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Abstract— This paper presents the MuMMER data set, a
data set for human-robot interaction scenarios that is available
for research purposes1. It comprises 1 h 29 min of multimodal
recordings of people interacting with the social robot Pepper in
entertainment scenarios, such as quiz, chat, and route guidance.
In the 33 clips (of 1 to 4 min long) recorded from the robot
point of view, the participants are interacting with the robot in
an unconstrained manner.

The data set exhibits interesting features and difficulties, such
as people leaving the field of view, robot moving (head rotation
with embedded camera in the head), different illumination
conditions. The data set contains color and depth videos from
a Kinect v2, an Intel D435, and the video from Pepper.

All the visual faces and the identities in the data set were
manually annotated, making the identities consistent across
time and clips. The goal of the data set is to evaluate per-
ception algorithms in multi-party human/robot interaction, in
particular the re-identification part when a track is lost, as this
ability is crucial for keeping the dialog history. The data set
can easily be extended with other types of annotations.

We also present a benchmark on this data set that should
serve as a baseline for future comparison. The baseline system,
IHPER2 (Idiap Human Perception system) is available for
research and is evaluated on the MuMMER data set. We show
that an identity precision and recall of ~80% and a MOTA
score above 80% are obtained.

I. INTRODUCTION

Human-Robot Interaction (HRI) requires robots to have
an accurate perception of their environment to enable a
continuous and natural interactions with people. Three main
components are involved in the perception: visual tracking,
to detect where the humans are around the robot, as well as
re-identification, when a human re-enters the field of view or
when a track is lost because of motion; speech localization,
to first discriminate between speech and noise, and then
eventually detect who is speaking; and non-verbal cues
detection like nodding [1], gaze and attention [2], emotions,
addressees [3] of a speech utteranace, or engagement [4]

Our work takes place in the framework of a humanoid
robot (based on the Pepper platform) that interacts with the
general public in a shopping mall. The robot should be able
to naturally engage and entertain customers, by chatting with
them, telling jokes, asking quizzes, or giving information
about the shops around.
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(a) The Scene (b) View from Kinect v2

(c) View from Intel D435 (d) View from the robot

Fig. 1: An example scene from the data set and the views
from the three cameras.

The robot perception in such environments faces many
challenges. The illumination conditions are bad and change
frequently depending on the time of the day and on how
the robot is oriented; for audio perception, there are various
background noise and strong reverberation due to the large
space; natural and unconstrained human behaviors are dif-
ficult to interpret, and some people may act abnormally in
order to fool the system; many people can be in the field
of view, even if the robot is only interacting with one or
two of them. Moreover, as the sensors are embedded on the
humanoid robot head, the ego-motion causes images to be
blurry, and people to frequently “move” in and out of the
field of view, while they are static in front of the robot,
which may lead to identity switches, or track loss.

In such multi-party HRI situations, the person re-
identification is crucial. Identity switches are problematic
because they invalidate the whole dialogue history and the
interaction no longer makes sense. This issue is usually
circumvented by heuristics, such as assuming the person of
interest is the closest one, or assuming a constrained location
of the humans (always left and right when only two persons),
which no longer holds when the robot is in the field, in a
shop or a shopping mall.

To facilitate the research in robot perception, in partic-
ular for the evaluation of perception approaches, we have
created the MuMMER data set, which consists of audio-
visual recordings of people interacting with the robot in an
open environment using a Wizard-of-Oz (WoZ) approach.
In each scenario, two to three participants interact with the
robot (chat, quiz, guidance task) while additional persons are
simply spectating. All face bounding boxes and identities
were manually annotated. Extra labels, such as begin/end of

odobez@idiap.ch
www.mummer-project.eu
https://www.idiap.ch/dataset/mummer
https://www.idiap.ch/software/ihper/


interaction or user-engagement, can be easily added based
on the annotated faces.

We also present a real-time audio-visual tracking system
which has been developed to address the multi-party HRI
task. The system efficiently tracks the faces, re-identifies
them when re-entering the field of view, detects if a person is
speaking, and recognizes non-verbal cues. We evaluate this
system on the MuMMER data set and show that it performs
well in such non-constrained scenarios.

