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Abstract— This article presents an overview of robot learning
and adaptive control applications that can benefit from a joint
use of Riemannian geometry and probabilistic representations.
The roles of Riemannian manifolds, geodesics and parallel
transport in robotics are first discussed. Several forms of man-
ifolds already employed in robotics are then presented, by also
listing manifolds that have been underexploited but that have
potentials in future robot learning applications. A varied range
of techniques employing Gaussian distributions on Riemannian
manifolds are then introduced, including clustering, regression,
information fusion, planning and control problems. Two exam-
ples of applications are presented, involving the control of a
prosthetic hand from surface electromyography (sEMG) data,
and the teleoperation of a bimanual underwater robot. Further
perspectives are finally discussed, with suggestions of promising
research directions.

I. INTRODUCTION

Data encountered in robotics are characterized by simple

but varied geometries, which are sometimes underexploited

in robot learning and adaptive control algorithms. Such data

range from joint angles in revolving articulations [1], rigid

body motions [2], [3], unit quaternions to represent orienta-

tions [4], and symmetric positive definite matrices, which can

represent sensory data processed as spatial covariances [5],

inertia [6], [7], stiffness/manipulability ellipsoids [8], as well

as metrics used in the context of similarity measures.

Moreover, many applications require these heterogeneous

data to be handled altogether. Several robotics techniques

employ components from the framework of Riemannian ge-

ometry. But unfortunately, this is often implemented without

providing an explicit link to this framework, which can either

weaken the links to other techniques or limit the potential

extensions. This can for example be the case when computing

orientation errors with a logarithmic map in the context

of inverse kinematics, or when interpolating between two

unit quaternions with spherical linear interpolation (SLERP).

This article aims at highlighting the links between existing

techniques and cataloging the missing links that could be

explored in further research. These points are discussed in
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Fig. 1. Problems in robotics that can leverage the proposed Gaussian-
based representation on Riemannian manifolds. Such approach can be used
to extend clustering, regression, fusion, control and planning problems to
non-Euclidean data (see main text for details). In these examples, Gaussians
are defined with centers on the manifolds and covariances in the tangent
spaces of the centers.

the context of varied robot learning and adaptive control

challenges.

Riemannian manifolds are related to a wide range of prob-

lems in machine learning and robotics. This article mainly

focuses on robot learning applications based on Gaussian

distributions. This includes techniques requiring uncertainty

and statistical modeling to be computed on structured non-

Euclidean data. The article presents an overview of existing

work and further perspectives in jointly exploiting statistics

and Riemannian geometry. One of the appealing use of Rie-

mannian geometry in robotics is that it provides a principled

and simple way to extend algorithms initially developed for

Euclidean data to other manifolds, by efficiently taking into

account prior geometric knowledge about these manifolds.

By using Riemannian manifolds, data of various forms

can be treated in a unified manner, with the advantage

that existing models and algorithms initially developed for

Euclidean data can be extended to a wider range of data

structures. It can for example be used to revisit constrained

optimization problems formulated in Euclidean space, by

treating them as unconstrained problems inherently taking

into account the geometry of the data.

Figure 1 shows various common problems in robotics that

can directly leverage Riemannian geometry. In the clustering

example, a set of datapoints is clustered as two distributions
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represented in red and blue, trained as a Gaussian mixture

model, where each point is displayed in the color of the

most likely cluster in which it belongs. In the information

fusion example, the intersection of two distributions (in red

and blue) results in a distribution (in black), which is the

equivalent of a product of Gaussians. In the tracking exam-

ple, a controller is computed by solving a linear quadratic

tracking problem, with the goal of reaching a target point on

the manifold within a desired precision matrix, represented

here as a covariance matrix (inverse of precision matrix) in

the tangent space of the target point. In the model predictive

control example, a reference path is defined as a set of

Gaussians that act as viapoints to pass through (i.e., within

desired covariances). This Gaussian mixture model is first

learned from a set of demonstrated reference paths (in gray

lines). The resulting controller computes a series of control

commands anticipating the next points to reach, resulting in

a path on the manifold (in black line).

The problems depicted in Fig. 1 require data to be handled

in a probabilistic manner. For Euclidean data, multivariate

Gaussian distributions are typically considered to encode

either the (co)variations of the data or the uncertainty of the

estimates. This article discusses how such approaches can be

extended to other manifolds by exploiting a Riemannian ex-

tension of Gaussian distributions. A practitioner perspective

is adopted, with the goal of conveying the main intuitions

behind the presented algorithms, sometimes at the expense

of a more rigorous treatment of each topic. Didactic source

codes accompany the paper, available as part of PbDlib [9],

a collection of source codes for robot programming by

demonstration (learning from demonstration), including vari-

ous functionalities for statistical learning, dynamical systems,

optimal control and Riemannian geometry. Two distinct

versions are maintained, which can be used independently

in Matlab (with full compatibility with GNU Octave) or in

C++.

The paper is organized as follows. Section II presents an

overview of Riemannian geometry in robotics. Section III

presents a Gaussian-like distribution on Riemannian mani-

fold, and shows how it can be used in mixture, regression

and fusion problems. Section IV presents examples of appli-

cations, and Section V concludes the paper.

Scalars are denoted by lower case letters x, vectors by

boldface lower case letters x, matrices by boldface uppercase

letters X , where X⊤ is the transpose of X . Manifolds and

tangent spaces are designated by calligraphic letters M and

TM, respectively.

