report recognition rates.

There are two major challenges in this database. First, faces inside of those captured frames

contains strong variations on poses, levels of blurriness and occlusion as can be observed in

1http://vast.uccs.edu/Opensetface/
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Appendix C. Domain Specific Units, Special Case for Unconstrained Face Recognition

Figure C.2. A second challenge arises from the fact of being an open-set problem [Jain and Li,

2011, p.551], where unknown people will be seen during testing and must be rejected.

Figure C.2 – Examples of pose, occlusion and blurriness variations of the UCCS dataset1

For this work it is hypothesized that those sources of blurriness is another image modality and

that recognition rates using an arbitrary pre-trained DCNN can be improved by using the DSU

strategy from chapter 5.

For this contest submission, detected faces are cropped and scaled to 160×160 and feed into

the Inception Resnet v2 CNN (see chapter 3). Then, two DSUs are trained using Siamese

Networks strategy: θt [1−1] and θt [1−2] (see 5.1) where both convolutional kernels and biases

were adapted. The 128-d embeddings are used as a front-end to a PLDA probabilistic model

[El Shafey et al., 2013] where enrollment and scoring are carried out.

Figure C.3 presents the Detection & Identification Rate curve on the test set from 5 different

systems submitted to the contest, which was published in an anonymized manner. It is

possible to observe very low identification rates for all submitted systems once the number

of false identifications varies from 1 to 100. Moving the decision threshold to 1000 False

Identifications it is possible to observe an identification rate increase in all systems. However,

the best submitted systems (A2 and A3) presents an identification rate of ≈ 50%. The DSU

approach θt [1−2] presents the best identification rates in the range of 8,000 to 1,000 False

Identification with an identification rate of ≈ 78%. The source code submitted for this contest

was made open source and can be accessed 2.

With this contest it was possible to observe that open-set and unconstrained face recognition

is an open problem in biometrics and computer vision research in general. With a minimum

number of False Identifications all submitted systems presented very low identification rates,

which limit the application of this technology in real world scenarios.

2https://gitlab.idiap.ch/bob/bob.bio.challenge_uccs
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thony Larcher, Christophe Lévy, Driss Matrouf, Jean-François Bonastre, Ping-Han Lee,

Jui-Yu Hung, Si-Wei Wu, Yi-Ping Hung, Lukáš Machlica, John Mason, Sandra Mau, Conrad

Sanderson, David Monzo, Antonio Albiol, Hieu V. Nguyen, Li Bai, Yan Wang, Matti Niskanen,

Markus Turtinen, Juan Arturo Nolazco-Flores, Leibny Paola Garcia-Perera, Roberto Aceves-

Lopez, Mauricio Villegas, and Roberto Paredes. On the results of the first mobile biometry

(mobio) face and speaker verification evaluation. In Devrim Ünay, Zehra Çataltepe, and

Selim Aksoy, editors, Recognizing Patterns in Signals, Speech, Images and Videos, pages

210–225, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-17711-8.

Aleix M Martinez. The ar face database. CVC Technical Report24, 1998.

Chris McCool, Roy Wallace, Mitchell McLaren, Laurent El Shafey, and Sébastien Marcel. Session

variability modelling for face authentication. IET Biometrics, 2(3):117–129, September 2013.

ISSN 2047-4938. doi: 10.1049/iet-bmt.2012.0059.

Christopher McCool and Sébastien Marcel. Parts-based face verification using local frequency

bands. In International Conference on Biometrics, pages 259–268. Springer, 2009.

Geoffrey McLachlan and David Peel. Finite mixture models, willey series in probability and

statistics, 2000.

Geoffrey J McLachlan and Kaye E Basford. Mixture models: Inference and applications to

clustering, volume 84. Marcel Dekker, 1988.

Kieron Messer, Josef Kittler, Mohammad Sadeghi, Sebastien Marcel, Christine Marcel, Samy

Bengio, Fabien Cardinaux, Conrad Sanderson, Jacek Czyz, Luc Vandendorpe, et al. Face

verification competition on the xm2vts database. In International Conference on Audio-and

Video-Based Biometric Person Authentication, pages 964–974. Springer, 2003.

Ethan Meyers and Lior Wolf. Using biologically inspired features for face processing. Interna-

tional Journal of Computer Vision, 76(1):93–104, 2008.

John Lester Miller. Principles of infrared technology. Springer, 1994.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and

understanding deep neural networks. Digital Signal Processing, 73:1–15, 2018.

Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of texture measures

with classification based on featured distributions. Pattern recognition, 29(1):51–59, 1996.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face recognition. In BMVC,

volume 1, page 6, 2015.

160



Bibliography

Chunlei Peng, Xinbo Gao, Nannan Wang, and Jie Li. Superpixel-based face sketch–photo

synthesis. IEEE Transactions on Circuits and Systems for Video Technology, 27(2):288–299,

2017.

