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ABSTRACT
Speech-based degree of sleepiness estimation is an emerging re-
search problem. This paper investigates an end-to-end approach,
where given raw waveform as input, a convolutional neural network
(CNN) estimates at its output the degree of sleepiness. Within this
approach, we investigate constraining the first layer processing and
integration of speech production knowledge through transfer learn-
ing. We evaluate these methods on the continuous sleepiness corpus
of the Interspeech 2019 Computational Paralinguistics (ComParE)
Challenge and demonstrate that the proposed approach consistently
yields competitive systems. In particular, we observe that integration
of speech production knowledge aids in improving the performance
and yields systems that are complementary.

Index Terms— Paralinguistic speech processing, sleepiness,
end-to-end acoustic modeling, convolutional neural networks, artic-
ulatory features.

1. INTRODUCTION

Assessing sleepiness is relevant in scenarios, such as in preventing
accidents or in evaluating when to recommend a break. Furthermore,
sleep deprivation increases the mortality risk. To put this relevance
into perspective: in 2016, the American think tank RAND reported
an estimated US$138 billion damage to Japanese economy (2.92%
of its GDP) caused by sleepiness at work, which is why companies,
among other things, offer incentives to sleep more than six hours
per night [1]. Although sleepiness is a multi-modal phenomenon,
speech is one of the cheapest modalities that can be captured, most
notably in a non-intrusive manner. Sleepiness can be subjectively as-
sessed on the Karolinska Sleepiness Scale (KSS) [2], which ranges
from 1 (extremely alert) to 9 (very sleepy) in steps of one. This pa-
per focuses on developing objective or automatic methods to predict
sleepiness.

In the literature, estimating sleepiness has been addressed by in-
vestigating acoustic factors. Traditionally, baseline systems used a
large number of general-purpose low-level descriptors (LLDs) such
as short-term energy, short-term spectrum, voice-related features and
their functionals, as in [3]. In [4], Schuller et al. reviewed contribu-
tions to the Interspeech 2011 Speaker State Challenge on sleepiness
estimation, which is labeled in terms of KSS. Sleepiness is consid-
ered a medium term speaker state, meaning effects that usually last a
few hours. It is expected to generally affect motor coordination pro-
cesses and cognitive processing of speech. This manifests in terms
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of changes in prosody such as monotonic and flattened intonation, in
shifted speech rate [5, 6], in articulation, such as slurred, less crisp
pronunciation, mispronunciation [7] and in speech quality such as
tensed, nasal, or breathy speech [8]. In [9], Hönig et al. analyzed the
LLDs extracted from the Interspeech 2011 Speaker State Challenge
sleepiness data. They found that male sleepiness correlated more
with spectral changes such as less canonical pronunciation, whilst
female sleepiness correlated more with lowered F0.

More recently, as part of the Interspeech 2019 ComParE chal-
lenge, histogram representations of clustered LLDs, known as bag-
of-audio-words (BoAW) and feature representations from sequence-
to-sequence auto-encoders (S2SAE) trained on Mel-spectrograms
were studied [3]. In [10], Gosztolya created utterance-level Fisher
vectors by training a GMM on frame-level MFCCs, which are used
for classification with SVM. Similarly, Wu et al. [11] investigated
extraction of Fisher vectors from a large variety of acoustic features.
In [12], the authors investigated raw waveform CNNs including data
augmentation, such as inputting reverse samples, adding noise or us-
ing noisy labels. In [13], Yeh et al. presented a system that uses
frame-level eGeMaps features that were input to a BLSTM-CNN
network with attention. For data augmentation, an adversarial auto-
encoder was used to generate synthetic samples. Additionally, bor-
der cases, e.g. samples with low and high KSS scores, that are intu-
itively more relevant to detect, were selected for an additional clas-
sifier to be used for score fusion. Wu et al. [14] aimed to address the
ordinality of the KSS labels and introduce an ordinal triplet loss that
is used to train binary classifiers for each label individually. Vijay et
al. [15] used between-frame entropy, a measure that correlates with
speech rate, to detect outliers, and creating utterance-level iVectors
from voice quality features.

The above mentioned contributions investigated many relevant
acoustic aspects and address issues such as the ordinality of the KSS
labels or the imbalance of a data set to solve sleepiness estimation
as a classification/regression problem. However, although relevant,
acoustic-phonetic changes in sleepy speech have not yet been con-
sidered. Therefore, our goal is to study whether speech production
differences from a phonetic perspective can be captured for degree
of sleepiness estimation. We aim to address this by applying raw
waveform based CNNs in an end-to-end manner. It was shown in
recent years that this approach is able to learn task-related informa-
tion without any short-term spectral processing [16, 17, 18, 19, 20,
21, 22]. We investigate constraining how the first convolution layer
processes the speech signal (Section 2.1). Moreover, we incorpo-
rate prior knowledge by integrating speech production knowledge
through transfer learning, inspired by Dubagunta et al. ([23]), de-
scribed in Section 2.2. We validate these methods on the continuous
sleepiness sub-challenge of the ComParE 2019 challenge [3] in Sec-
tion 3 and present our conclusions in Section 4.



