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Abstract The undeniable convenience of face-recognition (FR) based biomet-

rics has made it an attractive tool for access control in various applications, from

immigration-control to remote banking. Widespread adoption of face biometrics,

however, depends on the how secure such systems are perceived to be. One par-

ticular vulnerability of FR systems comes from presentation attacks (PA), where a

subject A attempts to impersonate another subject B, by presenting, for example, a

photograph of B to the biometric sensor (i.e., the camera). PAs are the most likely

forms of attacks on face biometric systems, as the camera is the only component of

the biometric system that is exposed to the outside world. Robust presentation attack

detection (PAD) methods are necessary to construct secure FR based access control

systems. The first edition of the Handbook of Biometric Anti-spoofing included

two chapters on face-PAD. In this chapter we present the significant advances in

face-PAD research since the publication of the first edition of this book. In addition

to PAD methods designed to work with color images, we also discuss advances in

face-PAD methods using other imaging modalities, namely, near-infrared (NIR) and

thermal imaging. This chapter also presents a number of recently published datasets

for face-PAD experiments.
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1 Introduction

As pointed out by Ratha et al. [48] and many other researchers, biometrics based

access-control systems can be attacked in several ways. Most kinds of attacks on a

biometric system require privileged access to the various components of the system.

The biometric sensor in the system is the easiest to attack, as it is the most exposed

component in the system. By definition, privileged access is not necessary to interact

with the sensor. Attacks on the biometric sensor are called presentation attacks (PA).

The ISO standard for biometric presentation attack detection1 defines a PA as “a

presentation to the biometric data capture subsystem with the goal of interfering

with the operation of the biometric system.”

An attacker, A, mounts a PA on a previously enrolled identity, B, using a presen-

tation attack instrument (PAI). For FR systems, common PAIs are images, videos,

or even 3D masks depicting the victim B. Such attacks fall into the category of im-

personation attacks. It is important to note that the ISO standard also includes ob-

fuscation as a kind of PA. An obfuscation attack is said to occur when the attacker

attempts to spoof the biometric sensor in order to avoid being correctly recognized.

Classic examples of obfuscation in face biometrics are the use of clothing or facial

makeup, or a mask to avoid identification by a FR system.

Presentation attack detection (PAD) is an essential component in any secure bio-

metric system. The first edition of this handbook included a comprehensive chapter

describing the approaches face-PAD. In this chapter we review advances in face-

PAD research since the publication of the first edition. Specifically, we review sig-

nificant works in face-PAD published since the year 2015. Besides discussing the

significant face-PAD methods proposed in the past three years, we also describe

recently published datasets useful for research on this topic.

1.1 Standardization Efforts

One of the most significant developments in PAD has been the formal adoption

of ISO standards21. Among other things, the standard defines several metrics for

reporting experimental results. The metrics relevant to this chapter are listed below:

• IAPMR: the Impostor Attack Presentation Match Rate quantifies the vulnera-

bility of a biometric system, and is given as the proportion of impostor attack

presentations that are incorrectly accepted by the biometric security system,

• APCER: Attack Presentation Classification Error Rate gives the proportion of

PAs that is accepted by the system in question, and,

• BPCER: Bona fide Presentation Classification Error Rate specifies the propor-

tion of bona fide presentations that are incorrectly rejected by the system as PA.

1 ISO/IEC 30107-1:2016 Part 1
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Note that the IAPMR is computed in the licit scenario (the scenario where PAs are

not expected, and every presentation is considered bona fide), whereas APCER and

BPCER are computed in the PA scenario. There is a further subtlety to be taken into

account when computing the APCER in a given experiment, namely, that APCER

values should be computed separately for each PAI. In other words, for a FR sys-

tem, separate APCER values should be determined for print-attacks, video-replay

attacks, 3D-mask attacks, and so on. If an experiment includes attacks based on dif-

ferent PAIs, that is, if a certain test dataset contains PAs involving different kinds of

PAIs, then the APCER corresponding to the PAI that is the most expensive (in terms

of cost, as well as manufacturing effort) should be specified as the overall APCER

achieved in the experiment. It is often more practical to report the BPCER when

the APCER is no greater than a preset value, for example BPCER @ APCER=10%

(sometimes abbreviated as BPCER10).

1.2 Structure of the Chapter

The remainder of the chapter is organized in four sections. In Section 2 we discuss

some recent studies on the vulnerability of FR systems to PAs. This section high-

lights the importance of continuing research and development of face-PAD technol-

ogy. Following the discussion on vulnerability, a range of recent research publica-

tions relevant to face-PAD are summarized in Section 3. To facilitate comparison

with the state of the art, most research publications on face-PAD include results on

publicly available datasets. As technology for mounting PAs improves, new datasets

are needed to evaluate the performance of face-PAD algorithms. Section 4 presents

a number of recent public datasets for face-PAD experiments. We end the chapter

with concluding remarks in Section 5.

2 Vulnerability of FR Systems to PA

FR systems are explicitly trained to handle session-variability, that is, variability

due to changes in scale, orientation, illumination, facial expressions, and to some

extent even make-up, facial grooming, and so on. This capacity to deal with session-

variability also opens the door to presentation attacks. In 2016, a wide-ranging Eu-

ropean project (TABULA RASA3) hypothesized that the higher the efficacy of a FR

system in distinguishing between genuine and zero-effort-impostor (ZEI) presen-

tations, the more vulnerable the system is to PAs. Several studies investigating the

vulnerability to PAs of various FR systems, under different scenarios, have provided

quantitative evidence that most FR schemes are very vulnerable in this respect.