The main contributions of this paper are (i) a new HRI
data set consisting of videos and audio of a humanoid robot
(Pepper) interacting with humans in various entertainment
scenarios, including the manual annotation of all face loca-
tions and identities, and (ii) a tracking system along with
re-identification and its benchmarking on the data set. The
data set and the system are both publicly released.

II. RELATED DATA SETS

In this section, we briefly present other HRI related data
sets and explain the need for a new data set that covers
different aspects of HRI research, especially those under
more challenging conditions.

The Vernissage Corpus [5] is a data set in which two
persons interact with the NAO robot in the context of an
art exhibition, during which NAO presents paintings and asks
the humans questions about them. Several cues are annotated
such as the 3D location of the persons, the visual focus of
attention, and the nodding events. The conditions in this data
set are challenging because the camera is moving as the robot
speaks and exhibits several patterns.

The AVDIAR data set [6] is a data set of unstructured
informal meetings (27 minutes in total) where people stand
and move in front of the camera. The data set contains an-
notations of the faces, identities, upper-bodies, and speaking
activities but does not exhibit challenging situations of people
leaving the field of view or occlusion.

The MHRRI data set [7] was collected to study attention
and engagement in human-human and human-robot (Nao)
dyadic interactions. It contains multi-modal data of partici-
pants, such as the video placed on the forehead and biosensor
data. It includes people speaking about themselves and
asking pre-defined questions. However, it does not contain
images shot from the robot.

The UE-HRI data set [8] was collected to study the
engagement of users in spontaneous HRI scenarios. It was
recorded with a Pepper robot which was located in a public
place and the users were free to start the interaction and
to end it when they wanted. Interaction comprised differ-
ent phases like consent form agreement, open questions,
explanations about the robot’s human detection capacity,
interaction survey. The data set was manually annotated to
characterize different engagement cues: sign of engagement
decrease, early sign of future engagement breakdown, en-
gagement breakdown, and temporary disengagement.

The first-person video data set [9] was collected to study
interactive activity recognition, such as “shaking hands”,
“hugging the observer”, “waving a hand”. A camera was

TABLE I: Main figures of the data set

Number of participants 28
Number of protagonists 22
Number of clips 33
Shortest clip 1 min 6 s
Longest clip 5 min 6 s
Total duration 1 h 29 min
Maximum number of persons in one frame 9
Kinect color frames 80,488
Kinect depth frames 80,865
Intel color frames 80,346
Intel depth frames 80,310
Robot color frames 47,023
Robot depth frames 23,450
Number of annotated faces 506,713

mounted on the forehead of a humanoid model (a teddy bear)
placed on a rolling chair that could be moved by a human,
thus simulating a moving robot.

As we have seen, all the data sets are limited to in-
teractions with one or two participants, with a controlled
background in which there is no people or very little (people
passing by far away). In our context of a robot in a crowded
public place such as a shopping mall, there is a need for
a more challenging data set because we are interested in
evaluating perception algorithms from a robot camera, in real
situations of multiparty interaction, where the robot head is
moving, when the human re-enters the field of view, and also
when there are non-interacting humans in the field of view.

With this in mind, we present in the next section the
MuMMER data set.

III. THE MUMMER DATA SET

The context of the data collection is an entertainment
humanoid robot to be deployed in a shopping mall for
several hours to interact with the customers. The envisioned
use cases are among others, chatting with the customers,
telling jokes, playing quiz, telling the news, and giving di-
rections. These scenarios imply multi-party dialogue between
the robot and several persons, passerby in the background,
troublemakers trying to grab the attention of the robot, people
leaving the field of view when the robot indicates a direction,
and potentially, people coming back after a while to tell the
robot about the early direction or recommendation it made
earlier. These are all features can be found in the data set
we present.

A. Setup and sensors

The data was gathered over two days in an open lab in
which several signs of shops were displayed to be more
realistic. 28 people participated in the collection, 22 of them
acting as protagonists (people interacting with the robot).
The recordings were performed in sequences of 1 to 5
minutes long, with either two or three protagonists and
several passerby (people farther away, in the background, not
speaking with the robot) in the background. In total, there
are 33 short clips. Table I summarizes the main figures of
the data set.
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Fig. 2: Location of the cameras

We used the Pepper3 robot. It is equipped with one frontal
color camera and one Asus Xtion depth camera. These
asynchronous cameras can work at 8 (resp. 5) frames per
second (fps) at a resolution of 640×480. In addition, we used
an Intel D435 camera placed on the top of the tablet during
the first day of recording, and on the top of the head during
the second day4 which is more realistic. Finally, we put a
Kinect v2 camera behind the robot to shoot the entire scene
(see Fig. 2). This camera was static on a tripod. The D435
and Kinect were set to 15 fps, at a resolution 1280 × 720
and 960×540 respectively. Fig. 1 shows synchronized views
of the 3 sensors along with a photo taken at the same time,
which gives an idea of the setup.