II. RIEMANNIAN GEOMETRY IN ROBOTICS

A. Riemannian manifolds

A smooth d-dimensional manifold M is a topological

space that locally behaves like the Euclidean space R
d. A

Riemannian manifold is a smooth and differentiable manifold

equipped with a positive definite metric tensor. For each

point p∈M, there exists a tangent space TpM that locally

linearizes the manifold. On a Riemannian manifold, the

metric tensor induces a positive definite inner product on

Fig. 2. Applications in robotics using Riemannian manifolds rely on two
well-known principles of Riemannian geometry: exponential/logarithmic
mapping (left) and parallel transport (right), which are depicted here on a
S2 manifold embedded in R

3. Left: Bidirectional mappings between tangent
space and manifold. Right: Parallel transport of a vector along a geodesic
(see main text for details).

each tangent space TpM, which allows vector lengths and

angles between vectors to be measured. The affine connec-

tion, computed from the metric, is a differential operator

that provides, among other functionalities, a way to compute

geodesics and to transport vectors on tangent spaces along

any smooth curves on the manifold [10], [11]. It also fully

characterizes the intrinsic curvature and torsion of the mani-

fold. The Cartesian product of two Riemannian manifolds is

also a Riemannian manifold (often called manifold bundles

or manifold composites), which allows joint distributions to

be constructed on any combination of Riemannian manifolds.

Two basic notions of Riemannian geometry are crucial for

robot learning and adaptive control applications, which are

illustrated in Fig. 2 and described below.

Geodesics: The minimum length curves between two points

on a Riemannian manifold are called geodesics. Similarly

to straight lines in Euclidean space, the second derivative

is zero everywhere along a geodesic. The exponential map

Expx0
: Tx0

M→M maps a point u in the tangent space of

x0 to a point x on the manifold, so that x lies on the geodesic

starting at x0 in the direction u. The norm of u is equal to

the geodesic distance between x0 and x. The inverse map is

called the logarithmic map Logx0
:M→ Tx0

M. Figure 2-

left depicts these mapping functions.

Parallel transport: Parallel transport Γg→h : TgM →
ThM moves vectors between tangent spaces such that the

inner product between two vectors in a tangent space is

conserved. It employs the notion of connection, defining how

to associate vectors between infinitesimally close tangent

spaces. This connection allows the smooth transport of a

vector from one tangent space to another by sliding it (with

infinitesimal moves) along a curve.

Figure 2-right depicts this operation. The flat surfaces

show the coordinate systems of several tangent spaces along

the geodesic. The black vectors represent the directions of

the geodesic in the tangent spaces. The blue vectors are

transported from g to h. Parallel transport allows a vector

u in the tangent space of g to be transported to the tangent

space of h, by ensuring that the angle (i.e., inner product)

between u and the direction of the geodesic (represented as

black vectors) are conserved. At point g, this direction is

expressed as Logg(h). This operation is crucial to combine



Fig. 3. Structured manifolds in robotics. S3 can be used to represent the
orientation of robot endeffectors (unit quaternions). S6

++
can be used to

represent manipulability ellipsoids (manipulability capability in translation
and rotation), corresponding to a symmetric positive definite (SPD) matrix
manifold. Hd can be used to represent trees, graphs and roadmaps. Gd,p

can be used to represent subspaces (planes, nullspaces, projection operators),
see main text for details.

information available at g with information available at h,

by taking into account the rotation of the coordinate systems

along the geodesic (notice the rotation of the tangent spaces

in Fig. 2-right). In Euclidean space (top-left inset), such

parallel transport is simply the identity operator (a vector

operation can be applied to any point without additional

transformation).

By extension, a covariance matrix Σ can be transported

with Σ‖ =
∑d

i=1 Γg→h(vi) Γ⊤

g→h(vi), using the eigen-

decomposition Σ =
∑d

i=1 vi v
⊤
i . For many manifolds in

robotics, this transport operation can equivalently be ex-

pressed as a linear mapping Σ‖ = Ag→hΣA⊤

g→h (see

Supplementary Material for the computation of Ag→h).

B. Manifolds in robot applications

The most common manifolds in robotics are homoge-

neous, providing simple analytic expressions for exponen-

tial/logarithmic mapping and parallel transport. Some of

the most important representations are listed below (see

Supplementary Material for the corresponding mapping and

transport operations).

Figure 3 shows four examples of Riemannian manifolds

that can be employed in robot manipulation tasks. For these

four manifolds, the bottom graphs depict S2, S2++, H2 and

G3,2, with a clustering problem in which the datapoints

(black dots/planes) are segmented in two classes, each rep-

resented by a center (red and blue dots/planes).

The geodesics depicted in Fig. 3 show the specificities

of each manifold. The sphere manifold Sd is characterized

by constant positive curvature. The elements of Sd++ can

be represented as the interior of a convex cone embedded

in its tangent space Symd. Here, the three axes correspond

to A11, A12 and A22 in the SPD matrix
(
A11 A12

A12 A22

)
. The

hyperbolic manifoldHd is characterized by constant negative

curvature. Several representations exist: H2 can for example

be represented as the interior of a unit disk in Euclidean

space, with the boundary of the disk representing infinitely

remote point (Poincaré disk model, as depicted here). In this

model, geodesic paths are arcs of circles intersecting the

boundary perpendicularly. Gd,p is the Grassmann manifold

of all p-dimensional subspaces of Rd.

Two Lie groups widely used in robotics are also

presented, namely the special orthogonal group SO(3)
and the special Euclidean group SE(3). Similarities and

differences between Riemannian manifolds and Lie groups

are discussed in the next section. Examples of applications

for the aforementioned Riemannian manifolds are presented

below.

The sphere manifold Sd can be used in robotics to encode

directions/orientations. Unit quaternions S3 can be used to

represent endeffector (tool tip) orientations [4]. S2 can be

used to represent unit directional vector perpendicular to

surfaces (e.g., for contact planning). Articulatory joints can

be represented on the torus S1 × S1 × . . . × S1 [12], [13].