3 http://www.tabularasa-euproject.org/
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Hadid [22] analyses the vulnerability of a FR system that uses a parts-based

Gaussian mixture-model (GMM). His experiments show that when the false rejec-

tion rate (FRR) is constrained to 0.1%, the presence of spoof attacks causes the false

acceptance rate (FAR) of the trained GMM is 80%. In standardized metric terms,

for this GMM-FR system, the IAPMR @ FAR=0.1% is 80%.

Raghavendra et al. [47] report on the vulnerability of a FR system relying on

presentations in different spectral ranges. Their study is based on the Sparse Rep-

resentation based Classifier (SRC) [57]. They capture 2D color-print PAIs (color

face-images printed on two types of printers: laser, and ink-jet) in several wave-

length bands, ranging from visible light (RGB) to near-infrared (NIR) (specifically,

at the following seven wavelengths: 425nm, 475nm, 525nm, 570nm, 625nm, 680nm

and 930nm). Evaluating the vulnerability in individual bands separately, they show

that in almost all cases the chosen FR system shows very high vulnerability (IAPMR

in the range of 95% – 100%). Only in one case, namely, laser-printed PAIs captured

in the 930nm wavelength, does the IAPMR drop to acceptable levels (IAPMR =

1.25%). This experimental result is consistent with the finding that the reflectance

of facial skin dips sharply in a narrow spectral-band around 970nm [25].

Deep learning based FR systems are now considered the state of the art. In

the current decade convolutional neural networks (CNN) based FR systems have

achieved near-perfect FR performance [40, 58, 50] on highly unconstrained datasets,

such as the well known Labeled Faces in the Wild (LFW) dataset [24]. Mohammadi

et al. [36] have studied the vulnerability of several CNN-FR systems. Their study,

based on several publicly available PAD datasets, shows that CNN-FR systems are

in fact more vulnerable (IAPMR up to 100%) to PAs than older FR methods.

One class of PAs not often considered is the morphed-image attack [18, 49].

Here, face images of two different subjects, say, A and B, are morphed into a single

image. The morphed image is constructed to resemble both subjects sufficiently

closely to pass a quick visual inspection. Then, if, say, subject A wishes to avoid

detection at an international border, he may alter his passport using such a morphed-

image to impersonate B. Raghavendra et al. [45] have shown, using a commercial

off-the-shelf (COTS) FR system, that vulnerability of FR systems to morphed-image

attacks may be as high as 100%.

3 Recent Approaches to Face PAD

It is not straightforward to impose a neat taxonomy on existing face-PAD ap-

proaches. Chingovska et al. [13] group face-PAD methods into three categories:

motion based, texture based, and image-quality based. Other works [16] have con-

sidered image-quality based face-PAD methods as a subclass of texture-based meth-

ods. Ramachandra and Büsch [43] offer a hierarchical organization of face-PAD

methods, with most general groups: hardware-based and software-based.

Here, it is not our aim to propose any specific taxonomy of face-PAD methods.

To provide some order to our discussion, however, we have organized our survey of
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recent face-PAD methods in several sections: methods that operate on visible-light

imagery, methods the rely on inputs captured in wavelengths outside the visible-

range of light, and a separate category of methods designed to detect 3D-mask based

attacks. In the following discussion, the term extended-range (ER) imagery refers to

data captured in wavelengths outside the visible-range of light.

3.1 Visible-Light Based Approaches

A majority of studies on face-PAD so far have relied exclusively on visible-light

imagery (commonly called color imagery) as input. The term visible light here refers

to the range of the electromagnetic spectrum – approximately from 380 to 750 nm

– that is typically perceptible by the human visual system. One reason for the use

of color-imagery is that the proliferation of high-quality and low-cost color cameras

has made digital color-imagery widely accessible. Another reason is the need for

face-PAD on mobile devices such as laptops, smartphones and tablet devices. With

the sharp increase in the use of mobile devices in sensitive applications such as

remote-banking and online education, secure identity-verification on such devices

has become a critical issue. Although recently some companies have introduced

products that include NIR cameras, a large majority of mobile devices still come

with only color cameras. It is, therefore, important to continue developing face-PAD

methods that can function with only color imagery as input.

Successful application of histograms of local binary pattern (LBP) coeffients to

the problem of face-PAD [7, 13, 33] has made LBP and its various variants a main-

stay for face-PAD. Initial LBP based methods for face-PAD relied on gray-level im-

ages. Boulkenafet et al. [8, 9] have used LBP features to characterize color-texture.

For a given color image in RGB color-space, they first generate the YCbCr as well

as HSV representations of the image. Uniform LBP histograms are then computed

on the Y, Cb, Cr, H, S, and V components and concatenated together to gener-

ate the final feature-vector representing the input color image. These color-texture

feature-vectors may be classified using support vector machines (SVM). Boulke-

nafet et al. have shown that color-texture features outperform gray-level LBP fea-

tures in the face-PAD task [8]. In a separate work [9], they have also shown that this

color-texture representation leads to significantly better generalization to unknown

attacks, compared to other hand-crafted face-PAD features. Indeed, in a recent face-

PAD competition [10], the winning entry also combined motion-information with

color-texture information using LBP histograms.

