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Abstract
Over the past few years, there have been fundamental breakthroughs in core problems in ma-

chine learning, largely driven by advances in deep neural networks. The amount of annotated

data drastically increased and supervised deep discriminative models exceeded human-level

performances in certain object detection tasks [Russakovsky et al., 2015, He et al., 2015]. The

increasing availability in quantity and complexity of unlabelled data also opens up exciting

possibilities for the development of unsupervised learning methods.

Among the family of unsupervised methods, deep generative models find numerous appli-

cations. Moreover, as real-world applications include high dimensional data, the ability of

generative models to automatically learn semantically meaningful subspaces makes their

advancement an essential step toward developing more efficient algorithms.

Generative Adversarial Networks (GANs) are a family of unsupervised generative algorithms

that have demonstrated impressive performance for data synthesis and are now used in

a wide range of computer vision tasks. Despite this success, they gained a reputation for

being difficult to train, which results in a time-consuming and human-involved development

process to use them. In the first part of this thesis, we focus on improving the stability and the

performances of GANs.

Foremost, we consider an alternative training process to the standard one, named SGAN, in

which several adversarial “local” pairs of networks are trained independently so that a “global”

supervising pair of networks can be trained against them. The goal is to train the global pair

with the corresponding ensemble opponent for improved performances in terms of mode

coverage. Experimental results on both toy and real-world problems demonstrate that this

approach outperforms standard training in terms of better mitigating mode collapse, stability

while converging and that it surprisingly, increases the convergence speed as well.

Next, to further reduce the computational footprint while maintaining the stability and per-

formance advantages of SGAN, we focus on training single pair of adversarial networks using

variance reduced gradient. More precisely, we study the effect of the stochastic gradient noise

on the training of generative adversarial networks (GANs) and show that it can prevent the

convergence of standard game optimization methods, while the batch version converges. We

address this issue with two stochastic variance-reduced gradient and extragradient optimiza-

tion algorithms for GANs, named SVRG-GAN and SVRE, respectively. As batch extragradient is

the only method that converges for simple examples of games, our analyses focus on SVRE,

which method for a large class of games improves upon the previous convergence rates pro-

posed in the literature. We observe empirically that SVRE performs similarly to a batch method
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Abstract

on the MNIST dataset, while being computationally cheaper, and that SVRE yields more stable

GAN training on standard datasets.

In the second part of the thesis we present our work on people detection, done prior to the

above. People detection methods are highly sensitive to occlusions between pedestrians,

which are extremely frequent in many situations where cameras have to be mounted at a

limited height. The reduction of camera prices allows for the generalization of static multi–

camera set–ups. Using joint visual information from multiple synchronized cameras gives the

opportunity to improve detection performance. We address the problem of multi-view people

occupancy map estimation using an end–to–end deep learning algorithm called DeepMCD

that jointly utilizes the correlated streams of visual information. Besides the lack of datasets at

the given time, DeepMCD empirically outperformed the classical approaches by large margin.

We demonstrate its generalization properties to a small scale dataset called EPFL-RLC that

we make publicly available. Finally, we present a new large-scale and high-resolution dataset.

It has been captured with seven static cameras in a public open area, and unscripted dense

groups of pedestrians standing and walking. Together with the camera frames, we provide an

accurate joint (extrinsic and intrinsic) calibration, as well as 7 series of 400 annotated frames

for detection at a rate of 2 frames per second. This results in over 40000 bounding boxes

delimiting every person present in the area of interest, for a total of more than 300 individuals.

We provide a series of benchmark results using baseline algorithms published over the recent

months for multi-view detection with deep neural networks, and trajectory estimation using a

non-Markovian model.
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Résumé
Au cours des dernières années, nous avons assisté à d’importantes avancées concernant

les problèmes fondamentaux de l’apprentissage automatique, cela en grande partie grâce

aux progrès des réseaux de neurones profonds. La quantité de données annotées a consi-

dérablement augmenté et les modèles discriminatifs profonds supervisés ont surpassé les

humains dans certaines tâches de détection d’objets [Russakovsky et al., 2015, He et al., 2015].

La disponibilité croissante en quantité et en complexité des données non annotées ouvre

également des possibilités intéressantes pour le développement de méthodes d’apprentissage

non supervisées.

Parmi ces algorithmes non supervisés, les modèles génératifs profonds trouvent de nom-

breuses applications. De plus, sachant qu’un scénario réel demande le traitement de données

de grande dimensionnalité, la capacité des modèles génératifs à apprendre des sous-espaces

sémantiques pertinents font que leur développement est une étape essentielle en vue d’obtenir

des algorithmes plus efficaces.

Les réseaux antagonistes génératifs sont une famille d’algorithmes génératifs non supervisés

capable de générer des données réalistes, leur succès fait qu’ils sont désormais utilisés dans un

large éventail de tâches de vision par ordinateur. Malgré ce succès, ils ont acquis la réputation

d’être difficiles à entraîner, ce qui rend leur utilisation complexe et fortement basée sur

l’intuition et la supervision de l’expérimentateur. Dans la première partie de cette thèse,

nous nous concentrons sur l’amélioration de la stabilité et des performances des réseaux

antagonistes génératifs.

Dans un premier temps, nous considérons un processus d’entraînement alternatif, nommé

SGAN, dans lequel plusieurs paires de réseaux antagonistes «locaux» sont entraînés indé-

pendamment afin qu’une paire «globale» de réseaux supervisés puisse être entraînée contre

eux. L’objectif est d’entraîner la paire globale en l’opposant à l’ensemble des adversaires

pour obtenir de meilleures performances en termes de couverture de mode. Les résultats

expérimentaux sur des tâches fictives et réelles démontrent que cette approche surpasse les

méthodes d’entraînement standard en atténuant l’effondrement des modes, en améliorant

la stabilité lors de la convergence, et étonnamment, en augmentant également la vitesse de

convergence.

Dans un second temps, pour réduire davantage l’empreinte computationnelle tout en conser-

vant les avantages de stabilité de SGAN, nous nous concentrons sur la formation d’une seule

paire de réseaux antagonistes en utilisant un gradient à variance réduite. Plus précisément,

nous étudions l’effet du bruit stochastique du gradient sur l’entraînement des réseaux an-
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Résumé

tagonistes génératifs (GAN) et montrons qu’il peut empêcher la convergence des méthodes

standard d’optimisation de jeux, tandis que la version utilisant des full-batchs converge. Nous

abordons ce problème avec deux algorithmes, un d’optimisation du gradient à variance ré-

duite, et un d’optimisation de l’extragradient pour les GAN, nommés SVRG-GAN et SVRE,

respectivement. Étant donné que l’extragradient utilisant des full-batchs est la seule méthode

qui converge pour des exemples de jeux simples, nos analyses se concentrent sur SVRE, la-

quelle améliore les taux de convergence précédemment proposés dans la littérature pour

un grand nombre de jeux divers. Nous observons empiriquement que SVRE fonctionne de

manière similaire à une méthode utilisant des full-batchs sur le set de données MNIST, tout

en étant moins coûteux en termes de calcul. De plus, SVRE permet d’entraîner un GAN de

manière plus stable sur des sets de données standards.

Dans la deuxième partie de la thèse, nous présentons nos travaux sur la détection de per-

sonnes, réalisés avant ce qui précède. Les méthodes de détection de personnes sont très

sensibles aux occlusions entre piétons, qui sont extrêmement fréquentes dans de nombreuses

situations où les caméras ne peuvent être montées qu’à une hauteur limitée. La réduction du

prix des caméras permet de banaliser les dispositifs à plusieurs caméras statiques. L’utilisation

d’informations visuelles provenant de plusieurs caméras permet d’améliorer les performances

de détection. Nous abordons le problème de l’estimation de la carte d’occupation des per-

sonnes, basé sur des images provenant de plusieurs caméras. Pour ce faire nous utilisons un

algorithme d’apprentissage profond appelé DeepMCD qui utilise conjointement les flux corré-

lés d’informations visuelles. Outre le manque de données disponibles au moment de ce projet,

DeepMCD a surpassé empiriquement les approches classiques par un gain de performance

significatif. Nous démontrons ses propriétés de généralisation sur un ensemble de données

de petite échelle appelé EPFL-RLC que nous mettons à la disposition du public. Enfin, nous

présentons un nouvel ensemble de données haute résolution à grande échelle. Il a été créé à

partir de sept caméras statiques dans un espace public ouvert, avec des groupes denses de

piétons non scénarisés. Joint aux images des caméras, nous fournissons aussi un calibrage

précis (extrinsèque et intrinsèque), ainsi que 7 séries de 400 images annotées pour la détection

à un taux de 2 images par seconde. Il en résulte plus de 40 000 boîtes de délimitation délimitant

chaque personne présente dans la zone d’intérêt, pour un total de plus de 300 individus. Nous

fournissons une série de résultats de référence, incluant plusieurs algorithmes de base publiés

au cours des derniers mois pour la détection à vues multiples, à base de réseaux de neurones

profonds, ou basées sur l’estimation de trajectoire à l’aide d’un modèle non markovien.
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1 Introduction

Contrary to explicitly defining detailed rules to solve a particular prediction or inference

task such as classification or clustering, machine learning is the study of algorithms that can

extract statistical patterns directly from the data to accomplish such tasks. These algorithms

are particularly useful for problems where the former approach is impractical, such as ob-

ject detection given raw pixels, decision making, or training agents able to generalize their

knowledge to new tasks, among others.

Deep Learning algorithms utilize layer-wise processing of the input data by using Neural

Networks to solve machine learning tasks. Each layer of the network contains parameters

that are trained iteratively using the Backpropagation algorithm and a non-linear mapping.

Such stacked layers allow for learning hierarchical representations, as each layer’s input is

the output of the previous layer. This allows for combining the learned patterns from that

preceding layer into more complex or abstract patterns of the input data. For details, we refer

the reader to § 2.2.

1.1 Motivations

This thesis was inspired from two separate problems in machine learning learning.

1.1.1 Improving stability of Generative Adversarial Networks

A longstanding aim of machine learning researchers is obtaining artificial agents that despite

being trained on a limited number of tasks, can generalize and perform well on unseen tasks.

Developing such algorithms is considerably more challenging than specialized algorithms,

where agents are trained on a specific task. Due to the high dimensionality of the raw input

data of real-world tasks, a critical approach for efficiency in terms of fast optimization and

manageable memory footprint for such algorithms is learning a good semantic subspace in

which we map the input datapoints. Generative models share the same underlying goal of

learning representations of input data, and these models represent a probability distribution
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Chapter 1. Introduction

over a set of random variables either explicitly or implicitly. In the latter case, the model is

capturing an underlying probability distribution that we do not have direct access to, but we

can sample according to it, see § 2.3. Deep generative models (DGM) are generative models

that rely on deep neural networks (DNN).

Another application of generative models is for planning in Reinforcement learning [Sutton

and Barto, 2018], where agents simulate sequences of outcomes to determine which action to

take [e.g. Kurutach et al., 2018]. Generative models are also used in physics, for example for

generating plausible trajectory of a particle that follows Hamiltonian dynamics [Greydanus

et al., 2019, Botev et al., 2020], among others. Other applications include image to image

translation (e.g. edges to images [Isola et al., 2017]), super-resolution [Ledig et al., 2016], image

inpainting and text to image generation [Zhang et al., 2017].

Generative Adversarial Networks (GANs, [Goodfellow et al., 2014]) are a family of implicit

generative algorithms that are fast to sample from. Training is formulated as minimax opti-

mization (see § 2.4), by defining competing objectives of a generator and a discriminator deep

neural network. The discriminator–D and the Generator–G aim at distinguishing real from

generated samples, and “fooling” D that the generated samples are real (by mapping random

noise to samples), respectively. The networks are updated in an alternating fashion–by fixing

the parameters of one of the networks while updating the other, and vice versa, see § 2.4.

GANs have found numerous applications in deep learning, particularly in computer vision.

However, theoretical insights on how the minimax optimization differs from the well studied

single objective optimization are still lacking, and SGD based algorithms–well developed for

supervised tasks, are also used for GAN training. Hence, the architectural or optimization

settings essential for successful minimax optimization are mostly empirically driven [Radford

et al., 2016]. Moreover, convergence failures, poor performance (referred to as “mode collapse”,

see § 3.1) or different optimal hyperparameters or architectures throughout different real-

world datasets are commonly reported.

In the first part of this thesis, we focus on two methods that improve the performance and the

stability of their training.

1.1.2 Multi–camera people detection

Pedestrian detection is an important computer vision problem with numerous applications

in security, surveillance, robotics, autonomous driving, and crowdsourcing. The variation of

pedestrians appearance greatly increases the difficulty of this problem. With the availability

of large-scale monocular datasets of annotated pedestrians and the advances in detection

algorithms, the accuracy of the pedestrian detectors has improved significantly in the past few

years. Moreover, modern detection algorithms using deep learning allow us to learn discrimi-

native features which are transferable across datasets. Impressively, recently developed deep

learning based monocular detectors are approaching human-level performance [Zhang et al.,

2
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2016] on common benchmark datasets [Du et al., 2017].

However, many situations of practical interest require detection in highly crowded and clut-

tered scenes. Severe occlusions make monocular pedestrian detection insufficient in these

scenarios. Luckily, in real-world applications, image feeds from multiple cameras with over-

lapping fields of view are often available. Most commonly, the cameras are positioned slightly

above the average human height. Hence designing pedestrian detectors by exploiting multiple

views and the geometry of the scene will provide reliable detection estimates in crowded

scenes.

In the second part of this thesis, we propose: (i) a novel end–to–end deep learning method

named DeepMCD which jointly utilizes the synchronized video streams, (ii) a novel camera

calibration method based on bundle adjustment [146], and (iii) we make publicly available

two multi-camera datasets, whose data acquisition process and statistics are elaborated.

1.2 Summary of contributions

The main contributions of this thesis are summarized as follows:

• Motivated by the “mode collapse” problem, we propose a novel method for training

GANs named SGAN, which uses an ensemble of pairs of adversarial networks whose

pairing is fixed. SGAN uses the ensemble to train a single pair of networks hence pro-

ducing single generative model, while maintaining the pairs of the ensemble statistically

independent.

• We present two novel optimization methods for GANs that use Variance Reduction:

(i) SVRG–GAN–which extends for GANs the Stochastic Variance Reduced Gradient

(SVRG) method, proposed by Palaniappan and Bach [2016] for single objective op-

timization; and (ii) Stochastic Variance Reduced Extragradient (SVRE)–which combines

SVRG with the Extragradient method [proposed by Korpelevich, 1976] .

• We propose the first end–to–end deep learning method for multi-camera people detec-

tion, which jointly utilizes the correlated video streams to resolve the occlusions among

the people.

• We propose a novel multi-camera calibration method which uses bundle adjustment 146.

• We make publicly available two multi-camera datasets: (i) the EPFL–RLC dataset; as well

as (ii) the WILDTRACK dataset which uses the proposed camera calibration method.

1.3 Outline

This thesis is organized as follows. In Chapter 2 we review machine learning concepts relevant

for the rest of the thesis, such as: (i) deep neural networks, (ii) generative models with focus

3
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Table 1.1 – Notation.

R The set of real numbers
N (µ,σ) Normal distribution with mean µ and standard deviation σ
f : x 7→ y mapping f from x ∈Ra to y ∈Rb , where a,b ∈R are specified where needed

f (·;θ) mapping f parameterized with θ ∈Rd , where d ∈R is specified where needed
DK L Kullback–Leibler divergence
DJS Jensen–Shannon divergence
pd real data distribution
n number of samples in the given dataset
θ model’s parameters

on GANs, as well as (iii) elaborating the problem of multi-camera people detection.

We separate the thesis into two parts: (i) in the first part, we describe SGAN and SVRE in

Chapters 3 and 4, respectively, and (ii) in the second part, we focus on multi-camera people

detection, where we describe the proposed method called DeepMCD and the WILDTRACK

dataset, in Chapters 5 and 6, respectively. Chapter 7 concludes our work.

1.4 Notation and Acronyms

Table 1.1 summarizes the notation that used throughout the thesis, whereas chapter specific

notation is specified where needed. Table 1.2 lists the often used acronyms across the thesis.

Table 1.2 – Acronyms.

(D)NN (Deep) neural network
FNN feedforward neural network
CNN Convolutional neural network
DGM Deep generative models
GAN Generative adversarial networks [Goodfellow et al., 2014]
VAE Variational Autoencoders [Kingma and Welling, 2014]

IS Inception Score, see § 2.4.1
FID Fréchet Inception Distance, see § 2.4.1

SVRG Stochastic Variance Reduced Gradient [Palaniappan and Bach, 2016]
SVRE Stochastic Variance Reduced Extragradient [Chavdarova et al., 2019]
MLE Maximum likelihood estimation
GD batch Gradient Descent

SGD Stochastic Gradient Descent [Robbins and Monro, 1951]
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2 Background

Machine learning algorithms produce a model f (·;θ) parametrized with finite number of

parameter(s) θ, which “explains” the observed data x. Such a model proposes a general

functional relation between the unknown parameter(s) and the observed data.

In this chapter we provide a brief overview of the concepts relevant for the chapters that follow,

whereas for a complete introduction to convex optimization and deep learning we refer the

reader to [Boyd and Vandenberghe, 2004] and [Goodfellow et al., 2016], respectively.

Foremost, we discuss maximum likelihood estimation in § 2.1 as most commonly used sta-

tistical estimator of the unknown model parameters. In § 2.2 we review the most important

concepts and steps of building a deep neural network. In § 2.3 we review generative models,

and in § 2.4 we focus on GANs and ways to evaluate them.

2.1 Maximum likelihood estimation

The likelihood function is the most commonly used statistical estimator of the unknown

parameters of the proposed model. Given observed datapoints x1, . . . , xn of the random

variables X1, . . . , Xn whose joint density function is f (X1, . . . , Xn |θ), the likelihood function of

θ is defined as:

L(θ) = L(θ|x1, . . . , xn) = f (x1, . . . , xn |θ). (2.1)

Finally, the maximum likelihood estimation (MLE) of θ is defined as:

θ∗ = argmax
θ

L(θ|x1, . . . , xn) = argmax
θ

f (x1, . . . , xn |θ). (2.2)

If we assume that the datapoints x1, . . . , xn are i.i.d, the likelihood simplifies to:

θ∗ = argmax
θ

n∏
i=1

f (xi |θ) = argmax
θ

n∑
i=1

log f (xi |θ). (2.3)
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Chapter 2. Background

where in the last step we used the fact that the logarithm is a monotonically increasing func-

tion, obtaining the maximum log–likelihood function. Hence, the maximum log–likelihood

describes the log–probability that the density function f assigns to all the training data points

and adjusts the parameters θ so as to increase it.

2.2 Deep learning

A machine learning algorithm that uses neural network(s) (see below) as its model is commonly

referred as a “deep learning” algorithm1.

Given a training dataset, as core components and methods of a deep learning model we

enumerate the following: (i) defining the model–this includes defining the architecture of the

neural network(s), (ii) defining a loss function (or several), (iii) the backpropagation algo-

rithm [Rumelhart et al., 1986] often called backprop, as well as (iv) selecting an optimization

method. Below we explain these consecutively, while for brevity of this overview we focus on

most common or simplistic scenarios, e.g. single objective supervised training rather than

special cases of having multiple losses or agents.

2.2.1 Defining a model: a neural network

Perceptron & neuron. The units of a neural network were inspired by the perceptron al-

gorithm, proposed by Rosenblatt [1958]. A perceptron takes binary input x1, . . . , xd where

xi ∈ {0,1} and outputs a binary output y ∈ {0,1}. To allow for expressing that each input has

different importance, each input has its associated weight: wi ∈ R, i = 1, . . . ,d . Finally, the

output is 0 if the sum
∑d

i=1 wi xi is smaller than a predefined threshold t ∈R, and 1 otherwise.

For clarity we define a bias of the perceptron as b =−t , and summarize as:

fper ceptr on(x) =
0, if w · x +b ≥ 0

1, otherwise
.

Moreover, m perceptrons can be combined in a layer, where each unit of the first layer takes as

input all inputs yielding outputs y1, . . . , ym . Multiple layers can be further stacked sequentially,

allowing for modeling more complex functions that weight the inputs. Neurons are similar

in structure to perceptrons, with modification that x ∈Rd , y ∈R and fneur on(x) =σ(w ·x +b),

where σ(·) denotes a non–linear mapping known as activation function (see below).

Neural networks and types. A network of neurons with connections that do not form a cycle

is called a feedforward neural network (FNN). The neurons are typically organized into multiple

layers, where neurons of i –th layer connect only to neurons of the immediately preceding, i.e.

1Note that the use of term “deep learning” varied over the past years. For example several years ago as “deep
neural networks” were considered neural networks with approximately more than five layers.
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x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1 – Example of a feedforward fully connected neural network with input layer of
four inputs x1, . . . , x4, one hidden layer, and an output layer, depicted in green, blue, and red,
respectively.

(i −1)–th layer, and immediately following, i.e. (i +1)–th layers. The neurons can be connected

in different ways such as: (i) fully connected–where each neuron at layer i is immediately

connected with all the neurons of the preceding layer i −1, (ii) convolutional–special case

of fully connected layer with weight sharing which in turn decreases the total number of

parameters of the network by orders of magnitude, (iii) pooling–which layers reduce the

dimension of the input data by taking for example the maximum element or the average over

a fixed number of elements of the preceding layer, and others. Multilayer perceptron (MLP) is

a FNN consisting of solely fully connected layers.

FNN with convolutional layers is called convolutional neural network (CNN) [Fukushima,

1980, LeCun et al., 1999]. CNNs were motivated for computer vision applications, where the

input is typically a three dimensional image, with dimensions: number of channels (e.g. RGB,

HSV), width and height. Convolutional layers typically convolve the three dimensional input

with multiple three dimensional matrices of real numbers stacked together, called filters or

kernels, hence yielding four dimensional output called a feature map. The use of convolutions

allows for parameter efficiency–due to weight-sharing, as well as building in prior knowledge

into the network of translational invariance of the learned features.

Fig. 2.1 depicts an example of a feedforward fully connected neural network with four inputs,

one hidden layer and one output. The edge between the i –th neuron of the input layer

and j –th neuron of the hidden layer depicts the weight w (1)
i , j . Besides FNNs, networks with

connections between neurons in the same or previous layers are known as recurrent neural

networks discovered by Hopfield [1982].

Neural nets are non–linear mapping. Each neuron of a fully connected or convolutional

layer consists of a non linear function called activation function or transfer function. This is
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requirement for a key proof regarding the approximation capacity of a neural network, called

the the universal approximation theorem, to be valid [Cybenko, 1989, Hornik, 1991]. This

theorem states that under certain conditions, any continuous function on a closed bounded

subset of Rn can be approximated by a neural network with one hidden layer and a sufficiently

large number of hidden units. The most common activation functions used in deep learning

are: (i) Rectified Linear Unit–ReLU activation function: ReLU(x) = max(0, x), (ii) sigmoid

or logistic activation function: σ(x) = 1
1+e−x , (iii) hyperbolic tangent: tanh(x) = ex−e−x

ex+e−x , or

(iv) Swish non-linearity [Ramachandran et al., 2017]: swish(x) = x ·σ(x), among others.

2.2.2 Loss functions for deep learning

Loss functions are real–valued functions that provide means to evaluate how well the model

fits the given dataset. Let us consider training a classifier f (x;θ) and let ŷ1, . . . , ŷn denote the

predictions of our model, given samples x1, . . . , xn , whereas y1, . . . , yn denote the corresponding

annotated labels.

Examples of loss functions used in deep learning are: (i) minimizing the cross entropy loss

for binary classification (equivalent to maximizing the likelihood), or more generally the

Negative Log Likelihood (NLL), NLL = − log ŷ ; as well as (ii) Mean Square Error (MSE),

MSE = 1
n

∑n
i=1(y − ŷ)2, among others.

2.2.3 Backpropagation algorithm

The backpropagation method provides a way of computing the gradient of the cost function

w.r.t. the network’s weights and biases. We refer the reader to [Nielsen, 2015, Goodfellow et al.,

2016] for details, and below we describe briefly the required steps to point out the computation

cost of a parameter update versus inference.

Backprop consists of a forward and backward pass. In the forward pass, given a sample xi

we compute prediction ŷi = f (xi ;θ), as well as its loss li = L (ŷi , yi ). In the backward pass,

we iteratively compute the parameters updates sequentially per each layer, while starting

from the last layer to the first. Note that each layer l utilizes the computed updates from its

following l +1–th layer, to update its parameters θ(l ).

2.2.4 Gradient based optimization

Optimization or training in deep learning refers to procedure where we start from initial guess

for our model’s parameters f (·;θ), and iteratively update them using backprop (§ 2.2.3), so

as to minimize a loss function L (·), see § 2.2.2. For simplicity, in the following, we consider

supervised single-objective convex optimization.

More precisely, given a finite set D of n annotated samples D[i ] = (xi , yi ), the training of the

8



2.3. Generative models

model’s parameters θ aims at finding a vector θ∗ which minimizes the (empirical) expectation:

θ∗ = argmin
θ

f (·;θ) = argmin
θ

1

n

n∑
i=1

fi (θ), (2.4)

where fi (θ) :=L (θ, (xi , yi )), which we assume has L-Lipschitz-continuous gradients.

Batch gradient finds the global minimizer θ∗ but each parameter update requires computing

f ′(θ) of the full n gradients. As this is prohibtive for large datasets, Stochastic Gradient Descent

(SGD, Robbins and Monro [1951], Bottou [2010]) is a common alternative. Each parameter

update of SGD requires sample (xi , yi ) where i is chosen uniformly at random. SGD provides

unbiased estimate of the gradient f ′(θ) since E f ′
i (θ) = f ′(θ). Batch gradient descent has linear

convergence rate, whereas SGD sub-linear rate of O(1/t). Most popular alternative in deep

learning is stochastic steepest descent where each update uses subsample x1, . . . , xB ∼U (D),

where B ∈ [1,n] denotes the “mini-batch” size, often referred as mini-batch SGD (and typically

B ∈ [32,512] due to hardware constraints).

The parameters are updated iteratively:

θ = θ−η( 1

B

B∑
i=1

∇θL (θ,D[σ(i )]))
)
,

where η is the learning rate, σ is a random permutation of [1,n]) and B = 1, B =σ or B = N for

SGD, mini-batch and batch gradient descent, respectively.

2.3 Generative models

The most developed deep learning models are the discriminative ones, which given data x aim

at predicting its label y , hence modeling the posterior distribution p(y |x). Generative models

instead model the distribution p(x) defined over the datapoints x, and depending on the type

of the generative model we can either evaluate the probability assigned to each datapoint,

or sample according to it. The dimensionality of x can be high, e.g. high resolution images,

and the (implicitly) learned distribution assigns high probability to plausible (as given in the

dataset) samples and low otherwise. Moreover, this approach allows for generating samples

that do not necessarily exist in the training dataset.

Fig. 2.2 focuses on the generative models that are based on maximum likelihood (see § 2.1), and

points out their main differences. The explicit density generative models explicitly model the

distribution that describes the probability that the model assigns to each datapoint, controlled

by parameters θ. These models can be further categorized as: (i) exact or tractable, and

(ii) approximate models. An example of explicit density models are the fully visible belief

networks [Frey, 1998], which use the chain rule to decompose a probability distribution over a

vector x into a product: p(x) =∏n
i=1 p(xi |x1, . . . , xi−1). Examples of popular model of this class

are PixelCNN [van den Oord et al., 2016] and WaveNet [van den Oord et al., 2016]. Approximate

9
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Maximum likelihood

Explicit density

Tractable density:
Fully visible belief nets

Approximate
density

Variational:
VAEs

Markov chain:
Boltzmann machine

Implicit density

Markov chain:
Generative stochastic nets

Direct:
GANs

Figure 2.2 – Taxonomy of generative models that are based on maximum likelihood [Goodfellow,
2016]. VAE stands for Variational Autoencoders [Kingma and Welling, 2014].

models either: (i) maximize a lower bound of the log–likelihood, called variational models,

or (ii) use Markov Chain to estimate the log–likelihood function or its gradient. A Boltzmann

machine [Hinton et al., 2006] is a network of units that make stochastic decisions about

whether to be on or off. They are defined by an energy function, and the probability of being

in a particular state is proportional to the exponential of the value of the energy. To obtain

a probability this value is normalized by dividing with the sum over all states which sum is

approximated with Markov Carlo methods. Rather than calculating the likelihood, implicit

density models instead provide a way to draw samples. This can be done using a Markov

Chain, as it is done in Generative Stochastic Networks. Finally, we can have implicit density

models from which we can directly obtain samples, such as GANs or deep moment–matching

networks.

Variational Autoencoders (VAEs), proposed by Kingma and Welling [2014], are one of the most

widely used generative models in deep learning. VAEs consist of an encoder and a decoder

neural networks, where the encoder maps an input x to a lower-dimensional vector z of latent

variables. VAEs use a variational approximation which introduces a parametric distribution

qλ(z|x) over the latent variables z, and training aims at making the posterior distribution

closer to the true posterior p(z|x) over the latent variables, by using the Kullback–Leibler

divergence between the two DK L(qλ(z|x)||p(z|x)) as an additional loss.

2.4 Generative Adversarial Networks

Different from traditional generative models, a GAN generator represents a mapping G : z 7→ x,

such that if z follows a known distribution pz , then x follows the distribution pd of the data.

Notably, this approach omits an explicit representation of pg (x) (see also § 2.3), or the ability to

apply directly a maximum-likelihood maximization for training (see 2.1). This is aligned with

the practical need, which is that we do not need an explicit formulation of pg (x), but rather

a mean to sample from it, preferably in a computationally efficient manner. The training of
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“real” samples
x ⇠ pd

Generator  
G : z 7! x

Discriminator
D : x 7! y 2 [0, 1]“fake” samples

G(z)z ⇠ pz

noise

[y = 1]

[y = 0]

(a) Discriminator: mapping D : x 7→ y ∈ [0,1], where y is an estimated
probability that x ∼ pd . The discriminator “distinguishes” real Vs. fake
samples (the latter for example labelled as y = 0).

Generator  
G : z 7! x

Discriminator
D : x 7! y 2 [0, 1]“fake” samples

G(z)z ⇠ pz

noise

[y = 1]

(b) Generator: mapping G : z 7→ x, such that if z ∼ pz , then x ∼ pd .
Intuitively, the generator aims at “fooling” the discriminator that its
samples are real, hence the label switches to y = 1.