The Kendall shape space used to encode 3D skeletal motion

capture data also relies on unit spheres [14].

The special orthogonal group SO(d) is the group of

rotations around the origin in a d-dimensional space. SO(2)
and SO(3) are widely used in robotics. For example, in [15],

the manifold structure of the rotation group is exploited for

preintegration and uncertainty propagation in SO(3). This

is exploited for state estimation in visual-inertial odometry

with mobile robots. In [16], Kalman filtering adapted to data

in SO(3) is used for estimating the attitude of robots that

can rotate in space. The optimization problem in [17] uses

sequential quadratic programming (SQP) working directly

on the manifold SO(3)× R
3.

The special Euclidean group SE(3) is the group of

rigid body transformations. A rigid body transformation is

composed of a rotation and a translation. The geometry

of SE(3) can be used to describe the kinematics and

the Jacobian of robots [2]. Therefore, it is widely used

to describe robot motion and pose estimation [18]. For

example, in [3], exponential maps are exploited to associate

uncertainty with SE(3) datapoints in robot pose estimation

problems.

The manifold of symmetric positive definite (SPD)

matrices Sd++ can be employed in various ways in robotics.

For example, human-robot collaboration applications require

the use of various sensors. These sensory data can be

preprocessed with sliding windows to analyze at each

time step the evolution of the signals within a short

time window (e.g., to analyze data flows). Often, such

analysis takes the form of spatial covariances, which are

SPD matrices [5]. In robot control, tracking gains can be

defined in the form of SPD matrices. The use of tracking

gains as full SPD matrices instead of scalars has the

advantage of allowing the controller to take into account

the coordination of different control variables (e.g., motor

commands). For articulatory joints, these coordinations

often relate to characteristic synergies in human movements.

Manipulability ellipsoids are representations used to analyze

and control the robot dexterity as a function of the

articulatory joints configuration. This descriptor can be

designed according to different task requirements, such as

tracking a desired position or applying a specific force [8],

[19]. Manipulator inertia matrices also belong to Sd++



and can for example be exploited in humanlike trajectory

planning [13]. SPD matrices are also used in problems

related to metric interpolation/extrapolation and metric

learning [20]. In CHOMP (covariant Hamiltonian motion

planning) [21], a precision matrix (metric tensor) is used

to prefer perturbations resulting in small accelerations in

the overall trajectory. In [22], Riemannian manifold policies

are employed to generate natural obstacle-avoiding reaching

motion through traveling along geodesics of curved spaces

defined by the presence of obstacles.

Hyperbolic manifolds Hd are the analogues of spheres

with constant negative curvature instead of constant

positive curvature. They are currently underexploited

in robotics, despite their interesting potential in a wide

range of representations, including dynamical systems,

Toeplitz/Hankel matrices or autoregressive models [23].

Hyperbolic geometry could notably be used to encode

and visualize heterogeneous topology data, including

graphs and trees structures, such as rapidly exploring

random trees (RRT) [24], designed to efficiently search

nonconvex, high-dimensional spaces in motion planning

by randomly building a space-filling tree. The interesting

property of hyperbolic manifolds is that the circumference

of a circle grows exponentially with its radius, which

means that exponentially more space is available with

increasing distance. It provides a convenient representation

for hierarchies, which tend to expand exponentially with

depth.

Grassmannian Gd,p is the manifold of all p-dimensional

subspaces of R
d. It can for example be used to extract and

cluster planar surfaces in the robot’s 3D environment. This

manifold is largely underrepresented in robotics, despite

such structure can be used in various approaches such

as system identification [25], spatiotemporal modeling of

human gestures [26], or the encoding of nullspaces and

projection operators in a probabilistic way.

Manifolds with nonconstant curvature are also employed

in robotics, such as spaces endowed with the Fisher in-

formation metric [27], [28] or kinetic energy metric [1],

[18], [12], [13]. As described in Section II-A, the curvature

of a Riemannian manifold depends on the selected metric

tensor. Consequently, a varying metric will result in a varying

curvature. Many problems in robotics can be formulated

with a smoothly varying matrix M (Riemannian metric) that

measures the distance between two points x1 and x2 as a

quadratic error term (x1−x2)
⊤M(x1−x2). In this context,

the Riemannian formulation has the advantage of being

coordinate independent (i.e., geodesic paths are invariant to

the choice of local coordinates) [1], [12], [13]. In robot

dynamics problems, this is typically useful to take into

account the inertia in the robot motion [1]. In policy learning

problems, if the conditional density of the action given the

state is Gaussian, the natural policy gradient is given by the

Fisher information matrix [28], which can for example be

used in deep reinforcement learning [29].

It is also relevant for deep generative models such as

variational autoencoders (VAEs) and generative adversarial

networks (GANs), as it provides a geometric interpretation

of these models. For example, VAEs learn nonlinear data

distributions through a set of latent variables and a nonlinear

generator function that maps latent points into the input

space. The nonlinearity of the generator implies that the

latent space gives a distorted view of the input space. The

latent space not only provides a low-dimensional represen-

tation of the data manifold: it can also reveal its underlying

geometrical structure [30].

In neural networks such as VAEs, by using activation func-

tions that are C2 differentiable, a symmetric positive definite

matrix M = J⊤J can be used as a smoothly changing inner

product structure, acting as a local Mahalanobis distance

measure, where J is the Jacobian characterizing the decoder

function. The method yields a distance measure that can for

example be used to replace linear interpolations in the latent

space by geodesics. In [30], Arvanitidis et al. show that in

the latent space learned by a VAE, distances and interpolants

can significantly be improved under this metric, which in turn

improves probability distributions, sampling algorithms and

clustering in the latent space.