Notwithstanding the success of LBP based methods, in the past three years

researchers have also explored other approaches for face-PAD. Prominent recent

works using color imagery have focussed on a variety of features characterizing

local motion, local texture and more generally, image-quality. Wen et al. [56] pro-

pose several features for image distortion analysis (IDA) to tackle the problem of

face-PAD for 2D (print and video-replay) attacks. Their features characterize the

color-diversity, image-sharpness and the presence of specular regions in the input
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images. The IDA features are computed only over the face-region (i.e., on the output

of the face-detection step), and are classified using a two-class SVM classifier. The

authors present results on several public datasets, including a new dataset (MSU-

MFSD, see Section 4) introduced in this paper. In intra-database experiments the

IDA features perform competitively to other face-PAD approaches. Cross-dataset

experiments [56] indicate that these features show better generalization properties

than previous approaches, notably when compared to LBP+SVM (i.e., LBP features

classified using a SVM).

The IDA features [56] complement the image quality measures (IQM) proposed

earlier by Galbally et al. [19]. The IQM features are all computed on gray-level im-

ages. The IDA features provide a way of additionally capturing information relevant

to face-PAD available in the color domain.

Costa-Pazo et al. [16] have proposed a face-PAD approach using a set of Gabor

features, which characterize the image-texture over the face-region. This work rep-

resents the first use of Gabor features for face-PAD. Their experiments show that

the Gabor features perform better than the IQM features [19] in detecting PAs. Tex-

ture information, captured using shearlets, has also been exploited in the method

proposed by Li et al. [29].

Certain face-PA cues are not as consistent as others. For example, the set of IDA

feature-set includes several features characterizing the amount of specularity in a

image. The underlying expectation is that the presence of large specular regions

indicates that the input is a PA. There are, however, many instances of PAs that

do not include significant specularity. Similarly, although the presence of Moiré

patterns is also a strong indicator of PAs [20, 41], the absence of Moiré patterns

does not rule of a PA.

Tirunagari et al. [54] exploit motion cues to detect face liveness. Specifically,

they detect micro-motions, such as slight head movements, lip movements, and eye-

blinks, to identify bona fide presentations. Unlike the work of Anjos et al. [3] –

where motion information derived from optical flow computation is directly used to

identify PAs – here the video is treated a three-dimensional data, and apply dynamic

mode decomposition (DMD) to this 3D data. The result of the DMD procedure is

an image where regions of high local micro-motion are marked with brighter pixels.

The micro-texture information in the resulting image is characterized using LBP

histograms, which are subsequently classified using a SVM.

In the past few years several specific research directions have attracted attention

in the context of face-PAD. Unsurprisingly, the application of deep learning meth-

ods for face-PAD has become a popular research track. The idea of personalized

face-PAD, where client information is incorporated into the PAD process, has also

been explored. Several works have been published on the subject of detecting ob-

fuscation attacks. Finally, as the question of detecting previously unseen kinds of

PAs becomes important, several researchers have posed face-PAD as an anomaly-

detection problem. In the following sections we discuss publications on each of

these topics separately.
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3.1.1 Deep Learning Approaches To PAD

Following the success of deep learning based approaches for face recognition, there

has been a proliferation in CNN based approaches for face-PAD. One reason why

researchers are looking into the use of deep networks for face-PAD is that as the

quality of PAIs improves, it is becoming increasing difficult to design explicit hand-

crafted features able to distinguish PAs from bona fide presentation. Here, we high-

light a few representative works, to provide readers with a general idea about current

research activities on this topic.

In one of the first works in this area, Yang et al. [60]4 have proposed a CNN with

the same architecture as ImageNet [27], but with the output layer configured for only

two outputs: bona fide or PA. In this work the authors augment the training data by

using input images at multiple scales and also multiple frames of video. The trained

CNN is used to extract a feature-vector (from the penultimate fully-connected layer,

fc7, of the network) for each input test image. The feature-vector is then classified

using a two-class SVM.

More recent works on the use of CNNs for face-PAD have focussed on newer

CNN architectures. Lucena et al. have proposed FASNet5 [32], a deep network

for face-anti-spoofing. They start with the VGGNet16 (16-layer VGGNet [51]) and

modify only the top fully-connected section of the network by removing one fc-

layer, and changing the sizes of the subsequent two fc-layers to 256 units and 1 unit,

respectively. FASNet shows a small improvement over SpoofNet [35] on the two

datasets, 3DMAD and REPLAY-ATTACK, used in both works.

Nagpal and Dubey [37] compare the performances of three different CNN archi-

tectures: the Inception-v3 [53] and two versions of ResNet [23], namely ResNet50 (a

50-layer ResNet) and ResNet152 (the 152-layer version). For each architecture, they

have conducted six experiments, by training the networks with different parameter-

settings. Their study is based on the the MSU-MSFD dataset (see Section 4), which

is a relatively small dataset. The authors augment their training data by using flipped

versions of each frame in the training-set as well. The best result achieved in this

work is an accuracy of 97.52%, produced by the ResNet152 initialized with weights

taken from the ImageNet, and where only the final densely connected layers have

been re-trained using the MSU-MSFD data. Their experiments also seem to indicate

that using lower learning-rates may lead to better discrimination in face-PAD tasks.

Li et al. have used a hybrid CNN [28] to model bona fide and attack presentations

in a parts-based fashion. The face-region is divided into rectangular sub-regions, and

a separate two-class CNN (VGG-Face network [40]) is trained for each sub-region.

Given a test image, a feature-vector is constructed by concatenating the output vec-

tors from the last fully connected layer of each CNN. This feature-vector is then

classified using a SVM.