Figure 2.3 – A scheme of Vanilla–GAN training. With pd and pz we denote the “real” data distri-
bution and the “noise” distribution, respectively, where the latter is a known distribution that
we can sample from, e.g. N (0,1). Subfigures a and b depict the training of the discriminator
and of the generator, respectively. Intuitively, an equilibrium for such a zero-sum game would
be when pg = pd and D outputs probability 0.5 for any input Goodfellow et al. [2014], see
App. A.1.

the generator involves a discriminative model D : x 7→ y ∈ [0,1], whose output represents an

estimated probability that x originates from the dataset.

More precisely, the algorithm consists of two training steps, see Alg. 1. Given that there is a

probability 0.5 that the input x originates from the dataset and 0.5 that it was generated by G ,

the discriminator D is trained to distinguish between “real” and “fake” inputs, respectively.

On the other hand, G is trained to “fool” D by generating synthetic samples indistinguishable

from the real ones, as illustrated in Fig. 2.3.

Formally, the two competing models play the following two-player minimax–alternatively

zero-sum–game:

min
G

max
D

E
x∼pd

[logD(x)]+ E
z∼pz

[log(1−D(G(z)))]. (2.5)

11
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The two models are parametrized differentiable functions G(z;θg ) and D(x;θd ), implemented

with neural networks, whose parameters θg and θd are optimized iteratively. In functional

space, the competing models are guaranteed to reach a Nash Equilibrium, in particular under

the assumptions that we optimize directly pg instead of θg and that the two networks have

enough capacity, see proof in App. A.1. At this equilibria point, D outputs probability 0.5 for

any input, see App. A.1.

Algorithm 1 Pseudocode for alternating GAN.

1: Input: dataset D, batch size B , known distribution pz ,

stopping iteration T , learning rate η, generator loss L G ,

discriminator loss L D

2: Initialize: D(·;θD ), G(·;θG )

3: for e = 0 to T −1 do

4: x1 . . . xB ∼U (D)

5: z1 . . . zB ∼ pz

6: θD = θD −η∇θD L D (D,G ,x,z)

7: z1 . . . zB ∼ pz

8: θG = θG −η∇θG L G (D,G ,z)

9: end for

10: Output: θG ,θD

2.4.1 Evaluating GANs

Evaluating GANs is a difficult problem because it requires access to the distribution that

generated our finite set of training samples, which for real–world datasets we do not have

access to. In practice, besides that each has drawbacks two metrics are most commonly

used by researchers: (i) the Inception score (IS, Salimans et al., 2016), and (ii) the Fréchet

Inception distance (FID, Heusel et al., 2017).

Inception Score

Given an image x, the Inception Score (IS) uses the softmax output a pretrained network

p(y |x) on task with C classes, which represents the probability that x is of class ci , i ∈ 1. . .C ,

i.e., p(y |x) ∈ [0,1]C . It then computes the marginal class distribution p(y) = ∫
x p(y |x)pg (x).

IS measures the Kullback–Leibler divergence DK L between the predicted conditional label

distribution p(y |x) and the marginal class distribution p(y). More precisely, it is computed as

12
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follows:

I S(G) = exp
(
Ex∼pg [DK L(p(y |x)||p(y))]

)= exp
( 1

m

m∑
i=1

C∑
c=1

p(yc |xi ) log
p(yc |xi )

p(yc )

)
. (2.6)

It aims at estimating (i) if the samples look realistic i.e., p(y |x) should have low entropy, and

(ii) if the samples are diverse (from different classes) i.e., p(y) should have high entropy. As

these are combined using the Kullback–Leibler divergence, the higher the score is, the better

the performance.

Fréchet Inception Distance

Contrary to IS, FID aims at comparing the synthetic samples x ∼ pg with those of the training

dataset x ∼ pd in a feature space. The samples are embedded using the first several layers of

the Inception network. It then estimates the means mg and md and covariances Cg and Cd ,

respectively for pg and pd in that feature space. Finally, FID is computed as:

DFID(pd , pg ) ≈ d 2((md ,Cd ), (mg ,Cg )) = ||md −mg ||22 +Tr (Cd +Cg −2(CdCg )
1
2 ), (2.7)

where d 2 denotes the Fréchet Distance and assuming that pg and pd are multivariate normal

distributions. Note that as this metric is a distance, the lower it is, the better the performance.
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3 SGAN: An Alternative Training of Gen-
erative Adversarial Networks

This chapter presents an alternative algorithm for training GANs, named “SGAN”. It differs

from the standard training process due to the use of an ensemble of “local” adversarial pairs

trained independently to help a “global” pair to be trained against them. By training the global

pair in such a way we hope to improve mode coverage of the data distribution. A key feature

of SGAN is to maintain statistical independence between the pairs of the ensemble. By doing

this, we allow the different pairs of the ensemble to explore a different mode of the target

distribution hence reducing the chances of the global pair being trapped in an unsatisfactory

local minimum, or to face oscillations often observed in practice. To guarantee the latter, the

global pair never affects the local ones.

We show that this novel training procedure outperforms standard methods by improved mode

coverage, stability and convergence speed, on both artificial and real-world datasets.

The content of this chapter is related to the following publication:

• T. Chavdarova and F. Fleuret, SGAN: An Alternative Training of Generative Adversarial

Networks, in Proceedings of the IEEE international conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

3.1 Introduction

An important research effort has recently focused on improving the convergence analysis of the

Generative Adversarial Networks (GANs), proposed by Goodfellow et al. [2014] and described

in § 2.4. This family of unsupervised learning algorithms provides powerful generative models,

and have found numerous and diverse applications [Isola et al., 2017, Ledig et al., 2016, Nguyen

et al., 2016, Zhang et al., 2017].

In practice, GANs are difficult to optimize, and practitioners have amassed numerous tech-

niques to improve stability of the training process [see Radford et al., 2016]. However, the

neglected inherited problems of the neural networks such as the lack of convexity, the numeri-
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Figure 3.1 – Conceptual illustration of SGAN. There are N+1 pairs, of which the pair (G0, D0)
is not trained directly. D0 is trained with Gi , i=1, . . . , N , and G0 is trained with Di , i=1, . . . , N ,
as illustrated with the dashed line rectangles.

cal instabilities of some of the involved operations, the limited representation capacity, as well

as the problem of vanishing and exploding gradients often emerge in practice.

Current state-of-the-art GAN variants [Arjovsky et al., 2017, Gulrajani et al., 2017] eliminate

gradient instabilities, which mitigated the discrepancy between the theoretical requirement

that D should be trained up to convergence before updating G , and the practical procedures

of vanilla GAN for which this is not the case. These results are important, as vanishing or

exploding gradients results in G to produce samples of noise.

However, oscillations between noisy patterns and samples starting to look like real data while

the algorithm is converging, as well as failures of capturing pd , are not resolved. In addition, in

practical applications, it is very difficult to assess the diversity of the generated samples. “Fake”

samples may look realistic but could be similar to each other – indicating that the modes of

pd have been only partially “covered” by pg . This is a problem that arises and is referred as

mode collapse. As a result, a golden rule remains that one does multiple trials of combinations

of hyperparameters, architectural and optimization choices, and variants of GANs. As under

different choices the performances vary [see large–scale empirical study by Lucic et al., 2017],

this is followed by tedious and subjective assessments of the quality of the generated samples

in order to select a generator.

As a summary, what made GAN distinctly powerful is the opponent-wise engagement of two

networks belonging to an already outperforming class of algorithms. Such a framework–the

discriminator being a deep neural network–allows for time-efficient training of the generative

model and directly formulates what we aim at–to generate samples that resemble those we

have, in contrast to memorizing these. Intuitively, the more we enforce constraints, either

architectural or functional, the better the coherency of the learning dynamics. On the other

hand, this may result in reduced sample quality or increased convergence time at the mini-

mum. A question arises if we can improve training stability, guarantees of “successful” training,

and performances, without imposing restrictions on the architectures of G or D .
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3.2. Related work: Variants of the GAN algorithm

We propose a novel way of training a global pair (G0,D0), such that the optimization process

will make use of the “flow of information” generated by training an ensemble of N adversarial

pairs (G1,D1), . . . , (GN ,DN ), as sketched in Fig. 3.1.

The rules of this game are as follows: G0 and D0 can solely be trained with {D1, . . .DN } and

{G1, . . .GN }, respectively, and local pairs do not have access to outputs or gradients from G0

and D0.

The most prominent advantages of such a training are:

1. if the training of a particular pair degrades or oscillates, the global networks continue to

learn with higher probability;

2. it is much more likely that training one pair will fail than training all of them, hence the

choice of not letting global models to affect the ensemble;

3. if the models’ limited capacity is taken into account i.e. pg can capture a limited number

of modes of pd (which increases with the number of training iterations), and under the

assumption that each mode of pd has a non-zero probability of being captured, then

the modeled distribution by the ensemble is closer to pd in some metric space due to

the statistical averaging; and conveniently

4. large chunks of the computation can be carried out in parallel making the time overhead

negligible.

In what follows, we first review in § 3.2 GAN variants we use in the experimental evaluation

of our SGAN algorithm, which to the best of our knowledge are the current state-of-the-art

methods. We then describe SGAN in detail in § 3.3, and present thorough experimental

evaluation in § 3.4 as well as in App. B. We then overview GAN methods that use multiple

discriminators or generators in § 3.5.

3.2 Related work: Variants of the GAN algorithm

Optimizing Eq. 2.4 amounts to minimizing the Jensen-Shannon divergence between the

data and the model distribution JS(pd , pg ) [Goodfellow et al., 2014]. More generally, GANs

learn pd by minimizing a particular f-divergence between the real samples and the generated

samples [Nowozin et al., 2016].

With a focus on generating images, Radford et al. [2016] propose specific architectures of the

two models, named Deep Convolutional Generative Adversarial Networks–DCGAN. Radford

et al. [2016] also enumerate a series of practical guidelines, critical for the training to succeed.

Up to this point, when the architecture and the hyper-parameters are empirically selected,

DCGAN demonstrates outperforming results both in terms of quality of generated samples

and convergence speed.
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To ensure usable gradient for optimization, the mapping θd 7→ pd should be differentiable,

and to have a non-zero gradient everywhere. As the JS divergence does not take into account

the Euclidean structure of the space, it may fail to make the optimization move distributions

closer to each other if they are “too far apart” [Arjovsky et al., 2017]. Hence, Arjovsky et al.

[2017] suggest the use of the Wasserstein distance, which precisely accounts for the Euclidean

structure. Through the Kantorovich Rubinstein duality principle [Villani, 2008], this boils

down to having a K -Lipschitz discriminator.

From a purely practical standpoint, this means that strongly regularizing the discriminator

prevents the gradient from vanishing through it, and helps the optimization of the generator

by providing it with a long-range influence that translates into a non-zero gradient.

In WGAN [Arjovsky et al., 2017] the Lipschitz continuity is forced through weight clipping,

which may make the optimization of D harder–as it makes the gradient with respect to D’s

parameters vanish–and often leads to degrading the overall convergence. It was later proposed

to enforce the Lipschitz constraint smoothly by adding a term in the loss which penalizes

gradients whose norm is higher than one–WGAN-GP [Gulrajani et al., 2017].

Motivated by game theory principles, Kodali et al. [2017] derive combined solution of vanilla

GAN and WGAN with gradient penalty. In particular, the authors aim at smoothing the

value function via regularization by minimizing the regret over the training period, so as to

mitigate the existence of the multiple saddle points. Finally, while building on vanilla GAN,

the proposed algorithm named DRAGAN–Deep Regret Analytic GAN–forces the constraint on

the gradients of D(x) solely in local regions around real samples.
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3.3. Method

Algorithm 2 Pseudocode for SGAN.
1: Input: Xi n f , N , I, ID .

2: G , D = init(N )

3: G0, D0 = init(1)

4: for i = 1 to I do

5: for n = 1 to N do

6: for j = 1 to ID do

7: zeroGradients(D[n])

8: backprop(G [n],D[n],Xi n f )

9: updateParameters(D[n])

10: end for

11: zeroGradients(G [n])

12: backprop(G [n],D[n],Xi n f )

13: updateParameters(G [n])

14: end for

15: Dmsg = copy(D)

16: for n = 1 to N do

17: for j = 1 to ID do

18: zeroGradients(Dmsg [n])

19: backprop(G0,Dmsg [n],Xi n f )

20: updateParameters(Dmsg [n])

21: end for

22: end for

23: zeroGradients(G0)

24: for n = 1 to N do

25: backprop(G0,Dmsg [n],Xi n f )

26: end for

27: updateParameters(G0)

28: zeroGradients(D0)

29: for n = 1 to N do

30: backprop(G [n],D0,Xi n f )

31: end for

32: updateParameters(D0)

33: end for

34: Output: G0,D0.

3.3 Method

Structure. We use a set G = {G1, . . .GN } of N generators, a set D = {D1 . . .DN } of N discrimi-

nators, and a global generator-discriminator pair (G0,D0), as sketched in Fig. 3.1.

21



Chapter 3. SGAN: An Alternative Training of Generative Adversarial Networks

Summary of a simplified-SGAN implementation. The pairs (Gn ,Dn), n = 1, . . . N are trained

individually in a standard approach. In parallel to their training, D0 is optimized to detect

samples generated by any of the local generators G1, . . . ,GN , and similarly G0 is optimized to

fool all of the local discriminators D1, . . . ,DN .

Note that, to satisfy the theoretical analyses of minimizing the Wasserstein distance and the

Jensen-Shannon divergence for WGAN and GAN, respectively, the above procedure of training

implies that each {D1 . . .DN } should be trained with G0 at each iteration of SGAN. Solely by

following such a procedure G0 follows the principles of the GAN framework [Goodfellow et al.,

2014], which trains it with gradients “meaningful” for it.

Introducing “messengers” discriminators for improved guarantees. To prevent that one

of the network pairs “influences” the ensemble, and thus keep the guarantees of success-

ful training, we propose to train G0 against herein referred as “messengers” discriminators

Dmsg
1 , . . . ,Dmsg

N , which at re-created at every iteration as clones of D1, . . . ,DN , optimized

against G0.

We empirically observed that this strategy helps consecutive steps to be more coherent, and

improves drastically the convergence. It is worth noting that, despite the increased complexity

in terms of obtaining the theoretical analyses, such an approach is practically convenient

since it allows for training G0 in parallel to the local pairs.

3.3.1 Description of SGAN

More formally, let Xi n f be a sampling operator over the dataset, which provides mini-batches

of i.i.d. samples x∼pd .

Let backprop be a function that given a pair G and D, buffers the updates of the networks’

parameters, updateParameters that actually updates the parameters using these buffers, and

zeroGradients resets these buffers. Also, let init be a function that initializes a given number of

pairs of G and D . Let N be the number of pairs to be used. The algorithm iterates for a given

number of iterations I , and depending on the used GAN variant, each discriminator network

is updated either once or several times, hence the ID input parameter.

At each iteration, foremost the local models are being updated (lines 5 - 14).

Then, to obtain meaningful gradients for G0, without affecting the local models, we first make

a copy of the latter (line 15) into the “messenger discriminators” Dmsg , and update them

against G0 (lines 16 - 22). We then update G0 jointly versus all of the discriminators (lines 23

- 27).

As D0 does not affect generators it is trained with, it is directly updated jointly versus all of the

local generators (lines 28 - 32).
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Note that for clarity in Alg. 2 we present SGAN sequentially. However, each iteration of the

training can be parallelized since G0 is trained with a copy of D, and the local pairs can be

trained independently. In addition, Alg. 2 can be used with different GAN variants.

SGAN can also be implemented with weight-sharing (see § 3.4.1) since low-level features can

be learned jointly across the networks. This motivates the training of D0 in Alg. 2. In addition,

whether the discriminator can be made use of is not a closed topic. In fact, a some works

answer in the affirmative [Lai et al., 2017].

3.4 Experiments

Datasets. As toy problems in R2 we used (i) mixtures of M Gaussians (M-GMM) whose

means are regularly positioned either on a circle or a grid, with M = 8,10, or 25, and (ii) the

classical Swiss Roll toy dataset [Marsland, 2009]. In the former case, we manually generate

such datasets, by using a mixture of M Gaussians with modes that are uniformly distributed

in a circle or in a grid. With such an evaluation, we follow related works–for e.g [Gulrajani

et al., 2017, Kodali et al., 2017, Tolstikhin et al., 2017] since GANs in prior work often failed to

converge even on such simplistic datasets [Metz et al., 2017].

To assess SGAN or real world applications, we used:

1. small scale datasets: CIFAR10 [Krizhevsky, 2009, chapter 3], STL-10 [Coates et al., 2011],

MNIST [Lecun and Cortes, 1998], as well as the recent FASHION-MNIST [Xiao et al.,

2017];

2. large scale datasets: CelebA [Liu et al., 2015], LSUN [Yu et al., 2015] using its “bedroom”

class, and ImageNet [Russakovsky et al., 2015]; as well as

3. large language corpus of text in English, known as One Billion Word Benchmark [Joze-

fowicz et al., 2016].

Methods. As WGAN with gradient penalty [Gulrajani et al., 2017] outperformed WGAN

with weight clipping [Arjovsky et al., 2017] in our experiments, herein as “WGAN” we refer

to the former. Regarding vanilla GAN, instead of minimizing log(1−D(G(z))), we train G

to maximize log(D(G(z))), as it is recommended by Goodfellow et al. [2014], and done in

practice [Goodfellow et al., 2014, Radford et al., 2016]. For conciseness, let us adopt the

following notation regarding SGAN: we prefix the type of GAN with N -S, where N is the

number of local pairs being used. For example, SGAN with 5 WGAN local pairs and one global

WGAN pair would be denoted as 5-S-WGAN.

Implementation. For experiments on toy datasets, we used separate 2×(N+1) neural net-

works. Regarding experiments on real-world datasets, we experimented with two implemen-
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tations: using separate networks, as well as sharing parameters. In the latter case, we used

approximately half of the parameters to be shared among the generators, and analogously

same quantity among the discriminators. For further details on our implementation, see

App. B.

As a deep learning framework we used PyTorch [Paszke et al., 2017].

(a) Real data (10-GMM) (b) Discriminator output

(c) S-Discriminator output (d) Not-covered modes (%)

Figure 3.2 – Figures (a-c) depict a toy experiment with vanilla GAN. Figure (d) depicts the
percentage of not covered modes (y-axis) by the generators, as more pairs are used (x-axis).
See text for details, § 3.4.1.

Metrics. A serious limitation to improve GANs is the lack of a proper means of evaluating

them [Lucic et al., 2017]. When dealing with images, most commonly used measure is the

Inception score (IS), proposed by Salimans et al. [2016], described in § 2.4.1.

Using real data images of ImageNet, LSUN-bedroom, CIFAR10, and CelebA, we obtain the

following Inception scores: 46.99 (3.547), 2.37 (0.082), 10.38 (0.502), 2.50 (0.082), respectively.

The high variance across the datasets, suggests that training the model on the dataset at hand

may improve the estimate. Hence, we adopt it as is for CIFAR10–as it turned into a standard

GAN metric, whereas for MNIST we use a classifier specifically trained on this dataset. In the

former case, we use the original implementation of it [Salimans et al., 2016] and a sample of
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pg of size 50·103, whereas for the latter we use our own implementation in PyTorch [Paszke

et al., 2017].

The Fréchet Inception Distance (FID) [Heusel et al., 2017] uses the Inception model [Szegedy

et al., 2015] to embed samples into a “good” feature space. We describe this metric in detail in

§ 2.4.1.

For experiments on MNIST, using a separately trained classifier, we also plot the entropy of

the generated samples’ mode distribution, as well as the total variation between the class

distribution of the generated samples and a uniform one. For toy experiments on mixtures of

Gaussians, we also used the log-likelihood of the generated samples.

For more results and details on our implementation, see the App B.

3.4.1 Experimental results on toy datasets

Independently trained ensemble of GANs. To motivate the idea of favoring information

from the independent ensemble to train a single pair, we conduct the following experiment.

We train in parallel few pairs of networks, as well as two additional pairs: (i) SGAN–trained

with the local independent pairs, as well as (ii) GAN–a regularly trained pair. In addition

to training these two pairs with equal frequency, we used the identical real-data and noise

samples.

Fig. 3.2 depicts vanilla-GAN experiment on the 10-GMM dataset (Fig. 3.2a). We recall that the

only difference between the two discriminators is that the GAN discriminator is trained with

fake samples from his tied single opponent (Fig. 3.2b), whereas the one of SGAN is trained

with fake samples from the ensemble (Fig. 3.2c).

Fig. 3.2d depicts that the probability that a mode will not be covered (y-axis) by the ensemble,

at a random iteration, goes down exponentially with the number of pairs (x-axis). For this

experiment, we used the 8-GMM toy dataset and the vanilla-GAN algorithm.

Performance of the global pair in SGAN. In Fig. 3.3 we use WGANs, where each network is

a multilayer perceptron (MLP) of 4 fully connected layers (see App. B.1). The first column

depicts the 10 local pairs: generators’ samples and discriminators’ contours (level sets) are

displayed in varying and transparent colors, respectively. The rightmost column depicts the

10-S-WGAN pair (trained with the networks of the first column): samples from G0 are drawn in

green, whereas the illustrated contours are from D0. We observe that S-WGAN exhibits higher

stability and faster convergence speed. Fig. 3.3 also depicts samples from a generator updated

N -fold times more (middle column), what indicates that an SGAN generator is comparable

with these.

Fig. 3.4 depicts 10-S-WGAN experiment on the 8-GMM toy dataset. At each iteration, after
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Figure 3.3 – (10-S-)WGAN on (top to bottom row): circle 8-GMM, grid 25-GMM, Swiss Roll
(best seen in color). Real data-points are shown in orange. The level sets of the output of
the discriminator(s) are shown with yellow to purple contours which denote low and high,
respectively. See § 3.4.1 for more details.

training the local pairs, the global generator is trained with the local discriminators, samples

of which are displayed on the left and right columns, respectively. We observe that in the

earlier iterations samples from the global generator may lie inR2 regions distinct from the real

data samples. Nonetheless, it converges notably quicker, and through the early iterations, its

generated samples lie in regions which often do not intersect with those of the local generators

(jointly) at the same iteration.
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3.4. Experiments

Figure 3.4 – 10-S-WGAN on the 8-GMM toy dataset (best seen in color). Samples from pd are
displayed in orange. Each row is a particular iteration (top to bottom): 5th, 10th, 100th, and
400th iteration. Samples from the local generators and the global one are illustrated on the left
(in separate colors) and right (in green), respectively. The displayed contours represent the
level sets of D and Dmsg –illustrated on the left and right, respectively, where yellow is low and
purple is high.
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Chapter 3. SGAN: An Alternative Training of Generative Adversarial Networks

Value of N . Fig. 3.5 depicts the log-likelihood on 8-GMM for different values of N , more

precisely the log-probability of the generated samples, under the real-data distribution (8-

GMM). “Simplified-SGAN” denotes the SGAN variant without the messengers discriminators

(see § 3.3). We observe that increasing N helps, but that the trade-off performance gain versus

computation resources starts to saturate compared to the gain obtained of SGAN relative to

regular training. Moreover, we observe that “Simplified-SGAN” does not improve notably the

performances of the WGAN baseline, which empirically justifies the approach of maintaining

statistical independence of the local adversarial pairs.
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Figure 3.5 – Log-likelihood on 8-GMM toy dataset (see § 3.4.1).

3.4.2 Experimental results on real-world datasets
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Figure 3.6 – Results on MNIST using (5-S-) GAN/WGAN/DRAGAN (best seen in color).

In Figures 3.6 and 3.8 we show experimental results on image datasets. In the latter, samples are

taken at a random iteration, prior to final convergence, so as the difference in the quality of the

samples is clearer. Fig. 3.7 depicts quantitative results on CIFAR10 using the Inception Score

(Fig. 3.7a) and the Fréchet Inception Distance (Fig. 3.7b), under identical hyperparameter
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3.5. Related work: Multi-network GAN methods

setup and architecture choice (see App. B.2 for details on our implementation).

In Table 3.1 we show fake samples of the global generators of S-WGAN on the One Billion

Word Benchmark dataset. The output of a standard WGAN training is a single character (white

space) for all of the first 660 iterations, what indicates slower than N -fold convergence speed

compared to an N-S-Generator. In addition, it is interesting to observe similar behavior as on

toy datasets: at the first iteration (first row in Table 3.1) the SGAN generators are pushed far

from the modes of the real data samples, as they generate non-commonly used letters.

Fig. 3.9 depicts samples taken from each generator in 5-S-DCGAN at the 100·103-th iteration,

as well as samples from the generator of a separately trained DCG AN pair at 100·103-th

and 500·103-th iterations. Besides that the global generator of SGAN shows no visible mode

collapse for the human eye (compared to samples taken from the rest of the generators), we

also observed that its performance did not oscillate through the iterations.
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Figure 3.7 – 5-SGAN comparison on CIFAR10 using the number of iterations as the x-axis.
Note that the x-axis is not normalized with the number of passes and instead depicts the
performance gain (in terms of IS–left, and FID–right) if SGAN is implemented in parallel.

3.5 Related work: Multi-network GAN methods

Independently, Boosted Generative Models [Grover and Ermon, 2017] and AdaGAN [Tolstikhin

et al., 2017] propose the iterative boosting algorithm to solve the mode collapse problem. At

each step, a new component is added into a mixture of models, by updating the samples’

weights, while using the vanilla GAN algorithm.

With the similar motivation of increasing the mode coverage Ghosh et al. [2017] and Hoang

et al. [2017] propose to instead train multiple generators versus a single discriminator.

In [Ghosh et al., 2017] the discriminator is trained against N generators which share parameters
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(a) G1 (b) G2 (c) G3 (d) G4 (e) G5 (f) G0

Figure 3.8 – 5-SGAN. In the top to bottom rows we use DCGAN on CelebA, DRAGAN on
ImageNet, WGAN on MNIST and DCGAN on LSUN, respectively. Each of the above samples
are taken at the earlier iterations, in particular at the 100-th, 500-th, 500-th and the 1000-
th iteration, respectively for each row. In columns (a-e) we show samples from the local
generators, whereas in (f) from the global generator. We used separate networks and real data
space of 32×32.

Table 3.1 – Output snippets of the global generators trained on the One Billion Word Bench-
mark. The top to bottom rows depict the 1-st, 100-th and the 200-th iteration. See § 3.4.2.

5-S-WGAN 10-S-WGAN

aaa aaaaaaaaaaaaaa aaaa aaaaaaaa
a aaaaaa aaaaaaaa aaaaa aaaaaa
aaaaaa a aaaaaaaaa aaaaa aaaaaa
aaa aaaaaaaa aaaaaaaaaaaaaaaa a

a aaaaaaaaaaa aaaaaaaaa aaaaaaaa
aaaaaa aaaa a aaaaaaaaaa aaaaaa
a aaa aa aaaa aaaaaaaaaaaaaaa

ii iii iiiii iiiii i iiiii
ii ii iiiii ii iiii i iiiii ii
iiiii ii ii iii ii iiii i iiii
iiii iii i i iiii iiiiii i
iii iiiii i iii i i ii i iii
ii ii iii i iii ii ii iii ia
iiiiii i i iiiii i i i ii

hieq as ieq aa dhhie as ie t
eq shiq as heq aaa hheq asheq t
ieqq aasheq dsheq aa dd dhhie t
iq ddq as ie sie ashieq as e t
eq as hheq aas ie s heq as e t
q hheq aas ieq dshieq as hie at
eq asid ddd as hieq as heq diq t

SAeS Aer areS SnSSSharSonS Soe
AS SSSSer oeS SarSonSSS Ss ShS i
S tes SrSsne SoerhaS SsnS Soar o
MSSSS S Sha tos ShS aoS as Sha i
s She tAeS SsS SsnSSSoes ShS Son
eS es S SoS Ss SoSSS Ss SSS Son
ASSSS tSa SoarSonS Ssne Soar osn

in all layers except the last one, and it outputs probability estimate for N+1 classes representing

whether the input is a real sample, or by whom of the generators it originates. To enforce

diversity between the generated samples, a penalty term is added with a user-defined similarity
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Global generator Local generator #1 Local generator #2 Local generator #3

Local generator #4 Local generator #5 DCGAN, 100·103 iter. DCGAN, 500·103 iter.

Figure 3.9 – Samples of the generators of 5-S-DCGAN on the STL-10 dataset at the 100·103-
th iteration (rows 1−3), as well as separately trained DCGAN at the 100·103 and 100·103-th
iteration (bottom row). Using 64×64 data space.

based function.

Similarly, Hoang et al. [2017] propose multiple generators that share parameters versus single

discriminator whose output is fake versus real, as well as training an additional model that

classifies by whom of the generators a given fake input was generated. The output of the

classifier is used in an additional penalty term that forces diversity between the generators.

Durugkar et al. [2017] proposesutilizing multiple discriminators versus one generator, in aim

to stabilize the training.

Ghosh et al. [2016] propose multiple generators versus single discriminator, where the genera-

tors communicate through two types of messages. Namely, there are both co-operation and

competing objectives. The former ensures the other generator to generate images better than

itself, and the latter encourages each generator to generate better samples than its counterpart.

Motivated by the observed oscillations, in [Wang et al., 2016] a so-called “self-ensembles” is

proposed. Non-traditionally, this self-ensemble is built out of copies of the generator taken

from a different iteration while training a single pair.

Hence, SGAN depicts different structures and solutions to the problem of training GANs.

Regarding the former, none of the above methods utilizes explicitly multiple pairs trained

independently. Instead, most commonly a structure of one-to-many is used, either for the

generator or for the discriminator. Compared to AdaGAN, SGAN is applicable to any GAN

variant, runs in parallel, and produces a single generator. Concerning the latter, SGAN uses

“supervising” models and prevents an influence of one pair towards all.
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3.6 Discussion and future directions

We proposed a general framework dubbed SGAN for training GANs, applicable to any variant

of this algorithm. It consists of training several adversarial pairs of networks independently

and uses them to train a global pair that combines the multiple learned representations.

A key idea in our approach is maintaining the statistical independence between the individual

pairs, by preventing any flow of information between them, in particular through the global

pairs it aims at training eventually. Maintaining this makes the probability of a failure to go

down exponentially with the number of pairs involved in the process.