Tiago F Pereira, Marcus A Angeloni, Flávio O Simões, and José Eduardo C Silva. Video-based

face verification with local binary patterns and svm using gmm supervectors. In Interna-

tional Conference on Computational Science and Its Applications, pages 240–252. Springer,

2012.

P Jonathon Phillips, Sandor Z Der, Patrick J Rauss, and Or Z Der. FERET (face recognition

technology) recognition algorithm development and test results. Army Research Laboratory

Adelphi, MD, 1996.

Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, and Timo Ahonen. Computer vision using

local binary patterns, volume 40. Springer Science & Business Media, 2011.

Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. Speaker verification using

adapted gaussian mixture models. Digital signal processing, 10(1-3):19–41, 2000.

Yann Rodriguez and Sébastien Marcel. Face authentication using adapted local binary pattern

histograms. In European Conference on Computer Vision, pages 321–332. Springer, 2006a.

Yann Rodriguez and Sébastien Marcel. Face authentication using adapted local binary pattern

histograms. In 9th European Conference on Computer Vision (ECCV), 2006b. IDIAP-RR

06-06.

Arun A Ross, Karthik Nandakumar, and Anil K Jain, editors. Handbook of biometrics. US:

Springer, 2008.

Hiranmoy Roy and Debotosh Bhattacharjee. Local-gravity-face (lg-face) for illumination-

invariant and heterogeneous face recognition. IEEE Transactions on Information Forensics

and Security, 11(7):1412–1424, 2016.

E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult. The extreme value machine. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 40(3):762–768, March 2018. ISSN

0162-8828. doi: 10.1109/TPAMI.2017.2707495.

Daniel L Ruderman and William Bialek. Statistics of natural images: Scaling in the woods. In

Advances in neural information processing systems, pages 551–558, 1994.

Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal

of research and development, 3(3):210–229, 1959.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for

face recognition and clustering. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 815–823, 2015.

161



Bibliography

Ana F Sequeira, Lulu Chen, James Ferryman, Peter Wild, Fernando Alonso-Fernandez, Josef

Bigun, Kiran B Raja, Raghavendra Raghavendra, Christoph Busch, Tiago de Freitas Pereira,

et al. Cross-eyed 2017: Cross-spectral iris/periocular recognition competition. In Biometrics

(IJCB), 2017 IEEE International Joint Conference on, pages 725–732. IEEE, 2017.

Linlin Shen and Li Bai. A review on gabor wavelets for face recognition. Pattern analysis and

applications, 9(2-3):273–292, 2006.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke, and A Rabi-

novich. Going deeper with convolutions: Ieee conference on computer vision and pattern

recognition (cvpr), 2015.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,

inception-resnet and the impact of residual connections on learning. In AAAI, volume 4,

page 12, 2017.

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience,

3(1):71–86, 1991.

Robbie Vogt and Sridha Sridharan. Explicit modelling of session variability for speaker verifi-

cation. Computer Speech & Language, 22(1):17–38, 2008.

Robert J Vogt, Brendan J Baker, and Sridha Sridharan. Modelling session variability in text

independent speaker verification. 2005.

Xiaogang Wang and Xiaoou Tang. Face photo-sketch synthesis and recognition. IEEE Transac-

tions on Pattern Analysis & Machine Intelligence, (11):1955–1967, 2008.

Xiaogang Wang and Xiaoou Tang. Face photo-sketch synthesis and recognition. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 31(11):1955–1967, 2009.

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning

approach for deep face recognition. In European Conference on Computer Vision, pages

499–515. Springer, 2016.

Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph Von Der Malsburg. Face

recognition by elastic bunch graph matching. In International Conference on Computer

Analysis of Images and Patterns, pages 456–463. Springer, 1997.

Lior Wolf, Tal Hassner, and Yaniv Taigman. Descriptor based methods in the wild. In Workshop

on faces in’real-life’images: Detection, alignment, and recognition, 2008.

Xiang Wu, Lingxiao Song, Ran He, and Tieniu Tan. Coupled deep learning for heterogeneous

face recognition. arXiv preprint arXiv:1704.02450, 2017.

162



Bibliography

Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A light cnn for deep face representation with

noisy labels. IEEE Transactions on Information Forensics and Security, 13(11):2884–2896,

2018.

Rolf P Würtz. Multilayer dynamic link networks for establishing image point correspondences

and visual object recognition. Deutsch Frankfurt am Main, 1995.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch.

arXiv preprint arXiv:1411.7923, 2014.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features

in deep neural networks? In Advances in neural information processing systems, pages

3320–3328, 2014.