4 Open source implementation available on https://github.com/mnikitin/

Learn-Convolutional-Neural-Network-for-Face-Anti-Spoofing
5 Open-source implementation of FASNet is available on https://github.com/

OeslleLucena/FASNet
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Nguyen et al. [38] have explored the idea of combining hand-crafted features

with deep learning based features. They train a 19-layer VGGNet [51] (with only

two output classes), and take the output of the fc7 layer as a descriptor for the input

test image. The descriptors from the CNN are concatenated with a multi-level LBP

(MLBP) histogram, a set of hand-crafted features, to construct a combined feature-

vector. Principal Component Analysis (PCA) is used as a dimensionality-reduction

step to reduce the combined feature-vector to a much shorter feature-vector (reduced

from 7828-D to between 90-D and 530-D depending on the dataset). Finally, the

reduced feature-vectors are classified using a two-class SVM classifier.

Xu et al. [59] combine a long short-term memory (LSTM) network with a CNN

to extract features that encode both temporal as well as spatial information. The

input to the LSTM-CNN network is a short video, instead of individual frames. The

LSTM is plugged on top of the CNN, to model the temporal information in the

video. The authors show that this network can outperform straight-forward CNNs,

as well as various hand-crafted features.

Liu et al. [31] combine a CNN and a LSTM network for face-PAD. In this archi-

tecture, the CNN is trained on individual video-frames (images) to extract image-

feature-maps as well as depth-maps of the face-region. The LSTM network takes

the feature-map produced by the CNN, and is trained to extract a rPPG signal from

the video. They present results on the OULU-NPU dataset (see Section 4. A new

dataset, named Spoof in the Wild (SiW, discussed in Section 4) is also introduced in

this paper.

In general, current datasets for face-PAD are too small to train CNNs from

scratch. Most works involving CNNs for face-PAD so far have adapted existing

FR CNNs for face-PAD applications, using transfer-learning.

3.1.2 Client-Specific Face-PAD

In real world applications PAD systems are not expected to function in isolation –

a PAD system is usually deployed in conjunction with a biometric-verification sys-

tem. The client-identity information available to the verification system may also

be incorporated into the PAD process to improve the PAD performance. This ap-

proach to PAD has been explored in various other biometric modalities (such as for

fingerprint PAD).

Chingovska and Anjos [14] have proposed client-specific face-PAD methods us-

ing both discriminative as well as generative approaches. In both cases, essentially,

a separate classifier is constructed for each enrolled client. In the discriminative

scheme, for each client, they train a two-class SVM in a one-versus-all configura-

tion. In the generative approach, GMMs are trained for each client using a cohorts-

based approach to compensate for the lack of adequate numbers of PAs for each

client.

Although the idea of a client-specific approach to face-PAD sounds attractive,

one severely limiting factor is the cost of constructing a sufficient variety and num-

ber of PAs for every enrolled client. Indeed, the cost may quickly become prohibitive
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when PAs based on custom silicone 3D-masks are considered. Yang et al. [61]

have also proposed a face-PAD method that incorporates client-specific informa-

tion. Again, they train a separate classifier for each enrolled client. They propose an

innovative solution to the problem of lack of sufficient PA samples to train classi-

fiers for newly enrolled clients. Their solution is to use domain-adaptation to gener-

ate virtual PA samples to train the client-specific classifiers. The domain-adaptation

model learns the relationship between the bona fide and attack presentations from

the training partition of a dataset. Thereafter, the trained adaptation model is used to

generate PA samples for clients in the test partition.

3.1.3 Obfuscation Attacks

An obfuscation attack is said to occur if the attacker actively attempts to alter one’s

appearance to the extent that FR systems may fail to recognize the subject. Obfus-

cation attacks may take the form of the use of extreme facial makeup, the use of

clothing, or simple medical masks, to occlude significant portions of the face, or

even the use of facial masks (mask that resemble faces) made of various materials.

In case of severe occlusion, even localizing the face region in the image (face

detection) is a significant challenge. Ge et al. [21] have proposed a LLE-CNN –

combining CNN based feature-extraction with locally linear embedding (LLE) –

to detect the face-region even in the presence of extensive occlusion. For subjects

wearing makeup, Wang and Fu [55] have proposed a method for reconstructing

makeup-free face images, using local low-rank dictionary learning. Kose et al. [26]

use a combination of LGBP (LBP histograms computed over a set of Gabor-filtered

images) and HOG (histogram of gradients) to classify face-images as containing

makeup or not. Agarwal et al. [2] tackle the problem of detecting obfuscation using

3D flexible masks, that is, detecting whether the subject in the presentation is wear-

ing a mask, using multispectral imagery. Specifically, they capture images in visible,

NIR and thermal wavelength-ranges of the spectrum. Their experiments, based on a

variety of local texture descriptors, show that thermal imagery is the best suited for

detecting masks reliably. (The use of multispectral data for face-PAD is discussed

in more detail in Section 3.2.)

The morphed-image attacks mentioned in Section 2 may be seen as a kind of ob-

fuscation attack. Raghavendra et al. [45] have demonstrated the superiority of bina-

rized statistical image features (BSIF) over LBP histograms in detecting morphed-

image attacks.

3.1.4 One-Class Classification for PAD

Most researchers approach PAD as a two-class problem. That is, data is collected

for both bona fide and attack presentations, and, using suitable feature-descriptors,

a two-class classifier is trained to discriminate between bona fide presentations and

attacks. The greatest disadvantage of this general scheme is poor generalization to
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unknown attacks. A recent face-PAD competition [11] showed that the performance

of all entries deteriorated in the test-protocol involving unknown attacks, relative

to their respective performances in test-protocols involving known attacks. Most

published face-PAD methods have performed relatively poorly in cross dataset tests

(see, for example [19, 56]). The reason is that different datasets include attacks of

different kinds (different PAIs, or even just different devices used for performing

the attacks). Consequently, the attacks in a given dataset are very likely to be un-

known to the classifier that has been trained on a different dataset. This issue –

generalization to unknown attacks – has emerged as the most significant challenge

in face-PAD.