A downside of manifolds with nonconstant curvature is

that the geodesic optimization problem most often corre-

sponds to a nonconvex problem (system of ordinary dif-

ferential equations) that can be computationally heavy to

solve. Several research directions can be explored to address

this issue. In [31], the problem is circumvented by spanning

the latent space with a discrete finite graph (k-d tree data

structure with edge weights based on Riemannian distances),

used in conjunction with a classic A∗ search algorithm.

Recent approaches in discrete differential geometry also

address similar problems by extending continuous Rieman-

nian manifolds to discrete formulations with fast computa-

tion [32]. Currently, these developments principally target

computer graphics applications, but they have great potentials

in robotics. It could for example provide an approach to

link discrete robot planning problems such as probabilistic

roadmaps (PRMs) to their continuous counterparts in Rie-

mannian geometry.

C. Riemannian geometry and Lie theory

A Lie group is a smooth and differentiable manifold

that possesses a group structure, therefore satisfying the

group axioms. There are strong links between Riemannian

geometry and Lie theory. In particular, some Lie groups, such

as SO(3), can be endowed with a bi-invariant Riemannian

metric, which give them the structure of a Riemannian

manifold. In robotics, Lie theory is mainly exploited for

applications involving SO(3) and SE(3) groups.

In the literature, distinctive vocabulary and notation are

often employed, which hinder some of the links between the

applications exploiting Riemannian geometry and Lie theory.

Among these differences, the Lie algebra is the tangent space

at the origin of the manifold, acting as a global reference.

u∧ (hat) and u∨ (vee) are used to transform elements from



the Lie algebra (which can have nontrivial structures such as

complex numbers or skew-symmetric matrices) to vectors in

R
d, which are easier to manipulate. They are the operations

corresponding to the exponential and logarithm maps in

Riemannian geometry. In Lie theory, ⊕ and ⊖ are operators

used to facilitate compositions with exponential/logarithmic

mapping operations.

For further reading, an excellent introduction to Lie theory

for robot applications can be found in [33].

III. GAUSSIAN DISTRIBUTIONS ON

RIEMANNIAN MANIFOLDS

Several approaches have been proposed to extend Gaus-

sian distributions in Euclidean space to Riemannian mani-

folds [34]. Here, we focus on a simple approach that consists

of estimating the mean of the Gaussian as a centroid on the

manifold (also called Karcher/Fréchet mean), and represent-

ing the dispersion of the data as a covariance expressed in

the tangent space of the mean [10], [35], [4]. Distortions

arise when points are too far apart from the mean, but

this distortion is negligible in most robotics applications. In

particular, this effect is strongly attenuated when a mixture of

Gaussians is considered, as each Gaussian will be employed

to model a limited region of the manifold. In the general case

of a manifold M, such model is a distribution maximizing

the entropy in the tangent space. It is defined as

NM(x|µ,Σ) =
(

(2π)d|Σ|
)−

1

2

e−
1

2
Log

µ
(x)Σ−1 Log

µ
(x),

where x ∈ M is a point of the manifold, µ ∈ M is the

mean of the distribution (origin of the tangent space), and

Σ ∈ TµM is the covariance defined in this tangent space.

For a set of N datapoints, this geometric mean corresponds

to a minimization of quadratic error terms

min
µ

N∑

n=1

Logµ(xn)
⊤

Logµ(xn),

which can be solved by a simple and fast Gauss-Newton

iterative algorithm. The algorithm starts from an initial

estimate on the manifold and an associated tangent space.

The datapoints {xn}
N
n=1 are projected in this tangent space

to compute a direction vector, which provides an updated

estimate of the mean. This process is repeated by iterating

u =
1

N

N∑

n=1

Logµ(xn), µ← Expµ(u),

until convergence. In practice, such algorithm converges very

fast in only a couple of iterations (typically less than 10 for

the accuracy required by the applications presented here).

After convergence, a covariance is computed in the tangent

space as Σ = 1
N

∑N

n=1 Logµ(xn)Log⊤

µ(xn), see Fig. 1. This

distribution can for example be used in a control problem to

represent a reference to track with an associated required

precision (e.g., learned from a set of demonstrations). Such

learning and control problem results in the linear quadratic

tracking (LQT) solution depicted in Fig. 1 and described in

details in [36].

Fig. 4. Clustering on various manifolds with Gaussian mixture models.

Fig. 5. Gaussian mixture model (GMM) trained with EM algorithm on
S2 manifold. Top row: GMM encoding in a single tangent space (at the
origin). Bottom row: Proposed GMM, where the covariances are computed
in the tangent spaces of the means. On the left figures, the contours of
the covariances are projected on the manifold. The right figures show the
projections of the data into the tangent spaces considered in the computation
of the GMM. We can see that representing the local dispersion of the data
as covariances in the tangent spaces of the means (bottom row) results in a
much better fit than representing the GMM in a single tangent space (top
row).

Importantly, this geometric mean can be directly extended

to weighted distances, which will be exploited in the next

sections for mixture modeling, fusion (product of Gaussians),

regression (Gaussian conditioning) and planning problems.

A. Gaussian mixture model

Gaussian mixture model (GMM) is a ubiquitous repre-

sentation in robotics, including clustering and modeling of

distributions as a superposition of Gaussians, see Fig. 4.