On the technical side, all the data was recorded on one
single laptop connected to the robot through an Ethernet
cable and the two other cameras through USB cables. The
robot operating system (ROS) framework was used, which
provided inherently synchronized sensor streams with the
timestamp of the machine. The data from Pepper were
accessed via the NAOqi driver, kinect via IAI Kinect25, and
Intel via realsense6. We recorded the video streams (color
and depth), the audio, the joint states of the robot, and the
3D locations of the protagonists via a motion capture system.
These streams were stored as ROS bag files (thus inherently
synchronizing all data ith the timestamp of the machine).
The color video streams were compressed.

This data set has the advantage of both static and moving
cameras: both the robot sensors and the Intel ones are moving
as the robot is moving, while the Kinect is static. The audio
streams of the microphone arrays with four channels were
recorded with both the Kinect and the robot at frame rate of
48 kHz.

B. Scenarios

Our use cases are interactions with customers in a shop-
ping mall. To this end, we have designed several scenarios of
interest that were played in a Wizard-of-Oz setting in an un-
constrained manner. A human not visible by the participants
was controlling the robot through a graphical user interface
with pre-defined buttons that triggered one action of the robot
(nodding, pointing, looking at a particular person, etc).

3https://www.softbankrobotics.com/emea/en/pepper
4The manufacturer of the robot forbade us to put the camera on the head at first.
5https://github.com/code-iai/iai_kinect2
6https://github.com/intel-ros/realsense

The robot interacts with the participants by first inquiring
them (e.g. How are you?, Where are you from?), and then
acting different scenarios in sequences like asking if it can
do anything (participant replies a pre-determined answer like
go for burgers, go for a coffee) or other questions that the
participants were not told about, to make the conversation
more natural. In all scenarios, passerby were asked to behave
like curious people, who want to see what is going on, to talk
with each other, to make signs to the robot, to take pictures of
the scene, and to simply walk behind the protagonists. Also,
in addition to actions triggered by the WoZ to conduct the
interactions, including nodding, speech, or pointing, the robot
was constantly moving its head in a social manner (as it is
implemented as the AnimatedSpeech from NAOqi), which
render the data set more challenging because of camera
motion (Robot and Intel cameras). The set of scenarios that
were used is provided below.
Interaction. The robot inquires about the participants (their
name, where they are from, what they bought, if they are
having a nice time);
Satisfaction study. Get the feedback of the customer in the
shopping mall. The robot displays the usual three buttons
(red, yellow, and green) on its tablet that the participant is
invited to select to rate its experience in the mall. This causes
the participant to come closer to the robot, touch it, and get
back to his/her original location, which creates interesting
for robot’s perception;
Directions. The human wants to know the location of a
particular place where to go: to have a coffee, a burger,
to buy shoes. The robot indicates where the corresponding
shop is. Sometimes, the robot asks the participant to move
a little bit, so that the robot can correctly point at the place,
or so that the participant can better see the direction or the
target. This renders the scenario very challenging because
the illumination changes, the person may go outside the field
of view. Inherently, the robot moves its head a lot (i.e. the
camera is moving) in this scenario;
Questions. The robot asks general and funny questions about
artificial intelligence and robots, which often causes the
participants to laugh and triggers gestures;
Treasure hunt. This is a small game. The robot asks the
participants to get a piece of paper stuck on a wall nearby,
to take it back, and read its content. This scenario causes the
participants to leave the field of view, and the illumination
changes as well when the human re-enters it;
Quiz. The robot asks questions like in “Who wants to be a
millionaire” and the participants are asked to give to correct
answer. The questions were made very hard on purpose to
trigger surprise and contempt, and the participants always
discussed between them about which answer to select.