Indeed, when implementing countermeasures to PAs, the goal is simply to detect

PAs, and not necessarily to identify the class of the PA. The problem of PAD may

therefore be formulated as one of anomaly detection, where only the bona fide class

is modelled using a one-class classifier (OCC). In general OOCs may be grouped

under two categories: generative and non-generative. A GMM modelling only the

bona fide class is an example of a generative OCC. A one-class SVM, on the other

hand, is a non-generative OCC. Arashloo and Kittler [4] have investigated the use

of both kinds of OCCs for the purpose of face-PAD. They report results using a

SVM as the non-generative classifier, and a SRC [57] as the generative classifier.

The authors compare the performances of two-class GMM and two-class SVM with

one-class GMM and one-class SVM respectively, for face-PAD. In total they have

considered 20 different scenarios, that is 20 different combinations of classifiers and

features. From their experiments, performed with three publicly available datasets,

the authors conclude that the OCC based outlier-detection approach can perform

comparably to a two-class system. More importantly, the OCC results are better

than their two-class counterparts in tests involving unknown PAs (i.e., tests where

certain PAs are not represented in the training dataset).

Nikisins et al. [39] have also studied the use of OCCs for face-PAD. They base

their work on an aggregate dataset composed of three publicly available datasets:

REPLAY-ATTACK, REPLAY-MOBILE, and MSU-MFSD (discussed in Section

4). The difference between this work and that of Arashloo and Kittler [4] is that

Nikisins et al. [39] train their classifiers using the bona fide presentations from all

three component datasets at once, where as Arashloo and Kittler use bona fide pre-

sentations of only one dataset at a time in a given experiment. Nikisins et al. [39]

use a one-class GMM (a generative OCC) to model the distribution of bona fide pre-

sentations in the aggregated dataset, using a set of image-quality features [19, 56].

Their experiments also show that although two-class classifiers perform better than

their one-class counterparts for known attacks (i.e., the case where samples of the

attack-types have been included in the training set), their performance deteriorates

sharply when presented with unknown attacks, that is PAIs that were not included

in the training set. By contrast, the one-class GMM appears to generalize better to

unknown classes of PAs [39].

The advantage of using a one-class system is that only data for bona fide presen-

tations is necessary. Although experimental test datasets usually include a variety of
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attack presentations, in real scenarios it is quite difficult to collect sufficient data for

all the various possible kinds of attacks.

3.2 Approaches Based on Extended-Range Imagery

Broadly speaking, visible-light based approaches rely on identifying subtle qualita-

tive differences between bona fide and attack presentations. As the quality (color-

fidelity, resolution, and so on) of PA devices improves, distinctions between the

two kinds of presentations are becoming increasing narrower. That is, progress

in PAI quality impacts the performance of existing face-PAD methods. This phe-

nomenon is concretely illustrated by Costa-Pazo et al. [16]. They apply the same

face-PAD method – SVM classification using a set of image-quality measures – to

two datasets. Their experiment shows that the performance of the chosen face-PAD

method is significantly worse on the newer dataset (REPLAY-MOBILE [16]) than

on the older (REPLAY-ATTACK [13]) dataset. The reason is that as technology

(cameras, electronic screens, printers, etc.) improves, the quality of PAs in visible-

light is also approaching that of bona fide presentations, and therefore it is becoming

increasingly difficult to separate the two classes.

A new approach to face-PAD involves the use of ER imagery. Both active- as well

as passive-sensing approaches have been considered in recent works. In active ER

imagery, the subject is illuminated under a chosen wavelength-band, for example,

with NIR and SWIR illumination, and the biometric-sensor (camera) is equipped

with appropriate filters, to be able to capture data only in the chosen wavelength

band. In passive sensing no specific illumination is used, and the camera is designed

to capture radiation in a given wavelength band. One example of passive sensing is

the use of thermal cameras to capture the heat radiated by human subjects.

When using active ER imagery for face-PAD, the general idea is to model the re-

flectance properties of human skin at different wavelengths. Steiner et al. [52] have

proposed the design of a multi-spectral SWIR camera for face-PAD applications.

The camera captures images at four narrow wavelength bands, namely, 935nm,

1060nm, 1300nm, and 1550nm. The image-sensor is sensitive in the range 900-

1700nm. The camera is equipped with a ring-illuminator consisting of LEDs emit-

ting NIR in the four wavelength-bands of interest. During image-acquisition the

camera cycles through the illumination in the different bands one by one, and syn-

chronizes the image-capture to the duration of illumination at a given wavelength.

Thus, the camera captures at multispectral-stack of four images at each time inter-

val. This camera can capture 20 stacks, or frames per second (FPS) – a significant

improvement on a previous design of a SWIR camera proposed by Bourlai [12],

which was able to capture image at an average rate of 8.3 FPS. Using this camera,

human skin can be reliably distinguished from other materials. Steiner et al. show

results demonstrating the efficacy of face-PAD using data acquired with this camera.

Raghavendra et al. [46] have used 7-dimensional multispectral imagery for

face-PAD, captured using a SpectroCamTM multispectral camera. This device cap-
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tures presentations in narrow bands centered at the following wavelengths: 425nm,

475nm, 525nm, 570nm, 625nm, 680nm and 930nm. The authors propose two face-

PAD approaches based on:

• image fusion, where the 7 images in a given multispectral stack are fused into a

single image, and a PAD algorithm processes the fused image, and

• score fusion, where the individual images in the multispectral stack are classified

separately, and the 7 scores are then fused to generate the final classification

score.