The motivations of such a training methodology originate from the discrepancy between the

theoretical justifications being derived in functional space, and the fact that we optimize the

parameters of the deep neural networks [Goodfellow et al., 2014]. More precisely, training

the generator finally produced by SGAN in such a way aims at addressing if the limited

representational capacity (more prominent at the early iterations) affects the trajectories taken

during the optimization procedure, which could itself be an important factor causing the

training difficulties. The presented empirical evaluation indicates that it is indeed the case, as

it was shown that such a training follows different trajectories and that for realistic datasets, it

eliminates oscillations observed with a standard training under an identical set-up.

Experimental results on diverse datasets demonstrate systematic improvements upon classical

algorithms as well as increased stability of the framework regarding real-world applications.

Furthermore, SGAN is convenient for many applications, as it produces a single generator.

(a) Single pair training, real
and fake samples are shown in
yellow and green, resp.

(b) Local pairs of SGAN, fake
samples are shown in varying
colors per generator.

(c) SGAN pair, real and fake
samples are shown in yellow
and green, resp.

Figure 3.10 – Toy experiment of an extension of SGAN on the Swiss Roll dataset, where we
enforce that the local generators model different distributions, see text § 3.6. All samples were
taken at an equal number of iterations. The lines in Fig. 3.10b depict the contour lines of the
local discriminators of SGAN (made transparent, for clarity of the illustration).

One possible future extensions of SGAN is improving the covering behavior by enforcing that

the modeled distributions of the local pairs focus on disjoint parts of the support of the real
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data distribution pd . We illustrate this idea in Fig. 3.10 where we use an additional classifier C ,

trained to classify from which generator a sample comes from. More precisely, given a sample

x ∼ pgi , i ∈ {1, . . . , N } of a local generator Gi , the classifier C : x 7→RN aims at predicting i . Apart

from fooling Di each local generator Gi is trained to reduce the error of the classifier C .
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4 Reducing the Noise of the Stochastic
Gradient-based GAN Optimization

In this chapter we focus on the optimization algorithm used to train GANs. Motivated by the

empirically observed reduced variance of SGAN and also the improved performances as the

batch size increases [Chavdarova et al., 2018, Brock et al., 2019], we investigate the impact of

noise of the stochastic gradient to GAN training. We show that it can prevent the convergence

of standard game optimization methods, while the batch version converges. We address this

issue with two stochastic variance-reduced gradient and extragradient optimization algorithms

for GANs, named SVRG-GAN and SVRE, respectively.

Related publications:

• T. Chavdarova, G. Gidel, F. Fleuret and S. Lacoste-Julien, Reducing Noise in GAN Training

with Variance Reduced Extragradient, in Proceedings of the international conference on

Neural Information Processing Systems (NeurIPS), 2019.

• T. Chavdarova, S. Stich, M. Jaggi and F. Fleuret, Stochastic Variance Reduced Gradient

Optimization of Generative Adversarial Networks, in Proceedings of Theoretical Founda-

tions and Applications of Deep Generative Models Workshop, ICML workshop, 2018.

4.1 Introduction

Many empirical risk minimization algorithms rely on gradient-based optimization methods.

These iterative methods handle large-scale training datasets by computing gradient estimates

on a subset of it, a mini-batch, instead of using all the samples at each step, the full batch,

resulting in a method called stochastic gradient descent (SGD, Robbins and Monro [1951],

Bottou [2010]).

SGD methods are known to efficiently minimize single objective loss functions, such as cross-

entropy for classification or squared loss for regression. Some algorithms go beyond such

training objective and define multiple agents with different or competing objectives. The

associated optimization paradigm requires a multi-objective joint minimization. An example
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of such a class of algorithms are the generative adversarial networks (GANs, Goodfellow et al.,

2014), which aim at finding a Nash equilibrium of a two-player minimax game, where the

players are deep neural networks (DNNs).

As of their success on supervised tasks, SGD based algorithms have been adopted for GAN

training as well. Recently, Gidel et al. [2019] proposed to use an optimization technique coming

from the variational inequality literature called extragradient [Korpelevich, 1976] with provable

convergence guarantees to optimize games (see § 4.2). However, convergence failures, poor

performance (sometimes referred to as “mode collapse”), or hyperparameter susceptibility

are more commonly reported compared to classical supervised DNN optimization.

We question naive adoption of such methods for game optimization so as to address the

reported training instabilities. We argue that as of the two player setting, noise impedes

drastically more the training compared to single objective one. More precisely, we point out

that the noise due to the stochasticity may break the convergence of the extragradient method,

by considering a simplistic stochastic bilinear game for which it provably does not converge.

The theoretical aspect we present in this chapter is further supported empirically, since

using larger mini-batch sizes for GAN training has been shown to considerably improve the

quality of the samples produced by the resulting generative model: Brock et al. [2019] report

a relative improvement of 46% of the Inception Score metric (see § 4.5) on ImageNet if the

batch size is increased 8–fold. This notable improvement raises the question if noise reduction

optimization methods can be extended to game settings. In turn, this would allow for a

principled training method with the practical benefit of omitting to empirically establish this

multiplicative factor for the batch size.

In this chapter, we investigate the interplay between noise and multi-objective problems in

the context of GAN training. Our contributions can be summarized as follows: (i) we show in a

motivating example how the noise can make stochastic extragradient fail (see § 4.2.2). (ii) we

propose a new method “stochastic variance reduced extragradient” (SVRE) that combines

variance reduction and extrapolation (see Alg. 3 and § 4.3.2) and show experimentally that

it effectively reduces the noise. (iii) we prove the convergence of SVRE under local strong

convexity assumptions, improving over the known rates of competitive methods for a large

class of games (see § 4.3.2 for our convergence result and Table 4.1 for comparison with

standard methods). (iv) we test SVRE empirically to train GANs on several standard datasets,

and observe that it can improve SOTA deep models in the late stage of their optimization (see

§ 4.5).
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Method Complexity µ-adaptivity

SVRG ln( 1
ε )×(n + L̄2

µ2 ) no

Acc. SVRG ln( 1
ε )×(n +p

n L̄
µ ) no

SVRE §4.3.2 ln( 1
ε )×(n + ¯̀

µ ) if ¯̀=O(L̄)

Table 4.1 – Comparison of variance reduced methods for games for a µ-strongly monotone operator
with Li -Lipschitz stochastic operators. Our result makes the assumption that the operators are `i -
cocoercive. Note that `i ∈ [Li ,L2

i /µ], more details and a tighter rate are provided in §4.3.2. The SVRG
variants are proposed by Palaniappan and Bach [2016]. µ-adaptivity indicates if the hyper-parameters
that guarantee convergence (step size & epoch length) depend on the strong monotonicity parameter
µ: if not, the algorithm is adaptive to local strong monotonicity. Note that in some cases the constant `
may depend on µ but SVRE is adaptive to strong convexity when ¯̀ remains close to L̄ (see for instance
Proposition 2).

Algorithm 3 Pseudocode for SVRE.

1: Input: Stopping time T , learning rates ηθ,ηϕ, initial

weights θ0,ϕ0. t = 0

2: while t ≤ T do

3: ϕS =ϕt and µS
ϕ = 1

n

∑n
i=1∇ϕL D

i (θS ,ϕS )

4: θS = θt and µS
θ

= 1
n

∑n
i=1∇θL G

i (θS ,ϕS )

5: N ∼ Geom
(
1/n

)
(Sample epoch length)

6: for i = 0 to N−1 do {Beginning of the epoch}

7: Sample iθ, iϕ ∼πθ,πϕ, do extrapolation:

8: ϕ̃t =ϕt −ηϕd D
iϕ

(θt ,ϕt ,θS ,ϕS ) . (4.5)

9: θ̃t = θt −ηθdG
iθ

(θt ,ϕt ,θS ,ϕS ) . (4.5)

10: Sample iθ, iϕ ∼πθ,πϕ and do update:

11: ϕt+1 =ϕt −ηϕd D
iϕ

(θ̃t ,ϕ̃t ,θS ,ϕS ) . (4.5)

12: θt+1 = θt −ηθdG
iθ

(θ̃t ,ϕ̃t ,θS ,ϕS ) . (4.5)

13: t ← t +1

14: end for

15: end while

16: Output: θT ,ϕT

4.2 GANs as a Game and Noise in Games

4.2.1 Game theory formulation of GANs

The models in a GAN are a generator G , that maps an embedding space to the signal space,

and should eventually map a fixed noise distribution to the training data distribution, and a

discriminator D whose purpose is to allow the training of the generator by classifying genuine

samples against generated ones. At each iteration of the algorithm, the discriminator D is
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Method Gradient method Extragradient
Batch ‖ωt −ω∗‖→∞ ‖ωt −ω∗‖→0

Stochastic No hope for convergence ‖ωt −ω∗‖→∞

Table 4.2 – Methods for solving bilinear games. As batch-gradient does not converge for
bilinear games [Mescheder et al., 2017], there is no hope for convergence proof of stochastic-
gradient. Moreover, we show that the stochastic counterpart of extragradient [Korpelevich,
1976] also diverges for this class of games, see § 4.2.2.

updated to improve its “real vs. generated” classification performance, and the generator G to

degrade it.

From a game theory point of view, GAN training is a differentiable two-player game where the

generator Gθ and the discriminator Dϕ aim at minimizing their own cost function L G and

L D , resp.:

θ∗ ∈ argmin
θ∈Θ

L G (θ,ϕ∗) and ϕ∗ ∈ argmin
ϕ∈Φ

L D (θ∗,ϕ) . (2P-G)

When L D =−L G =: L this game is called a zero-sum game and (2P-G) is a minimax problem:

min
θ∈Θ

max
ϕ∈Φ

L (θ,ϕ) (SP)

The gradient method does not converge for some convex-concave examples [Mescheder et al.,

2017, Gidel et al., 2019]. To address this, Korpelevich [1976] proposed to use the extragradient

method1 which performs a lookahead step in order to get signal from an extrapolated point:

Extrapolation:

{
θ̃t = θt −η∇θL G (θt ,ϕt )

ϕ̃t =ϕt −η∇ϕL D (θt ,ϕt )
Update:

{
θt+1 = θt −η∇θL G (θ̃t ,ϕ̃t )

ϕt+1 =ϕt −η∇ϕL D (θ̃t ,ϕ̃t )
(EG)

Note how θt andϕt are updated with a gradient from a different point, the extrapolated one.

In the context of a zero-sum game, for any convex-concave function L and any closed convex

setsΘ andΦ, the extragradient method converges [Harker and Pang, 1990, Thm. 12.1.11].

As batch–gradient does not converge for bilinear game, neither does stochastic–gradient.

Therefore, in the section that follows we focus on the extragradient method, and we investigate

if its stochastic counterpart converges, see Tab. 4.2,

4.2.2 Stochasticity Breaks Extragradient

As the (EG) converges for some examples for which gradient methods do not, it is reasonable

to expect that so does its stochastic counterpart (at least to a neighborhood). However, the

resulting noise in the gradient estimate may interact in a problematic way with the oscillations

1For simplicity, we focus on unconstrained setting where Θ = Rd . For the constrained case, a Euclidean
projection on the constraints set should be added at every update of the method.
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θ

φ

(a) Minimization: up to a neighborhood, the
noisy gradient always points to a direction that
make the iterate closer to the minimum (?).

θ

φ

(b) Game: the noisy gradient may point to a
direction (red arrow) that push the iterate away
from the Nash Equilibrium (?).

Figure 4.1 – Illustration of the discrepancy between games and minimization on simple
examples:

minimization: min
θ,φ∈R

θ2 +φ2 , game: min
θ∈R

max
φ∈R

θ ·φ .

due to the adversarial component of the game. We depict this phenomenon in Fig. 4.1, where

we show the direction of the noisy gradient on single objective minimization example and

contrast it with a multi-objective one.

We present a simplistic example where the extragradient method converges linearly [Gidel

et al., 2019, Corollary 1] using the full gradient but diverges geometrically when using stochastic

estimates of it. Note that standard gradient methods, both batch and stochastic, diverge on

this example.

In particular, we show that: (i) if we use standard stochastic estimates of the gradients of L

with a simple finite sum formulation, then the iteratesωt := (θt ,ϕt ) produced by the stochastic

extragradient method (SEG) diverge geometrically, and on the other hand (ii) the full-batch

extragradient method does converge to the Nash equilibrium ω∗ of this game [Harker and

Pang, 1990, Thm. 12.1.11].

Theorem 1 (Noise may induce divergence). For any ε≥ 0 There exists a zero-sum ε
2 -strongly

monotone stochastic game such that if ω0 6=ω∗, then for any step-size η> ε, the iterates (ωt )

computed by the stochastic extragradient method diverge geometrically, i.e., there exists ρ > 0,

such that E[‖ωt −ω∗‖2] > ‖ω0 −ω∗‖2(1+ρ)t .

Proof sketch. All detailed proofs can be found in § C.2 of the appendix. We consider the
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following stochastic optimization problem (with d = n):

1

n

n∑
i=1

ε

2
θ2

i +θ>Aiϕ− ε

2
ϕ2

i where [Ai ]kl = 1 if k = l = i and 0 otherwise. (4.1)

Note that this problem is a simple dot product between θ and ϕ with an (ε/n)-`2 norm

penalization, thus we can compute the batch gradient and notice that the Nash equilibrium

of this problem is (θ∗,ϕ∗) = (0,0). However, as we shall see, this simple problem breaks with

standard stochastic optimization methods.

Sampling a mini-batch without replacement I ⊂ {1, . . . ,n}, we denote AI := ∑
i∈I Ai . The

extragradient update rule can be written as:{
θt+1 = (1−ηAI ε)θt −ηAI ((1−ηA Jε)ϕt +ηA Jθt )

ϕt+1 = (1−ηAI ε)ϕt +ηAI ((1−ηA Jε)θt −ηA Jϕt ) ,
(4.2)

where I and J are the mini-batches sampled for the update and the extrapolation step, respec-

tively. Let us write Nt := ‖θt‖2 +‖ϕt‖2. Noticing that [AIθ]i = [θ]i if i ∈ I and 0 otherwise, we

have,

E[Nt+1] =
(
1− |I |

n (2ηε−η2(1+ε2))− |I |2
n2 (2η2 −η4(1+ε2))

)
E[Nt ] . (4.3)

Consequently, if the mini-batch size is smaller than half of the dataset size, i.e. 2|I | ≤ n, we

have that ∀η> ε , ∃ρ > 0, s.t . , E[Nt ] > N0(1+ρ)t . For the theorem statement, we set n = 2 and

|I | = 1.

This result may seem contradictory with the standard result on SEG [Juditsky et al., 2011]

saying that the average of the iterates computed by SEG does converge to the Nash equilibrium

of the game. However, an important assumption made by Juditsky et al. is that the iterates

are projected onto a compact set and that estimator of the gradient has finite variance. These

assumptions break in this example since the variance of the estimator is proportional to the

norm of the (unbounded) parameters. Note that constraining the optimization problem (4.1)

to bounded domainsΘ andΦ, would make the finite variance assumption from Juditsky et al.

[2011] holds. Consequently, the averaged iterate ω̄t := 1
t

∑t−1
s=0ωs would converge to ω∗. In

§ C.0.1, we explain why in a non-convex setting, the convergence of the last iterate is preferable.

4.3 Reducing Noise in Games with Variance Reduced Extragradient

One way to reduce the noise in the estimation of the gradient is to use mini-batches of samples

instead of one sample. However, mini-batch stochastic extragradient fails to converge on (4.1)

if the mini-batch size is smaller than half of the dataset size (see § C.2.1). In order to get an

estimator of the gradient with a vanishing variance, the optimization literature proposed to

take advantage of the finite-sum formulation that often appears in machine learning [Schmidt
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et al., 2017, and references therein].

4.3.1 Variance Reduced Gradient Methods

Let us assume that the objective in (2P-G) can be decomposed as a finite sum such that2

L G (ω) = 1

n

n∑
i=1

L G
i (ω) and L D (ω) = 1

n

n∑
i=1

L D
i (ω) where ω := (θ,ϕ) . (4.4)

Johnson and Zhang [2013] propose the “stochastic variance reduced gradient” (SVRG) as

an unbiased estimator of the gradient with a smaller variance than the vanilla mini-batch

estimate. The idea is to occasionally take a snapshotωS of the current model’s parameters,

and store the full batch gradient µS at this point. Computing the full batch gradient µS at

ωS is an expensive operation but not prohibitive if done infrequently (for instance once every

dataset pass).

Assuming that we have storedωS and µS := (µS
θ

,µS
ϕ ), the SVRG estimates of the gradients

are:

dG
i (ω) := ∇L G

i (ω)−∇L G
i (ωS )

nπi
+µS

θ , d D
i (ω) := ∇L D

i (ω)−∇L D
i (ωS )

nπi
+µS

ϕ . (4.5)

These estimates are unbiased: E[dG
i (ω)] = 1

n

∑n
i=1∇L G

i (ω) =∇L G (ω), where the expectation

is taken over i , picked with probabilityπi . The non-uniform sampling probabilitiesπi are used

to bias the sampling according to the Lipschitz constant of the stochastic gradient in order

to sample more often gradients that change quickly. This strategy has been first introduced

for variance reduced methods by Xiao and Zhang [2014] for SVRG and has been discussed for

saddle point optimization by Palaniappan and Bach [2016].

Originally, SVRG was introduced as an epoch based algorithm with a fixed epoch size: in Alg. 3,

one epoch is an inner loop of size N (Line 6). However, Hofmann et al. [2015] proposed instead

to sample the size of each epoch from a geometric distribution, enabling them to analyze

SVRG the same way as SAGA under a unified framework called q-memorization algorithm. We

generalize their framework to handle the extrapolation step (EG) and provide a convergence

proof for such q-memorization algorithms for games in § C.2.2.

One advantage of Hofmann et al. [2015]’s framework is also that the sampling of the epoch

size does not depend on the condition number of the problem, whereas the original proof for

SVRG had to consider an epoch size larger than the condition number (see [Leblond et al.,

2018, Corollary 16] for a detailed discussion on the convergence rate for SVRG). Thus, this

new version of SVRG with a random epoch size becomes adaptive to the local strong convexity

since none of its hyper-parameters depend on the strong convexity constant.

However, because of some new technical aspects when working with monotone opera-

tors, Palaniappan and Bach [2016]’s proofs (both for SAGA and SVRG) require a step-size

2The “noise dataset” in a GAN is not finite though; see § C.3.1 for details on how to cope with this in practice.
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(and epoch length for SVRG) that depends on the strong monotonicity constant making these

algorithms not adaptive to local strong monotonicity. This motivates the proposed SVRE

algorithm, which may be adaptive to local strong monotonicity, and is thus more appropriate

for non-convex optimization.

4.3.2 SVRE: Stochastic Variance Reduced Extragradient

We describe our proposed algorithm called stochastic variance reduced extragradient (SVRE)

in Alg. 3. In an analogous manner to how Palaniappan and Bach [2016] combined SVRG

with the gradient method, SVRE combines SVRG estimates of the gradient (4.5) with the

extragradient method (EG).

With SVRE we are able to improve the convergence rates for variance reduction for a large

class of stochastic games (see Table 4.1 and Thm. 2), and we show in § 4.3.3 that it is the only

method which empirically converges on the simple example of § 4.2.2.

We now describe the theoretical setup for the convergence result. A standard assumption

in convex optimization is the assumption of strong convexity of the function. However, in a

game, the operator,

v :ω 7→ [∇θL G (ω) , ∇ϕL D (ω)
]>

, (4.6)

associated with the updates is no longer the gradient of a single function. To make an analo-

gous assumption for games the optimization literature considers the notion of strong mono-

tonicity.

Definition 1. An operator F :ω 7→ (Fθ(ω),Fϕ(ω)) ∈Rd+p is said to be (µθ,µϕ)-strongly mono-

tone if for allω,ω′ ∈Rp+d we have

Ω((θ,ϕ), (θ′,ϕ′)) :=µθ‖θ−θ′‖2 +µϕ‖ϕ−ϕ′‖2 ≤ (F (ω)−F (ω′))>(ω−ω′) , (4.7)

where we write ω := (θ,ϕ) ∈Rd+p . A monotone operator is a (0,0)-strongly monotone operator.

This definition is a generalization of strong convexity for operators: if f is µ-strongly convex,

then ∇ f is a µ-monotone operator. Another assumption is the γ regularity assumption,

Definition 2. An operator F :ω 7→ (Fθ(ω),Fϕ(ω)) ∈Rd+p is said to be (γθ,γφ)-regular if,

γ2
θ‖θ−θ′‖2 +γ2

ϕ‖ϕ−ϕ′‖2 ≤ ‖F (ω)−F (ω′)‖2 , ∀ω,ω′ ∈Rp+d . (4.8)

Note that an operator is always (0,0)-regular. This assumption originally introduced by Tseng

[1995] has been recently used [Azizian et al., 2019] to improve the convergence rate of extra-

gradient. For instance for a full rank bilinear matrix problem γ is its smallest singular value.

More generally, in the case γθ = γϕ, the regularity constant is a lower bound on the minimal

singular value of the Jacobian of F [Azizian et al., 2019].
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One of our main assumptions is the cocoercivity assumption, which implies the Lipchitzness

of the operator in the unconstrained case. We use the cocoercivity constant because it provides

a tighter bound for general strongly monotone and Lipschitz games (see discussion following

Theorem 2).

Definition 3. An operator F :ω 7→ (Fθ(ω),Fϕ(ω)) ∈Rd+p is said to be (`θ,`ϕ)-cocoercive, if for

allω,ω′ ∈Ωwe have

‖F (ω)−F (ω′)‖2 ≤ `θ(Fθ(ω)−Fθ(ω′))>(θ−θ′)+`ϕ(Fϕ(ω)−Fϕ(ω′))>(ϕ−ϕ′) . (4.9)

Note that for a L-Lipschitz and µ-strongly monotone operator, we have ` ∈ [L,L2/µ] [Facchinei

and Pang, 2003]. For instance, when F is the gradient of a convex function, we have ` = L.

More generally, when F (ω) = (∇ f (θ)+ Mϕ,∇g (ϕ)− M>θ), where f and g are µ-strongly

convex and L smooth we have that γ=σmin(M) and ‖M‖2 =O(µL) is a sufficient condition

for `=O(L) (see §C.1). Under this assumption on each cost function of the game operator,

we can define a cocoercivity constant adapted to the non-uniform sampling scheme of our

stochastic algorithm:

¯̀(π)2 := 1

n

n∑
i=1

1

nπi
`2

i . (4.10)

The standard uniform sampling scheme corresponds to πi := 1
n and the optimal non-uniform

sampling scheme corresponds to π̃i := `i∑n
i=1`i

. By Jensen’s inequality, we have: ¯̀(π̃) ≤ ¯̀(π) ≤ maxi `i .

For our main result, we make strong convexity, cocoercivity and regularity assumptions.

Assumption 1. For 1 ≤ i ≤ n, the gradients ∇θL G
i and ∇ϕL D

i are respectively `θi and `
ϕ

i -

cocoercive and (γθi ,γϕi )-regular. The operator (4.6) is (µθ,µϕ)-strongly monotone.

We now present our convergence result for SVRE with non-uniform sampling (to make our

constants comparable to those of Palaniappan and Bach [2016]), but note that we have used

uniform sampling in all our experiments (for simplicity).

Theorem 2. Under Assumption 1, after t iterations, the iterateωt := (θt ,ϕt ) computed by SVRE

(Alg. 3) with step-size ηθ ≤ (40 ¯̀
θ)−1 and ηϕ ≤ (40 ¯̀

ϕ)−1 and sampling scheme (π̃θ, π̃ϕ) verifies:

E[‖ωt −ω∗‖2
2] ≤

(
1− 1

2
min

{
ηθµθ+

9η2
θ
γ̄2
θ

10
,ηϕµϕ+

9η2
ϕγ̄

2
ϕ

10
,

4

5n

})t

E[‖ω0 −ω∗‖2
2] ,

where ¯̀
θ(πθ) and ¯̀

ϕ(πϕ) are defined in (4.10). Particularly, for ηθ = 1
40 ¯̀

θ
and ηϕ = 1

40 ¯̀
ϕ

we get

E[‖ωt −ω∗‖2
2] ≤

(
1− 1

2
min

{
1

40

(µθ
¯̀
θ

+ γ̄2
θ

45 ¯̀2
θ

)
, 1

40

(µϕ
¯̀
ϕ

+
γ̄2
ϕ

45 ¯̀2
ϕ

)
,

4

5n

})t

E[‖ω0 −ω∗‖2
2] .

We prove this theorem in § C.2.2. We can notice that the respective condition numbers of
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L G and L D defined as κθ := µθ
¯̀
θ
+ γ̄2

θ

¯̀2
θ

and κϕ := µϕ
¯̀
ϕ
+ γ̄2

ϕ

¯̀2
ϕ

appear in our convergence rate. The

cocoercivity constant ` belongs to [L,L2/µ], thus our rate may be significantly faster3 than

the convergence rate of the (non-accelerated) algorithm of Palaniappan and Bach [2016] that

depends on the product µθ
L̄θ

µϕ

L̄ϕ
. They avoid a dependence on the maximum of the condition

numbers squared, max{κ2
ϕ,κ2

θ
}, by using the weighted Euclidean normΩ(θ,ϕ) defined in (4.7)

and rescaling the functions L G and L D with their strong-monotonicity constant. However,

this rescaling trick suffers from two issues: (i) we do not know in practice a good estimate of

the strong monotonicity constant, which was not the case in Palaniappan and Bach [2016]’s

application; and (ii) the algorithm does not adapt to local strong-monotonicity. This property

is important in non-convex optimization since we want the algorithm to exploit the (potential)

local stability properties of a stationary point.

4.3.3 Motivating example

The example (4.1) for ε = 0 seems to be challenging in the stochastic setting since all the

standard methods and even the stochastic extragradient method fails to find its Nash equi-

librium (note that this example is not strongly monotone). We set n = d = 100, and draw

[Ai ]kl = δkl i and [bi ]k , [ci ]k ∼ N (0,1/d) , 1 ≤ k, l ≤ d , where δkl i = 1 if k = l = i and 0 other-

wise. Our optimization problem is:

min
θ∈Rd

max
ϕ∈Rd

1

n

n∑
i=1

(θ>bi +θ>Aiϕ+c>
i ϕ). (4.11)

We compare variants of the following algorithms (with uniform sampling and average our

results over 5 different seeds): (i) AltSGD: the standard method to train GANs–stochastic

gradient with alternating updates of each player. (ii) SVRE: Alg. 3. The AVG prefix correspond

to the uniform average of the iterates, ω̄ := 1
t

∑t−1
s=0ωs . We observe in Fig. 4.3 that AVG-SVRE

converges sublinearly (whereas AVG-AltSGD fails to converge).

This motivates a new variant of SVRE based on the idea that even if the averaged iterate

converges, we do not compute the gradient at that point and thus we do not benefit from the

fact that this iterate is closer to the optimums (see § C.0.1). Thus the idea is to occasionally

restart the algorithm, i.e., consider the averaged iterate as the new starting point of our

algorithm and compute the gradient at that point. Restart goes well with SVRE as we already

occasionally stop the inner loop to recomputeµS , at which point we decide (with a probability

p to be fixed) whether or not to restart the algorithm by taking the snapshot at point ω̄t instead

ofωt . This variant of SVRE is described in Alg. 6 in § C.4 and the variant combining VRAd in

§ C.3.1.

In Fig. 4.3 we observe that the only method that converges is SVRE and its variants. We do not

3Particularly, when F is the gradient of a convex function (or close to it) we have `≈ L and thus our rate recovers
the standard ln(1/ε)L/µ, improving over the accelerated algorithm of Palaniappan and Bach [2016]. More generally,
under the assumptions of Proposition 2, we also recover ln(1/ε)L/µ.
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4.4. Pseudocode for SVRE-GAN and SVRG-GAN

Algorithm 4 Pseudocode for SVRE-GAN.

1: Input: dataset D, noise dataset Z (|Z | = |D| = n), stopping iteration T , learning rates
ηD ,ηG , generator loss L G , discriminator loss L D , mini-batch size B.

2: Initialize: ϕ, θ
3: for e = 0 to T−1 do
4: ϕS =ϕ and µϕ = 1

n

∑n
i=1

∑n
j=1∇ϕL D (θS ,ϕS ,D j ,Zi )

5: θS = θ and µθ = 1
n

∑n
i=1∇θL G (θS ,ϕS ,Zi )

6: N ∼ Geom
(
B/n

)
(length of the epoch)

7: for i = 0 to N−1 do
8: Sample mini-batches (nd ,nz ); do extrapolation:
9: ϕ̃=ϕ−ηD dϕ(θ,ϕ,θS ,ϕS ,nz ) . (4.14)

10: θ̃ = θ−ηG dθ(θ,ϕ,θS ,ϕS ,nd ,nz ) . (4.15)
11: Sample new mini-batches (nd ,nz ); do update:
12: ϕ=ϕ−ηD dϕ(θ̃,ϕ̃,θS ,ϕS ,nz ) . (4.14)
13: θ = θ−ηG dθ(θ̃,ϕ̃,θS ,ϕS ,nd ,nz ) . (4.15)
14: end for
15: end for
16: Output: ϕ,θ

provide convergence guarantees for Alg. 6 and leave its analysis for future work. However, it is

interesting that, to our knowledge, this algorithm is the only stochastic algorithm (excluding

batch extragradient as it is not stochastic) that converge for (4.1). Note that we tried all the

algorithms presented in Fig. 3 from [Gidel et al., 2019] on this unconstrained problem and that

all of them diverge.

4.4 Pseudocode for SVRE-GAN and SVRG-GAN

In order to cope with the issues introduced by the stochastic game formulation of the GAN

models, we proposed the SVRE algorithm, described in Alg. 3, which combines SVRG and ex-

tragradient method. We refer to the method of applying SVRE to train GANs as the SVRE-GAN

method, and we describe it in detail in Alg. 4 (generalizing it with mini-batching, but using uni-

form probabilities). Assuming that we have D[nd ] and Z [nz ], respectively two mini-batches

of size B of the true dataset and the noise dataset, we compute ∇ϕL D (θ,ϕ,D[nd ],Z [nz ])

and ∇θL G (θ,ϕ,Z [nz ]) the respective mini-batches gradient of the discriminator and the

generator:

∇ϕL D (θ,ϕ,D[nd ],Z [nz ]) := 1

|nz |
1

|nd |
∑

i∈nz

∑
j∈nd

∇ϕL D (θ,ϕ,D j ,Zi ) (4.12)

∇θL G (θ,ϕ,Z [nz ]) := 1

|nz |
∑

i∈nz

∇θL G (θ,ϕ,Zi ) , (4.13)

where Zi and D j are respectively the i th example of the noise dataset and the j th of the true

dataset. Note that nz and nd are lists and thus that we allow repetitions in the summations
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Algorithm 5 Pseudocode for SVRG-GAN.