C. Annotations

To properly benchmark tracking and perception algo-
rithms, we have annotated all the faces and identities that
appear in the three color video streams. This annotation
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process was done in two main steps: a pre-automatic one,
and a manual one.

In the pre-automatic phase, we used the single-stage head-
less face detector [10] to detect the faces in the images. The
parameters of the detector were loosened to reduce the miss
detection rate (thus increasing the number of false positive
detections). Then, a basic tracker was applied to group the
face detections of adjacent frames in tracklets. The tracker
first estimated the camera movement with the CMotion2D
software7 [11] to cancel the visual motion due to the robot’s
head rotations, then performed association only based on a
tight intersection-over-union threshold to avoid any wrong
identity merge. This process led to pure trackets.

In the manual phase, a human was asked to merge the
tracklets together. To this purpose, the human was presented
five representative images of two tracklets at a time, and
was asked to select whether the two trackets belonged to
the same person, to different persons, or if the tracklet was
made of false positive detections (tracklet to remove from
the data set). The tracklets were presented in a decreasing
order of “probability matching”: Using OpenFace [12] as a
feature extractor, we presented the next couple of tracklets
that contained the minimum pair-wise distance between the
OpenFace features, which corresponds to two faces that were
close in terms of features. This strategy enabled the annotator
to click on “merge” most of the time, thus facilitating fast an-
notation process. Finally, when all the tracklets were merged,
all the annotations were checked with a modified version of
the LabelMe8 software, to add or remove additional bounding
boxes. The identities are consistent across all the recordings:
a participant has the same identity in all the frames (all
sensors, all sessions).
Annotation statistics. In this workflow, the 518,294 pre-
detected faces were grouped in 30,872 pure tracklets, and
were merged and validated in roughly 60 hours, yielding
506,713 faces at the end (from all 3 sensors). Figure 3 shows
a histogram of the number of faces per frame for each sensor.
Most frames have 2 persons while 25% of them have at least
1 spectator not interacting with the robot. The annotations
are in the MOT challenge format, making it straightforward
to use and evaluate with their evaluation code.

This data set can easily be further annotated to study other
HRI elements such as user engagement, turn taking, begin
and end of interaction [8], engagement willingness [7]. These
new annotations could be events (beginning, end) and can be
easily obtained as the most difficult part of the annotation
process (face detection and identity naming) is already done.

IV. AUDIO-VISUAL PERCEPTION FOR HRI

This section presents the modules of our perception sys-
tem9 that is used as a baseline. The system consists of six
main components:

• Body joint detection,

7http://www.irisa.fr/vista/Motion2D/index.html
8https://github.com/wkentaro/labelme
9https://www.youtube.com/watch?v=Cfsc0zXAMVU
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• Head pose estimation,
• Head pose tracking,
• Face re-identification,
• Sound source localization,
• Fusion of all the previous modules.
The code2 is available for research purpose and is platform

independent. It can run on a simple RGB-Depth (RGBD)
camera accessed via ROS. The system is analog to other
systems like [13], [14], and [15].

A. Visual face tracking

The first part of the system is the detection of people using
the convolutional pose machines (CPM) [16] which outputs
the body joints. This detector is very robust at the distance
concerned here: less than 2 meters for the interaction, and
up to 5 meters before the interaction starts, when the robot
tries to grab the attention of the detected persons.

When a person is detected, the head pose is estimated
by leveraging the output activation maps of the CPM as
described in [17]. Given the location of the nose and eyes,
the activation maps are cropped and pass to an estimator
which provides the roll, pitch, and yaw angles of the head,
with an error of less than 7 degrees.

The face locations and the head-poses are used as input
to the multi-person head pose tracker described in [18]
which tracks the faces by combining a priori texture and
color models, and manages creation and deletion of tracklets
based on a sound probabilistic framework [19]. The tracker
provides consistent identities of faces across consecutive
frames, and as long as a person remains in the field of view
of the robot. When a person re-enters the field of view, or
after a tracklet was lost (due to fast movements of the head
for instance), (s)he is assigned a new identity which has to
be managed by the face re-identifier described below.

So when a new frame arrives, faces are detected and
the visual tracker either extends current tracklets (and their
current identity) to the new face, or create a new tracklet
(with a new identity).

B. Face re-identification

When a track is lost (for instance when the robot moves
its head too fast when speaking, or when it turns its head
for pointing), the person gets a new track identity when the
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tracking is resumed. There is then a need to associate the new
identity with the previous one, so that the correct history can
be maintained.