Quantitative results [46] show that the score-fusion approach performs significantly

better than the image-fusion approach.

Bhattacharjee and Marcel [5] have also investigated the use of ER imagery for

face-PAD. They demonstrate that a large class of 2D attacks, namely, video-replay

attacks, can be easily detected using NIR imagery. In live presentations under NIR

illumination the human face is clearly discernible. However, electronic display mon-

itors appear almost uniformly dark under NIR illumination. Therefore, using NIR

imagery, it is possible to design simple statistical measures to distinguish between

bona fide presentations and attacks. This approach may also be applied to detect

print-based attacks. It may fail, however, if the PAIs are printed using metallic inks.

The authors also demonstrate that NIR imagery is not particularly useful in detect-

ing 3D mask based attacks. They go on to show that thermal (LWIR) imagery can

be used to easily distinguish bona fide presentations from mask-based attacks. This

is because, in a bona fide presentation, the heat emanating from the subject’s face

renders it very brightly in the thermal image. In contrast, in a mask-attack, the mask

appears very dark in the image, because it has a much lower temperature than the

subject’s body.

This direction of research is still in its infancy. One reason why research in ER

imagery has not yet been widely explored is the high cost of IR and thermal cam-

eras. In recent years, however, low-cost options such as the Microsoft Kinect, Intel’s

RealSense range of sensors, and inexpensive thermal cameras such as from FlirOne

and SeekThermal have become widely available. Availability of affordable hard-

ware will be a key factor in advancing research in this direction.

3.3 Detection of 3D Mask Attacks

Good quality 3D masks present clear threats in both impersonation as well as obfus-

cation categories. As custom 3D masks become increasingly affordable, research on

PAD for 3D masks is also gaining critical importance. Bhattacharjee et al. [6] have

recently demonstrated empirically, that several state-of-the-art FR CNNs are signif-

icantly vulnerable to attacks based on custom silicone 3D masks (IAPMR is at least

10 times greater than FNMR).

Initial research was directed towards detecting custom rigid masks, typically

made of sandstone powder and resin, with hand-painted facial features. Publicly
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available datasets 3DMAD [17] and HKBU-MARs [30] contain data pertaining to

custom rigid masks. More recent face-PAD research has focussed on detecting at-

tacks based on hyper-realistic flexible custom masks, usually made of silicone. Al-

though custom silicone masks are still fairly expensive to manufacture, in the com-

ing years the cost of creating such masks is expected to drop to affordable levels.

Another strand of research involving 3D masks is to detect obfuscation attacks

mounted using readily available, generic latex masks. Agarwal et al. [1] have used

texture cues characterized using a set of features computed over co-occurence ma-

trices (so called Haralick-features) to detect rigid-mask attacks in the 3DMAD

dataset [17]. Liu et al. [30] have published the more recent HKBU-MARs dataset

containing images of 3D-mask based PAs. They have proposed a remote photo-

plethysmography (rPPG) based approach to detecting 3D-mask PAs.

Manjani et al. [34] present an observational study into obfuscation attacks us-

ing 3D-masks. They describe PAD experiments based on the SMAD dataset (see

Section 4), which consists of public-domain videos collected from the World-wide

Web. Although observational studies such as this may indicate association between

variables (in this case between the true labels of the test videos and the classifier-

score), the influence of other confounding variables here cannot be ruled out. To

demonstrate the efficacy of a method for detecting 3D-mask based PAs, it is impor-

tant to design a controlled experiment to highlight exclusively the causal effect of

3D-masks on the resulting classifier-score.

4 New Datasets for Face PAD Experiments

One significant reason for rapid advances in face PAD research is the availabil-

ity of publicly shared datasets, which facilitates comparison of the performance of

new PAD algorithms with existing baseline results. As the quality of devices used

to mount attacks improves, the older datasets tend to become less relevant. It is,

therefore, important for the research community to continually collect new datasets,

representing attacks created using state of the art technology.

Table 1 lists some recently published face-PA datasets. The MSU-MFSD, UVAD,

REPLAY-MOBILE, MSU-USSA, OULU-NPU and SiW datasets contain 2D at-

tacks captured under the visible-light illumination. The other datasets include data

representing 3D attacks (HKBU-MARs and SMAD) or 2D attacks captured under

non-standard illumination, such as extended-range (multispectral) imagery (MS-

Face, EMSPAD and MLFP), or light-field imagery (GUC-LiFFAD). Brief descrip-

tions of these datasets follow:

• MSU-MFSD: The public version of the MSU-MFSD dataset [56] includes real-

access and attack videos for 35 subjects. Real-access videos (1̃2 sec. long) have

been captured using two devices: a 13 MacBook Air (using its built-in camera),

and a Google Nexus 5 (Android 4.4.2) phone. Videos captured using the laptop

camera have a resolution of 640 × 480 pixels, and those captured using the An-

droid camera have a resolution of 720 × 480 pixels. The dataset also includes
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Dataset Name Year PAIs Comment

MSU-MFSD 2015 2D attacks: 70 bona fide and 210 PA videos

[56] print and replay representing 35 subjects, collected

using laptop and smartphone.

GUC-LiFFAD 2015 2D attacks: Light-field imagery collected from

[44] print and replay 80 subjects, using a Lytro camera.

For each presentation several images are

collected, each at a different depth-of-focus.

UVAD 2015 2D attacks: 17076 videos corresponding to 404 identities.

[42] video-replay

REPLAY-MOBILE 2016 2D attacks: 1200 bona fide and attack videos

[16] print, replay representing 40 subjects, captured

using only smartphone and tablet.