Similarly to a GMM in the Euclidean space, a GMM on a

manifoldM is defined by p(x) =
∑K

k=1 πkNM(x|µk,Σk),
with K the number of components and πk the mixing

coefficients (priors) such that
∑

k πk = 1 and πk ≥ 0,

∀ k ∈ {1, . . . ,K}. The parameters of this GMM can be

estimated by Expectation-Maximization (EM) [37], where

the Gauss-Newton procedure presented above is performed

in the M-step.

Figure 5-top shows that a GMM computed in a single

tangent space (here, at the origin of the manifold) introduces

distortions resulting in a poor modeling of the data. Figure

5-bottom shows that the proposed representation limits the

distortions by encoding the local spread of the data in

covariance matrices expressed in different tangent spaces

(i.e., at the centers of the Gaussians).



Fig. 6. Model predictive control (MPC) on a S2 manifold, with a set
of viapoints defined by a Gaussian mixture model. Left: Final movement
generated by MPC (in gray), superposed with the partial movement (in
black) for the given time horizon (1/5 of total duration), predicted at 3/5 of
the trajectory. Center: Visualization in the tangent space of x, where only
two Gaussians appear within the current time horizon. Right: Timeline plot
showing the evolution of the first two variables of the state space, where the
time horizon is depicted as a gray box. The reference to track is represented
as a set of colored viapoints with desired error margins (represented as
standard deviations).

An example of application with links to robotics is [35],

where human poses are modeled using a GMM on Sd. Mat-

lab examples demo Riemannian Sd GMM*.m can be found in [9].

B. Gaussian conditioning

As detailed in [4], we consider input and output data

jointly encoded as a multivariate Gaussian NM(µ,Σ) par-

titioned with symbols I and O (input and output). Given

an input datapoint xI , the conditional distribution xO|xI ∼
NM(µ̂O, Σ̂O) can be locally evaluated by iterating

u = Logµ̂O(µO)−ΣOI

‖ Σ
I

‖

−1
LogxI(µI), µ̂O ← Expµ̂O(u),

with Σ‖ a covariance matrix transported from [µI⊤,µO⊤]
⊤

to [xI⊤, µ̂O⊤]
⊤

(see Section II for the description of parallel

transport). After convergence, the covariance is computed in

the tangent space as Σ̂
O = Σ

O
‖ − Σ

OI
‖ Σ

I
‖

−1
Σ

IO
‖ . Matlab

examples demo Riemannian Sd GMR*.m can be found in [9].

C. Fusion with products of Gaussians

As shown in [36], [38], the product of K Gaussians on a

Riemannian manifold can be locally evaluated by iterating

u =
(

Σ
−1
‖k

)−1 K∑

k=1

Σ
−1
‖k Logµ(µk), µ← Expµ(u),

with covariance matrix Σ‖k transported from µk to µ (see

Section II for the description of parallel transport). After

convergence, the covariance is computed in the tangent space

as Σ =
(
∑K

k=1 Σ
−1
‖k

)−1

.

An example of product of Gaussians on S2 is de-

picted in the top-right inset of Fig. 1. A Matlab example

demo Riemannian Sd GaussProd01.m can be found in [9].

D. Model predictive control

Model predictive control (MPC) is widely employed in

robotics as an adaptive control strategy with anticipation

capability. It consists of estimating a series of control com-

mands u over a moving time window of size T −1. The

problem is described here as a linear quadratic tracking

(LQT) problem with velocity commands ut ∈ R
d and an

evolution of the state xt ∈ R
d described by a linear system

xt+1 = Atxt +Btut, but the approach can be generalized

to other controllers. The resulting controller is

û = argmin
u

∥
∥x− µ

∥
∥
2

Q
+
∥
∥u

∥
∥
2

R

=
(
Su

⊤QSu +R
)−1

Su
⊤Q

(
µ− Sxx1

)
, (1)

with x =
[
x⊤
1 ,x

⊤
2 , . . . ,x

⊤

T

]⊤
∈ R

dT the evolution of

the state variable, u =
[
u⊤
1 ,u

⊤
2 , . . . ,u

⊤

T−1

]⊤
∈ R

d(T−1)

the evolution of the control variable, and d the dimen-

sion of the state space. µ =
[
µ⊤

1 ,µ
⊤
2 , . . . ,µ

⊤

T

]⊤
∈ R

dT

represents the evolution of the reference to track, Q =
blockdiag(Q1,Q2, . . . ,QT ) ∈ R

dT×dT represents the

evolution of the required tracking precision, and R =
blockdiag(R1,R2, . . . ,RT−1) ∈ R

d(T−1)×d(T−1) repre-

sents the evolution of the cost on the control inputs. In (1),

Su and Sx are transfer matrices, see Supplementary Material

for details of computation. This formulation corresponds to

a basic form of MPC in Euclidean space, by considering

quadratic objective functions, and linear systems with veloc-

ity commands and position states. We showed in [39] that

the reference signal to be tracked can be represented by a

GMM to form a stepwise trajectory.

Equation (1) is typically used to compute a series of con-

trol commands over a time window, which are re-evaluated

at each iteration. Thus, only the first (few) commands are

used in practice. In the above formulation, the first time step

of this moving time window corresponds to the current time

step in which the problem is solved (see Fig. 6-right for an

illustration of this moving time window and the computed

control commands within this time window).