1: Input: dataset D, noise dataset Z (|Z | = |D| = n), stopping iteration T , learning rates
ηD ,ηG , generator loss L G , discriminator loss L D , mini-batch size B.

2: Initialize: ϕ, θ
3: for e = 0 to T−1 do
4: ϕS =ϕ and µϕ = 1

n

∑n
i=1

∑n
j=1∇ϕL D (θS ,ϕS ,D j ,Zi )

5: θS = θ and µθ = 1
n

∑n
i=1∇θL G (θS ,ϕS ,Zi )

6: N ∼ Geom
(
B/n

)
(length of the epoch)

7: for i = 0 to N−1 do
8: Sample new mini-batches (nd ,nz ); do update:
9: ϕ=ϕ−ηD dϕ(θ,ϕ,θS ,ϕS ,nz ) . (4.14)

10: θ = θ−ηG dθ(θ,ϕ,θS ,ϕS ,nd ,nz ) . (4.15)
11: end for
12: end for
13: Output: ϕ,θ

over nz and nd . The variance reduced gradient of the SVRG method are thus given by:

dϕ(θ,ϕ,θS ,ϕS ) :=µϕ+∇ϕL D (θ,ϕ,D[nd ],Z [nz ])−∇ϕL D (θS ,ϕS ,D[nd ],Z [nz ]) (4.14)

dθ(θ,ϕ,θS ,ϕS ) :=µθ+∇θL G (θ,ϕ,Z [nz ])−∇θL G (θS ,ϕS ,Z [nz ]) , (4.15)

where GS and DS are the snapshots and µϕ and µθ their respective gradients.

Alg. 4 summarizes SVRE–GAN. To obtain that E
[∇ΘS L (θS ,ϕS , ·)−µ]

vanishes, when up-

dating θ and ϕ where the expectation is over samples of D and Z respectively, we use the

snapshot networks θS and ϕS for the second term in lines 9,10,12 and 13. Moreover, the

noise dataset Z ∼ pz , where |Z | = |D| = n, is fixed. Empirically we observe that directly

sampling from pz (contrary to fixing the noise dataset and re-sampling it before computing

µD and µG ) does not impact the performance, as |Z | is usually high.

Note that the double sum in Line 4 can be written as two sums because of the separability of

the expectations in typical GAN objectives. Thus the time complexity for calculating µϕ is still

O(n) and not O(n2) which would be prohibitively expensive.

Alg. 5 summarizes the SVRG optimization extended to GAN, which we refer to as SVRG-GAN.

Relative to SVRE–GAN, SVRG-GAN does not the compute the extrapolate point θ̃,ϕ̃) of Alg. 4

4.5 Experiments

In this section, we investigate the empirical performance of SVRE and SVRG for GAN train-

ing. Note, however, that our theoretical analysis does not hold for games with non-convex

objectives such as GANs.

Datasets. We used the following datasets: (i) MNIST [Lecun and Cortes, 1998] and FASH-
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Figure 4.2 – Figures a & b. Stochastic, full-batch and variance reduced extragradient op-
timization on MNIST. We used η = 10−2 for SVRE. SE–A with η = 10−3 achieves similar IS
performances as η= 10−2 and η= 10−4, omitted from Fig. a for clarity. Figure c. FID on SVHN,
using shallow architectures. See § 4.5 and § C.5 for naming of methods and details on the
implementation, respectively.

ION-MNIST [Xiao et al., 2017], (ii) CIFAR-10 [Krizhevsky, 2009, §3], (iii) SVHN [Netzer et al.,

2011], and (iv) ImageNet ILSVRC 2012 [Russakovsky et al., 2015], using 28×28, 3×32×32,

3×32×32, and 3×64×64 resolution, respectively.

Metrics. We used the Inception score (IS, Salimans et al., 2016) and the Fréchet Inception

distance (FID, Heusel et al., 2017) as performance metrics for image synthesis. To gain insights

if SVRE indeed reduces the variance of the gradient estimates, we used the second moment

estimate–SME (uncentered variance), computed with an exponentially moving average. See

§ C.5.1 for details. For MNIST we also used the entropy and the total variation metrics, which

are described in § 3.4.

DNN architectures. For experiments on MNIST, we used the DCGAN architectures [Radford

et al., 2016], described in § C.5.2. For real-world datasets, we used two architectures (see

§ C.5.2 for details and § C.5.2 for motivation): (i) SAGAN [Zhang et al., 2018], and (ii) ResNet,

replicating the setup of Miyato et al. [2018], described in detail in § C.5.2 and C.5.2, respectively.

For clarity, we refer the former as shallow, and the latter as deep architectures.

Optimization methods. We conduct experiments using the following optimization meth-

ods for GANs: (i) BatchE: full–batch extragradient, (ii) SG: stochastic gradient (alternating

GAN), and (iii) SE: stochastic extragradient, and (iv) SVRE: stochastic variance reduced

extragradient. These can be combined with adaptive learning rate methods such as Adam

or with parameter averaging, hereafter denoted as –A and AVG–, respectively. In § C.3.1, we

present a variant of Adam adapted to variance reduced algorithms, that is referred to as –VRAd.

When using the SE–A baseline and deep architectures, the convergence rapidly fails at some

point of training (cf. § C.6.3). This motivates experiments where we start from a stored check-

point taken before the baseline diverged, and continue training with SVRE. We denote these

experiments with WS–SVRE (warm-start SVRE).
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Figure 4.3 – Distance to the optimum of (4.11),
see § 4.3.3 for the experimental setup.

SG-A SE-A SVRE WS-SVRE

CIFAR-10 21.70 18.65 23.56 16.77
SVHN 5.66 5.14 4.81 4.88

Table 4.3 – Best obtained FID scores for the
different optimization methods using the
deep architectures (see Table C.6, § C.5.2).
WS–SVRE starts from the best obtained
scores of SE–A. See § C.5 and § C.6 for im-
plementation details and additional results,
respectively.

4.5.1 Results

Comparison on MNIST. The MNIST common benchmark allowed for comparison with full-

batch extragradient, as it is feasible to compute. Fig. 4.2 depicts the IS metric while using

either a stochastic, full-batch or variance reduced version of extragradient (see details of

SVRE-GAN in § 4.4). We always combine the stochastic baseline (SE) with Adam, as proposed

by Gidel et al. [2019]. In terms of number of parameter updates, SVRE performs similarly to

BatchE–A (see Fig. C.1a, § C.6). Note that the latter requires significantly more computation:

Fig. 4.2a depicts the IS metric using the number of mini-batch computations as x-axis (a

surrogate for the wall-clock time, see below). We observe that, as SE–A has slower per-iteration

convergence rate, SVRE converges faster on this dataset. At the end of training, all methods

reach similar performances (IS is above 8.5, see Table C.7, § C.6). Fig. 4.4 compares SVRG-GAN

with batch-gradient and stochastic-gradient, and in Fig 4.5 shows samples of SVRG-GAN

trained on (Fashion) MNIST.

Computational cost. The relative cost of one pass over the dataset for SVRE versus vanilla

SGD is a factor of 5: the full batch gradient is computed (on average) after one pass over the

dataset, giving a slowdown of 2; the factor 5 takes into account the extra stochastic gradient

computations for the variance reduction, as well as the extrapolation step overhead. However,

as SVRE provides less noisy gradient, it may converge faster per iteration, compensating the

extra per-update cost. Note that many computations can be done in parallel. In Fig. 4.2a, the

x-axis uses an implementation-independent surrogate for wall-clock time that counts the

number of mini-batch gradient computations. Note that some training methods for GANs

require multiple discriminator updates per generator update, and we observed that to stabilize

our baseline when using the deep architectures it was required to use 1:5 update ratio of G :D

(cf. § C.6.3), whereas for SVRE we used ratio of 1:1 (Tab. 4.3 lists the results).

Second moment estimate and Adam. Fig. 4.2b depicts the averaged second-moment es-

timate for parameters of the Generator, where we observe that SVRE effectively reduces it

over the iterations. The reduction of these values may be the reason why Adam combined

with SVRE performs poorly (as these values appear in the denominator, see § C.3.1). To our
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4.5. Experiments

knowledge, SVRE is the first optimization method with a constant step size that has worked

empirically for GANs on non-trivial datasets.

Comparison on real-world datasets. In Fig. 4.2c, we compare SVRE with the SE–A baseline

on SVHN, using shallow architectures. We observe that although SE–A in some experiments

obtains better performances in the early iterations, SVRE allows for obtaining improved final

performances. Tab. 4.3 summarizes the results on CIFAR-10 and SVHN with deep architec-

tures. We observe that, with deeper architectures, SE–A is notably more unstable, as training

collapsed in 100% of the experiments. To obtain satisfying results for SE–A, we used various

techniques such as a schedule of the learning rate and different update ratios (see § C.6.3).

On the other hand, SVRE did not collapse in any of the experiments but took longer time to

converge compared to SE–A. Interestingly, although WS–SVRE starts from an iterate point

after which the baseline diverges, it continues to improve the obtained FID score and does not

diverge. See § C.6 for additional experiments.
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Figure 4.4 – SVRG-GAN experiments on MNIST. “SGD–Adam” denotes stochastic-gradient
with Adam, whereas “GD” denotes batch gradient. SVRG denotes full SVRG-GAN (Alg. 5),
whereas with “D:SVRG, G:Adam” we denote a variant of it where we use variance reduced
gradient only for the discriminator. Excluding batch-gradient, the mini-batch size B = 50 for
the rest of the experiments.

(a) MNIST (b) Fashion-MNIST

Figure 4.5 – Generated samples of SVRG-GAN trained on MNIST and FASHION-MNIST.
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4.6 Related work

Surprisingly, there exist only a few works on variance reduction methods for monotone op-

erators, namely from Palaniappan and Bach [2016] and Davis [2016]. The latter requires a

co-coercivity assumption on the operator and thus only convex optimization is considered.

Our work provides a new way to use variance reduction for monotone operators, using the

extragradient method [Korpelevich, 1976]. Recently, Iusem et al. [2017] proposed an extra-

gradient method with variance reduction for an infinite sum of operators. The authors use

mini-batches of growing size in order to reduce the variance of their algorithm and to converge

with a constant step-size. However, this approach is prohibitively expensive in our application.

Moreover, Iusem et al. are not using the SAGA/SVRG style of updates exploiting the finite sum

formulation, leading to sublinear convergence rate, while our method benefits from a linear

convergence rate exploiting the finite sum assumption.

Daskalakis et al. [2018] proposed a method called Optimistic-Adam inspired by game theory.

This method is closely related to extragradient, with slightly different update scheme. More

recently, Gidel et al. [2019] proposed to use extragradient to train GANs, introducing a method

called ExtraAdam. This method outperformed Optimistic-Adam when trained on CIFAR-10.

Our work is also an attempt to find principled ways to train GANs. Considering that the game

aspect is better handled by the extragradient method, we focus on the optimization issues

arising from the noise in the training procedure, a disregarded potential issue in GAN training.

In the context of deep learning, despite some very interesting theoretical results on non-convex

minimization [Reddi et al., 2016, Allen-Zhu and Hazan, 2016], the effectiveness of variance

reduced methods is still an open question, and a recent technical report by Defazio and Bottou

[2018] provides negative empirical results on the variance reduction aspect. In addition, two

recent large scale studies showed that increased batch size has: (i) only marginal impact

on single objective training [Shallue et al., 2018] and (ii) a surprisingly large performance

improvement on GAN training [Brock et al., 2019]. In our work, we are able to show positive

results for variance reduction in a real-world deep learning setting. This unexpected difference

seems to confirm the remarkable discrepancy, that remains poorly understood, between

multi-objective optimization and standard minimization.

4.7 Discussion and future directions

Conclusion. Motivated by a simple bilinear game optimization problem where stochasticity

provably breaks the convergence of previous stochastic methods, we proposed the novel SVRE

algorithm that combines SVRG with the extragradient method for optimizing games. On

the theory side, SVRE improves upon the previous best results for strongly-convex games,

whereas empirically, it is the only method that converges for our stochastic bilinear game

counter-example.

We empirically observed that SVRE for GAN training obtained convergence speed similar to
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Batch-Extragradient on MNIST, while the latter is computationally infeasible for large datasets.

For shallow architectures, SVRE matched or improved over baselines on all four datasets. Our

experiments with deeper architectures show that SVRE is notably more stable with respect

to hyperparameter choice. Moreover, while its stochastic counterpart diverged in all our

experiments, SVRE did not.

However, we observed that SVRE took more iterations to converge when using deeper architec-

tures, though notably, we were using constant step-sizes, unlike the baselines which required

Adam. As adaptive step-sizes often provide significant improvements, developing such an

appropriate version for SVRE is a promising direction for future work. In the meantime, the

stability of SVRE suggests a practical use case for GANs as warm-starting it just before the base-

line diverges, and running it for further improvements, as demonstrated with the WS–SVRE

method in our experiments.

Results with deep nets & future directions. In summary, we observe the following most

important advantages of SVRE when using deep architectures: (i) consistency of convergence,

and improved stability; as well as (ii) reduced number of hyperparameters. Apart from

the practical benefit for applications, the former could allow for a more fair comparison of

GAN variants. The latter refers to the fact that SVRE omits the tuning of the sensitive (for the

stochastic baseline)β1 hyperparameter (see (C.46)), as well as r andγ–as training converges for

SVRE without using different update ratio and step size schedule, respectively. It is important

to note that the stochastic baseline does not converge when using constant step size (i.e. when

SGD is used instead of Adam). In our experiments we compared SVRE that uses constant step

size, with Adam, making the comparison unfair toward SVRE. Hence, our results indicate that

SVRE can be further combined with adaptive step size schemes, so as to obtain both stable

GAN performances and fast convergence when using these architectures. Nonetheless, the

fact that the baseline either does not start to converge or it diverges later makes SVRE and

WS–SVRE a promising approach for practitioners using these deep architectures, whereas, for

shallower ones, SVRE speeds up the convergence and often provides better final performances.
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5 Deep Multi-Camera People Detection

This chapter addresses the problem of multi-view people occupancy map estimation. Existing

solutions either operate per-view or rely on a background subtraction pre-processing. Both

approaches decrease the detection performance as scenes become more crowded. The former

does not exploit joint information, whereas the latter deals with ambiguous input due to the

produced foreground blobs becoming increasingly interconnected as the number of targets

increases. Although deep learning algorithms have proven to excel on remarkably numerous

computer vision tasks, such a method has not been applied yet to this problem. In large part,

this is due to the lack of a large-scale multi-camera data-set.

The core of our method is an architecture which makes use of monocular pedestrian dataset,

available at a larger scale than the multi-view ones, applies parallel processing to the multiple

video streams, and jointly utilizes it. Our end-to-end deep learning method outperforms

existing methods by large margins on the commonly used PETS 2009 data-set. Furthermore,

we make publicly available a new three-camera dataset.

Related publication:

• T. Chavdarova and F. Fleuret, Deep Multi-Camera People Detection, in Proceedings of the

IEEE International Conference on Machine Learning and Applications (ICMLA), 2017

5.1 Introduction

Due to the high demand in applications, pedestrian detection differentiated itself as a separate

class from object detection, enjoying separate attention from the research community. In spite

of recent advances, performance of monocular methods remains limited due to the occlusions

that often occur among the individuals. Multi-camera approaches offer a promising extension

to resolve the one-view detection ambiguities, provided that the multi-stream information

is used jointly to yield the detection estimation. In this chapter, we confine our discussion

to a set-up of either a single calibrated static camera, or several synchronized cameras with
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C1 C2

1

Figure 5.1 – Illustration of the people occupancy map estimation problem in a static camera
setup. As an example we depict two cameras and the area is discretized into a 10×10 grid cells,
thus following the notation in the text: C=2, G=100.

overlapping fields of view.

Surprisingly, currently only few multi-view methods jointly utilize the information across

views, herein referred to as joint methods. Each of the existing joint methods performs

background subtraction pre-processing of the input images, where the goal is to segment the

moving objects out of the background, while taking into account pixel-wise time consistency.

There exist a vast catalog of background-subtraction methods, specific to certain applications

or even illumination regimes, which are often shown to be difficult to tune, error-prone and

noisy. Regarding multi-camera people detection in particular, these segmenting methods

introduce ambiguities when the foreground blobs are highly interconnected, hence limiting

the success of the joint methods to less-crowded applications. Also, apart from persons, other

moving objects are being segmented as well.

On the other hand, state of the art monocular detectors leverage the full signal either by using a

deep Convolutional Neural Network (CNN), or by building predictors on top of “deep features”

extracted by such a network. Surprisingly, the multi-view occupancy map estimation problem

has not been re-visited to incorporate these outperforming methods.

Quite the contrary, the ongoing research on multi-camera people detection incorporates hand-

crafted features, whereas to the best of our knowledge real-world industrial applications use

monocular CNN pedestrian detector, and yield the final estimation by averaging the separate

per-view ones. We presume that this is mostly due to the non-existence of a large-scale

multi-camera dataset which would allow for training a multi-input architecture.

As a solution, we propose a method which consists of: (i) fine-tuning a state of the art object

detection network on monocular pedestrian detection; (ii) combining several instances of

the early layers of that network into a multi-view deep network whose outer layers are trained

for multi-view appearance-based joint detection on relatively smaller multi-camera dataset.

Our proposed architecture allows for processing the input from the separate views in parallel,

and the subsequent interconnection layers allow for automatically learning how features

across different views map into each other. In this chapter, we focus on per-frame processing,

whereas utilising time consistency could be a further extension.
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In summary, we: (i) propose the first full deep learning multi-camera people detector; (ii) we

empirically demonstrate the superiority of such a method; and we (iii) provide a new three-

-view dataset with fairly more accurate calibration in terms of consistency of a projection

across all of the views.

The monocular methods overview in § 5.2 is of those methods which utilize deep learning,

whereas a complete overview is given for the more closely related methods to this work - the

joint multi-camera people detectors. The problem on which this chapter focuses is formally

stated in § 5.3, where we also introduce the multi-view architecture that we propose. Our

empirical evaluation presented in § 5.4 demonstrates the encouraging superiority of the deep

multi-view detection, and also gives insights about practical considerations which arise.

5.2 Related work

5.2.1 Deep monocular pedestrian detection

Applying the R-CNN algorithm [Girshick et al., 2013] to monocular pedestrian detection [Hosang

et al., 2015] exceeded the state of the art methods at that time on the Caltech pedestrian

dataset [Dollar et al., 2009], being the first demonstration that CNNs are well-suited to the

task. Later it was shown that the explicit dealing with pedestrian occlusions, by fine-tuning

a separate fully convolutional network for sub-parts of the bounding boxes, provides a 50%

relative improvement [Tian et al., 2015]. On top of the part-designated CNNs the authors

employ a linear SVM, sparsified to reduce the computational load.

Cai et al. [2015] propose a Boosting algorithm, which merges the proposal generation and

the detection steps. The cascade learning is formulated as Lagrangian optimisation of a

risk accounting for both accuracy and complexity, and integrates both hand-crafted and

convolutional features. The downstream classifier of the extension of R-CNN known as Faster

R-CNN [Ren et al., 2015] was recently shown to degrade the performance, and it was proposed

to be replaced by boosting forests [Zhang et al., 2016]. The resulting method does not use

hand-crafted features and reaches state of the art accuracy.

5.2.2 Multi-view occupancy map estimation methods

The first method which uses multi-view streams jointly is the Probabilistic Occupancy Map

(POM), proposed by Fleuret et al. [2008]. Based on a crude generative model, it estimates

the probabilities of occupancy through mean-field inference, naturally handling occlusions.

Further, it can be combined with a convex max-cost flow optimization to leverage time con-

sistency [Berclaz et al., 2009]. Alahi et al. [2011] re-casted the problem as a linear inverse,

regularized by enforcing a sparsity constraint on the occupancy vector. It uses a dictionary

whose atoms approximate multi-view silhouettes. To elevate the need of O-Lasso compu-

tations, Golbabaee et al. [2014] derived a regression model which includes solely Boolean
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Figure 5.2 – The input to the model when estimating qp consists of the cropped regions Ap of
It (see § 5.3.1). The illustrated example is in-line with the one in Fig. 5.1.

arithmetic and sustains the sparsity assumption of [Alahi et al., 2011]. In addition, the iterative

method is replaced with a greedy algorithm based on set covering.

In [Peng et al., 2015] the occlusions are explicitly modeled per view by a separate Bayesian

Network, and a multi-view network is then constructed by combining them, based on the

ground locations and the geometrical constraints. Although considering crowd analysis, the

multi-view image generation of [Ge and Collins, 2010] is with a stochastic generative process

of random crowd configurations, and then maximum a posteriori (MAP) estimate is used to

find the best fit with respect to the image observations.

All of these methods utilise background subtraction pre-processing.

5.3 Deep Multi-View People Detection

5.3.1 Problem definition

We discretize the area common to the fields of view of C cameras in a regular grid of G points

or interchangeably - cells (Fig. 5.1). To estimate the occupancy of a cell p, we consider a

cylinder centred at the pth position, whose height corresponds to the one of the humans’

average height. We use the cameras’ calibration to obtain the cylinder’s projections into the

views where it is visible. These rectangular projections yield the cropped regions Ap of It , as

illustrated in Fig. 5.2.

At each time step t we are given a set of images It =I 1
t , . . .I C

t taken synchronously. Hence,

given sub-images cropped for a particular position p = 1, . . . ,G in the separate views Ap =(
A 1

p , . . . ,A C
p

)
, we aim at estimating the probability of it being occupied, that is,

qp = p(Xp = 1 | Ap ),

where Xp on {0,1} stands for the position p being free and occupied, respectively. In the

following, let I be the set of all possible cropped sub-images.
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Figure 5.3 – Input occlusion masks. Among these, the first one represents no occlusion. As the
arrows indicate, their width and/or height are restrictively randomized within a margin.

5.3.2 Method

Ideally, given a large scale multi-camera dataset, a multi-stream processing model can be

directly trained. However, due to the lack of such dataset, as well as the fact that in practice the

annotated data is often scarce, the method we propose takes advantage of the existing larger

monocular pedestrian dataset Caltech [Dollar et al., 2009] what allows for better generalization.

Monocular fine-tuning with input-dropout

Primarily, to learn discriminative features of the pedestrian class, we train a CNN on monocu-

lar pedestrian binary classification. To ease the training procedure we recommend starting

from a pre-trained object detection CNN. In particular, in our experiments we used either

GoogLeNet [Szegedy et al., 2015] or AlexNet [Krizhevsky et al., 2012], trained on ImageNet [Rus-

sakovsky et al., 2015] and we replaced the last fully connected layer with a randomly initialized

one with two output units. We then fine-tune the resulting network on the Caltech dataset

(see § 5.4.1).

Experimental results on monocular pedestrian detection indicate that state of the art detection

accuracy is achieved by explicitly dealing with the occlusions (for example by detecting parts

of the body), as explained in § 5.2.1. As we shall see in the following sections, the multi-

view architecture finally contains components initialized with the weights of the monocular

detector. Hence, it is necessary that the robustness to occlusion of the model is implemented

efficiently. Thus, we propose a novel technique dubbed input dropout, which consists in

augmenting the input data by artificially masking part of the signal. While this procedure is

adapted to the morphology of the positive class, it has to be carried out on both the positive

and the negative samples while training, so as to avoid providing erroneous discriminative

cues.

In our experiments in particular we defined 7 rectangular occluding masks–#1 being “no

occlusion at all”–(Fig. 5.3), and for each sample, negative or positive, we pick one of the masks

uniformly at random, and replace the pixel it masks with white noise. As for drop-out, this

“input drop-out” forces the network toward greater redundancy between representations.

59



Chapter 5. Deep Multi-Camera People Detection
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Figure 5.4 – Multi-view joint occupancy estimation. The input is illustrated on the left; followed
by the multi-view architecture consisting of two conceptual partsΨ andΦ (§ 5.3.2); and on the
rightmost side a top-view grid of the predictions is plotted where a coloured cell represents a
detection.

Multi-camera architecture

Given a CNN monocular detector, we retain d of its layers, resulting in an embeddingψ : I →RQ ,

where Q is the number of output units of the dth layer. The concatenation of C such embed-

dings is a multi-view embedding Ψ : I C →RCQ , on top of which we train a binary classifier

Φ :RCQ →R2, as illustrated in Fig. 5.4.

Type of classifier of Φ. Particular object seen from different perspectives/cameras can be

discriminated both with features which are consistent across views: e.g. color; and with

features that differ across the views: for example a line curved to the left would be curved to

the right viewed from the opposite side. The former is more likely when the two cameras are

quite close to each other, and the latter in the opposite case. The goal of Φ is to learn how

features from different views map to each other. Thus, a natural choice for φ is a multi-layer

perceptron (MLP), in aim to "wire together what fires together". In our experiments the output

ofΨ is flattened, andΦ is a MLP, and also for demonstrative analysisΦ is sometimes a (forest

of) decision tree(s).

Full or partial fine-tuning. To allow the embedding to capture cues discarded for monocular

detection but which are informative for multi-view, the complete multi-stream architecture,

that is both Ψ and Φ, can be trained, when the latter is differentiable. On the other hand,

keepingΨ fixed makes the capacity of the predictor family low, and hence prevents over-fitting

when the training multi-view dataset is small, e.g. in the order of few hundreds of examples.

Given the size of the datasets we have used, this approach performed worse than keepingΨ

fixed.
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Non Maxima Supression (NMS)

This step selects the final detections so that out of those candidates overlapping more then

a predefined threshold in a particular view, only one remains. Differently than standard

implementations, we take into account the detections’ scores, in such a way that the priority

of a detection candidate to be selected is proportional to its detection score.

5.4 Experiments

5.4.1 datasets and metrics

Caltech10x [Dollar et al., 2009]. For monocular training, we use the Caltech-USA pedestrian

dataset and its associated benchmarking toolbox[113]. This set consists of fully annotated 30

Hz videos taken from a moving vehicle in a regular traffic, and as in other recent works, we use

10 fps sampling. This increases the training data to ' 2 ·104 detections. We generate proposals

with the SquaresChnFtrs detector [Benenson et al., 2015], and use as positive examples the

proposals with 0.5 overlap threshold.

PETS 2009 S1 L2 dataset [Ferryman and Shahrokni, 2009]. For comparison with existing

methods we use the PETS 2009 dataset, which is a sequence of 795 frames recorded with seven

static outdoor cameras. As noted by other authors: [Peng et al., 2015, p. 10], or [Ge and Collins,

2010, p. 10], we also observe inconsistencies both in terms of calibration and synchronization.

EPFL-RLC dataset [RLC]. This new corpus was captured with three calibrated HD cameras,

with a frame rate of 60 frames per second. Currently the annotations represent a balanced

set of 4088 multi-view examples. Note that a negative multi-camera example may contain

a pedestrian in one of its views. Thus, for each view the negative samples contain a bit of

annotated information wheter it contains a pedestrian or not. This allows the dataset to be

used for monocular pedestrian training in which case its size is increased three-fold.

Full ground-truth annotations are provided for the last 300 frames of the sequence, intended

to be used for testing while ensuring diversity of the appearance with respect to the training

data. As for future work, we also make available the full sequence of 8000 synchronized frames

of each view.

Metrics. Apart from standard classification measures, we use the Multiple Object Detection

Accuracy (MODA) metric, accounting for the normalized missed detections and false posi-

tives, as well as the Multiple Object Detection Precision (MODP) metric, which assesses the

localization precision [Kasturi et al., 2009]. We also estimate the empirical precision and recall,

calculated by P=T P/(T P+F P ) and R=T P/(T P+F N ) respectively, where: T P , F P , and F N

are true positives, false positives and false negatives, respectively.
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5.4.2 Monocular pedestrian detection

We conducted our experiments using the Torch framework [Collobert et al., 2011], and mainly

GoogLeNet [Szegedy et al., 2015] and AlexNet [Krizhevsky et al., 2012]. The input dimension

for these models are respectively 224×224 and 227×227. As a performance measure we use

the log average miss rate (MR), as it is widely adopted.

When using GoogLeNet, batch size of 64, learning rate 0.005, SGD with momentum 0.9, as

well as a proportion of positive samples per mini-batch of r = 0.33, we observe mean MR of

19.81 (σ=0.58) on the test data when the learning starts to saturate. When input dropout is

applied the mean MR drops to 17.32 (σ=0.75), and further continues to decrease, although

with slight variance. Applying it allowed for reaching MR performances which were never

reached with standard training, and the observed variance suggests that combining it with

more sophisticated learning rate policy can provide further performance gain. When using

AlexNet, the mean MR is 24.04 (σ=0.39), and 22.43 (σ=0.51), without and with input dropout,

respectively.

In summary, we consistently observed performance improvement when using: (i) GoogLeNet,

(ii) square cropping versus warping the region, (iii) proportion of r=0.33 positive samples

per mini-batch, as well as (iv) input dropout (§ 5.3.2). We reduced the MR to 15.61%, which

although is higher than the results reported in [Tian et al., 2015], requires six-fold less compu-

tation and is simpler to implement and deploy.

5.4.3 Multi-camera people detection

In our experiments, we discretize the ground surface of the EPFL-RLC and PETS datasets

to grids of 45×55 and 140×140 positions, respectively. To train the multi-stream model on

the PETS dataset we automatically extract negative examples which outnumber the positive

ones provided by the annotated detections. During one epoch of training, these negatives are

sampled without replacement. Both on EPFL-RLC and PETS datasets we observe improved

performances when training with forced ratio of increased negative samples per mini-batch.

Contrary to the monocular training, we observed no performance drop of training Φ if rectan-

gular input is being used, which is why we extract features with reduced input in the width

dimension by omitting 50 pixels of both sides. In our implementation, we zero-pad the input

of the view for which a particular position is out of its field of view.