MSU-USSA 2016 2D attacks: 1000 bona fide presentations and 8000 PAs

[41] print, replay representing 1000 subjects, captured

using only smartphone and tablet.

MS-Face 2016 2D attacks: print Based on 21 subjects print PAIs.

[15] (visible and NIR) Data captured using hi-res. CMOS sensor.

HKBU-MARs 2016 3D attacks: 1008 videos corresponding to 12 subjects

[30] rigid masks and their masks.

SMAD 2017 3D attacks: The dataset contains 130 presentations:

[34] silicone masks 65 bona fide, and 65 mask attacks.

EMSPAD 2017 2D attacks: print 7-band multispectral data

[47] (laser & inkjet) for 50 subjects

OULU-NPU 2017 2D attacks: 5940 videos corresponding to 55 subjects

[10] print, video-replay using 6 different smartphones,

captured in 3 different environments

MLFP 2017 3D attacks: 1350 videos based on 10 subjects

[2] obfuscation with in visible, NIR and thermal bands, captured

latex masks in indoor and outdoor environments

SiW 2018 2D attacks: 4620 videos based on 165 subjects, captured

[31] 2 print- and in various head-poses and environments.

4 replay-attacks Replay-attacks captured using 4 different PAIs.

Table 1 Recently published datasets for face-PAD experiments.

PA videos representing printed photo attacks, and mobile video replay-attacks

where video captured on an iPhone 5s is played back on an iPhone 5s, and high-

definition (HD) (1920 × 1080) video-replays (captured on a Canon 550D SLR,

and played back on an iPad Air).

• GUC-LiFFAD: The GUC Light Field Face Artefact Database (GUC-LiFFAD)

has been created for face-PAD experiments based on light-field imagery. Specif-

ically, the biometric-sensor used in this dataset is a Lytro6 camera, which, for

every presentation, captures several images, each at a different depth-of-focus.

Data corresponding to 80 subjects is included in this dataset. Only print-attacks,

based on high-quality photographs (captured using a Canon EOS 550D DSLR

6 www.lytro.com
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camera, at 18 mega-pixel resolution, and printed on both laser and inkjet print-

ers) are represented in this dataset.

• UVAD: The Unicamp Visual Attack Database (UVAD) consists of 17076 bona

fide and attack presentation videos corresponding to 404 identities. All videos

have been recorded at full-HD resolution, but subsequently cropped to a size of

1366 × 768. The dataset includes bona fide videos collected using six different

cameras. Two videos have been captured for each subject, both using the same

camera but under different ambient conditions. PA videos corresponding a given

subject have also been captured using the same camera as that used for the bona

fide videos of the subject in question. The PAs have been generated using seven

different electronic monitors, and all PA videos have also been cropped to the

same shape as the bona fide videos.

• REPLAY-MOBILE: This dataset contains short (10 sec. long) full-HD resolution

(720 × 1280) videos corresponding to 40 identities, recorded using two mobile

devices: an iPad Mini 2 tablet and a LG-G4 smartphone. The videos have been

collected under six different lighting conditions, involving artificial as well as

natural illumination. Four kinds of PAs are represented in this database have

been constructed using two PAIs: matte-paper for print-attacks, and matte-screen

monitor for digital-replay attacks. For each PAI, two kinds of attacks have been

recorded: one where the user holds the recording device in hand, and the second

where the recording device is stably supported on a tripod.

• MSU-USSA: The Unconstrained Smartphone Spoof Attack dataset from MSU

(MSU-USSA) aggregates bona fide presentations from a variety of Internet-

accessible sources. In total 1000 bona fide presentations of celebrities have been

included in this dataset. Two cameras (front and rear camera of a Google Nexus

5 smartphone) have been used to collect 2D attacks using four different PAIs

(laptop, tablet, smartphone and printed-photographs), resulting in a total of 8000

PAs.

• HKBU-MARs: This dataset is designed to test countermeasures for 3D rigid-

mask based attacks. The second version (V2) of this dataset contains data cor-

responding to 12 subjects. Rigid masks created by two different manufacturers

have been used to construct this dataset. Presentations have been captured using

seven different cameras (including mobile devices), under six different illumina-

tion conditions.

• MS-Face: This is the first public dataset to explore the use of NIR imagery for

face-PAD. Specifically, data is collected under two kinds of illumination: visible-

light and 800nm (NIR) wavelengths. The dataset contains data captured from 21

subjects. Bona fide presentations in this dataset have been collected under five

different conditions. Only print-attacks have been considered in this dataset. For

PAs under visible-light, high-quality color prints have been used, whereas PAs

under NIR illumination have been created using gray-level images printed at 600

dpi.

• SMAD: the Silicone Mask Attack Database (SMAD) consists of videos collected

from the Internet. The authors [34] have collected 65 videos of celebrities (which

form the bona fide presentations) as well as 65 videos of actors wearing a variety
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of flexible masks. Although the authors refer to the masks as silicone masks,

some of the masks in the dataset appear to be constructed from latex, instead

of silicone. Some of the original videos collected for this dataset may be rather

long. For the purposes of experiments, long videos have been trimmed, so that

all videos in the dataset are between 3 and 10 sec. long.

• EMSPAD: the Extended Multispectral Presentation Attack Database (EMSPAD)

contains images captured using a Pixelteq SpectroCamTM camera. This camera

captures multispectral images using a set of filters mounted on a continuously ro-

tating wheel. The dataset contains 7D multispectral stacks per time-instant, that

is, for each frame, 7 images have been captured in narrow wavelength bands cen-

tered at the following values: 425nm, 475nm, 525nm, 570nm, 625nm, 680nm and

930nm. Bona fide and attack presentations for 50 subjects comprise this dataset.