Such MPC/LQT problem can be extended to Riemannian

manifolds by exploiting the tangent space of the state x1 (the

point that will introduce the least distortions). By extension

of (1), we can solve at each iteration

û = argmin
u

∥
∥Logx1

(x)− Logx1
(µ)

∥
∥
2

Q‖
+
∥
∥u

∥
∥
2

R

=
(
Su

⊤Q‖Su +R
)−1

Su
⊤Q‖ Logx1

(µ), (2)

where the vector û is composed of T−1 commands expressed

in the tangent space of x1. Logx1
(x) and Logx1

(µ) are

vectors respectively composed of T elements Logx1
(xt)

and Logx1
(µst), with {st}

T
t=1 the sequence of Gaussian

identifiers used to build the stepwise reference trajectory

from the GMM. Q‖ is a matrix composed of the block-

diagonal elements Q‖t =
∑d

i=1 Γµst
→x(vi) Γ⊤

µst
→x(vi),

using the eigendecomposition Qst =
∑d

i=1 vi v
⊤
i . This

transport operation can equivalently be expressed as a linear

mapping Q‖t = M‖ Qst M
⊤
‖ . In the above formulation, R

is assumed to be isotropic and, thus, does not need to be

transported.

The first velocity command in (2) (denoted by û1:d) is



Fig. 7. Gaussian mixture regression (GMR) on SPD manifold. Left:

Classical use of GMR to encode trajectories with time as input and position
as output (both in the Euclidean space). Right: Extension to Riemannian
manifolds with outputs on the SPD manifold. This nonlinear regression
approach provides a conditional estimate of the output expressed in the
form of matrix-variate Gaussians.

Fig. 8. GMR for the control of prosthetic hands within the TACT-HAND
project. SPD signals are used as input, in the form of spatial covariances
computed from sEMG sensors on the forearm of the participants. Activation
signals corresponding to different hand poses are used as outputs. In this
experiment (see [5] for details), taking the geometry of the data into account
in GMR (bottom graphs, in blue) results in better discrimination than
treating the data as if they were in a Euclidean space (bottom graphs, in
green).

then used to update the state with

x1 ← Logx1
(B1û1:d), (3)

where B1 corresponds to the linear system x2 = A1x1 +
B1u1 at the first time step of the time window.

Figure 6 shows an example on S2, where the computations

in (2) and (3) are repeated at each time step to reproduce a

movement (with the reference to track encoded as a GMM).

Extensions to more elaborated forms of MPC follow a similar

principle. A Matlab example demo Riemannian Sd MPC01.m can

be found in [9].

IV. EXAMPLES OF APPLICATIONS

The operations presented in the previous sections (mixture

modeling, conditioning and fusion) can be combined in

different ways, which is showcased here by two examples

of applications.

A. Control of prosthetic hands with Gaussian mixture regres-

sion

The Gaussian conditioning approach presented in Sec-

tion III-B can be extended to the Gaussian mixture model

approach presented in Section III-A. The resulting approach

is called Gaussian mixture regression (GMR), a simple non-

linear regression technique that does not model the regression

function directly, but instead first models the joint probability

density of input-output data in the form of a GMM [37],

[39]. GMR provides a fast regression approach in which

multivariate output distributions can be computed in an

online manner, with a computation time independent of the

number of datapoints used to train the model, by exploiting

the learned joint density model. In GMR, both inputs and

outputs can be multivariate, and after learning, any subset of

input-output dimensions can be selected for regression. This

is exploited in robotics to handle different sources of missing

data, where expectations on the remaining dimensions can

be computed as a multivariate distribution. These properties

make GMR an attractive tool for robotics, which can be

used in a wide range of problems and that can be combined

fluently with other techniques [39].

Both [35] and [40] present methods for regression from

a mixture of Gaussians on Riemannian manifolds, but they

only partially exploit the manifold structure in Gaussian

conditioning. In [35], each distribution is located on its

own tangent space, with the covariances encoded sepa-

rately, resulting in a block-diagonal structure in the joint

distribution. In [40], a GMM is reformulated to handle the

space of rotation in R
3 by using logarithm and exponential

transformations on unit quaternions, with these operations

formulated in a single tangent space (at the origin) instead

of applying the transformations locally (see Fig. 5). The link

to Riemannian manifolds is also not discussed.

Here, it is proposed to extend GMR to input and/or output

data on SPD manifolds, see Fig. 7. As the covariance of

SPD datapoints is a 4th-order tensor, a method is proposed

in [5] for parallel transport of high-order covariances on SPD

manifolds, by exploiting the supersymmetry properties of

these 4th-order tensors. As an example of application, GMR

on SPD manifold is applied to predict wrist movement from

spatial covariances computed from surface electromyography

(sEMG) data. In this application, the input data of GMR are

spatial covariances that belong to the SPD manifold. Com-

pared to the Euclidean GMR, the GMR on SPD manifold

improved the detection of wrist movement for most of the

participants and proved to be efficient to detect transitions

between movements, see Fig. 8 and Table I for a summary

of the results. This shows the importance and benefits of

considering the underlying manifold structure of the data in

this application. The details of this experiment can be found

in [5].

B. Underwater robot teleoperation with task-parameterized

Gaussian mixture model

The fusion approach presented in Section III-C can be

extended to the Gaussian mixture model approach presented

in Section III-A. This is particularly useful when mixtures of

Gaussians are encoded in different coordinate systems, which

need to be fused at reproduction time to satisfy constraints

in multiple frames of reference.



Fig. 9. Task-parameterized Gaussian mixture model (TP-GMM) extended to Sd manifolds within the DexROV project, see main text for details.

TABLE I

COMPARISON OF THE ROOT MEAN SQUARE ERROR (RMSE) OBTAINED

BY GMR ON THE SPD MANIFOLD AND THE STANDARD EUCLIDEAN

GMR FOR WRIST MOTION ESTIMATION FROM SEMG (SEE [5] FOR

DETAILS). THE RESULTS ARE PRESENTED FOR THREE PARTICIPANTS.