Unless otherwise stated, we use MLP with 3 fully connected layers, ReLU non-linearities

and log-softmax. Natural consideration is the use of regularization as intuitively the weight

vector of the fully connected layers would be sparse. We experimented with the p-norm

regularization term: ‖w‖p = (
∑N

i=1 |wi |p )1/p , both with p = 1,2, while using SGD optimization,

but did not observe a substantial improvement. In fact, by visualizing the weights when

training without regularization we observe that major part of the weight vector tends towards

zero, and that the training was more stable.
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We provide bellow an empirical analysis of the impact on performance of some aspects of our

setup.

Training with hard-negative auto-generated examples

Since the EPFL-RLC dataset demonstrates more accurate joint-view calibration then PETS’09

we are able to automatically generate multi-view negative samples which we refer to as hard

negatives and which force Φ to compare the multi-stream extracted features in a way that

generalizes better.

We perform this automatically in two different ways: (i) by shifting the rectangles of a positive

detection in one or two of the views, or (ii) by combining positive detections of different

persons. Training with these hard negatives allows respectively for: (i) sharper detections

in the ground plan, which makes the method less sensitive to the non-maxima suppression

post-processing; as well as (ii) forcing the classifierΦ to learn a stronger joint appearance

model. The former improve localization and the latter to decrease the false positives of the

detector. Note that in the experimental results presented in the following, changing the ratio r

implies changing the difficulty of the classification for this dataset and as we shall see hurts

the accuracy.

From the results illustrated in Fig. 5.5 we observe that training with such negatives improves the

most important MODA metric and reaches almost perfect precision, at the cost of marginally

decreasing the MODP metric, and decreased recall due to the slightly increased number of

missed detections. However, as the camera calibration of the PETS dataset demonstrates

non-negligible joint-camera inconsistency of the projections, we did not experiment with the

multi-view hard negatives for it, to avoid increasing the noise level of the input.
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Figure 5.5 – Impact of training with hard-negative multi-view samples, versus the NMS thresh-
old (x-axis) on the EPFL-RLC dataset.

Monocular Vs. Multi-view classification

We compare performance with and without using multiple views. As the performance using a

MLP forΦ is potentially highly dependent on the persistence of tuning the hyper-parameters

and/or the choice of optimization methods, in this section we use solely random forests forΦ.

63
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For this purpose, we use the accuracy and the ROC while considering all possible (sub)sets

of the available views, both on PETS and EPFL-RLC, as well as for different values of the

proportion r of positive samples. In all experiments, we consistently observe performance

improvement as more views are being added, as illustrated on Fig. 5.6.

Impact of the Selected Layer on the Accuracy

We use GoogLeNet and compare using the first 11, 15, 20 and 23 layers. After flattening the

output of each of the layers, we add fully connected layers, each of 1024, 512 and 2 units. We

experiment with: (i) mini-batch size of: 32, 64, 128; (ii) optimisation technique: SGD w/o

momentum, Adam [Kingma and Ba, 2015], Adadelta [Zeiler, 2012] and RMSPRop [Tieleman

and Hinton, 2012]; as well as (iii) different initial values for the learning rate when necessary.

We run each experiment for 60 epochs on the EPFL-RLC dataset, and we list in Table 5.1

the best test accuracy at that point for each of the selected layers. In the majority of the

experiments we observe best performances using Adadelta or ADAM, and batch size of 64.

Our experiments indicate that the depth of the CNN used as feature extractor does not impact
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ROC - Random Forest, n_estimators=100

view 3 (ACC=77.94%, AUC=0.861387)
view 2 (ACC=76.80%, AUC=0.849325)
view 2, view 3 (ACC=85.95%, AUC=0.935896)
view 1 (ACC=75.82%, AUC=0.836223)
view 1, view 3 (ACC=86.60%, AUC=0.929985)
view 1, view 2 (ACC=83.99%, AUC=0.912570)
view 1, view 2, view 3 (ACC=90.85%, AUC=0.967026)
Random Guess

Figure 5.6 – Accuracy, ROC and AUC on the EPFL-RLC test data, using random forest of 100
trees, with d = 23, r = 0.33 and GoogLeNet (§ 5.4.3).
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much the performance. This is encouraging since shallower structures can be used what

decreases the computation time when the model is deployed.

Multi-view Information

Herein we focus on the question if multi-view joint information exploitation allows for easier

discrimination among the two classes versus monocular classification. To this end, we analyze

if features from the different views are used uniformly, or if features from one of the views

dominate the decision. The most straightforward way to illustrate this is by using a single

decision tree for Φ. Legitimately, we define the importance of a feature in terms of its depth in

the decision tree: the higher, or the closest to the root, the more important a feature is.

We used the EPFL-RLC dataset and GoogLeNet with d = 23, which for the three views provides

us with 3×1024 features. We visit the nodes from the root to the leaves, and count the features

from each view. We find that among the 50, 100 and 150 top-nodes, the numbers of features

from each view are 16/15/19, 36/32/32, and 55/51/44, respectively. This shows that the

classifier exploits the views in quite a balanced manner, what motivates multi-view joint

detection.

5.4.4 Comparison to existing methods on PETS

Finally, in Table 5.2 we compare our method with the current state of the art methods. We refer

as ours when the full PETS sequence is used as testing and the model has never being trained

on it; and as ours-ft the experiments where we divide the sequence to training for fine-tuning

the model, and testing. In the latter we consider all the possible splits to train and test frames,

hence we list the mean and the standard deviation of the particular performance measure

estimated through these multiple folds.

As the results in Table 5.2 show, without data normalization specific to this dataset and without

fine-tuning we outperform the existing methods, what indicates generalization property which

is of interest. These results justify the multiple steps of our approach.

We recall the calibration joint inaccuracy of PETS which becomes more prominent as the

number of used views of it increases. This homograph mapping deterioration originates in

Table 5.1 – Test accuracy on EPFL-RLC, for d layers, proportion r of positive samples per batch
(see § 5.3.2) and with different level of difficulty (see § 5.4.1).

r d = 11 d = 15 d = 20 d = 23

0.50 99.75% 100.00% 99.75% 98.77%
0.33 96.24% 97.05% 96.73% 94.60%
0.25 91.78% 83.57% 83.70% 81.74%
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Table 5.2 – Comparison on the PETS dataset (see § 5.4.4). The views’ enumeration omits the
second view, which was removed from the dataset by its authors.

Method Views MODA MODP Precision Recall

[Peng et al., 2015] 1,4,5,7 0.79 0.74 0.92 0.91

[Ge and Collins, 2010] 1,4,5,7 0.75 0.68 0.85 0.89

Ours-ft 1 0.94 (0.03) 0.61 (0.02) 0.97 (0.02) 0.96 (0.02)

Ours 1 0.88 0.75 0.97 0.91

Ours-ft 1,4,5,7 0.90 (0.05) 0.66 (0.02) 0.94 (0.03) 0.96 (0.02)

Ours-ft 1-7 0.94 (0.02) 0.68 (0.02) 0.98 (0.01) 0.97 (0.02)

part from the presence of a slope in the scene [Peng et al., 2015]. To the best of our knowledge

researchers avoid using the seven views at the same time. Instead, most often reported is

the case of using the views 1,4,5 and 7 (or 1,5,6,8 in the original views’ enumeration). It is

interesting that in our experiments we do not observe performance drop when all of the seven

views are used, and that in fact we observe marginal improvement. This could be due to the

contextual padding that we recommended earlier. Further, the fact that the MODP metric

increases, indicates thatΦ is able to learn these calibration inconsistencies.

Our method outperforms the existing state of the art baselines, largely owing to its ability

to leverage appearance, and to filter out non-human foreground objects that a background-

subtraction procedure may trigger.

5.5 Conclusion and Future Work

Our main contribution is proposing end-to-end deep learning method for the multi-camera

people detection problem whose core is an architecture adapted to make use of existing

monocular datasets as for improved generalisation, and which jointly leverages the multi-

stream deep features. As such it outperforms the existing approaches.

It was shown that: (i) multi-view classification increases the accuracy and the confidence of the

classifier over the monocular case, as well as that (ii) appearance features extracted jointly

from multiple views provide more easily separable embedding that in turn allows for more

accurate classification than the monocular one. We also discussed various implementation

insights.

Given larger scale datasets, extensions such as: (i) more explicit multi-view occlusion rea-

soning; and (ii) training domain-adaptation modules, can further be done. The former

would allow for merging the two steps of generating detection candidates and selecting them,

whereas the latter would allow for easier adaptation for the task at hand while preserving

automatically learnt multi-view features.
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6 WILDTRACK: A Multi-camera HD
Dataset for Dense Unscripted Pedes-
trian Detection

In this chapter, we present a new large-scale and high-resolution dataset named WILDTRACK.

This dataset aims to speed up the development of deep learning methods for the problem

of multi-camera people detection with statically positioned cameras. The most notable ad-

vantages over the existing datasets are a large number of annotated samples and its precise

calibration for which we developed a method to jointly obtain the camera calibration parame-

ters. Moreover, we provide a series of benchmark results using baseline algorithms published

over the recent months for multi-view detection with deep neural networks, and trajectory

estimation using a non-Markovian model. This chapter is based on the following publication:

• T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, T. Bagautdinov, L. Lettry, P. Fua, L.

Van Gool, and F. Fleuret, WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted

Pedestrian Detection, in Proceedings of the IEEE international conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

6.1 Introduction

Pedestrian detection is an important computer vision problem with numerous applications

in security, surveillance, robotics, autonomous driving, and crowdsourcing. The variation of

pedestrians appearance greatly increases the difficulty of this problem. With the availability

of large-scale monocular datasets of annotated pedestrians and the advances in detection

algorithms, the accuracy of the pedestrian detectors has improved significantly in the past few

years. Moreover, modern detection algorithms using deep learning allow us to learn discrimi-

native features which are transferable across datasets. Impressively, recently developed deep

learning based monocular detectors are approaching human-level performance [Zhang et al.,

2016] on common benchmark datasets [Du et al., 2017].

However, many situations of practical interest require detection in highly crowded and clut-
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tered scenes. Severe occlusions make monocular pedestrian detection insufficient in these

scenarios. Luckily, in real-world applications, image feeds from multiple cameras with over-

lapping fields of view are often available. Most commonly, the cameras are positioned slightly

above the average human height. Hence designing pedestrian detectors by exploiting multiple

views and the geometry of the scene will provide reliable detection estimates in crowded

scenes.

Surprisingly, to nowadays standards, there is no large scale and good quality public dataset

that replicate this setup. The most frequently used one, PETS 2009 [Ferryman and Shahrokni,

2009] is only in the order of several hundreds of frames long. The provided camera calibration

is inaccurate which makes it difficult to exploit geometrical constraints jointly. Moreover,

it is recorded in a so-called actor set-up, meaning that throughout the sequence, a very

limited total number of different individuals actually appear. All other standard datasets are

either much shorter and scarcely crowded [Fleuret et al., 2008, Xu et al., 2016, Berclaz et al.,

2011], have a very constrained scenario [Alameda-Pineda et al., 2016] or use non-overlapping

cameras [Ristani et al., 2016].

The lack of such a dataset seriously limits the development of multi-camera detection meth-

ods. Recent improvements made by the community call for a more realistic and challenging

benchmark that could be used to compare multi-camera detection methods. For example,

Chavdarova and Fleuret [2017] show that utilizing the multi-camera input for deep learning

based detectors improves both the accuracy and the classification confidence. However, these

methods are severely limited by the lack of a large-scale dataset to train on without over-fitting.

As a direct consequence, most of the existing joint methods use ad-hoc techniques to combine

information extracted using pre-trained monocular detectors.

To help in accelerating the research on methods taking advantage of the multi-camera set-ups,

we introduce a large-scale person dataset acquired with seven static cameras, with overlapping

fields of view. It captures a realistic unscripted scenario where pedestrians often occlude each

other. We provide a very precise joint (extrinsic and intrinsic) calibration and synchronization

of sequences from the 7 views as well as 7 series of 400 annotated frames for detection at a rate

of 2 frames per second. This results in over 40000 bounding boxes delimiting every person

present in the area of interest, for a total of more than 300 individuals. The annotations of the

individual tracks are provided both as 3D locations on the ground plane and 2D bounding-

boxes projected in each of the 7 views. Although our dataset is designed to benchmark 3D

multi-camera detection, it can also be used for monocular detection. In the monocular case,

the size of our dataset increases seven-fold which makes it comparable to the widely used

Caltech-USA dataset [Dollar et al., 2009]. Compared to the latter, our dataset has much higher

image resolution.

We make the source code of our web-based annotation platform public in order to encourage

other researchers to collect and annotate other multi-camera datasets. Finally, we also provide

annotations for evaluating camera calibration methods.
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This paper is organized as follows: in Section 6.2 we make a review of multi-camera person

datasets and related methods. Section 6.3 enumerates details of the new dataset, including

our camera calibration procedure. We benchmark several state-of-the-art multi-camera

detection methods in Section 4.5 and finally in Section 6.5 we present potential future research

directions.

6.2 Related work

6.2.1 Datasets

Table 6.1 – Commonly used person datasets with a focus on the multi-camera ones. FPS, pos
and imp stand for frames per second, positive images and image pairs, respectively. Where
applicable, with ’+’ we denote the pre-defined splits to train and test data. See § 6.2.1.

Dataset Resolution Cam
era

s

FPS
M

obile
/S

ta
tic

Overla
ppin

g

Vid
eo

IDs Annotations Size/Duration
INRIA [31] high n/a n/a n/a n/a No - 1200+566 614+288 pos.
ETH [43, 44] (5 seq.) 640×480 1‡ 15 M n/a Yes - 2853 (∼4fps) & 10398 (15fps) 4203 frames

TUD-Brussels [149]
7720×576;
640×480;

1 1 M n/a Yes - 1776+1326 (pos.) 1092+508 pos.imp.

Daimler [42] 640×480 1∗ n/a M n/a No n/a 2400+1600 -
Daimler-stereo [81] 640×480 1∗‡ 15 M n/a Yes - 3915 15600+56500
Caltech-USA [38] 640×480 1 30 M n/a Yes - ∼2·104(10fps)+1·103(1fps) ∼10 hours
KITTI [51] 1392×512 4†‡ 10 M n/a Yes - 194+195 imp. 7 min.
APIDIS [35] 1600×1200 7 22 S Yes Yes 12 86870 (25fps) 1 min.

PETS 2009 [46]
768×576;
720×576;

7 7 S Yes Yes 19 4650 (7fps) 795 frames

DukeMTMC [123] 1920×1080 8 60 S No Yes ∼2000
4077132 (60fps);
9668 trajectories.

85 min.

Laboratory [47] 320×240 4 25 S Yes Yes 6 476 (1fps) 2.5 min.
Terrace [47] 320×240 4 25 S Yes Yes 9 1023 (1fps) 3.5 min.
Passageway [47] 320×240 4 25 S Yes Yes 13 226 (1fps) 20 min.
Campus [153] 1920×1080 4 25 S Yes Yes 25 240 (1fps) 4×4 min.
SALSA [5] 1024×768 4 15 S Yes Yes 18 1200 (0.3fps) 60 min.
EPFL-RLC [23] 1920×1080 3 60 S Yes Yes - ∼3×2044a.+300frames 8000 frames
WILDTRACK [25] 1920×1080 7 60 S Yes Yes 313 ∼7×9518 (2fps) ∼60 min.

* No color channels.
† 2 color and 2 grayscale cameras.
‡ Stereo camera(s).

In Table 6.1 we list the commonly used pedestrian datasets with a focus on the multi-camera

ones. For a more exhaustive listing of the monocular datasets, we refer the reader to [Dollar

et al., 2012, chap. 2.4]. As overlapping we refer to multi-camera datasets whose camera’s fields

of view strictly overlap. The DukeMTMC [Ristani et al., 2016] dataset does not belong to this

category, as only 2 of its camera’s fields of view slightly overlap.

The most widely used dataset with an overlapping camera set-up is the PETS 2009 S2.L1

[Ferryman and Shahrokni, 2009] sequence. In part due to the presence of a slope in the scene,

the provided calibration poses large homography mapping deterioration and inconsistencies

when projecting 3D points across the views (as noted also in [Peng et al., 2015, p. 10], [Ge

and Collins, 2010, p. 10], [Chavdarova and Fleuret, 2017, p. 3]). Besides being a small scale

dataset, the PETS 2009 S2.L1 is acquired in an actor set-up. Hence it does not allow for good

generalization and fair benchmarking of appearance-based methods.
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The three sequences shot at the EPFL campus [Fleuret et al., 2008]: Laboratory, Terrace and

Passageway, as well as SALSA [Alameda-Pineda et al., 2016] and Campus [Xu et al., 2016]

are overlapping multi-camera datasets as well. However, they have a small number of total

identities and are relatively sparsely crowded. As we can see from Table 6.1, Laboratory,

Terrace and Passageway are of small size and low image quality. In SALSA [Alameda-Pineda

et al., 2016], a cocktail party of 30 minutes is recorded, where the people are static most of the

time, making this dataset less challenging for tracking. Finally, Campus does not provide the

annotations of the 3D locations of the people.

The EPFL-RLC [Chavdarova and Fleuret, 2017] dataset demonstrates improved joint-calibration

accuracy and synchronization compared to PETS. However, rather than providing a complete

ground-truth, this dataset represents a collection of a balanced set of positive and negative

multi-view annotations and is used for classification of a position as occupied by a pedestrian

or not. Full ground-truth annotations are provided solely for a small subset of the last 300 of

the total 8000 frames, originally used for testing [Chavdarova and Fleuret, 2017]. Moreover, in

comparison to ours, it is acquired with only three cameras which have a much more limited

field of view. This results in a ∼10-fold smaller number of detections per frame on average.

Hence, WILDTRACK improves upon other multi-camera person datasets thanks to: (i) the high

precision calibration and synchronisation between the cameras (see § 6.3.2), (ii) the large

number of annotations that allows for developing deep learning based multi-view detectors.

With regard to the state-of-the-art monocular datasets [Dollar et al., 2009]: (i) it exceeds the

total number of annotations; and (ii) the regions of interest (ROIs) are of significantly larger

resolution.

6.2.2 Methods

Probabilistic Occupancy Map method (POM) [Fleuret et al., 2008] is a generative model which

estimates the probabilities of occupancy on the ground plane by exploiting the geometrical

constraints from multiple views. POM is formulated in the framework of mean-field inference

which naturally handles the occlusions. To leverage time consistency it can be combined with

a convex max-cost flow optimization [Berclaz et al., 2009] for tracking.

In [Alahi et al., 2011], multi-view detection is re-casted as a linear inverse problem. Their

model is regularized by enforcing a sparsity constraint on the occupancy vector. It uses a

dictionary whose atoms approximate multi-view silhouettes. To alleviate the need for the time

demanding Lasso-based [Candès et al., 2008] computations, a regression model is derived by

[Golbabaee et al., 2014]. This model solely comprises of Boolean arithmetic and sustains the

sparsity assumption of [Alahi et al., 2011]. In addition, the iterative method of [Alahi et al.,

2011] is replaced with a greedy algorithm based on set covering.

In [Peng et al., 2015] the occlusions are modeled explicitly per view by a separate Bayesian

Network. A multi-view network is then constructed by combining them, based on the ground
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locations and the geometrical constraints.

Considering crowd analysis, in [Ge and Collins, 2010] the multi-view image generation is

modeled with a stochastic generative process of random crowd configurations and then

maximum a posteriori (MAP) estimate is used to find the best fit with respect to the image

observations.

The Deep Multi-camera Detection (DeepMCD) [Chavdarova and Fleuret, 2017] method which

integrates CNN features demonstrated state-of-the-art results and showed that the accuracy

and the confidence of a CNN classifier increase as more views are used. To mitigate the data

requirement problem and improve generalization, the authors first used the larger monocular

dataset Caltech [Dollar et al., 2009] to train a base network. The multi-view CNN architecture

is adapted so as to use the weights from the base network and produces joint estimates by

processing the multi-view streams in parallel. To increase the sharpness and the localization

accuracy, [Chavdarova and Fleuret, 2017] also proposes two particular schemes of multi-view

hard negative mining to train such a model.

The Deep-Occlusion Reasoning method [Baque et al., 2017] uses a joint CNN-CRF architecture

and Mean-Fields inference to produce a Probabilistic Occupancy Map (POM) as in [Fleuret

et al., 2008] while leveraging discriminative features extracted by a CNN. It introduces a Higher

Order CRF, where unary potentials are produced by ROI pooling CNN [Ren et al., 2015]. Higher-

order potentials are computed as a measure of the consistency between pixel labels produced

by a fully convolutional network and a generative model which accounts for geometry and

occlusions.

Figure 6.1 – Synchronized corresponding frames from the seven views. Four GoPro Hero 3
and three GoPro Hero 4 were used, frames of which are shown in the top and bottom row,
respectively.

Tracking multiple objects in multiple overlapping cameras, as well as tracking in a single view,

mostly follows the tracking-by-detection paradigm [Andriluka et al., 2008]. However, due to the

scarcity of datasets with multiple overlapping cameras, tracking multiple objects in multiple

overlapping cameras has received relatively little attention compared to tracking from a single

view. For example, 3DMOT2015 benchmark [Leal-Taixé et al., 2015] for 3D tracking lists only a

couple methods that exceed a simple linear programming baseline that was proposed with
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the benchmark. Leal-Taixé et al. [2011] model the motion of people using social forces, and

solves a linear program to estimate the tracks over the whole sequences. Klinger et al. [2017]

use joint probabilistic data association for online tracking. The approach of [Berclaz et al.,

2011] can be used both for regularizing detections and tracking. It formulates tracking as a

problem of finding K-Shortest paths in a graph of detections.

Some of the recently proposed approaches, such as [Milan et al., 2017] or [Sadeghian et al.,

2017] can be applied for multiple object tracking in 3D. [Milan et al., 2017] learns weights

of the Recurrent Neural Network (RNN) to predict the motion of objects for data associa-

tion. [Sadeghian et al., 2017] learns several RNNs to combine motion, appearance, and social

information throughout time for data association. While both of these approaches could

be trained for 3D scenes, combining the appearance information from multiple cameras

for [Sadeghian et al., 2017] is non-trivial. Training the model of [Milan et al., 2017] requires a

lot more annotated data than what is currently available for 3D tracking. A recently proposed

approach by Maksai et al. [2017] can be used as a post-processing step to improve the results

of other tracking approaches by learning the patterns of human motion in specific scenes and

modifying the tracks to follow such patterns.

6.3 The dataset

6.3.1 Hardware and data acquisition

Hardware. The dataset was recorded using seven statically positioned HD cameras. In

particular, we used four GoPro Hero 3 and three GoPro Hero 4 cameras (Fig. 6.1). All the seven

sequences are of resolution 1920×1080 pixels and were recorded with a frame rate of 60 frames

per second (fps). The synchronization between the seven sequences was obtained with ∼50

ms accuracy (the precision of which can be observed in Fig. 6.4).

Camera placement and layout. The camera layout is highly overlapping as shown in Fig. 6.1,

and the cameras are positioned above the humans’ average height. In Fig. 6.2 we illustrate

from a top view perspective the amount of overlap between the fields of view of the cameras,

where the darker the shading, the higher the number of cameras that capture that area. To

obtain this illustration, we considered points on the ground plane and counted the number

of cameras for which a given point is in their field of view. The circles in Fig. 6.2 denote the

position of the cameras.

Data acquisition. The data acquisition took place in front of the main building of the univer-

sity ETH Zurich in Switzerland, during nice weather conditions.
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Figure 6.2 – The overlap be-
tween the cameras’ fields of
view (top view). See § 6.3.1.

View 1 View 2 View 3 View 4

View 5 View 6 View 7 All views

Figure 6.3 – Percentage of examples that are occluded within
certain range: x-axis–range of normalized occlusion, y-axis
percentage of examples within that range. See § 6.3.4.

6.3.2 Calibration of the cameras

To calibrate the cameras we used the Pinhole camera model [Wikipedia, 2017], due to its

widespread usage and support in multiple libraries, including OpenCV [Bradski, 2000]. Primar-

ily, we obtained the intrinsic and the extrinsic parameters, and for the latter, we used points

on the ground whose distance was measured by hand.

We put a major focus on providing jointly optimal 3D reconstruction between the cameras. To

this end, we manually annotated precisely |D| = 1398 3D points by marking corresponding

2D points across the seven views and throughout multiple frames; which we used to perform

Bundle adjustment [Wikipedia, 2017] as we explain below.

Let I and E denote the intrinsic and the extrinsic parameters of all of the cameras, respectively.

Given a dataset D of corresponding projections across the views, more precisely: D = {pi },

where pi = {p1
i . . . pC

i }, with pc
i ∈R2 and C denoting the number of cameras, the goal is to find

projection matrices Pc whose parameters are contained in {I,E} and the 3D points M = {mi },

mi ∈R3, i = 1, . . . , |D|, such that:

I∗,E∗ = argmin
I,E,M

|D|∑
i=1

C∑
c=1

wc
i ‖pi −Pc mi‖2, (6.1)

where ‖ ·‖ denotes the Euclidean image distance, and wc
i is the indicator variable equal to 1

when the point pi is visible in view c , and equal to 0 otherwise. In other words, we formulated

the calibration as a non-linear least squares problem, where the error is the squared L2 norm of

the difference between the observed feature location and the projection of the corresponding

3D point on the image plane of the camera.

In accordance with the selected model, the set {I,E} in our implementation consists of 7×15

parameters for each camera: 3 for rotation, 3 for translation, 2 for focal length (x and y), 2 for

the principal point, 3 for radial distortion and 2 for tangential distortion. To optimize Eq. 6.1,
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we used the open source C++ library Ceres [Agarwal et al.] (see App. D.3 for further details on

the implementation).

We experimented with fixing one of the sets of parameters and sequentially optimizing each.

Nonetheless, jointly optimizing I and E as formalised in Eq. 6.1 provided best results and this

final step significantly improved the joint projection accuracy.

Fig. 6.4 depicts cropped regions taken from synchronized images and of a different view. To

illustrate the precision of the camera calibration, we first manually marked a point projections

in two of the views, shown in blue color in the left column of Fig. 6.4. Using the provided

camera calibration, we then compute the 3D location of the point as an intersection between

the rays defined by those projections. Finally, the resulting 3D point is projected in the

remaining views, displayed as red points in Fig. 6.4.

6.3.3 Annotation process

To make sure that our annotations are as precise as possible, we made use of the accurate

camera calibration. Namely, we formulated the annotation task as adjusting the position of a

3D cylinder on the ground, such that its projections (rectangles) across all of the views overlap

Figure 6.4 – Illustration of the camera calibration precision (best seen in color). See § 6.3.2.
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the person being marked by the annotator. In summary, we considered this approach as:

(i) more time-effective, as one has to perform one adjustment instead of marking bounding

boxes and adjusting each separately; as well as that it allows for obtaining (ii) higher precision,

since the position is jointly adjusted. The latter follows from the fact that the best position of a

bounding box when annotating in one view is likely to be ambiguous, and in cases of more

severe occlusions, it could also be infeasible to guess it.

To this end, we designed a new multi-camera annotation tool, whose Graphical User Interface

(GUI) is illustrated in Fig. 6.5. It was written using Python, Django, and Javascript. The tool

was deployed through Amazon Mechanical Turk [Buhrmester et al., 2011] so that external

people would be remunerated to help us carry out this time-consuming procedure. To ensure

that profit is not prioritized over the accuracy and the precision of the annotations, we were

highly involved in the process, and particular annotators were carefully selected. For details

regarding how the annotation process was carried out, and the file format of the annotations,

please refer to App. D.1 and App. D.2, respectively.

Figure 6.5 – GUI of our multi-camera annotation tool (best seen in color). The bounding boxes
being adjusted (displayed in cyan color) are zoomed-in in those views where the person is
visible.
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6.3.4 Statistics

Annotated frames. Following practices amassed in monocular pedestrian detection with

CNNs, we used frame rate of 10 fps to extract the frames. Herein, as a frame It we refer to a set

of synchronized images from the seven views (C=7), i.e. {I 1
t , . . . , I C

t }. We provide annotations

for the first 2000 frames. However, in our observations annotating every 5th suffices the speed

of movement of the persons, and hence interpolation can be used to further enlarge the

dataset. To summarize, this amounts to total of 400 frames at 2 fps, or alternatively 7×400

manually annotated images. Bellow we always list total number of annotations at 2 fps.

Multi-view annotations. There are 9518 multi-view single person annotations in total. In

Fig. 6.6, we illustrate an example of a multi-view annotation of our dataset, visible in all of the

seven views at the same time. On average, each frame It captures 23.8 people. Considering a

frame rate of 2 fps, each person is seen in 30.41(47.87) frames, with a mode of 22 frames (see

App. D.4).

Monocular annotations. Since a multi-view detection may not be visible in each of the

cameras’ fields of view, the number of monocular examples is precisely 8731, 7875, 6703, 2239,

3920, 9408, 3731, respectively for each view. This amounts to a total of 42607 detections at 2

fps.

Occlusion levels. As the annotations are obtained in 3D , the occlusion of each pedestrian in

each view can be automatically obtained. Following the work of [Dollar et al., 2009] in Fig. 6.3

we illustrate the level of occlusions per each view separately, by calculating the number of

occluded pixels over the number of total pixels for each detection. Similarly, we calculate such

normalized occlusion levels for the multi-view examples across all of the views. As can be

noticed from Fig. 6.3, if multi-view samples are used, the probability that a person will be

completely occluded in all of the views simultaneously significantly goes down.

Figure 6.6 – An example of one positive multi view annotation.
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6.4 Benchmarks

In the sequel, we evaluate detection and tracking methods. In our experiments, we used a

frame rate of 2 fps.

6.4.1 Evaluation protocol

We compute false positives (FP), false negatives (FN) and true positives (TP) by assigning

detections to ground truth using Hungarian matching. Since we operate on the ground plane,

we impose that a detection can be assigned to a ground truth annotation if and only if it is

closer than a distance r . Given FP, FN and TP, we calculate:

• Multiple Object Detection Accuracy (MODA) accounting for the normalized missed de-

tections and false positives, as well as the Multiple Object Detection Precision (MODP)

metric which assesses the localization precision [Kasturi et al., 2009].

• Precision & Recall. We estimate the empirical precision and recall, calculated by

P=T P/(T P+F P ) and R=T P/(T P+F N ) respectively.