The re-identification is done the following way. At time t,
when a face fj is tracked according to the visual tracker
(and is associated with the identity label yj), we compute
the OpenFace [12] features xj of this face and compare it
(Euclidean distance) to the features of all presenteds faces
encountered so far. When the distance between face fj
(therefore represented by (xj , yj)) and a face (xi, yi) of the
gallery is lower than a re-identification threshold, we con-
sider it as a match and increment the match counter Cyi,yj

between identities yj and yi. When this counter reaches a
certain amount of matches, the face and its associated history
(current tracklet and overal track) with id yj are re-indentified
with the identity yi, and a bookkeeping step of the gallery
and counter is performed. Otherwise, if none of the existing
id yi are such that Cyi,yj

is above a threshold, the face
remains with its current id yj .

Algorithm 1 summarizes more formally this re-
identification procedure. Let xj ∈ R128 be the OpenFace
features computed on face fj , and yj the identity of this
face according to the visual tracker. At time t, a tracklet
Tj = {x1, . . . , xn(t)

j
} is a set of n(t)j features. We note

G =
{

(xi, yi) ∈ R128 × N
}

the gallery of accumulated OpenFace features that we update
with each new detected face.

When the Euclidean distance between the face x(t)j of the
current tracklet and a face xi in the gallery is lower than a re-
identification threshold τ , then we increment Cyi,yj , which
accumulates the number of matches between identity yi and
yj . As the tracking goes on, potentially more matches are
made, and we consider the tracklet with number yj to be of
identity yi∗ as soon as we have Cyi∗ ,yj

> Λ.
Note that the re-identification of a new tracklet can take

several frames, depending on how many features (faces)
associated with the correct identity in the past have been
stored and how many matches each single face of the tracklet
is getting. The longer a person has been interacting with
the robot, the more features of this person has been stored,
therefore the faster the re-identification will be.

C. Sound source localisation and audio-visual fusion

We briefly describe the audio part of the system for com-
pleteness although it is not used in the evaluation part V. To
detect who is speaking, our system integrates the framework
for multiple speaker detection and localization using deep
neural networks introduced in [20], [21]. This framework
processes audio in time frames of 170 ms and detects sounds
sources in the azimuth directions.

The fusion of the audio and visual part is done by
doing pairwise comparison of the face directions and the
sound directions. A face direction and a speech direction
are matched when the angle between them is lower than a
tolerance angle, typically 10 degrees.

TABLE II: Detection accuracy

Sequence TP FP FN Recall Precision
Easy (Intel) 1836 19 29 98.5 99.0
Easy (Kinect) 2009 53 76 96.4 97.4
Easy (Robot) 907 54 48 95.1 94.5
Hard (Intel) 15159 739 2769 85.0 95.5
Hard (Kinect) 18936 1274 5412 78.1 93.8
Hard (Robot) 6643 413 1486 82.7 94.5
Overall 446130 16606 52837 89.6 96.5
TP: true positive; FP: false positive; FN: false negative.

V. EVALUATION

This section presents a benchmark of our audio-visual
perception system on the MuMMER data set introduced
in this paper. The MuMMER data set contains 33 clips,
but for the sake of clarity and analysis, in addition to the
overall results we will also present the result on an “easy”
and a “hard” sequences. The “easy” sequence (see figure 4)
consists of two protagonists interacting with the robot and
nobody is in the background, while the “hard” sequence has
three protagonists and up do six persons in the background,
simulating complex scenarios in shopping malls.

A. Evaluation of the detection

We first analyze the performance of the face detection on
the data set. In our system, we used the OpenPose framework
to detect the body joints, and the face is extrapolated based
on the locations of the nose, eyes, and ears. Evaluating the
face detection alone shows how good the tracking can be
later on. We use an intersection-over-union score of 0.3 to
match a detection with the ground truth, as suggested in [22]
for faces.

Table II shows the detection accuracy for the two selected
sequence as well as for the entire data set. As stated earlier,
the CPM algorithm has a very high accuracy to detect bodies
in our context where upper body is visible and not too small
because people are closer than 5 meters. The detection has
a precision of 96.5% and a recall of 89.6% overall.