Rest Wr. supination Wr. extension Wr. flexion

SD
++

0.29± 0.00 0.18± 0.00 0.25± 0.00 0.27± 0.00

R 0.47± 0.00 0.31± 0.00 0.33± 0.00 0.33± 0.00

SD
++

0.32± 0.02 0.29± 0.14 0.36± 0.07 0.43± 0.13

R 0.46± 0.00 0.34± 0.00 0.35± 0.00 0.35± 0.00

SD
++

0.36± 0.02 0.22± 0.00 0.31± 0.00 0.29± 0.00

R 0.42± 0.00 0.42± 0.00 0.43± 0.00 0.43± 0.00

Within the DexROV project [41], this task-parameterized

Gaussian mixture model (TP-GMM) approach [39], [4] is

used together with the MPC approach presented in Sec-

tion III-D to teleoperate an underwater robot from distance,

with a teleoperator wearing an exoskeleton and visualizing

a copy of the robot workspace in a virtual environment.

Figure 9 presents an overview of this application (see

also [41] for a description of this teleoperation approach,

and [39] for a general description of TP-GMM). Because

of the long communication delays between the teleoperator

and the robot, the locations of the objects or tools of interest

are not the same on the teleoperator side and on the robot

side. With a parameterization associated with the locations

of objects and tools, we can cope with this discrepancy by

adapting locally the movement representation to the position

and orientation of the objects/tools, represented as coordinate

systems. Figure 9 depicts an example with two coordinate

systems (with models represented in orange and purple),

corresponding respectively to the robot and to a valve that

needs to be turned. A motion relative to the valve and to

the robot is encoded as Gaussian mixture models (GMM) in

the two respective coordinate systems. During teleoperation,

each pair of GMMs are rotated and translated according to

the current situations on the teleoperator side and on the

robot side. Products of Gaussians are then computed at each

side to fuse these representations.

Movement are encoded in this way with both position

R
3 and orientation S3 data (in Fig. 9, a representation

with R
2 and S2 is shown as an illustration). For position,

the retrieved path in black (and the associated covariances)

corresponds to a movement going from the robot to the valve

(represented as red U shapes), by taking into account how

these different coordinate systems are oriented. We can see

that the approaching phase is perpendicular to the coordinate

system to properly reach the valve. For orientation, the

retrieved path shows how the orientation of the endeffector

change with time. At the beginning of the motion, this

orientation relates to the orientation of the robot, while at the

end, the orientation of the endeffector matches the orientation

of the valve. In these graphs, the purple and orange ellipsoids

depict two GMMs, representing uncertain trajectories with

respect to two different frames of reference (red U shapes

for position data, and red points on the spheres for orientation

data). The black ellipsoids represent the final trajectory and

its uncertainty, obtained by fusing the trajectories of the two

different frames of reference through products of Gaussians.

Although the red U shapes and red points are not the same

on the teleoperator side and on the robot side, the retrieved

paths on the two sides can quickly adapt to these different

situations. By using a Riemannian manifold framework,

orientations are encoded uniquely in a representation that

does not contain singularities. Such approach is employed

in this application on S3 to learn and retrieve the evolution

of robot endeffector orientations, by adapting them to the

orientation of objects or tools in the robot workspace.

This approach was successfully tested in field trials in the

Mediterranean Sea offshore of Marseille, where 7 extended

dives in 4 different sites (8m, 30m, 48m and 100m water

depths) were performed with the underwater robot while

being connected via satellite to the teleoperation center in

Brussels, see [41] for a general description of the experiment.

V. FURTHER PERSPECTIVES AND CONCLUSION

This article showed that a wide range of challenges in

robot learning and adaptive control can be recast as statistical

modeling and information fusion on Riemannian manifolds.

Such interpretation can avoid potential misuses of algorithms

in robotics that might originate from Riemannian geometry

but that are treated with a limited view. One such example is

to perform all computations in a single tangent space (typi-

cally, at the origin of the manifold), instead of considering the

closest tangent spaces to avoid distortions. Another example

concerns domain adaptation and transfer learning, requiring

the realignment of data to cope with nonstationarities, such

as sensory data collected by different subjects or throughout



several days, which should use the Riemannian notion of

parallel transport instead of only recentering the data [42].

This article also showed that the combination of statistics

and differential geometry offers many research opportunities,

and can contribute to recent challenges in robotics. Further

work can be organized in two categories. Firstly, the field

of robotics is abundant of new techniques proposed by

researchers, due to the interdisciplinary aspect and to the

richness of problems it involves. The common factor in many

of these developments is that they rely on some form of

statistics and/or propagation of uncertainty. These models

and algorithms are typically developed for standard Eu-

clidean spaces, where an extension to Riemannian manifolds

has several benefits to offer.

Secondly, some Riemannian manifolds remain largely

underexploited in robotics, despite the fact that some of

them are mathematically well understood and characterized

by simple closed-form expressions. Grassmann manifolds

seem particularly promising to handle problems in robotics

with high dimensional datapoints and only few training data,

where subspaces are required in the computation to keep

the most essential characteristics of the data. It is also

promising in problems in which hierarchies are considered

(such as inverse kinematics with kinematically redundant

robots), because it provides a geometric interpretation of

nullspace structures. Other Riemannian manifolds such as

hyperbolic manifolds also seem propitious to bring a proba-

bilistic treatment to dynamical systems, tree-based structures,

graphs, Toeplitz/Hankel matrices or autoregressive models.