We report MODP, Precision, and Recall for radius r=0.5m, which roughly corresponds to the

width of a human body.

Unless otherwise emphasized, the used metrics are always calculated in terms of the Euclidean

distance between the detection and the annotation on the ground plane in world coordinates,

or alternatively from top-view. Thus note that such metrics are unforgiving in terms of projec-

tion errors as we measure distances on the ground plane, which would not be the case if we

evaluated overlap in the image plane as is often done in the monocular case.

Regarding multiple object tracking, we report metrics which are also reported for MOTChal-

lenge benchmark [Leal-Taixé et al., 2015]: a set of CLEAR MOT [Bernardin and Stiefelhagen,

2008] metrics, as well as identity-aware metrics of [Ristani et al., 2016]. For evaluation we used

the devkit provided with [Leal-Taixé et al., 2015], and we similarly report metrics for radius

r=1m. Below we briefly review some of the reported tracking metrics:

• Multiple Object Tracking Accuracy (MOTA) accounts for missed detections (False Neg-

atives (FN)), False Positives (FP), and Identity Switches (IDs) between current and next

frame of tracking. We also report Multiple Object Tracking Precision (MOTP).

• Mostly Tracked (MT), Partially Tracked (PT), Mostly Lost (MT) trajectories, as well as

the number of Fragmentations (FM).

• IDF1 accounts for missed detections, false positives, and identity switches throughout

tracking, after finding a global one-to-one assignment between ground truth and pre-
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dicted trajectories. It is calculated similarly to F1 score, using the Identity Precision

(IDP) and Identity Recall (IDR) as proxies for precision and recall.

6.4.2 Evaluated methods

We evaluated the following detection methods:

• POM-CNN. The multi-camera detector [Fleuret et al., 2008] described in § 6.2.2, uses

background subtraction pre-processing and takes such segmented images as input. In

its original implementation the input is obtained using traditional algorithms [Ziliani

and Cavallaro, 1999, Oliver et al., 2000]. Hence, for a fair comparison reflecting the

progress that has occurred since then, we use a CNN-based background subtraction

[Long et al., 2015].

• DeepMCD (described in § 6.2.2), which is an end-to-end deep learning method. We used

its implementation that uses GoogLeNet [Szegedy et al., 2015] by: (i) testing on the WILD-

TRACK dataset with the provided pre-trained model on the PETS dataset–Pre-DeepMCD;

as well as (ii) training solely the top classifier on the WILDTRACK dataset–TopDeepMCD.

Its implementation uses monocular Non Maxima Suppression (NMS) and the perfor-

mance measures are calculated using the first view, rather then the world coordinates.

• ResNet-DeepMCD & DenseNet-DeepMCD are our implementations of DeepMCD in

PyTorch [Paszke et al., 2017], which use ResNet-18 [He et al., 2015] and DenseNet-121

[Huang et al., 2017], respectively. As WILDTRACK is of larger size, we omitted the step

of pre-training on the Caltech dataset. Our implementation uses top-view NMS to

select the final detections of the candidates while prioritizing the detections with higher

probability estimates, as opposite to [Chavdarova and Fleuret, 2017]. We use NMS

threshold of 0.4 and r=0.5m. We used 90% and 10% of the frames for training and

testing, respectively and grid density of 60×180. Analogously, we also train a monocular

detector ResNet-18 [He et al., 2015] while using samples from the training frames from

all of the views, denoted as ResNet-Monocular.

• Deep-Occlusion (see § 6.2.2), which is a hybrid CNN-CRF method to use information

about geometry and calibration while leveraging on the discriminative power of a pre-

trained monocular CNNs.

• RCNN-projected. The recent work of [Xu et al., 2016] proposes a MCMT tracking frame-

work that relies on a powerful CNN for detection purposes [Ren et al., 2015]. Since the

code of [Xu et al., 2016] is not publicly available, we reimplemented their detection

methodology without the tracking component for a fair comparison with the detection

methods that operate on images acquired at the same time. More precisely, we first

run the 2D detector proposed by Ren et al. [2015] on each image. We then project the

bottom of the 2D bounding box onto the ground reference frame as in [Xu et al., 2016]
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to get 3D ground coordinates. Finally, we cluster all the detections from all the cameras

using 3D proximity to produce the final set of detections.

For multiple object tracking, we provide results of the following methods:

• KSP is a simple baseline approach of Berclaz et al. [2011] which finds the most likely

sequence of occupancies of ground floor locations of POM given probabilities of occu-

pancies of each location given by a detector. To do so it solves the problem of finding the

most likely trajectories given the detections as finding the K-Shortest Paths in a graph.

This method does not use appearance information for tracking, but is a suitable baseline

as it can be applied out of the box in multi-camera scenario.

• ptrack is a recent approach proposed by Maksai et al. [2017] which improves the results

of other tracking approaches by learning the motion patterns of the scene and modifying

the tracks of people so as to follow those patterns. This is suitable for our scenario both

because in our scene there are several clearly identifiable patterns of motion, as well as

because it can handle tracking in the ground plane. We therefore use this approach on

top of the trajectories found by KSP.

6.4.3 Benchmark results

Table 6.2 – Benchmark tracking results on the WILDTRACK dataset.

Method IDF1 IDP IDR MT PT ML FP FN IDs FM MOTA MOTP

DeepOcclusion+KSP 73.2 83.8 65.0 49 79 43 1095 7503 85 92 69.6 61.5
DeepOcclusion+KSP+ptrack 78.4 84.4 73.1 72 74 25 2007 5830 103 95 72.2 60.3

Detection. The results of the enumerated methods in § 6.4.2 are given in Tab. 6.3. We observe

that joint utilization of the multiple views largely improves detection performance. More

explicit occlusion reasoning further improves the MODA metric, even for small values of r ,

Fig. 6.7. In Tab. 6.4 we list the classification results obtained when training a monocular ResNet-

18 using samples extracted from all of the seven views, as well as multi-view training. The

results indicate that even though the size of the dataset is seven-fold larger for the monocular

case, using the multiple views increases both the accuracy and the confidence of the classifier.

Tracking.

Tab. 6.2 lists benchmark results of the tracking methods described in § 6.4.2 (see App. D.6 for

additional results). Parameters of the methods were optimized for IDF1 metric on the same

training data as the appropriate detector was trained on. As shown, the dataset presents a
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Table 6.3 – Benchmark detection results on WILDTRACK.

Method MODA MODP Precision Recall

Deep-Occlusion+KSP 0.752 - - -
Deep-Occlusion 0.741 0.538 0.95 0.80
ResNet-DeepMCD 0.678 0.642 0.85 0.82
DenseNet-DeepMCD 0.635 0.666 0.87 0.74
POM-CNN 0.232 0.305 0.75 0.55
RCNN-projected 0.113 0.184 0.68 0.43
Pre-DeepMCD 0.334* 0.528* 0.93 0.36
Top-DeepMCD 0.601* 0.642* 0.80 0.79

ResNet-View 1 -1.823 0.598 0.26 1.00
ResNet-View 2 -1.050 0.607 0.32 0.99
ResNet-View 3 -1.036 0.583 0.32 0.98
ResNet-View 4 -0.251 0.723 0.42 0.71
ResNet-View 5 0.466 0.623 0.67 0.91
ResNet-View 6 -1.841 0.591 0.26 1.00
ResNet-View 7 -0.122 0.701 0.47 0.97

* Monocular calculation of the metric, using the first view.

Table 6.4 – Classification results (accuracy and area under ROC curve) on the test frames of the
WILDTRACK dataset using ResNet-18 [He et al., 2015]. The results obtained for monocular
classification are averaged over all of the views.

Training Accuracy (%) AUC

Monocular 84.57 (1.718) 0.91 (0.028)
Multi-view 95 0.95

significant tracking challenge, with IDF1 metric results lower than those seen on the [Leal-

Taixé et al., 2015] benchmark on [Ristani et al., 2016] dataset, where each individual camera

mostly observes a separate, and somewhat simpler scene.

6.5 Discussion

The development of new multi-view people tracking methods is hampered by the surprising

lack of appropriate datasets. We provide a new large scale, high-resolution, and highly ac-

curately calibrated multi-camera pedestrian dataset, which is more realistic than any of the

previously published ones.

Our initial benchmarks show that deep learning person detection indeed largely benefits from

a multi-camera set-up and this motivates further work in that direction. Our dataset will

motivate and facilitate such research. While performance of monocular pedestrian detectors
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Figure 6.7 – Benchmark of the multi-view detectors using the MODA metric (y-axis) for differ-
ent radius r (x-axis) on WILDTRACK.

saturates on common benchmarks, our densely crowded realistic set-up, which results in

complex dynamics and constant occlusions among persons, and the high resolution, will

prove useful for further improving monocular detection, as well as other problem of inference

such as tracking, or crowd analysis at large.

Finally, in addition to the large number of individual detections, the WILDTRACK dataset also

has a large fraction of unlabelled frames. This will be precious for unsupervised methods, with

the possibility to be benchmarked on the annotated portion.
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The large amounts of data and the expensive procedure of manual labeling by humans are the

principal motives for advancing unsupervised learning. Notably, the unsupervised Generative

Adversarial Networks–GANs algorithm found applications in a wide variety of domains. At

the core of this algorithm, lies finding a Nash equilibrium of a two-player minimax game,

where the players are Deep Neural Networks. At each iteration of the Stochastic Gradient

Descent–SGD based training, the Discriminator–D and the Generator–G aim at distinguishing

real from generated samples, and “fooling” D that the generated samples are real (by mapping

random noise to samples), respectively. Unlike classical loss functions for training DNNs, such

as log-loss or squared error, the function optimized by these networks has no closed form. As

a result, training is highly susceptible to hyper-parameter values, optimization method as well

as architectural choices.

In large part due to the development of autonomous car driving and security applications,

people detection is considered as an important problem in the field of computer vision. Current

state of the art monocular pedestrian detectors are based on deep learning, which surprisingly

had not been extended to the multi-camera setup.

This thesis focuses on improving Generative Adversarial Nets as most widely used deep gener-

ative models, as well as applying deep learning methods to multi-camera people detection.

7.1 Summary and contributions

In this thesis we: (i) presented new algorithms for training GANs, and (ii) focused on bridging

the gap between deep learning algorithms and the problem of multi-camera people detection,

in the first and second parts of the thesis, respectively.

In the third chapter and the first part of the thesis, we proposed a GAN training framework

named SGAN, applicable to the majority of the existing GAN algorithms. SGAN trains the final

pair of networks against an ensemble of adversarial networks while maintaining statistical

independence. Hence, it produces a single generative network, making this approach practi-
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cally convenient at inference time. The presented experimental results on diverse datasets

demonstrate systematic improvements upon classical algorithms as well as increased stability

of the framework regarding real-world applications. At each parameter update of the genera-

tive model, the gradients of the discriminators of the ensemble are averaged, yielding reduced

variance over the iterations. The latter motivated variance reduced gradient optimization of a

single GAN pair, due to the advantage of decreased computation during training, presented

next in the thesis.

Motivated by the empirical analyses of SGAN, in chapter 4 of the first part of the thesis we

focused on variance reduced gradient optimization of GANs. We considered a simplistic

example of game optimization and showed that stochasticity breaks the convergence of

existing stochastic methods. We proposed a novel SVRE algorithm which combines SVRG with

the extragradient method for optimizing games. SVRE has improved rates over the existing

results for a large class of strongly-convex games, whereas empirically it is the only method

that converges for the bilinear game example. Interestingly, SVRE empirically matched the

convergence speed of Batch-Extragradient on MNIST, while the latter is infeasible for large

datasets. When using shallow architectures, SVRE matched or improved over baselines on

all four datasets, whereas our presented experiments with deeper architectures showed that

SVRE is notably more stable with respect to hyperparameter choice. Most importantly, while

its stochastic counterpart diverged in all our experiments, SVRE did not.

We start the second part of this thesis with our proposed multi-camera people detector, called

DeepMCD, presented in Chapter 5. DeepMCD is an end-to-end deep learning method

which jointly leverages the multi-stream deep features. It is suitable for small-scale multi-

camera datasets as it makes use of the existing monocular datasets, which also improves

its generalization. We showed that DeepMCD outperformed the existing approaches. This

motivated us to focus on obtaining a large–scale dataset for this problem.

In the sixth chapter, we presented our seven-view high-resolution WILDTRACK dataset of

walking pedestrians. We focused on providing a camera calibration which, for the first time

among the existing datasets, would be consistent across the views, rather then done on per-

view basis. In particular, after obtaining initial values of the camera calibraion parameters

using standard methods, we further optimize these, given annotated corresponding points

across the seven views. Our approach to further optimize the calibration parameters based on

bundle adjustment provided high precision calibration. Moreover, WILDTRACK captures a

densely crowded realistic set-up, which is different from any of the previously published multi-

view datasets which often use actors. Finally, we provide benchmarks of relevant existing

methods on this dataset.

7.2 Limitations and future work

One disadvantage of SGAN is the redundancy of computation that may occur among the

local pairs. Our presented preliminary toy experiments in § 3.6 showed promising results
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in this direction. Namely, SGAN can be improved by enforcing “diversity” between the local

pairs, or more precisely, by forcing the local generators to model different parts of the real

data distribution. Other extensions of SGAN include re-casting the analysis in the context of

multi-player game theory.

Our discussion in § 4.7 pointed out our observation from our empirical analyses that the con-

vergence speed of SVRE decreases for very deep networks. Note that BatchNorm layers [Ioffe

and Szegedy, 2015] break the property of SVRG that its gradient estimates are unbiased (see

§ 4.3.1). Their impact increases with the depth of the network as typically deeper nets use

multiple such layers. Interestingly, a separate line of work focuses on omitting such nor-

malization layers and developing novel parameter initialization methods for single objective

optimization [see Dauphin and Schoenholz, 2019, and references therein]. Hence, extending

these methods to games and eliminating the use of normalization layers, could be a promising

direction for improving SVRE. Moreover, in § 4.7 as stochastic baseline of SVRE we considered

Adam, as vanilla SGD does not work for GANs. Note however, that Adam is adaptive step size

method, indicating such extensions might be applied to SVRE as well, as discussed in § 4.7.

Finally, our work presented in Chapter 4 showed that controlling the variance is critical for

game optimization. However, variance reduced gradient in games might be achieved in novel

ways. Finding novel variance reduction methods suitable for DNN optimization might be a

promising direction for GAN optimization.

The WILDTRACK dataset of walking people, presented in the second part of the thesis, opens

up wide variety of research directions. In addition to the large number of individual detections,

the WILDTRACK dataset also has a large fraction of unlabelled frames. This will be precious

for unsupervised methods, with the possibility to be benchmarked on the annotated portion.

One of our future directions is applying GANs on this problem.
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A.1 Equilibrium of GANs in functional space

For completeness, we show that in functional space the modelled distribution is equivalent to

the data distribution pg = pd , as shown in Goodfellow et al. [2014].

Proof. The discriminator maximizes:

V (G ,D) =
∫

x
pd (x) log(D(x))dx +

∫
z

pz (z) log(1−D(G(z)))dz

=
∫

x
pd (x) log(D(x))+pg (x) log(1−D(x))dx

Where we used x =G(z), and pg is the distribution of x.

Hence, the optimal discriminator D∗ is: D∗(x) = pd (x)
pd (x)+pg (x) .

The generator minimizes:

V (G ,D∗) = E
x∼pd

[logD∗(x)]+ E
x∼pg

[log(1−D∗(x))]

= E
x∼pd

[log
pd (x)

pd (x)+pg (x)
]+ E

x∼pg

[log
pg (x)

pd (x)+pg (x)
]

=− log4+DK L
(
pd ||

pd +pg

2

)+DK L
(
pg ||

pd +pg

2

)
=− log4+2 ·DJS(pd ||pg )

where we used: DJS(p‖q) = 1
2DK L(p‖ p+q

2 )+ 1
2DK L(q‖ p+q

2 ).

Hence, the optimum is reached when pg = pd , and the optimal value is − log4.
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The implementation details, as well as additional results of experiments on toy and realistic

datasets, are given in Sections B.1 and B.2. In Section B.3 we discuss two viewpoints of SGAN.

We use notation as in Chapter 3.

B.1 Experiments on toy datasets

B.1.1 Details on the implementation

For experiments conducted on toy datasets, we used separate 2·(N+1) networks. The architec-

ture and the hyper-parameters are as follows. Each network is a multilayer perceptron (MLP)

of 4 fully connected layers and LeakyReLU non-linearity [Maas et al., 2013] with the PyTorch’s

default value for the negative slope of 0.01 [Paszke et al., 2017]. The number of hidden units

for each of the layers is 512, whereas the dimension of the input noise vector for the generator

network is 100.

We use learning rate of 1·10−5, as well as the Adam optimization method [Kingma and Ba,

2015]. Using RMSProp [Tieleman and Hinton, 2012] as optimization method did not give

obvious improvements in our conducted experiments.

B.1.2 Experiments

Fig. B.1 depicts several image pairs, of: (i) samples generated by the local generators (left);

and (ii) samples from the global one (right). The illustrated contours are obtained with GMM

Kernel Density Estimation (KDE) [Rosenblatt, 1956], whose bandwidth is cross-validated. We

used sample of pg of size 500 (in Fig. B.1, N denotes the sample size). C in Fig. B.1 denotes the

Coverage metric [Tolstikhin et al., 2017].

Fig. B.4 depicts experiment in which the parameters of the global pair are updated after each

update of a local pair.
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B.2 Experiments on real-world datasets

B.2.1 Details on the implementation

Regarding experiments on real-world applications, we considered: (i) using separate 2·(N+1)

networks; as well as (ii) using parameter sharing of the networks. In the latter, approximately

half of the parameters of each network are shared among the corresponding other N networks

(discriminators or generators). To distinguish the two, in the sequel we denote the former and

the latter case as N-S- and N-SW-, respectively. For DCGAN, we recommend using separate

networks, as sharing parameters makes the generators to produce similar samples, thus the

performance gain of SGAN can be marginal.

We used learning rate of 1·10−5, and a batch size of 50 and 64 for (FASHION)MNIST and the rest

of the datasets, respectively. Unless otherwise stated, we used the Adam optimizer [Kingma

and Ba, 2015] whose hyperparameters (one parameter used for computing running averages

of gradient and another for its square) we fixed to 0.5 and 0.999, as in [Radford et al., 2016].

Implementation of the experiments on image datasets. For MNIST we did experiments

using both MLPs and CNNs for the generators and the discriminators. In the former case, the

architectures were almost identical to those used for the toy experiments, except that the first

layer was adjusted for input space of 28×28. In the latter case, we used input space of 28×28

and we started with the DCGAN implementation [Radford et al., 2016] and changed it accord-

ingly to the input space. In particular, we reduced the number of 2D transposed convolution

layers from 5 to 4 and adjusted the hidden layers’ sizes accordingly to the dimensions used for

the real data space.

For CIFAR10 unless otherwise emphasized, we used 32×32 image space. For the rest of

the image datasets–unless otherwise stated, we used 64×64 input space and the original

DCGAN [Radford et al., 2016] architecture, as provided by the authors. The implementation of

DCGAN [Radford et al., 2016] uses Batch Normalization layers [Ioffe and Szegedy, 2015].

Implementation of the experiments on one Billion Word Benchmark. We started from

the provided implementation of [Gulrajani et al., 2017] and implemented our method. In

particular, the character-level generative language model is implemented as a 1D CNN using 4

ResNet blocks [He et al., 2015], which network maps a latent vector into a sequence of one-hot

character vectors of dimension 32. The discriminator is also a 1D CNN, that takes as input

sequences of such character embeddings of size 32.

As optimization method we used RMSProp [Tieleman and Hinton, 2012].

Separate networks. In Figure B.3 we show the Inception score [Salimans et al., 2016] (using

its original implementation in TensorFlow [Abadi et al., 2015]), of the global generator and the
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local generators.

In Fig. B.2 we show samples of 5-S-DCGAN on FASHION-MNIST (on the right), as well as of

DCGAN (on the left). Figures B.5 & B.6 depict samples using DRAGAN and DCGAN, respec-

tively. We see that the global generator converges much earlier then the local ones.

Shared parameters.

In Fig. B.9 we show samples when training DRAGAN and 5-SW-DRAGAN on LSUN-bedroom

with input dimension of 64×64. Finally, in Fig. B.10 we show samples when training on the

Billion Word dataset.

B.3 Different viewpoints of SGAN

Connecting SGAN to Actor-critic methods. Pfau and Vinyals [2016] argue that at an abstract

level GANs find similarities with actor-critic (AC) methods, which are widely used in reinforce-

ment learning. Namely, the two have a feed-forward model which either takes an action (AC)

or generates a sample (GAN). This acting/generating model is trained using a second one. The

latter model is the only one that has direct access to information from the environment (AC)

or the real data (GAN), whereas the former has to learn based on the signals from the latter. We

refer the interested reader to [Pfau and Vinyals, 2016] which further elaborates the differences

and finds connections that both the methods encounter difficulties in training.

We make use of the graphical illustration proposed in [Pfau and Vinyals, 2016] of the structre

of the GAN algorithm illustrated in Fig. B.11a, and we extend it to illustrate how SGAN works,

Fig. B.11b, where nodes with index i can be multiple. Empty circles represent models with a

distinct loss function. Filled circles represent information from the environment. Diamonds

represent fixed functions, both deterministic and stochastic. Solid lines represent the flow

of information, while dotted lines represent the flow of gradients used by another model. In

SGAN, D0 is being trained with samples from the multiple generators whose input is in the

real-data space. For clarity, we omited Dmsg in the illustration–used to train G0, as the arrows

already indicate that these two “global” models do not affect the ensemble.

Game theoretic interpretation.

We can define a game that describes the training of G0 and D0 in the SGAN framework as

follows. Let us consider a tuple (P ,A ,u), where P = {G ,D} is the set of new players that we

introduce. Let us assume that G and D , at each iteration can select among the elements of D

and G , respectively. Hence, A = (Ag , Ad ) have a finite set of N actions.

Such “top level players” in SGAN assign uniform distribution over their actions, more precisely
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both G and D sample from the elements of D and G respectively, with uniform probability. To

connect to classical training, let us assume that G and D fix their choice to one element of D

and G respectively, i.e. with probability one they sample from a single generator/discriminator.

The trained networks G0 and Gi , as well as D0 and D j , with i and j being the selected choice of

G and D respectively, are identical in expectation. Finally, rather than predefining the uniform

sampling in SGAN, incorporating estimations of the actions’ pay-off u = (ug ,ud ) could prove

useful for training (G0,D0).

92



B.3. Different viewpoints of SGAN

Iteration 1

Iteration 8

Iteration 40

Iteration 125

Figure B.1 – 5-S-WGAN on the 10-GMM dataset. Samples from the five local generators and
from the global generator, are shown on the left (in separate color) and on the right (in red
color), respectively. See § B.1.2.
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(a) Samples using DCGAN. (b) Samples using 5-S-DCGAN.

Figure B.2 – Samples of DCGAN and 5-S-DCGAN on FASHION-MNIST taken at the 6000-th
iteration, on the left and right, respectively. The input dimension is 28×28.
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Figure B.3 – 10-S-DCGAN, on CIFAR10. We plot the Inception Score [Salimans et al., 2016] of
the global generator (orange) as well as the scores of the local generators (blue). The input
dimension is 32×32.
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Iteration 1 Iteration 5

Iteration 10 Iteration 15

Iteration 60 Iteration 80

Iteration 100 Iteration 300

Figure B.4 – 5-S-WGAN experiment on the 8-GMM toy dataset (best seen in color). Real data
samples are illustrated in orange. In each image pair, we illustrate samples from the five local
generators and from the global generator, on the left (in separate color) and on the right (in
green), respectively. The displayed contours represent the level sets of the discriminators D

and Dmsg –illustrated on the left and right of each image pair, respectively, where yellow is low
and purple is high.
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Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure B.5 – 5-S-DRAGAN on CIFAR10 at 40·103-th iteration, and 32×32 real data space.

Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure B.6 – 5-S-DCGAN on CelebA at 1·103-th iteration, and 32×32 real data space.
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Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure B.7 – Samples of the generators of 5-S-DRAGAN on the CelebA dataset at the 50·103-th
iteration. The input dimension is 64×64.

Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure B.8 – Samples of the generators of 5-S-DCGAN on the LSUN-bedroom dataset at the
100·103-th iteration. The input dimension is 64×64.
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DRAGAN 5-SW-DRAGAN

Figure B.9 – DRAGAN and 5-SW-DRAGAN on LSUN-bedroom at the 1000-th, 5·103-th, 10·103-
th and 14·103-th iteration, from top to bottom row, respectively. Using 64×64 real data space.
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Figure B.10 – Snippets from WGAN (left) and 5-SW-WGAN (right) on the One Billion Word
Benchmark, taken at the 700-th and 2500-th iteration (top and bottom row, respectively).

(a) GAN training [Pfau and Vinyals, 2016] (b) SGAN training

Figure B.11 – Graphical representations [Pfau and Vinyals, 2016] of the information flow
structures of GAN and SGAN training. See § B.3.
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C Appendix for Chapter 4

C.0.1 Why is convergence of the last iterate preferable?

In light of Theorem 1, the behavior of the iterates on the unconstrained version of (4.1) (ε= 0):

min
θ∈Θ

max
ϕ∈Φ

1

n

n∑
i=1
θ>Aiϕ where [Ai ]kl = 1 if k = l = i and 0 otherwise. (C.1)

whereΘ andΦ are compact and convex sets, is the following: they will diverge until they reach

the boundary of Θ and Φ and then they will start to turn around the Nash equilibrium of (C.1)

lying on these boundaries. Using convexity properties, we can then show that the averaged

iterates will converge to the Nash equilibrium of the problem. However, with an arbitrary large

domain, this convergence rate may be arbitrary slow (since it depends on the diameter of the

domain).

Moreover, this behavior might be even more problematic in a non-convex framework because

even if by chance we initialize close to the Nash equilibrium, we would get away from it and

we cannot rely on convexity to expect the average of the iterates to converge.

Consequently, we would like optimization algorithms generating iterates that stay close to the

Nash equilibrium.

C.1 Definitions and Lemmas

C.1.1 Smoothness and Monotonicity of the operator

Another important property used is the Lipschitzness of an operator.

Definition 4. A mapping F :Rp →Rd is said to be L-Lipschitz if,

‖F (ω)−F (ω′)‖2 ≤ L‖ω−ω′‖2 , ∀ω,ω′ ∈Ω . (C.2)
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Definition 5. A differentiable function f :Ω→R is said to be µ-strongly convex if

f (ω) ≥ f (ω′)+∇ f (ω′)>(ω−ω′)+ µ

2
‖ω−ω′‖2

2 ∀ω,ω′ ∈Ω . (C.3)

Definition 6. A function (θ,ϕ) 7→ L (θ,ϕ) is said convex-concave if L (·,ϕ) is convex for all

ϕ ∈ Φ and L (θ, ·) is concave for all θ ∈ Θ. An L is said to be µ-strongly convex concave if

(θ,ϕ) 7→L (θ,ϕ)− µ
2 ‖θ‖2

2 + µ
2 ‖ϕ‖2

2 is convex concave.

Definition 7. For µθ,µϕ > 0, an operator F :ω 7→ (Fθ(ω),Fϕ(ω)) ∈Rd+p is said to be (µθ,µϕ)-

strongly monotone if ∀ω,ω′ ∈Ω⊂Rp+d ,

(F (ω)−F (ω′))>(ω−ω′) ≥µθ‖θ−θ′‖2 +µϕ‖ϕ−ϕ′‖2 .

where we noted ω := (θ,ϕ) ∈Rd+p .

Definition 8. An operator F : (ω),∈Rd is said to be `-cocoercive, if for allω,ω′ ∈Ωwe have

‖F (ω)−F (ω′)‖2 ≤ `(F (ω)−F (ω′))>(ω−ω′) . (C.4)

Proposition 1 (Folklore). A L-Lipschitz and µ-strongly monotone operator is L2/µ-cocoercive

Proof. By applying lipschitzness and strong monotonicity,

‖F (ω)−F (ω′)‖2 ≤ L2‖ω−ω′‖2 ≤ L2/µ(F (ω)−F (ω′))>(ω−ω′) (C.5)

Proposition 2. If F (ω) = (∇ f (θ)+Mϕ,∇g (ϕ)−M>θ), where f and g are µ-strongly convex

and L smooth, then ‖M‖2 =O(µL) is a sufficient condition for F to be `-cocoercive with `=O(L)

Proof. We rewrite F as the sum of the gradient of convex Lipschitz function Fg r ad and a

L-Lipschitz and µ-strongly monotone operator Fmon :

Fg r ad (ω) := (∇ f (θ)−µθ,∇g (ϕ)−µϕ) and Fmon : (Mϕ+µθ,−M>θ+µϕ) (C.6)

Then

‖F (ω)−F (ω′)‖2 ≤ 2‖Fg r ad (ω)−Fg r ad (ω′)‖2 +2‖Fmon(ω)−Fmon(ω′)‖2 (C.7)

≤ 2(L+µ)(Fg r ad (ω)−Fg r ad (ω′))>(ω−ω′) (C.8)

+2(‖M‖+µ)2/µ(Fmon(ω)−Fmon(ω′))>(ω−ω′) (C.9)

=O(L)(Fg r ad(ω)−Fg r ad(ω′))>(ω−ω′) (C.10)

+O(L)(Fmon(ω)−Fmon(ω′))>(ω−ω′) (C.11)

=O(L)(F (ω)−F (ω′))>(ω−ω′) (C.12)
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where for the second inequality we used that a (L +µ)-Lipschitz convex function is (L +µ)-

cocoercive and Proposition 2.

C.2 Proof of Theorems

C.2.1 Proof of Theorem 1

Proof. We consider the following stochastic optimization problem,

1

n

n∑
i=1

ε

2
θ2

i +θ>Aiϕ− ε

2
ϕ2

i =
1

n

n∑
i=1

ε

2
‖Aiθ‖2 +θ>Aiϕ− ε

2
‖Aiϕ‖2 (C.13)

where [Ai ]kl = 1 if k = l = i and 0 otherwise. Note that (Ai )> = Ai for 1 ≤ i ≤ n. Let us consider

the extragradient method where to compute an unbiased estimator of the gradients at (θ,ϕ)

we sample i ∈ {1, . . . ,n} and use [Aiθ, Aiϕ] as estimator of the vector flow.