B. Metrics used for tracking evaluation

To evaluate the tracking, we use the usual metrics of
the MOT challenge [23] which uses the MOTA score [24]
defined as follows:

MOTA = 1−
∑

t(FNt + FPt + IDst)∑
tGTt

, (1)

where t is the frame index, FN the number of false negatives,
FP the number of false positives, and IDs the number of
identity switches. The MOTA score combines basics types of
errors that are done by a tracker, such as the miss detections
(FN), the wrong detections (FP), and the failure to keep
a consistent identity across adjacent frames. One criticism
usually made about MOTA is that is under-represent identity
switches as they are much fewer event of that sort compared
to false negatives and false positives.

In our case, we are also interested in evaluating if the
tracker was able to re-identify a person when re-entering
the field of view (i.e. re-assigning the previous identity), not



Algorithm 1 Re-identification procedure

G =
{

(xi, yi),∈ Rd × N
}

: the gallery features xi identified by yi (∅ at start).
Y = {yi}: the set of currently valid identities
C =

{
Cyi,yj

, yi < yj
}

: The number of matches between identities yi and yj (0 at start).
τ : The re-identification threshold
Λ: The merging threshold
for each new frame at time t do

for each tracked face j represented by
(
x
(t)
j , yj

)
do . yi face identity according to the visual tracker

M =
{

(xi, yi) ∈ G,
∥∥∥xi − x(t)j

∥∥∥ < τ
}

. Compute matches between x(t)j and accumulated ones
∀yi ∈ Y, yi < yj , Cyi,yj ← Cyl,yj + |{(xl, yl) ∈M, yl = yi}| . Increment cumulative matches
G ← G

⋃(
x
(t)
j , yj

)
. Update gallery with current face

(
x
(t)
j , yj

)
if ∃ i∗, Cyi∗ ,yj

> Λ then . Tracklet identity yj has a match with identity y∗i
∀(xi, yi) ∈ G, yi = yj , (xi, yi)← (xi, yi∗) . Merge identities yi∗ and yj in gallery G
yj ← yi∗ . Current tracklet is re-identified as yi∗

end if
end for

end for

Easy sequence (Kinect) Easy sequence (Intel) Hard sequence (Kinect) Hard sequence (Intel)

Fig. 4: Illustration of the two sequences used to present the results

only if the new identity was kept consistent after the tracking
started again (the MOTA score only takes into account an
identity switch, but does not account for the fact that the
assignment was correct). We therefore also take into account
the precision (IDP), recall (IDR), and F1 (IDF1) scores of
the identity assignments. For instance, an IDP of 90% means
that for a track of 100 frames produced by the algorithm,
90 frames corresponds to the same person, and 10 to other
person IDs.

C. Evaluation of the tracking alone

The tracker presented in section IV-A provides consis-
tent identities across contiguous frames (tracklets) but in-
consistent after a person was lost. We first evaluate this
tracker alone to have a clear understanding of what the re-
identification part brings later on.

Table III (part “Tracker”) presents the tracking scores of
the tracker alone. As expected, the identity assignment score
(IDP, IDR, and IDF1) are low (<30%) because this tracker
does not perform identity re-assignment, but has a reasonable
MOTA score (>80%) which shows that the tracking is good
once a target is tracked.

D. Evaluation of the re-identification alone

We are also interested in evaluating the re-identification
part. Since this part tries to reassign a tracklet identity to
a previously seen identity, its performance depends a lot
on the quality of the detections of the tracker. To remove

TABLE III: Evaluation of the modules (metrics described
in V-B)

Sequence IDF1 IDP IDR IDs MOTA
Tracker (presented in IV-A)

Easy (Intel) 72.7 72.9 72.5 6 97.1
Easy (Kinect) 96.2 96.7 95.6 3 93.7
Easy (Robot) 37.6 37.5 37.7 26 87.0
Hard (Intel) 10.0 10.6 9.4 516 78.2
Hard (Kinect) 16.5 18.2 15.1 338 71.5
Hard (Robot) 9.0 9.7 8.4 465 72.5
Overall 39.1 40.6 37.7 7746 84.8