Bona fide presentations have been collected in two sessions, and in each session,

five frames (i.e., 5×7 images) have been collected for each subject. This dataset

includes only one kind of PAI, namely, 2D color-print attacks. To construct the

attacks, high quality color photographs of each subject have been printed on two

kinds of printers – a color laser printer, and a color inkjet printer – at 600dpi reso-

lution, and multispectral images of these printed photographs have been captured

using the SpectroCam camera.

• OULU-NPU: This dataset includes data corresponding to 55 subjects. Front cam-

eras of 6 different mobile devices have been used to capture the images included

in this dataset. The images have been collected under three separate conditions,

each corresponding to a different combination of illumination and background.

PAs include print-attacks created using two printers, as well as video-replay at-

tacks using two different displays. In total, 4950 bona fide and attack videos

comprise the dataset.

• MLFP: The Multispectral Latex Mask based Video Face Prepresentation Attack

(MLFP) dataset has been prepared for experiments in detecting obfuscation at-

tacks using flexible latex masks. The dataset consists of 150 bona fide and 1200

attack videos, corresponding to 10 subjects. In fact the attacks have been per-

formed using seven latex masks and three paper masks. Data has been collected

in both indoor and outdoor environments.

• SiW: The Spoof in the Wild dataset consists of 1320 bona fide videos captured

from 165 subjects, and 3300 attack videos. Liu et al. [31] mention that the dataset

encaspulates greater racial diversity than previous datasets. Varying ambient con-

ditions, as well as different facial expressions and head-poses are also represented

in the SiW dataset. Two kinds of print attacks and four kinds of video replay-

attacks have been included in this dataset. Replay-attacks have been created us-

ing four PAIs: two smartphones, a tablet device, and a laptop-monitor screen.

For detailed descriptions of the datasets, such as the experimental protocols as well

as how to access the datasets, the reader is referred to the respective references cited

in Table 1.
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5 Conclusion

As several studies have quantitatively demonstrated, modern face-recognition (FR)

methods are highly susceptible to presentation attacks (PA). This vulnerability is a

consequence of the desired ability of FR methods to handle inter-session variability.

In order to have secure face-verification systems, the underlying FR methods need to

be augmented with appropriate presentation attack detection (PAD) methods. Con-

sequently, face-PAD has become a topic of intense research in recent years. In this

chapter we have attempted to summarize several prominent research directions in

this field.

A large majority of face-PAD methods operate on color-imagery. Several new

kinds of features characterizing local motion information, image-quality, as well

as texture information have been proposed in the recent scientific literature. Deep-

learning based methods for face-PAD have also been widely explored. Most works

involving deep-learning methods have started with a CNN designed for FR, and

have adapted the network for face-PAD using transfer-learning. The reason for this

approach is that current face-PAD datasets are still too small to train really deep

networks from scratch. Given this constraint on the size of available training data,

perhaps researchers should investigate the use of relatively smaller networks for

face-PAD.

In addition to well studied categories of 2D attacks, namely, print attacks and

video-replay attacks, several research groups are now developing methods to detect

attacks performed using hyper-realistic custom-made masks. Attacks based on both

rigid and flexible masks have been considered. In the past this category of attacks

did not receive much attention as constructing custom-masks was prohibitively ex-

pensive. Although, even today the cost of manufacturing high-quality custom masks

remains high, the costs have come down significantly, and we may expect PAs based

on such masks to be highly likely in the near future. The research community would

benefit from a concerted effort to produce large and significantly diverse datasets

based on a variety of custom-made masks.

Extended-range (ER) imagery, that is, imagery in wavelengths outside the visible

light spectrum, is proving to be a valuable tool in tackling both 2D and 3D PAs.

Given the availability of low-cost infrared and thermal cameras, this is a promising

direction of research in face-PAD.

Besides impersonation attacks, the recently adopted ISO standard for PAD also

considers obfuscation attacks as PAs. Specifically, there is a need to detect presen-

tations where makeup or a mask is used to hide one’s identity. This category of PA

has not received the same amount of attention as impersonation attacks. The avail-

ability of carefully constructed datasets representing obfuscation attacks is key to

the progress of research on this topic.

We note, in general, that most recent papers on face-PAD still report results on

relatively old datasets, such as CASIA and REPLAY-ATTACK – datasets that are

more than five years old now. With ever-improving technology for constructing PAs,

older datasets become increasingly irrelevant. In order to have the true snapshot
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of the state of the art, besides publishing new datasets at a steady rate, it is also

important that face-PAD researchers report results on recent datasets.

Although most state-of-the-art face-PAD methods seem to perform well in intra-

dataset tests, generalization in cross-dataset scenarios remains a significant chal-

lenge. Cross-dataset generalization is an important goal, because it indicates the

ability of a given PAD method to tackle previously unseen attacks. In this context

the use of one-class classifiers (OCC) have been shown to be a step in the right

direction.

There is a growing interest in developing face-PAD methods for scenarios in-

volving previously unseen attacks. We expect this trend to grow in the coming years.

Another research direction with great potential is the use of ER imagery to tackle

various kinds of PAs. So far, deep learning based methods for face-PAD have been

shown to be roughly as accurate as state-of-the-art methods relying on hand-crafted

features. As mentioned earlier, current efforts involving deep learning start with well

understood deep networks designed for object recognition or FR. Further research

is required in this area, perhaps involving bespoke deep architectures for face-PAD.
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