He Zhang, Vishal M Patel, Benjamin S Riggan, and Shuowen Hu. Generative adversarial

network-based synthesis of visible faces from polarimetrie thermal faces. In Biometrics

(IJCB), 2017 IEEE International Joint Conference on, pages 100–107. IEEE, 2017.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and alignment

using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):

1499–1503, 2016.

Teng Zhang, Arnold Wiliem, Siqi Yang, and Brian Lovell. Tv-gan: Generative adversarial

network based thermal to visible face recognition. In 2018 International Conference on

Biometrics (ICB), pages 174–181. IEEE, 2018.

Wei Zhang, Xiaogang Wang, and Xiaoou Tang. Coupled information-theoretic encoding for

face photo-sketch recognition. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 513–520. IEEE, 2011.

Wenchao Zhang, Shiguang Shan, Wen Gao, Xilin Chen, and Hongming Zhang. Local gabor

binary pattern histogram sequence (lgbphs): a novel non-statistical model for face repre-

sentation and recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International

Conference on, volume 1, pages 786–791. IEEE, 2005.

163





Tiago de Freitas Pereira

IDIAP Research Institute
Rue Marconi, 19
Martigny - 1920
Switzerland

Phone: (+41) 76 764 7949
Email: tiago.pereira@idiap.ch

Homepage: https://scholar.google.com.br/citations

Personal
Born on August 7th, 1985.
Brazil

Education

PhD in Electrical Engineering, started in 2014
Field: Heterogeneous Face Recognition
Supervisor: Dr. Sébastien Marcel
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

MSc in Electrical Engineering, 2013
Field: Antispoofing in face authentication systems
Dissertation Title: A Comparative Study of Countermeasures to Detect Spoofing Attacks in Face Au-
thentication Systems
Supervisor: Professor Dr. José Mario de Martino
School of Electrical and Computer Engineering, State University of Campinas (UNICAMP), Brazil

BSc in Computer Science, 2010
Scientific Project: Classification of sentences for automatic text simplification.
Funding Agency: FAPESP (Funding council for the state of São Paulo)
Supervisor: Professor Dr. Sandra Maria Aluísio
Institute of Mathematics and Computer Sciences, University of São Paulo (USP), Brazil

Employment

Idiap - Biometrics Group (http://www.idiap.ch/scientific-research/research-groups/biometric-person-
recognition), Research Assistant, 2014-now
Developing research in the field of Heterogeneous Face Recognition, which consists in the comparison
of faces sensed in different image modalities, such as photographs with near infra-red, sketches or
thermogram images. Also responsible in the development and maintenance of the machine learning
and signal processing library called Bob (http://idiap.github.io/bob/).

Samsung Research America (http://thinktankteam.info/) Ph.D. Intern, April-July 2017
Part of the Think Tank Team - a small team of interdisciplinary researchers, scientists, designers and
engineers, passionate about inventing experience-centric future products and technologies. The group
aim to transform their disruptive concepts into products that connect objects, environments, informa-
tion and people. I was mainly focused in Machine Learning Research.

CPqD Telecom and IT Solutions (https://www.cpqd.com.br/en/), 2010-2014
Worked in a research project whose goal was to develop the technology of face and speaker authenti-
cation. I was mainly focused in the research in face authentication, although I was also supporting the
speaker authentication team. The outcome of this project was a product called CPqD Smart Authenti-
cation.

165



Tiago de Freitas Pereira 2

Publications

Book Chapters

PEREIRA, TIAGO DE FREITAS ; ANGELONI, MARCUS DE ASSIS. Verificação Facial em Vídeos Cap-
turados por Dispositivos Móveis. In: Luiz Antônio Pereira Neves;Hugo Vieira Neto;Adilson Gonzaga.
(Org.). Avanços em Visão Computacional. 1ed.Curitiba: Omnipax, 2012, v. 1, p. 181-200.

Journal Articles

T. d. F. Pereira, A. Anjos and S. Marcel, "Heterogeneous Face Recognition Using Domain Specific
Units," in IEEE Transactions on Information Forensics and Security. doi: 10.1109/TIFS.2018.2885284

FREITAS PEREIRA, TIAGO; KOMULAINEN, JUKKA; ANJOS, ANDRÉ; DE MARTINO, JOSÉ MARIO;
HADID ABDENOUR; PENTIKÄINEN, MATTI and MARCEL SÉBASTIEN. "Face liveness detection
using dynamic texture." EURASIP Journal on Image and Video Processing 2014, no. 1 (2014): 2.

Guillaume Heusch, Tiago de Freitas Pereira, and Sebastien Marcel. A comprehensive exper- imen-
tal and reproducible study on selfie biometrics in multistream and heterogeneous settings. (Paper
Submitted to) - IEEE Transactions on Biometrics, Behavior, and Identity Science, 2019

Proceedings

FREITAS PEREIRA, TIAGO, and SÉBASTIEN MARCEL. "Heterogeneous Face Recognition using Inter-
Session Variability Modelling." Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2016.