In this proof we note, AI := ∑
i∈I Ai and θ(I ) the vector such that [θ(I )]i = [θ]i if i ∈ I and 0

otherwise. Note that AIθ = θ(I ) and that AI A J = AI∩J .

Thus the extragradient update rule can be noted as{
θt+1 = (1−ηAI ε)θt −ηAI ((1−ηA Jε)ϕt +ηA Jθt )

ϕt+1 = (1−ηAI ε)ϕt +ηAI ((1−ηA Jε)θt −ηA Jϕt )
(C.14)

where I is the mini-batch sampled (without replacement) for the update and J the mini-batch

sampled (without replacement) for the extrapolation.

We can thus notice that, when I ∩ J =;, we have{
θt+1 = θt −ηεθ(I )

t −ηϕ(I )
t

ϕt+1 =ϕt −ηεϕ(I )
t +ηθ(I )

t ,
(C.15)

and otherwise, {
θt+1 = θt −ηεθ(I )

t −ηϕ(I )
t −η2(θ(I∩J )

t −εϕ(I∩J )
t )

ϕt+1 =ϕt −ηεϕ(I )
t +ηθ(I )

t −η2(ϕ(I∩J )
t +εθ(I∩J )

t ) .
(C.16)

The intuition is that, on one hand, when I ∩ J =; (which happens with high probability when

|I | << n, e.g., when |I | = 1, P(I ∩ J =;) = 1−1/n), the algorithm performs an update that get

away from the Nash equilibrium when 2ε≥ η:

(C.15) ⇒ Nt+1 = Nt + (η2ε2 +η2 −2ηε)N (I )
t , (C.17)

where Nt := ‖θt‖2 +‖ϕt‖2 and N (I )
t := ‖θ(I )

t ‖2 +‖ϕ(I )
t ‖2. On the other hand, The updates that

provide improvement only happen when I ∩ J is large (which happen with low probability,
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e.g., when |I | = 1, P(I ∩ J 6= ;) = 1/n):

(C.16) ⇒ Nt+1 = Nt −N (I )
t (2ηε−η2(1+ε2))−N (I∩J )

t (2η2 −η4(1+ε2) (C.18)

Conditioning on θt andϕt , we get that

E[N (I∩J )
t |θt ,ϕt ] =

n∑
i=1

P(i ∈ I ∩ J )([θt ]2
i + [ϕt ]2

i ) and P(i ∈ I ∩ J ) =P(i ∈ I )P(i ∈ J ) = |I |2
n2 .

(C.19)

Leading to,

E[N (I∩J )
t |θt ,ϕt ] = |I |2

n2

n∑
i=1

([θt ]2
i + [ϕt ]2

i ) = |I |2
n2 Nt and E[N (I )

t |θt ,ϕt ] = |I |
n

Nt . (C.20)

Plugging these expectations in (C.18), we get that,

E[Nt+1] =
(
1− |I |

n (2ηε−η2(1+ε2))− |I |2
n2 (2η2 −η4(1+ε2))

)
E[Nt ] . (C.21)

Consequently for η< ε we get,

E[Nt+1] ≥
(
1−2η2 |I |2

n2 +η2 |I |
n

)
E[Nt ] . (C.22)

To sum-up, if |I | is not large enough (more precisely if 2|I | ≤ n), we have the geometric

divergence of the quantity E[Nt ] := E[‖θt‖2 +‖ϕt‖2] for any η≥ ε.

C.2.2 Proof of Theorem 2

Setting of the Proof. We will prove a slightly more general result than Theorem 2. We will

work in the context of monotone operator. Let us consider the general extrapolation update

rule, Extrapolation: ωt+ 1
2
=ωt −ηt g t

Update: ωt+1 =ωt −ηt g t+1/2 ,
(C.23)

where g t depends onωt and g t+1/2 depends onωt+1/2. For instance, g t can either be F (ωt ),

Fi t (ωt ) or the SVRG estimate defined in (C.35).

This update rule generalizes (EG) for 2-player games (2P-G) and ExtraSVRG (Alg. 5).

Let us first state a lemma standard in convex analysis (see for instance [Boyd and Vanden-

berghe, 2004]),

Lemma 1. Letω ∈Ω andω+ := PΩ(ω+u) then for allω′ ∈Ωwe have,

‖ω+−ω′‖2
2 ≤ ‖ω−ω′‖2

2 +2u>(ω+−ω′)−‖ω+−ω‖2
2 . (C.24)
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Proof of Lemma 1. We start by simply developing,

‖ω+−ω′‖2
2 = ‖(ω+−ω)+ (ω−ω′)‖2

2 = ‖ω−ω′‖2
2 +2(ω+−ω)>(ω−ω′)+‖ω+−ω‖2

2

= ‖ω−ω′‖2
2 +2(ω+−ω)>(ω+−ω′)−‖ω+−ω‖2

2 .

Then sinceω+ is the projection onto the convex setΩ ofω+u we have that:

(ω+− (ω+u))>(ω+−ω′) ≤ 0, ∀ω′ ∈Ω

leading to the result of the Lemma.

Lemma 2. If F is (µθ,µϕ)-strongly monotone for anyω,ω′,ω′′ ∈Ωwe have,

µθ
(‖θ−θ′′‖2

2 −2‖θ′−θ‖2
2

)+µϕ (‖ϕ−ϕ′′‖2
2 −2‖ϕ′−ϕ‖2

2

)≤ 2(F (ω′)−F (ω′′))>(ω′−ω′′) ,

(C.25)

where we notedω := (θ,ϕ).

Proof. By (µθ,µϕ)-strong monotonicity,

2µθ‖θ′−θ′′‖2
2 +2µϕ‖ϕ′−ϕ′′‖2

2 ≤ 2(F (ω′′)−F (ω′′))>(ω′−ω′′) (C.26)

and then we use the inequality 2‖a ′−a ′′‖2
2 ≥ ‖a−a ′′‖2

2−2‖a ′−a‖2
2 to get the result claimed.

Using this update rule we can thus deduce the following lemma, the derivation of this lemma

is very similar from the derivation of Harker and Pang [1990, Lemma 12.1.10].

Lemma 3. Considering the update rule (C.23), we have for anyω ∈Ω and any t ≥ 0,

2ηt g>
t+1/2(ωt+1/2 −ω) ≤ ‖ωt −ω‖2

2 −‖ωt+1 −ω‖2
2 −‖ωt+1/2 −ωt‖2

2 +η2
t‖g t −g t+1/2‖2

2 . (C.27)

Proof. By applying Lem. 1 for (ω,u,ω+,ω′) = (ωt ,−ηt g t+1/2,ωt+1,ω) and, (ω,u,ω+,ω′) =
(ωt ,−ηt g t ,ωt+1/2,ωt+1) we get,

‖ωt+1 −ω‖2
2 ≤ ‖ωt −ω‖2

2 −2ηt g>
t+1/2(ωt+1 −ω)−‖ωt+1 −ωt‖2

2 , (C.28)

and

‖ωt+1/2 −ωt+1‖2
2 ≤ ‖ωt −ωt+1‖2

2 −2ηt g>
t (ωt+1/2 −ωt+1)−‖ωt+1/2 −ωt‖2

2 . (C.29)
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Summing (C.28) and (C.29) we get,

‖ωt+1 −ω‖2
2 ≤ ‖ωt −ω‖2

2 −2ηt g>
t+1/2(ωt+1 −ω) (C.30)

−2ηt g>
t (ωt+1/2 −ωt+1)−‖ωt+1/2 −ωt‖2

2 −‖ωt+1/2 −ωt+1‖2
2 (C.31)

= ‖ωt −ω‖2
2 −2ηt g>

t+1/2(ωt+1/2 −ω)−‖ωt+1/2 −ωt‖2
2 −‖ωt+1/2 −ωt+1‖2

2

−2ηt (g t −g t+1/2)>(ωt+1/2 −ωt+1) . (C.32)

Then, we can use Young’s inequality −2a>b ≤ ‖a‖2
2 +‖b‖2

2 to get,

‖ωt+1 −ω‖2
2 ≤ ‖ωt −ω‖2

2 −2ηt g>
t+1/2(ωt+1/2 −ω)+η2

t‖g t −g t+1/2‖2
2

+‖ωt+1/2 −ωt+1‖2
2 −‖ωt+1/2 −ωt‖2

2 −‖ωt+1/2 −ωt+1‖2
2 (C.33)

= ‖ωt −ω‖2
2 −2ηt g>

t+1/2(ωt+1/2 −ω)+η2
t‖g t −g t+1/2‖2

2 −‖ωt+1/2 −ωt‖2
2 . (C.34)

Note that if we would have set g t = 0 and g t+1/2 any estimate of the gradient atωt we recover

the standard lemma for gradient method.

Let us consider unbiased estimates of the gradient,

gi (ω) := 1

nπi
(Fi (ω)−αi )+ ᾱ , (C.35)

where ᾱ := 1
n

∑n
j=1α j , the index i are (potentially) non-uniformly sampled from {1, . . . ,n} with

replacement according to π and F (ω) := 1
n

∑n
j=1 Fi (ω). Hence we have that E[gi (ω)] = F (ω),

where the expectation is taken with respect to the index i sampled fromπ.

We will consider a class of algorithm called uniform memorization algorithms first introduced

by [Hofmann et al., 2015]. This class of algorithms describes a large subset of variance reduced

algorithms taking advantage of the finite sum formulation such as SAGA [Defazio et al., 2014],

SVRG [Johnson and Zhang, 2013] or q-SAGA and N -SAGA [Hofmann et al., 2015]. In this work,

we will use a slightly more general definition of such algorithm in order to be able to handle

extrapolation steps:

Definition 9 (Extension of [Hofmann et al., 2015]). A uniform q-memorization algorithm

evolves iterates (ωt ) according to (C.23), with g t defined in (C.35) and selecting in each iteration

t a random index set Jt of memory locations to update according to,

α(0)
k := Fk (ω0) , α(t+1/2)

k :=α(t )
k , ∀k ∈ {1, . . . ,n} and α(t+1)

k :=
{

Fk (ωt ) if k ∈ Jt

α(t )
k otherwise.

(C.36)

such that any k has the same probability q/n to be updated, i.e., P {k} = ∑
Jt ,k∈Jt

P (Jt ) = q/n,

∀k ∈ {1, . . . ,n}.
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In the case of SVRG, either Jt =; or Jt = {1, . . . ,n} (when we update the snapshot).

We have the following lemmas,

Lemma 4. For any t ≥ 0, if we consider a q-memorization algorithm we have

E[‖g t −g t+1/2‖2] ≤10E[‖ 1
nπi

(Fi (ω∗)−α(t )
i )‖2]

+10E[‖ 1
nπi

(Fi (ω∗)−Fi (ωt ))‖2]

+5L̄2E[‖ωt −ωt+1/2‖2] .

Proof. We use an extended version of Young’s inequality: ‖∑k
i=1 ai‖2 ≤ k

∑k
i=1 ‖ai‖2,

‖
k∑

i=1
ai‖2 =

k∑
i , j=1

a>
i a j

≤ 1

2

k∑
i , j=1

‖ai‖2 +‖a j‖2

= k
k∑

i=1
‖ai‖2 ,

where we used that 2a>b ≤+‖a‖2 +‖b‖2. We combine Young’s inequality with the definition

of q-memorization algorithm: g t = 1
nπi

(Fi (ωt )− ᾱ(t )
i ) and g t+1/2 = 1

nπ j
(F j (ωt+1/2)− ᾱ(t )

j ) to

get (we omit the t subscript for i and j and we note ᾱ(t )
i :=α(t )

i −nπi ᾱ
(t )),

‖g t −g t+1/2‖2 = ‖ 1
nπi

(Fi (ωt )− ᾱ(t )
i )− 1

nπ j
(F j (ωt+1/2)− ᾱ(t )

j )‖2

= ‖ 1
nπi

(Fi (ωt )− ᾱ(t )
i )+ 1

nπ j
(F j (ωt )−F j (ωt+1/2))+ 1

nπ j
(ᾱ(t )

j −F j (ωt ))‖2

≤ 5E[‖ 1
nπi

(Fi (ω∗)− ᾱ(t )
i ))‖2]+5E[‖ 1

nπ j
(ᾱ(t )

j −F j (ω∗))‖2]

+5E[‖ 1
nπi

(Fi (ω∗)−Fi (ωt ))‖2]+5E[‖ 1
nπ j

(F j (ω∗)−F j (ωt ))‖2]

+5E[‖ 1
nπ j

(F j (ωt )−F j (ωt+1/2))‖2]

Notice that since it and jt are independently sampled from the same distribution we have

E[ 1
n2π2

jt

‖F jt (ω∗)−α(t )
jt
‖2] = E[ 1

n2π2
it

‖Fi t (ω∗)−α(t )
i t
‖2] . (C.37)

Note that we have (using that E[Fi (ω∗)] = 0 and E[α(t )
i ] = ᾱ(t )),

E[‖ 1
nπi

(Fi (ω∗)−ᾱ(t )
i )‖2] = E[‖ 1

nπi
(Fi (ω∗)−α(t )

i )‖2]−‖ᾱ(t )‖2 ≤ E[‖ 1
nπi

(Fi (ω∗)−α(t )
i )‖2] (C.38)
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By assuming that each Fi is Li -Lipschitz we get,

E[ 1
n2π2

jt

‖F j (ωt )−F j (ωt+1/2)‖2] = 1

n2

n∑
j=1

1

π j
E[‖F j (ωt )−F j (ωt+1/2)‖2] (C.39)

≤ 1

n2

n∑
j=1

L2
j

π j
E[‖ωt −ωt+1/2‖2] (C.40)

= L̄2E[‖ωt −ωt+1/2‖2 , (C.41)

where L̄2 := 1
n2

∑n
i=1

L2
i

π j
. Note that ωt and ωt+1/2 do not depend on jt (which is the index

sampled for the update step), that is not the case for i (the index for the extrapolation step)

sinceωt+1/2 is the result of the extrapolation.

This lemma make appear the quantity E[‖ 1
nπi

(Fi (ω∗)−ᾱ(t )
i )‖2] that we need to bound. In order

to do that we prove the following lemma,

Lemma 5. Let (α(t )
j ) be updated according to the rules of a q-uniform memorization algo-

rithm (Def. 9). Let us note Ht := 1
n

∑n
i=1

1
nπi

‖Fi (ω∗)−α(t )
i ‖2. For any t ∈N,

E[Ht+1] = q

n
E[‖ 1

nπit
(Fi t (ωt )−Fi t (ω∗))‖2]+ n −q

n
E[Ht ] . (C.42)

Proof. We will use the definition of q-uniform memorization algorithms (saying that αi is

updated at time t +1 with probability q/n). We call this event "i updated",

E[Ht+1] := E[
1

n

n∑
i=1

1
nπi

‖α(t+1)
i −Fi (ω∗)‖2]

= 1

n
E[

∑
i updated

1
nπi

‖α(t+1)
i −Fi (ω∗)‖2 + ∑

i not updated

1
nπi

‖α(t+1)
i −Fi (ω∗)‖2]

= 1

n
E[

∑
i updated

1
nπi

‖Fi (ωt )−Fi (ω∗)‖2 + ∑
i not updated

1
nπi

‖α(t )
i −Fi (ω∗)‖2]

= 1

n

n∑
i=1

P(i updated) 1
nπi

E[‖Fi (ωt )−Fi (ω∗)‖2 + 1

n

n∑
i=1

P(i not updated) 1
nπi

E[‖α(t )
i −Fi (ω∗)‖2]

= q

n
E[‖ 1

nπit
(Fi t (ωt )−Fi t (ω∗))‖2]+ n −q

n
E[Ht ]

Using all these lemmas we can prove our theorem.

Theorem’ 2. Under Assumption 1, after t iterations, the iterateωt computed by a q-memorization

algorithm with step-sizes (ηθ,ηφ) ≤ (
(40 ¯̀

θ)−1, (40 ¯̀
ϕ)−1

)
verifies:

E[‖ωt −ω∗‖2
2] ≤

(
1−min

{
ηµ

2
+ 9η2γ2

10
,

2q

5n

})t

E[‖ω0 −ω∗‖2
2] . (C.43)
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Proof. In this proof we will consider a constant step-size ηt = (ηθ,ηφ). For simplicity of

notations we will consider the notation,

L̄2‖ω‖2 := L̄2
θ‖θ‖2 + L̄2

ϕ‖ϕ‖2 , η2‖ω‖2 := η2
θ‖θ‖2 +η2

ϕ‖ϕ‖2 , µ‖ω‖2 :=µ2
θ‖θ‖2 +µ2

ϕ‖ϕ‖2

ηµ= (ηθµθ,ηϕµϕ) , σL̄2 = (σθL̄2
θ,σϕL̄2

ϕ) and η2L̄2 = (η2
θL̄2

θ,η2
ϕL̄2

ϕ) .

We start by recalling Lemma 3,

‖ωt+1−ω∗‖2
2 ≤ ‖ωt −ω∗‖2

2−2ηg>
t+1/2(ωt+1/2−ω∗)−(1−2ηµ)‖ωt+1/2−ωt‖2

2+η2‖g t −g t+1/2‖2
2 .

(C.44)

We can then take the expectation and plug-in the expression of E[‖g t −g t+1/2‖2
2] from Lemma 4,

E[‖ωt+1 −ω∗‖2
2] ≤ E[‖ωt −ω∗‖2

2]−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]

− (1−2ηµ−5η2L̄2)]E[‖ωt+1/2 −ωt‖2
2]

+η2(10E[‖ 1
nπi

(Fi (ω∗)−α(t )
i )‖2]+10E[‖ 1

nπi
(Fi (ω∗)−Fi (ωt ))‖2]) .

Let us define Lt := E[‖ωt −ω∗‖2
2]+σE[Ht ], where Ht := 1

n

∑n
i=1

1
nπi

‖Fi (ω∗)−α(t )
i ‖2. We can

combine (C.44) with Lemma 5 multiplied by a constant σ> 0 that we will set later to get

Lt+1 = E[‖ωt+1 −ω∗‖2
2]+σE[Ht+1]

≤ E[‖ωt −ω∗‖2
2]−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]− (1−2ηµ−5η2L̄2)E[‖ωt+1/2 −ωt‖2

2]

+ (σq
n +10η2)E[‖ 1

nπi
(Fi (ω∗)−Fi (ωt ))‖2]+ ( 10η2

σ + n−q
n )σE[Ht ] .

Since it and jt are independently drawn from the same distribution, we have,

E[‖ 1
nπi

(Fi (ω∗)−Fi (ωt ))‖2] = E[‖ 1
nπ j

(F j (ω∗)−F j (ωt ))‖2]

and thus,

Lt+1 ≤ E[‖ωt −ω∗‖2
2]−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]− (1−2ηµ−5η2L̄2)‖ωt+1/2 −ωt‖2

2

+ (σq
n +10η2)E[‖ 1

nπ j
(F j (ω∗)−F j (ωt ))‖2 + ( 10η2

σ + n−q
n )σE[Ht ]

≤ E[‖ωt −ω∗‖2
2]− (1−2ηµ−5η2L̄2 −2(σq

n +10η2)L̄2)‖ωt+1/2 −ωt‖2
2

−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]+2(σq
n +10η2)E[‖ 1

nπ j
(F j (ω∗)−F j (ωt+1/2))‖2

+ ( 10η2

σ + n−q
n )σE[Ht ]

≤ E[‖ωt −ω∗‖2
2]− (1−2ηµ−5η2L̄2 −2(σq

n +10η2)L̄2)‖ωt+1/2 −ωt‖2
2

−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]+ ( 10η2

σ + n−q
n )σE[Ht ]

+2(σq
n +10η2)E[

` j

n2π2
j
(F j (ω∗)−F j (ωt+1/2))>(ω∗−ωt+1/2)]

where for the second inequality we used Young’s inequality and the Lipchitzness of F j and for
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the last one we used the co-coercivity of F j :

‖F j (ω)−F j (ω′)‖2 ≤ `i (F j (ω′)−F j (ω))>(ω′−ω) . (C.45)

Thus using π j = ` j∑
j ` j

, we get

Lt+1 ≤ E[‖ωt −ω∗‖2
2]− (1−2ηµ−5η2L̄2 −2(σq

n +10η2)L̄2)‖ωt+1/2 −ωt‖2
2

−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]+2( 10η2

σ + n−q
n )σE[Ht ]

+2 ¯̀(σq
n +10η2)E[ 1

nπ j
(F j (ω∗)−F j (ωt+1/2))>(ω∗−ωt+1/2)]

= E[‖ωt −ω∗‖2
2]− (1−2ηµ−5η2L̄2 −2(σq

n +10η2)L̄2)‖ωt+1/2 −ωt‖2
2

−2ηE[F (ωt+1/2)>(ωt+1/2 −ω∗)]+2 ¯̀(σq
n +10η2)E[F (ωt+1/2)>(ωt+1/2 −ω∗)]

+ ( 10η2

σ + n−q
n )σE[Ht ]

where ¯̀ := 1
n

∑
i `i . Now we can set 20η2

σ = q
n to get

Lt+1 ≤ E[‖ωt −ω∗‖2
2]− (1−2ηµ−65η2L̄2)‖ωt+1/2 −ωt‖2

2

−η(2−60 ¯̀η)E[F (ωt+1/2)>(ωt+1/2 −ω∗)]+ (1− q
2n )σE[Ht ] .

Finally with η≤ 1
40 ¯̀ (note that we always have ¯̀≥ L̄ because `i ≥ Li ) we get

Lt+1 ≤ E[‖ωt −ω∗‖2
2]−η1

2
E[F (ωt+1/2)>(ωt+1/2 −ω∗)]− 9

10
E[‖ωt+1/2 −ωt‖2

2]+ (1− q
2n )σE[Ht ] .

We finaly use the projection-type error bound ‖Fi (ωt )−Fi (ω∗)‖2 ≥ γ2
i ‖ωt −ω∗‖2 the same

way as [Azizian et al., 2019] to get,

‖ωt+1/2 −ωt‖2
2 = η2‖ 1

nπi
(Fi (ωt )− ᾱ(t )

i )‖2

≥ η2

2
‖ 1

nπi
(Fi (ωt )−Fi (ω∗))‖2 −η2‖ 1

nπi
(Fi (ω∗)− ᾱ(t )

i )‖2

≥ γ2
i η

2

2
‖ 1

nπi
(ωt −ω∗)‖2 −η2‖ 1

nπi
(Fi (ω∗)− ᾱ(t )

i )‖2 .

Thus we have that,

Lt+1 ≤ E[‖ωt −ω∗‖2
2]−η1

2
E[F (ωt+1/2)>(ωt+1/2 −ω∗)]

− γ̄2η2

2
E[‖ωt −ω∗‖2

2]+ (1− q
2n + 9q

100n
)σE[Ht ] ,

where γ̄2 := 1
n

∑n
k=1

γ2
i

nπi
. We can thus conclude the proof using the strong convexity of F ,

Lt+1 ≤
(
1−min

{(ηµ
2

+ 9η2γ̄2

20

)
,

2q

5n

})
Lt .
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C.3 Details on the SVRE–GAN Algorithm

C.3.1 Practical Aspect

Noise dataset. Variance reduction is usually performed on finite sum dataset. However, the

noise dataset in GANs (sampling from the noise variable z for the generator G) is in practice

considered as an infinite dataset. We considered several ways to cope with this:

• Infinitely taking new samples from a predefined latent distribution pg . In this case,

from a theoretical point of view, in terms of using finite sum formulation, there is

no convergence guarantee for SVRE even in the strongly convex case. Moreover, the

estimators (4.14) and (4.15) are biased estimator of the gradient (as µD and µG do not

estimate the full expectation but a finite sum).

• Sampling a different noise dataset at each epoch, i.e. considering a different finite sum

at each epoch. In that case, we are performing a variance reduction of this finite sum

over the epoch.

• Fix a finite sum noise dataset for the entire training.

In practice, we did not notice any notable difference between the three alternatives.

Adaptive methods. Particular choices such as the optimization method (e.g. Adam [Kingma

and Ba, 2015]), learning rates, and normalization, have been established in practice as almost

prerequisite for convergence1, in contrast to supervised classification problems where they

have been shown to only provide a marginal value [Wilson et al., 2017]. To our knowledge,

SVRE is the only method that works with a constant step size for GANs on non-trivial datasets.

This combined with the fact that recent works empirically tune the first moment controlling

hyperparameter to 0 (β1, see below) and the variance reduction (VR) one (β2, see below) to a

non-zero value, sheds light on the reason behind the success of Adam on GANs.

However, combining SVRE with adaptive step size scheme on GANs remains an open problem.

We first briefly describe the update rule of Adam, and then we propose a new adaptation of it

that is more suitable for VR methods, which we refer to as variance reduced Adam (VRAd).

1For instance, Daskalakis et al. [2018], Gidel et al. [2019] plugged Adam into their principled method to get
better results.
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Adam. Adam stores an exponentially decaying average of both past gradients mt and squared

gradients vt , for each parameter of the model:

mt =β1mt−1 + (1−β1)g t (C.46)

vt =β2vt−1 + (1−β2)g 2
t , (C.47)

where β1,β2 ∈ [0,1], m0 = 0, v0 = 0, and t = 1, . . .T denotes the iteration. mt and vt are

respectively the estimates of the first and the second moments of the stochastic gradient. To

compensate the bias toward 0 due to initialization, Kingma and Ba [2015] propose to use

bias-corrected estimates of these first two moments:

m̂t = mt

1−βt
1

(C.48)

v̂t = vt

1−βt
2

. (C.49)

The Adam update rule can be described as:

ωt+1 =ωt −η m̂t√
v̂t +ε

. (C.50)

Adam can be understood as an approximate gradient method with a diagonal step size of

ηAd am := ηp
vt+ε . Since VR methods aim to provide a vanishing vt , they lead to a too large step-

size ηAd am of η
ε . This could indicate that the update rule of Adam may not be a well-suited

method to combine with VR methods.

VRAd. This motivates the introduction of a new Adam-inspired variant of adaptive step sizes

that maintain a reasonable size even when vt vanishes,

ωt+1 =ωt −η |m̂t |√
v̂t +ε

m̂t . (VRAd)

This adaptive variant of Adam is motivated by the step size η∗ = ηm2
t

vt
derived by Schaul et al.

[2013]. (VRAd) is simply the square-root of η∗ in order to stick with Adam’s scaling of vt .

C.4 Restarted SVRE

Alg. 6 describes the restarted version of SVRE presented in § 4.3.3. With a probability p (fixed)

before the computation of µS
ϕ and µS

θ
, we decide whether to restart SVRE (by using the

averaged iterate as the new starting point–Alg. 6, Line 6–ω̄t ) or computing the batch snapshot

at a pointωt .
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Algorithm 6 Pseudocode for Restarted SVRE.

1: Input: Stopping time T , learning rates ηθ,ηϕ, both players’ losses L G and L D , probability
of restart p.

2: Initialize: ϕ, θ, t = 0 . t is for the online average computation.
3: for e = 0 to T−1 do
4: Draw restart∼ B(p). . Check if we restart the algorithm.
5: if restart and e > 0 then
6: ϕ← ϕ̄, θ← θ̄ and t = 1
7: end if
8: ϕS ←ϕ and µS

ϕ ← 1
|Z |

∑n
i=1∇ϕL D

i (θS ,ϕS )

9: θS ← θ and µS
θ

← 1
|ϕ|

∑n
i=1∇θL G

i (θS ,ϕS )

10: N ∼ Geom
(
1/n

)
. Length of the epoch.

11: for i = 0 to N−1 do
12: Sample iθ ∼πθ, iϕ ∼πϕ, do extrapolation:
13: ϕ̃←ϕ−ηθdϕ(θ,ϕ,θS ,ϕS ) , θ̃← θ−ηϕdθ(θ,ϕ,θS ,ϕS ) . (4.14) and (4.15)
14: Sample iθ ∼πθ, iϕ ∼πϕ, do update:
15: ϕ←ϕ−ηθdϕ(θ̃,ϕ̃,θS ,ϕS ) , θ← θ−ηϕdθ(θ̃,ϕ̃,θS ,ϕS ) . (4.14) and (4.15)

16: θ̄← t
t+1 θ̄+ 1

t+1θ and ϕ̄← t
t+1 ϕ̄+ 1

t+1ϕ .Online computation of the average.
17: t ← t +1 . Increment t for the online average computation.
18: end for
19: end for
20: Output: θ,ϕ

C.5 Details on the implementation

For our experiments, we used the PyTorch2 deep learning framework, whereas for computing

the FID and IS metrics, we used the provided implementations in Tensorflow3.

C.5.1 Metrics

We provide more details on the implementation of the metrics enumerated in § 4.5. Both

FID and IS use: (i) the Inception v3 network [Szegedy et al., 2015] that has been trained on

the ImageNet dataset consisting of ∼1 million RGB images of 1000 classes, C = 1000. (ii) a

sample of m generated images x ∼ pg , where usually m = 50000.

Inception Score

Note that the range of IS scores (see definition of IS in § 2.4.1) at convergence varies across

datasets, as the Inception network is pretrained on the ImageNet classes. For example, we

obtain low IS values on the SVHN dataset as a large fraction of classes are numbers, which

2https://pytorch.org/
3https://www.tensorflow.org/
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typically do not appear in the ImageNet dataset. Since MNIST has greyscale images, we used a

classifier trained on this dataset and used m = 5000. For the rest of the datasets, we used the

original implementation4 of IS in TensorFlow, and m = 50000.

Fréchet Inception Distance

The FID metric is defined in § 2.4.1 We used the original implementation of FID5 in Tensorflow,

along with the provided statistics of the datasets.

Second Moment Estimate

To evaluate SVRE effectively, we used the second moment estimate (SME, uncentered vari-

ance, see § C.3.1) of the gradient estimate throughout the iterations t = 1. . .T per parameter,

computed as: vt = γvt−1 + (1−γ)g 2
t , where g t denotes the gradient estimate for the parameter

and iteration t , and γ = 0.9. For SVRE, g t is dϕ and dθ (see Eq. 4.14 and 4.15) for G and D,

respectively. We initialize g0 = 0 and we use bias-corrected estimates: v̂ = vt
1−γt . As the second

moment estimate is computed per each parameter of the model, we depict the average of

these values for the parameters of G and D separately.