Re-identification (presented in IV-B)
Easy (Intel) 99.3 99.3 99.3 1 99.9
Easy (Kinect) 96.9 96.9 96.9 2 99.9
Easy (Robot) 92.9 92.9 92.9 7 99.3
Hard (Intel) 89.2 89.2 89.2 144 99.2
Hard (Kinect) 89.3 89.3 89.3 117 99.5
Hard (Robot) 87.3 87.3 87.3 105 98.8
Overall 90.4 90.4 90.4 2640 99.5

Full system
Easy (Intel) 96.7 96.9 96.4 5 97.2
Easy (Kinect) 96.2 96.7 95.6 3 93.7
Easy (Robot) 60.4 60.2 60.6 31 86.4
Hard (Intel) 75.0 79.6 70.9 383 78.9
Hard (Kinect) 77.7 85.5 71.2 172 72.2
Hard (Robot) 46.9 50.2 43.9 454 72.6
Overall 82.8 86.0 79.8 5869 85.1
IDF1: F1 score; IDP: precision; IDR: recall; IDs: identity switches.



this dependency, we have used the ground truth detections
and built new tracklets corresponding a perfect detection and
association of detection in adjacent frames: if an identity
appears in frames 100 to 110, and then from frame 120 to
130, we have one first tracklet with ID 1 (for instance) from
frame 100 to 110, and a second tracklet with ID 2 from
frame 120 to 130. We want to evaluate if the re-identifier is
able to properly re-assignment ID 2 to ID 1.

Table III (part “Re-identification”) presents the perfor-
mance of the re-identifier alone. Since we used the ground
truth detections, there are neither false positives nor false
negatives, so the IDR, IDP, and IDF1 scores are the same.
The re-identifier is properly able to re-identify the faces
reaching precision and recall of roughly 90%.

E. Evaluation of the full system

Finally, Table III (part “Full system”) presents the overall
results of the combination of the tracker and the re-identifier.
The re-identification brings a huge improvement over the
tracker: the IDP goes from 40.6 to 86.0, and the IDR from
37.7 to 79.8.

VI. CONCLUSION

We have introduced a new HRI data set in the context
of people interacting with a social robot. The data set is
available for research purposes10. The data set contains color
and depth videos of three cameras shooting the interactions
from the robot’s point of view. The humans are interacting
with the robot in entertainment scenarios (quiz, chat, route
guidance). The data set contains annotations of the face and
identities of the person for a total of 506,713 faces and 28
identities.

We have used this data set to benchmark our audio-visual
perception system which consists of a head pose tracker, a
face re-identifier, and sound source localizer, and a module
performing audio-visual fusion. The system was evaluated
on the tracking and re-identification part.

With these results in an unconstrained environment, we
have a system which is able to properly perceive who is in
front of the robot and to re-identify them correctly 80% of
the time, showing that there is still work to be done. Our
code is available for research purposes11.

ACKNOWLEDGMENT

We thank Rachid Alami, Aurélie Clodic and their team
from LAAS for welcoming and helping us in the data
collection.

REFERENCES

[1] C. Chen, Y. Yu, and J.-M. Odobez, “Head nod detection from a full
3d model,” in ICCV Workshop,, 2015.

[2] S. Sheikhi and J. Odobez, “Combining dynamic head pose and gaze
mapping with the robot conversational state for attention recognition
in human-robot interactions,” Pattern Recognition Letters, vol. 66, pp.
81–90, Nov. 2015.

10https://www.idiap.ch/dataset/mummer
11https://www.idiap.ch/software/ihper/

[3] D. Jayagopi and J.-M. Odobez, “Given that, should i respond? con-
textual addressee estimation in multi-party human-robot interactions,”
in Int. Conf. HRI, 2013.

[4] D. Klotz, J. Wienke, J. Peltason, B. Wrede, S. Wrede, V. Khalidov, and
J.-M. Odobez, “Engagement-based multi-party dialog with a humanoid
robot,” in SIGDIAL Conference, 2011.

[5] D. B. Jayagopi, S. Sheiki, D. Klotz, J. Wienke, J. Odobez, S. Wrede,
V. Khalidov, L. Nyugen, B. Wrede, and D. Gatica-Perez, “The
vernissage corpus: A conversational human-robot-interaction dataset,”
in Int. Conf. on Human-Robot Interaction, 2013, pp. 149–150.

[6] I. D. Gebru, S. Ba, X. Li, and R. Horaud, “Audio-visual speaker
diarization based on spatiotemporal Bayesian fusion,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5,
pp. 1086–1099, 2018.