PEREIRA, T. F. ; ANJOS, A. R. ; MARTINO, J. M. ; MARCEL, S. . Can face anti-spoofing countermea-
sures work in a real world scenario?. In: 6th IAPR International Conference on Biometrics (ICB2013),
2013, Madrid, Spain. 6th IAPR International Conference on Biometrics (ICB2013), 2013.

ANJOS, A.; GUNTER, M.; de FREITAS PEREIRA, T.; KORSHUNOV, P.; MOHAMMADI, A. and MAR-
CEL, S. (2017). "Continuously reproducing toolchains in pattern recognition and machine learning
experiments."

SEQUEIRA, ANA, et al. "Cross-Eyed 2017: Cross-Spectral Iris/Periocular Recognition Competition."
IEEE/IAPR International Joint Conference on Biometrics. No. EPFL-CONF-233586. IEEE, 2017.

FREITAS PEREIRA, TIAGO, and SÉBASTIEN MARCEL. "Periocular biometrics in mobile environ-
ment." Biometrics Theory, Applications and Systems (BTAS), 2015 IEEE 7th International Conference
on. IEEE, 2015.

BEVERIDGE, J. ROSS, et al. "The ijcb 2014 pasc video face and person recognition competition."
Biometrics (IJCB), 2014 IEEE International Joint Conference on. IEEE, 2014.

GUNTER, M., et al. ; The 2013 Face Recognition Evaluation in Mobile Environment. In: 6th IAPR Inter-
national Conference on Biometrics (ICB2013), 2013, Madrid, Spain. 6th IAPR International Conference
on Biometrics (ICB2013), 2013.

KHOURY, E., et al. ; The 2nd Competition on Counter Measures to 2D Face Spoofing Attacks. In: 6th
IAPR International Conference on Biometrics (ICB2013), 2013, Madrid, Spain. 6th IAPR International
Conference on Biometrics (ICB2013), 2013.

CHINGOVSKA, I., et al. ; The 2nd Competition on Counter Measures to 2D Face Spoofing Attacks.
In: 6th IAPR International Conference on Biometrics (ICB2013), 2013, Madrid, Spain. 6th IAPR Inter-
national Conference on Biometrics (ICB2013), 2013.

166



Tiago de Freitas Pereira 3

FREITAS PEREIRA, TIAGO ; ANJOS, ANDRÉ ; MARTINO, JOSÉ MARIO ; MARCEL, SÉBASTIEN .
LBP-TOP Based Countermeasure against Face Spoofing Attacks. Lecture Notes in Computer Science.
1ed.: Springer Berlin Heidelberg, 2013, v. , p. 121-132.

Awards

Idiap PhD Student Award 2018

167


	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Introduction
	Background and Motivations
	Objectives and Contributions
	Thesis Outline

	Related Work
	Face Recognition
	EigenFaces
	Fisher Linear Discriminant; ``Fisherfaces''
	Local Binary Patterns histograms
	Gabor Wavelets
	Deep Convolutional Neural Networks

	Heterogeneous Face Recognition
	Synthesis methods
	Crafted features-based methods
	Feature learning based methods

	Heterogeneous Face Recognition Databases
	Visible Light to Near Infrared
	Visible Light to Sketches
	Visible Light to Thermograms

	Evaluation Metrics
	Closed-set identification
	Verification


	From Face Recognition to Heterogeneous Face Recognition
	Face Recognition baselines
	Gabor Graphs
	Local Binary Patterns
	Local Gabor Binary Pattern Histograms
	Deep Convolutional Neural Networks

	Heterogeneous Face Recognition baselines
	Heterogeneous face recognition from local structures of normalized appearance
	Heterogeneous face image matching using multi-scale features
	Geodesic Flow Kernel

	Experiments and Analysis
	Visible Light to Sketches
	Visible Light to Near Infrared
	Visible Light to Thermograms

	Discussion

	Heterogeneous Face Recognition as a Session Variability Problem
	Gaussian Mixture Models
	Intersession Variability Modeling
	InterSession Variability modeling for Heterogeneous Face Recognition
	Implementation details
	Experiments and Analysis
	Visible Light to Sketches
	Visible Light to Near Infrared
	Visible Light to Thermograms

	Discussion

	Domain Specific Units
	Introduction
	Implementation details
	Experiments and Analysis
	Visible Light to Sketches
	Visible Light to NIR
	Visible Light to Thermograms

	Discussion

	Conclusions and Future Work
	Experimental Findings
	Related Publications
	Related Software
	Bob
	Contributions to other software libraries

	Directions for Future Work

	Thesis Software Package
	Training Inception Resnet for VIS Face Recognition
	Domain Specific Units, Special Case for Unconstrained Face Recognition
	References
	Curriculum Vitae