In this work, as we aim at assessing if SVRE effectively reduces the variance of the gradient

updates, we use SME in our analysis as it is computationally inexpensive and fast to compute.

Entropy & Total Variation on MNIST

For the experiments on MNIST illustrated in Fig. C.1a & 4.2b in § 4.5, we plot in § C.6 the

entropy (E) of the generated samples’ class distribution, as well as the total variation (TV)

between the class distribution of the generated samples and a uniform one (both computed

using a pretrained network that classifies its 10 classes).

C.5.2 Architectures & Hyperparameters

Description of the architectures. We describe the models we used in the empirical evalua-

tion of SVRE by listing the layers they consist of, as adopted in GAN works, e.g. [Miyato et al.,

2018]. With “conv.” we denote a convolutional layer and “transposed conv” a transposed con-

volution layer [Radford et al., 2016]. The models use Batch Normalization [Ioffe and Szegedy,

2015] and Spectral Normalization layers [Miyato et al., 2018].

4https://github.com/openai/improved-gan/
5https://github.com/bioinf-jku/TTUR
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Generator

Input: z ∈R128 ∼N (0, I )
transposed conv. (ker: 3×3, 128 → 512; stride: 1)

Batch Normalization
ReLU

transposed conv. (ker: 4×4, 512 → 256, stride: 2)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 256 → 128, stride: 2)

Batch Normalization
ReLU

transposed conv. (ker: 4×4, 128 → 1, stride: 2, pad: 1)
Tanh(·)

Discriminator

Input: x ∈R1×28×28

conv. (ker: 4×4, 1 → 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)

conv. (ker: 4×4, 64 → 128; stride: 2; pad:1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (ker: 4×4, 128 → 256; stride: 2; pad:1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

conv. (ker: 3×3, 256 → 1; stride: 1)
Si g moi d(·)

Table C.1 – Description of the DCGAN architectures [Radford et al., 2016] used for experiments
on MNIST. We use ker and pad to denote kernel and padding for the (transposed) convolution
layers, respectively. With h×w we denote the kernel size. With ci n → yout we denote the
number of channels of the input and output for (transposed) convolution layers.

Architectures for experiments on MNIST

For experiments on the MNIST dataset, we used the DCGAN architectures [Radford et al.,

2016], listed in Table C.1, and the parameters of the models are initialized using PyTorch

default initialization. We used mini-batch sizes of 50 samples, whereas for full dataset passes

we used mini-batches of 500 samples as this reduces the wall-clock time for its computation.

For experiments on this dataset, we used the non saturating GAN loss as proposed [Goodfellow

et al., 2014]:

LD = Ex∼pd log(D(x))+Ez∼pz log(D(G(z))) (C.51)

LG = Ez∼pz log(D(G(z))), (C.52)

where pd and pz denote the data and the latent distributions (the latter to be predefined).

For both the baseline and the SVRE variants we tried the following step sizes η = [1×10−2,

1×10−3,1×10−4]. We observe that SVRE can be used with larger step sizes. In Table C.7, we

used η= 1×10−4 and η= 1×10−2 for SE–A and SVRE(–VRAd), respectively.

Choice of architectures on real-world datasets

We replicate the experimental setup described for CIFAR-10 and SVHN in [Miyato et al., 2018],

described also below in § C.5.2. We observe that this experimental setup is highly sensitive

to the choice of the hyperparameters (see our results in § C.6.3), making it more difficult to

compare the optimization methods for a fixed hyperparameter choice. In particular, apart

from the different combinations of learning rates for G and D, for the baseline this also

included experimenting with: β1 (see (C.46)), a multiplicative factor of exponential learning
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rate decay scheduling γ, as well as different ratio of updating G and D per iteration. These

observations, combined with that we had limited computational resources, motivated us to

use shallower architectures, which we describe below in § C.5.2, and which use an inductive

bias of so-called Self–Attention layers [Zhang et al., 2018]. As a reference, our SAGAN and

ResNet architectures for CIFAR-10 have approximately 35 and 85 layers, respectively–in total

for G and D, including the non linearity and the normalization layers. For clarity, although

the deeper and the shallower architectures differ as they are based on ResNet and SAGAN, we

refer these as deep (see § C.5.2) and shallow (see § C.5.2), respectively.

Shallower SAGAN architectures

We used the SAGAN architectures [Zhang et al., 2018], as the techniques of self-attention

introduced in SAGAN were used to obtain the state-of-art GAN results on ImageNet [Brock

et al., 2019]. In summary, these architectures: (i) allow for attention-driven, long-range

dependency modeling, (ii) use spectral normalization [Miyato et al., 2018] on both G and D

(efficiently computed with the power iteration method); and (iii) use different learning rates

for G and D, as advocated in [Heusel et al., 2017]. The foremost is obtained by combining

weights, or alternatively attention vectors, with the convolutions across layers, so as to allow

modeling textures that are consistent globally–for the generator, or enforcing geometric

constraints on the global image structure–for the discriminator.

We used the architectures listed in Table C.3 for CIFAR-10 and SVHN datasets, and the archi-

tectures described in Table C.4 for the experiments on ImageNet. The models’ parameters are

initialized using the default initialization of PyTorch.

For experiments with SAGAN, we used the hinge version of the adversarial non-saturating loss

[Lim and Ye, 2017, Zhang et al., 2018]:

LD = Ex∼pd max(0,1−D(x))+Ez∼pz max(0,1+D(G(z)) (C.53)

LG =−Ez∼pz D(G(z))., (C.54)

where consistent with the notation above, pd and pz denote the data and the latent distribu-

tions.

For the SE–A baseline we obtained best performances when ηG = 1×10−4 and ηD = 4×10−4, for

G and D, respectively. Similarly as noted for MNIST, using SVRE allows for using larger order

of the step size on the rest of the datasets, whereas SE–A with increased step size (ηG = 1×10−3

and ηD = 4×10−3 failed to converge. In Table 4.3, ηG = 1×10−3, ηD = 4×10−3, and ηG = 5×10−3,

ηD = 8×10−3,β1 = 0.3 for SVRE and SVRE–VRAd, respectively. We did not use momentum for

the vanilla SVRE experiments.
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Self–Attention Block (d – input depth)

Input: t ∈Rd×H×W

i: conv. (ker: 1×1, d →bd/8c) ii: conv. (ker: 1×1, d →bd/8c) iii: conv. (ker: 1×1, d → d)
iv: softmax( (i) ⊗ (ii) )

Output: γ
(
(iv)⊗ (iii)

)+ t

Table C.2 – Layers of the self–attention block used in the SAGAN architectures (see Tables C.3
and C.4), where ⊗ denotes matrix multiplication and γ is a scale parameter initialized with
0. The columns emphasize that the execution is in parallel, more precisely, that the block
input t is input to the convolutional layers (i)–(iii). The shown row ordering corresponds to
consecutive layers’ order, e.g. softmax is done on the product of the outputs of the (i) and
(ii) convolutional layers. The 1×1 convolutional layers have stride of 1. For further details
see [Zhang et al., 2018].

Deeper ResNet architectures

We experimented with ResNet [He et al., 2015] architectures on CIFAR-10 and SVHN, using

the architectures listed in Table C.6, that replicate the setup described in [Miyato et al., 2018]

on CIFAR-10. For experiments with ResNet, we used the hinge version of the adversarial

non-saturating loss, Eq. C.53 and C.54. For this architectures, we refer the reader to § C.6.3 for

details on the hyperparameters, where we list the hyperparameters along with the obtained

results.
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Generator

Input: z ∈R128 ∼N (0, I )
transposed conv. (ker: 4×4, 128 → 256; stride: 1)

Spectral Normalization
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 256 → 128, stride: 2, pad: 1)

Spectral Normalization
Batch Normalization

ReLU
Self–Attention Block (128)

transposed conv. (ker: 4×4, 128 → 64, stride: 2, pad: 1)
Spectral Normalization

Batch Normalization
ReLU

Self–Attention Block (64)
transposed conv. (ker: 4×4, 64 → 3, stride: 2, pad: 1)

Tanh(·)
(a) Generator architecture

Discriminator

Input: x ∈R3×32×32

conv. (ker: 4×4, 3 → 64; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
conv. (ker: 4×4, 64 → 128; stride: 2; pad: 1)

Spectral Normalization
LeakyReLU (negative slope: 0.1)

conv. (ker: 4×4, 128 → 256; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
Self–Attention Block (256)

conv. (ker: 4×4, 256 → 1; stride: 1)

(b) Discriminator architecture

Table C.3 – Shallow SAGAN architectures for experiments on SVHN and CIFAR-10, for the
Generator (Tab. a) and the Discriminator (Tab. b). The self-attention block is described in
Table C.2. We use the default PyTorch hyperparameters for the Batch Normalization layer.
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Generator

Input: z ∈R128 ∼N (0, I )
transposed conv. (ker: 4×4, 128 → 512; stride: 1)

Spectral Normalization
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 512 → 256, stride: 2, pad: 1)

Spectral Normalization
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 256 → 128, stride: 2, pad: 1)

Spectral Normalization
Batch Normalization

ReLU
Self–Attention Block (128)

transposed conv. (ker: 4×4, 128 → 64, stride: 2, pad: 1)
Spectral Normalization

Batch Normalization
ReLU

Self–Attention Block (64)
transposed conv. (ker: 4×4, 64 → 3, stride: 2, pad: 1)

Tanh(·)

Discriminator

Input: x ∈R3×64×64

conv. (ker: 4×4, 3 → 64; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
conv. (ker: 4×4, 64 → 128; stride: 2; pad: 1)

Spectral Normalization
LeakyReLU (negative slope: 0.1)

conv. (ker: 4×4, 128 → 256; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
Self–Attention Block (256)

conv. (ker: 4×4, 256 → 512; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
Self–Attention Block (512)

conv. (ker: 4×4, 512 → 1; stride: 1)

Table C.4 – Shallow SAGAN architectures for experiments on ImageNet, for the Generator (left)
and the Discriminator (right). The self–attention block is described in Table C.2. Relative to the
architectures used for SVHN and CIFAR-10 (see Table C.3), the generator has one additional
“common” block (conv.–norm.–ReLU), whereas the discriminator has additional “common”
block as well as self–attention block (both of more parameters).
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G–ResBlock

Bypass:
Upsample(×2)

Feedforward:
Batch Normalization

ReLU
Upsample(×2)

conv. (ker: 3×3, 256 → 256; stride: 1; pad: 1)
Batch Normalization

ReLU
conv. (ker: 3×3, 256 → 256; stride: 1; pad: 1)

D–ResBlock (`–th block)

Bypass:
[AvgPool (ker:2×2 )], if `= 1

conv. (ker: 1×1, 3`=1/128 6̀=1 → 128; stride: 1)
Spectral Normalization

[AvgPool (ker:2×2, stride:2)], if ` 6= 1
Feedforward:

[ ReLU ], if ` 6= 1
conv. (ker: 3×3, 3`=1/128 6̀=1 → 128; stride: 1; pad: 1)

Spectral Normalization
ReLU

conv. (ker: 3×3, 128 → 128; stride: 1; pad: 1)
Spectral Normalization

AvgPool (ker:2×2 )

Table C.5 – ResNet blocks used for the ResNet architectures (see Table C.6), for the Generator
(left) and the Discriminator (right). Each ResNet block contains skip connection (bypass),
and a sequence of convolutional layers, normalization, and the ReLU non–linearity. The skip
connection of the ResNet blocks for the Generator (left) upsamples the input using a factor of
2 (we use the default PyTorch upsampling algorithm–nearest neighbor), whose output is then
added to the one obtained from the ResNet block listed above. For clarity we list the layers
sequentially, however, note that the bypass layers operate in parallel with the layers denoted
as “feedforward” [He et al., 2015]. The ResNet block for the Discriminator (right) differs if it is
the first block in the network (following the input to the Discriminator), `= 1, or a subsequent
one, `> 1, so as to avoid performing the ReLU non–linearity immediate on the input.

Generator Discriminator

Input: z ∈R128 ∼N (0, I ) Input: x ∈R3×32×32

Linear(128 → 4096) D–ResBlock
G–ResBlock D–ResBlock
G–ResBlock D–ResBlock
G–ResBlock D–ResBlock

Batch Normalization ReLU
ReLU AvgPool (ker:8×8 )

conv. (ker: 3×3, 256 → 3; stride: 1; pad:1) Linear(128 → 1)
Tanh(·) Spectral Normalization

Table C.6 – Deep ResNet architectures used for experiments on SVHN and CIFAR-10, where
G–ResBlock and D–ResBlock for the Generator (left) and the Discriminator (right), respec-
tively, are described in Table C.5. The models’ parameters are initialized using the Xavier
initialization [Glorot and Bengio, 2010].
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IS FID

SE–A SVRE SVRE–VRAd SE–A SVRE SVRE–VRAd

MNIST 8.62 8.58 8.56 0.17 0.15 0.18
CIFAR-10 6.61 6.50 6.67 37.20 39.20 38.88

SVHN 2.83 3.01 3.04 39.95 24.01 19.40
ImageNet 7.22 8.08 7.50 89.40 75.60 81.24

Table C.7 – Best obtained IS and FID scores for the different optimization methods, using shal-
low architectures, for a fixed number of iterations (see § C.5). The architectures for each dataset
are described in: MNIST–Table C.1, SVHN and CIFAR-10–Table C.3, and ImageNet–Table C.4.
The standard deviation of the Inception scores is around 0.1 and is omitted. Although the IS
metric gives relatively close values on SVHN due to the dataset properties (see § C.5.1), we
include it for completeness.

C.6 Additional Experiments

C.6.1 Results on MNIST

The results in Table 4.3 on MNIST are obtained using 5 runs with different seeds, and the

shown performances are the averaged values. Each experiment was run for 100K iterations.

The corresponding scores with the standard deviations are as follows: (i) IS: 8.62±.02, 8.58±.08,

8.56±.11; (ii) FID: 0.17±.03, 0.15±.01, 0.18±.02; for SE–A, SVRE, and SVRE–VRAd, respectively.

On this dataset, we obtain similar final performances if run for many iterations, however SVRE

converges faster (see Fig. 4.2). Fig. C.1 illustrates additional metrics of the experiments shown

in Fig. 4.2.

C.6.2 Results with shallow architectures

Fig. C.2 depicts the results on ImageNet using the shallow architectures described in Table C.4,

§ C.5.2. Table C.7 summarizes the results obtained on SVHN, CIFAR-10 and ImageNet with

these architectures. Fig. C.3 depicts the SME metric (see § C.5.1) for the the SE–A baseline and

SVRE shown in Fig. 4.2c, on SVHN.
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Figure C.1 – Stochastic, full-batch and variance reduced versions of the extragradient method
ran on MNIST, see § 4.5.1. *BatchE–A emphasizes that this method is not scaled with the
number of passes (x-axis). The input space is 1×28×28, see § C.5.2 for details on the imple-
mentation.
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Figure C.2 – Comparison between SVRE and the SE–A baseline on Imagenet, using the shallow
architectures described in Table C.4. See § C.5.1 for details on the used IS and FID metrics.
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Figure C.3 – Average second moment estimate (see § C.5.1) on SVHN for the Generator (left)
and the Discriminator (right), using the shallow architectures described in Table C.3. The
corresponding FID scores for these experiments are shown in Fig. 4.2c.
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C.6.3 Results with deeper architectures

We observe that GAN training is more challenging when using deeper architectures and some

empirical observations differ in the two settings. For example, our stochastic baseline is

drastically more unstable and often does not start to converge, whereas SVRE is notably stable,

but slower compared to when using shallower architectures. In this section, all our discussions

focus on deep architectures (see § C.5.2).

Stability: convergence of the GAN training. For our stochastic baselines, irrespective whether

we use the extragradient or gradient method, we observe that the convergence is notably more

unstable (see Fig. C.4) when using the deep architectures described in § C.5.2. More precisely,

either the training fails to converge or it diverges at later iterations. When updating G and D

equal number of times i.e. using 1 : 1 update ratio, using SE–A on CIFAR-10 we obtained best

FID score of 24.91 using ηG = 2×10−4, ηD = 4×10−4,β1 = 0, while experimenting with several

combinations of ηG ,ηD ,β1. Using exponential learning rate decay with a multiplicative factor

of 0.99, improved the best FID score to 20.70, obtained for the experiment with ηG = 2×10−4,

ηD = 2×10−4,β1 = 0. Finally, using 1 : 5 update ratio, with ηG = 2×10−4, ηD = 2×10−4,β1 = 0

provided best FID of 18.65 for the baseline. Figures C.4a and C.4b depict the hyper-parameter

sensitivity of SE–A and SG–A, respectively. The latter denotes the alternating GAN training

with Adam, that is most commonly used for GAN training.
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Figure C.4 – FID scores (lower is better) with different hyperparameters for the SE–A baseline on
CIFAR10 (left) and the SG–A baseline on SVHN (right), using the deep architectures described
in Table C.6, § C.5.2. SG–A denotes the standard stochastic alternating GAN training, with the
Adam optimization method. Where omitted, β1 = 0, see (C.46) where this hyperparameter is
defined. With r we denote the update ratio of generator versus discriminator: in particular
1 : 5 denotes that D is updated 5 times for each update of G . γ denotes a multiplicative factor
of exponential learning rate decay scheduling. In Fig. C.4b, γ= 0.99 for all the experiments.
We observed in all our experiments that training diverged in later iterations for the stochastic
baseline, when using deep architectures.

We observe that SVRE is more stable in terms of hyperparameter selection, as it always starts
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Figure C.5 – Obtained FID (lower is better) scores for SVRE, using the deep architectures
(see § C.5.2) on SVHN. With s we denote the fixed random seed. The update ratio for all the
experiments is 1 : 1. We illustrate our results on the same plot (besides the reduced clarity) so
as to summarize our observation that, contrary to the SE–A baseline for these architectures,
SVRE always converges, and does not diverge.
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Figure C.6 – Obtained FID (lower is better) scores for WS–SVRE, using the deep architectures
(see § C.5.2) on CIFAR-10, where the seed is fixed to 1 for all the experiments. With r we
denote the update ratio of generator versus discriminator: in particular 1 : 5 denotes that D
is updated 5 times for each update of G . We start from the best obtained FID score for the
stochastic baseline, i.e. FID of 18.65 (see Table 4.3)–shown with dashed line, and we continue
to train with SVRE.

to converge and does not diverge at later iterations. Relative to experiments with shallower

architectures, we observe that with deeper architectures SVRE takes longer to converge than
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its baseline for this architecture. With constant step size of ηG = 1× 10−3, ηD = 4× 10−3

we obtain FID score of 23.56 on CIFAR-10. Note that this result outperforms the baseline

when using no additional tricks (which themselves require additional hyperparameter tuning).

Fig. C.5 depicts the FID scores obtained when training with SVRE on the SVHN dataset, for

two different hyperparameter settings, using four different seeds for each. From this set of

experiments, we observe that contrary to the baseline that either did not converge or diverged

in all our experiments, SVRE always converges. However, we observe different performances

for different seeds. This suggests that more exhaustive empirical hyperparameter search that

aims to find an empirical setup that works best for SVRE or further combining SVRE with

adaptive step size techniques are both promising research directions (see our discussion

below). Fig. C.6 depicts our WS–SVRE experiment, where we start from a stored checkpoint

for which we obtained best FID score for the SE–A baseline, and we continue the training

with SVRE. It is interesting that besides that the baseline diverged after the stored checkpoint,

SVRE further reduced the FID score. Moreover, we observe that using different update ratios

does not impact much the performance, what on the other hand was necessary to make the

baseline algorithm converge.
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Figure C.7 – Average second moment estimate (SME, see § C.5.1) on CIFAR-10 for the Gener-
ator (left) and the Discriminator (right), using the deep architectures described in Table C.6.
The obtained FID scores for these experiments are shown in Fig. C.4a, where we omit some of
the experiments for clarity. All of the baseline SE–A experiments diverge at some point, what
correlates with the iterations at which large oscillations of SME appear for the Discriminator.
Note that the SE–A experiments were stopped after the algorithm diverges, hence the plotted
SME is up to a particular iteration for two of the experiments (shown in blue and orange). The
SE–A experiment with γ= 0.99 diverged at later iteration relative to the experiments without
learning rate decay, and has lower SME.

Second moment estimate (SME). Fig. C.7 depicts the second moment estimate (see § C.5.1)

for the experiments with deep architectures. We observe that: (i) the estimated SME quantity is

more bounded and changes more smoothly for SVRE (as we do not observe large oscillations

of it as it is the case for SE–A); as well as that (ii) divergence of the SE–A baseline correlates

with large oscillations of SME, in this case, observed for the Discriminator. Regarding the latter,
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there exist larger in magnitude oscillations of SME (note that the exponential moving average

hyperparameter for computing SME is γ= 0.9, see § C.5.1).

127
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Foremost, we elaborate in more detail the annotation procedure in Section D.1. We then list

details regarding the provided annotations in Section D.2. Details on our implementation of

the camera calibration are given in Section D.3. Section D.4 provides further details of the

statistics summarized in Section 3.4. In Section D.5 we discuss recommended training and

testing splits of the WILDTRACK dataset. Finally, we provide additional tracking results in

Section D.6.

D.1 Annotation process

Annotation tool. As an area of interest we consider a 12×36m ground plane of the 3D space

lying in the intersection of the fields of view of the seven cameras. We discretize this ground

surface as a grid of 480×1440 points, what corresponds to an offset of 2.5cm in both directions.

Given such a regular high-density grid of, at each location we construct a cylinder volume

whose height and width correspond to the humans’ average height and width. Each such

cylinder projects into the separate 2D views as a rectangle. The position of these rectangles in

all of the views is then calculated in pixel coordinates using the camera calibration. Finally, we

use these pre-calculated projections to integrate them into our annotation tool.

The labelling tool is a Python-based web application. It is built with a very responsive design,

and its graphical user interface (GUI) is illustrated in Fig. D.1. Our annotation tool is hosted on

a website1, which was created and managed using Django. The source-code is also available

for download2.

For the selected frame to be annotated, the tool displays the seven corresponding images at

the same time (see Fig. D.1). In order to provide a multi-view annotation, the user of the tool

first has to mark the placement of the bounding boxes. This is achieved by a single click, whose

location should be at the feet of the person to be annotated, in either of the views where it is

1https://pedestriantag.epfl.ch/
2https://github.com/cvlab-epfl/multicam-gt
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Figure D.1 – Graphical User Interface (GUI) of our multi-view labeller.

visible. Instantaneously, the boxes automatically appear in the views in which the person is

visible. To complete the multi-view annotation, the user shall next adjust the position of the

bounding boxes.

For this purpose, the keyboard arrows shall be used. More precisely, the left, right, up and down

keys should be used in order to shift the 3D imaginary cylinder on the ground plane. To help

annotators, the correspondence “key-direction” for each of the views is also depicted in the

tool and optionally visible while annotating. In addition, a zooming feature can be used, that

once a multi-view annotation is selected, allows for zooming-in the corresponding bounding

boxes. This was implemented in order to make it easier for the annotators to obtain more

precise locations of the annotations. The arrow key presses that translate into a movement of

the 3D cylinder, are instantly visible in all of the views that capture the person currently being

annotated. After getting used to the annotation process, annotators become more and more

precise on the first step: placing the bounding boxes, which significantly reduces the time

required to annotate as less adjustments are required.

Once the frame has been fully labelled and the user has moved to the next frame, optionally

(s)he is able to reload the annotations from the previous frame, traverse each of the anno-

tations, and refine their positions. Additional features such as keyboard short-cuts are also

supported for these utilities.

Finally, a more elaborate version of these instructions is provided in the annotation tool,

accompanied with numerous illustrations.
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Annotating on Mechanical Turk. We used Amazon Mechanical Turk [Buhrmester et al.,

2011] to obtain our annotations. Due to the risk of the annotators prioritizing profit over

quality of the annotations, we were highly involved in the process.

In our experience of annotating frames of our dataset, pre-loading annotations from the

previous frame, traversing these, and adjusting each, often proves less time-consuming then

starting to annotate each multi-view frame from scratch. This motivated providing the feature

of pre-loading annotations explained above. Hence, to help accelerate the annotation process

the recruited annotators were assigned frames in batches of size 10. To ensure that this feature

is not negatively utilised by the annotators, we also store flags indicating if these “imported”

annotations have been adjusted or not.

As explained, annotators were found via Mechanical Turk. However, since the dataset is quite

challenging, annotating locations in 3D for crowded scenes may require substantial attention

and dedication. Despite all our efforts to make the tool easy to use, it turned out that most MT

workers were reluctant to provide this level of effort and they were almost never achieving the

required quality. We therefore had to select few workers to whom we personally explained the

level of detail needed. They were then able to annotate with higher accuracy.

On average, annotating one frame takes ∼10 minutes for a trained annotator, and approxi-

mately half of that when importing the annotations from the previous frame.

D.2 Annotations

D.2.1 File formats

The annotations are provided in a separate file per each multi-view frame. Each annotation file

is provided in the JavaScript Object Notation (JSON) open-standard file format. This format is

human readable and programming language independent. Many programming languages

integrate libraries that offer support for working with these files, including Python.

Each multi-view annotation contains the following information:

• Person ID: A unique identifier of a person appearing in the sequence.

• 3D location: (X, Y) location of the target in meters on the ground plane with respect to

the origin.

• pixel coordinates in each of the views: For each of the seven cameras, the detection lo-

cation in pixel coordinates for that view are given: {(xc
mi n , yc

mi n , xc
max , yc

max )}, c = 1, . . . ,7.
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D.2.2 Memory size

Images. We refer as a frame a set of 7 images, synchronized with the same time stamp. The

extracted and pre-processed frames with removed distortions contain 36000×7 images, while

each image is of size ∼2.9 MB. This corresponds to 10 frames per second for 1h and 7 cameras.

Currently there are 400 annotated frames, at 2fps (see Section 3.4).

Videos. Each of the 7 videos is approximately 1:50h long, and of size ∼25GB.

D.3 Camera calibration

Intrinsic. The intrinsic calibration was obtained for each camera separately. For this purpose

we used the OpenCV function calibrateCamera which provides also the distortion coefficients.

Precisely, we used 3 radial distortion coefficients. In particular, we used the asymmetric circle

grid provided by OpenCV with sizes of 4×11, and 20 frames to obtain each camera’s intrinsic

matrix. To obtain higher accuracy, we made sure that the target (the grid of circles), is captured

in as many parts of the field of view of the camera as possible.

Extrinsic. In our implementation, for each of the seven views we used 23, 26, 15, 19, 21,

28 and 19 pairs of points, respectively. We used the OpenCV ’s module solvePnP [Bradski,

2000], which given the intrinsics provides the rotation and the translation vector. The 3D

measurements and the annotated corresponding points will also be made available, so as

camera calibration methods could make use of these.

Bundle adjustment. In our implementation, we used the open source C++ library Ceres [Agar-

wal et al.], which offers extensive support for bundle adjustment problems. We used linear

optimisation which in Ceres is referred to as Iterative Schur.

D.4 Additional statistics

Fig. D.2 depicts the number frames in which a person appears. In particular, we consider a

frame rate of 2 fps, a total number of frames of 400, and 313 different identities. On average,

each person appears in 30.41(47.87) frames, and the mode is 22 frames.
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Figure D.2 – Histogram of the number of frames in which one person appears: the normalized
number of different identites (y-axis) that appear within a range of number of frames (x-axis).

D.5 Recommended splits of the WILDTRACK dataset

We regard two use-cases of the WILDTRACK dataset, and we discuss recommended partitions

for each. Please consider visiting the website for downloading the dataset3, for up to date

details.

Scenario A: Supervised methods. We recommend that the last 10% of the annotated frames

at 2 fps are used for testing. This amounts to a total of 40 frames at 2 fps. For training one shall

use the remaining portion of the dataset, with optional sampling frame rate.

Scenario B: Unsupervised methods. In this case, we recommend that the entire annotated

portion at a fixed frame rate of 2 fps is used for benchmarking unsupervised methods. The

remaining portion for which annotations are not provided can be used for training, using an

optional sampling rate.

D.6 Additional tracking benchmarks

Table D.1 shows additional tracking results, where we use the same notation for the methods

as in Chapter 6.

3https://cvlab.epfl.ch/data/wildtrack
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Table D.1 – Additional tracking results on the WILDTRACK dataset.

Method IDF1 IDP IDR MT PT ML FP FN IDs FM MOTA MOTP

ResNet-DeepMCD+KSP 62.5 84.9 49.5 11 11 19 154 2081 35 30 50.9 75.1
ResNet-DeepMCD+KSP+ptrack 64.2 93.1 49.0 10 9 22 49 2239 5 5 50.4 75.9
ResNet-View 1+KSP 28.5 18.7 60.7 34 4 0 10050 257 162 58 -140.9 59.0
ResNet-View 1+KSP+ptrack 30.2 20.1 60.6 30 8 0 9173 410 131 51 -123.5 58.0
ResNet-View 2+KSP 29.1 19.4 58.8 28 6 1 8428 265 172 47 -121.3 50.7
ResNet-View 2+KSP+ptrack 31.4 21.2 60.6 28 6 1 7698 249 128 31 -101.6 50.2
ResNet-View 3+KSP 25.8 17.0 53.7 35 4 1 9874 286 177 52 -133.5 51.2
ResNet-View 3+KSP+ptrack 27.2 18.1 54.2 33 5 2 9208 402 150 46 -120.5 49.1
ResNet-View 4+KSP 20.5 12.6 54.4 14 5 1 4362 137 42 16 -255.3 60.5
ResNet-View 4+KSP+ptrack 22.1 13.9 54.4 13 2 5 3904 180 32 11 -222.1 60.3
ResNet-View 5+KSP 39.7 32.6 50.9 20 13 3 2560 598 117 79 5.8 54.2
ResNet-View 5+KSP+ptrack 41.7 35.0 51.7 18 12 6 2334 672 94 54 10.9 55.2
ResNet-View 6+KSP 26.6 17.5 55.4 34 4 1 10200 375 172 77 -136.1 52.2
ResNet-View 6+KSP+ptrack 29.4 19.9 56.4 30 8 1 8860 498 127 51 -108.4 52.8
ResNet-View 7+KSP 38.6 27.1 67.0 22 3 0 4488 171 72 28 -61.1 65.1
ResNet-View 7+KSP+ptrack 41.7 30.3 66.8 19 3 3 3791 253 49 21 -39.4 64.9
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