[7] O. Celiktutan, E. Skordos, and H. Gunes, “Multimodal human-human-
robot interactions (mhhri) dataset for studying personality and engage-
ment,” IEEE Transactions on Affective Computing, pp. 1–1, 2018.

[8] A. Ben-Youssef, C. Clavel, S. Essid, M. Bilac, M. Chamoux, and
A. Lim, “Ue-hri: A new dataset for the study of user engagement in
spontaneous human-robot interactions,” in Int. Conf. on Multimodal
Interaction, 2017, pp. 464–472.

[9] M. S. Ryoo and L. Matthies, “First-person activity recognition: What
are they doing to me?” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Portland, OR, June 2013.

[10] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis, “Ssh: Single
stage headless face detector,” in Int. Conf. on Computer Vision, 2017,
pp. 4875–4884.

[11] J.-M. Odobez and P. Bouthemy, “Robust multiresolution estimation
of parametric motion models,” Journal of visual communication and
image representation, vol. 6, no. 4, pp. 348–365, 1995.

[12] B. Amos, B. Ludwiczuk, M. Satyanarayanan, et al., “Openface: A
general-purpose face recognition library with mobile applications,”
CMU School of Computer Science, vol. 6, 2016.

[13] Y. Wang, J. Shen, S. Petridis, and M. Pantic, “A real-time and un-
supervised face re-identification system for human-robot interaction,”
CoRR, vol. abs/1804.03547, 2018.

[14] K. Koide, E. Menegatti, M. Carraro, M. Munaro, and J. Miura, “People
tracking and re-identification by face recognition for rgb-d camera
networks,” in Eur. Conf. on Mobile Robots (ECMR), 2017.

[15] A. Zaraki, M. Pieroni, D. De Rossi, D. Mazzei, R. Garofalo,
L. Cominelli, and M. B. Dehkordi, “Design and evaluation of a
unique social perception system for human–robot interaction,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 9, no. 4,
pp. 341–355, 2017.

[16] Y. Cao, O. Canévet, and J. Odobez, “Leveraging convolutional pose
machines for fast and accurate head pose estimation,” in Int. Conf. on
Intelligent Robots and Systems (IROS), 2018, pp. 1089–1094.

[17] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in CVPR, July 2017, pp.
1302–1310.

[18] V. Khalidov and J.-M. Odobez, “Real-time multiple head tracking
using texture and colour cues, Tech. Rep. Idiap-RR-02-2017, February
2017.

[19] S. Duffner and J.-M. Odobez, “A track creation and deletion frame-
work for long-term online multiface tracking,” IEEE Transactions on
Image Processing, vol. 22, no. 1, pp. 272–285, Jan. 2013.

[20] W. He, P. Motlicek, and J. Odobez, “Deep neural networks for multiple
speaker detection and localization,” in Int. Conf. on Robotics and
Automation (ICRA), May 2018, pp. 74–79.

[21] W. He, P. Motlicek, and J.-M. Odobez, “Joint localization and classi-
fication of multiple sound sources using a multi-task neural network,”
in Interspeech, 2018, pp. 312–316.

[22] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool, “Face
detection without bells and whistles,” in Computer Vision – ECCV
2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham:
Springer International Publishing, 2014, pp. 720–735.

[23] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,
“MOT16: A benchmark for multi-object tracking,” arXiv:1603.00831
[cs], Mar. 2016, arXiv: 1603.00831. [Online]. Available: http:
//arxiv.org/abs/1603.00831

[24] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa, and
P. Soundararajan, “The clear 2006 evaluation,” in Multimodal Tech-
nologies for Perception of Humans, R. Stiefelhagen and J. Garofolo,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1–44.

https://www.idiap.ch/dataset/mummer
https://www.idiap.ch/software/ihper/
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831

	Introduction
	Related data sets
	The MuMMER data set
	Setup and sensors
	Scenarios
	Annotations

	Audio-Visual perception for HRI
	Visual face tracking
	Face re-identification
	Sound source localisation and audio-visual fusion

	Evaluation
	Evaluation of the detection
	Metrics used for tracking evaluation
	Evaluation of the tracking alone
	Evaluation of the re-identification alone
	Evaluation of the full system

	Conclusion
	References