Finally, a wide range of metric learning problems in robotics

could benefit from a Riemannian geometry treatment.
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SUPPLEMENTARY MATERIAL

Sd manifold

The exponential and logarithm maps corresponding to the

distance

d(x,y) = arccos(x⊤y), (4)

with x,y ∈ Sd can be computed as (see also [11])

y = Expx(u) = x cos(‖u‖) +
u

‖u‖
sin(‖u‖), (5)

u = Logx(y) = d(x,y)
y − x⊤y x

‖y − x⊤y x‖
. (6)

The parallel transport of v ∈ TxS
d to TyS

d is given by

Γx→y(v) = v −
Logx(y)

⊤
v

d(x,y)2

(

Logx(y) + Logy(x)
)

. (7)

In some applications, it can be convenient to define the

parallel transport with the alternative equivalent form

Γx→y(v) = Ax→y v, with (8)

Ax→y = −x sin(‖u‖)u⊤ + u cos(‖u‖)u⊤ + (I − uu⊤),

u = Logx(y), and u =
u

‖u‖
,

highlighting the linear structure of the operation.

Corresponding examples in Matlab and C++ can

be found in [9], named demo Riemannian Sd *.m and

demo Riemannian S2 *.cpp, respectively.

Note that in the above representation, u and v are de-

scribed as vectors with d + 1 elements contained in TxS
d.

An alternative representation consists of expressing u and v

as vectors of d elements in the coordinate system attached

to TxS
d, see [4] for details.

Hd manifold

The exponential and logarithm maps corresponding to the

distance

d(x,y) = arccosh
(

−〈x,y〉M
)

, (9)

with x,y ∈ Hd can be computed as

y = Expx(u) = x cosh(‖u‖M) +
u

‖u‖M

sinh(‖u‖M),

(10)

u = Logx(y) = d(x,y)
y + 〈x,y〉M x

‖y + 〈x,y〉M x‖M

, (11)

by using the Minkowski inner product 〈x,y〉M =
x⊤

(
I 0
0 −1

)
y and norm ‖x‖M =

√

〈x,x〉M. The parallel

transport of v ∈ TxH
d to TyH

d is given by

Γx→y(v) = v −
〈Logx(y),v〉M

d(x,y)2

(

Logx(y) + Logy(x)
)

.

(12)

Corresponding examples in Matlab can be found in [9],

named demo Riemannian Hd *.m.

Sd++ manifold

For an affine-invariant distance between X,Y ∈ Sd++

d(X,Y ) =
∥
∥ log(X−

1

2Y X−
1

2 )
∥
∥

F
, (13)

the exponential and logarithmic maps on the SPD manifold

can be computed as (see also [10])

Y = ExpX(U) = X
1

2 exp
(
X−

1

2UX−
1

2

)
X

1

2 , (14)

U = LogX(Y ) = X
1

2 log
(
X−

1

2Y X−
1

2

)
X

1

2 . (15)

The parallel transport of V ∈ TXS
d
++ to TY S

d
++ is given

by

ΓX→Y (V ) = AX→Y V A⊤

X→Y , withAX→Y = Y
1

2X−
1

2 .

(16)

Corresponding examples in Matlab and C++ can

be found in [9], named demo Riemannian SPD *.m and

demo Riemannian SPD *.cpp, respectively.

Gd,p manifold

For the arc length distance between two points X,Y ∈
Gd,p

d(X,Y ) = ‖ arccos(σ)‖2, with σ = vec(Σ), (17)

computed with the singular value decomposition (SVD)

X⊤Y = UΣV ⊤, the exponential and logarithm map of

the Grassmann manifold are given by [43]

Y = ExpX(H) = (XV U)

(
cosΣ
sinΣ

)

V ⊤, (18)

computed with the SVD H = UΣV ⊤, where

H = LogX(Y ) = U arctan(Σ)V ⊤ (19)

is computed with the SVD (I − XX⊤)Y (X⊤Y )
−1

=
UΣV ⊤. The parallel transport of G ∈ TXG

d,p to TY G
d,p

corresponds to

ΓX→Y (G) =
(

(XV U)

(
− sinΣ
cosΣ

)

U⊤ + (I −UU⊤)
)

G,

(20)

computed with the SVD LogX(Y ) = UΣV ⊤.

Corresponding examples in Matlab can be found in [9],

named demo Riemannian Gdp *.m.

Computation of transfer matrices Su and Sx in MPC

The MPC problem of estimating velocity commands

ut ∈ R
d with a discrete linear dynamical system xt+1 =

f(xt,ut) can be solved by linearization with

xt+1 = At(xt,ut) xt +Bt(xt,ut) ut, (21)



and expressing all future states xt as an explicit function of

the state x1. By writing

x2 = A1x1 +B1u1,

x3 = A2x2 +B2u2 = A2(A1x1 +B1u1) +B2u2,
...

xT =

T−1∏

t=1

AT−tx1 +

T−2∏

t=1

AT−tB1u1 +

T−3∏

t=1

AT−tB2u2 + · · · + BT−1uT−1,

in a matrix form, we get an expression of the form x =
Sxx1 + Suu, with









x1

x2

x3

...

xT










︸ ︷︷ ︸

x

=










I

A1

A2A1

...
∏T−1

t=1 AT−t










︸ ︷︷ ︸

Sx

x1 +










0 0 · · · 0

B1 0 · · · 0

A2B1 B2 · · · 0

...
...

. . .
...

∏T−2
t=1 AT−tB1

∏T−3
t=1 AT−tB2 · · · BT−1










︸ ︷︷ ︸

Su








u1

u2

...

uT−1








︸ ︷︷ ︸

u

,

where Sx ∈ R
dT×d, x1 ∈ R

d, Su ∈ R
dT×d(T−1) and u ∈

R
d(T−1).

Corresponding examples in Matlab and C++ can be found

in [9], named demo MPC *.m and demo MPC *.cpp, respectively.
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