2. PROPOSED SYSTEMS

We used the raw waveform based CNN framework originally devel-
oped for speech recognition [24], and later extended to other tasks
such as speaker verification [21], gender identification [25], presen-
tation attack detection [20] or depression detection [22]. In this
framework, as illustrated in Figure 1, the network consists of N
convolution layers (Conv), maximum pooling (MaxP) and ReLU
activations followed by a multilayer perceptron (MLP). At the out-
put, the CNN predicts the posterior probability of the classes per
frame. Frame-level posterior probabilities are then averaged to get
per-utterance posterior probabilities. During training, both convolu-
tional layer and MLP parameters are estimated using a cost function
based on cross entropy. We used a decaying learning schedule which
halves the learning rate between 10−3 and 10−7 whenever the vali-
dation loss stopped reducing. Similar to the baseline system studies
reported in [3], we conducted studies with two experimental setups:
(a) train the CNNs on the training data and test on development data
and (b) train the CNNs on both training and development data and
test on the test set. In each case, 5% of the data was used for cross-
validation.
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Fig. 1. Illustration of the proposed CNN architecture.

2.1. Raw waveform CNN architectures

We trained randomly-initialized CNNs to predict the degree of
sleepiness. Figure 2 illustrates the processing at the first convolution
layer. kW denotes the kernel width in samples, dW denotes the
stride or kernel shift in samples, Wseq in seconds is the segment
of speech that is processed at one time frame and nf is number of
filters in the convolution layer. In [26, 21], it has been found that,
by modifying kW , different information related to the speech pro-
duction mechanism can be learned. More precisely, if kW covers
a signal length of about 20 ms (segmental), the first convolution
layer tends to model voice-source-related information. Similarly,
if kW covers a signal of about 2 ms of length (sub-segmental),
the first convolution layer tends to model vocal tract system related
information, such as formant information.
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Fig. 2. Illustration of the first convolution layer processing.

Input to the CNN wseq was a 250ms length speech segment (de-
termined by the frame-level accuracy on the cross-validation set),
which was shifted by 10ms. Table 1 presents the architectures used
based on the first convolution layer kernel width. Depending upon
the length of the filters in the first convolutional layer, we distinguish
(a) sub-segmental modelling (subseg), where kW = 30, span over
2ms, equivalent to less than 1 pitch period, and (b) segmental mod-
elling (seg), where kW = 300 spanning 20ms, equivalent to 1 to 5
pitch periods. The AF-CNN architecture uses sub-segmental model-
ing, see Section 2.2. The classification stage consists of one hidden
layer with 100 units.

Table 1. CNN architectures. Nf : number of filters, kW : kernel
width, dW : kernel shifts, MP : max-pooling.

Model Layer Conv MP
Nf kW dW

subseg 1 128 30 10 2
2 256 10 5 3
3 512 4 2 -
4 512 3 1 -

AF-CNN 1 80 30 10 3
2 60 7 1 3
3 60 7 1 3

seg 1 128 300 100 2
2 256 5 2 -
3 512 4 2 -
4 512 3 1 -

2.2. Integrating speech production knowledge

As discussed in Section 1, sleepiness can induce changes in the ar-
ticulation process, i.e. in the speech production process resulting
in slurred speech, less crisp or incorrect pronunciation. In order
to integrate articulatory information into our models, we investi-
gated a transfer learning framework where the CNN is first trained
to predict articulatory features (AFs) within four broad categories,
namely, manner of articulation (e.g. degree of constriction), place
(of constriction), height (of the tongue) and vowel. These AFs are
inspired by a recent work on articulatory feature based speech recog-
nition [27]. To predict the degree of sleepiness, we use the AF-
initialized CNNs, replace the output layer by an output layer consist-
ing of the nine sleepiness categories and train those models. Figure 3
summarizes this procedure. Knowledge from the 4 AF categories is
utilized to initialise 4 separate CNNs, which are fine-tuned on the
sleepiness data. We hypothesize that such an initialization helps to
exploit articulatory differences due to sleepiness.

AF predictors are trained based on knowledge that maps phones
to AFs. With such mapping, one can train acoustic-to-AF predictors
by using an alignment of transcribed speech. The challenge data is
not transcribed, so we used the AMI corpus [28], which consists of
77 hours of speech. From this data, we used Kaldi to train HMMs
for context-dependent phones, where the HMM states were jointly
modelled by using subspace GMMs. The corresponding frame-to-
phone alignments and the phone-to-AF mappings were then used to
train the above mentioned four AF-CNNs. The model architecture is
similar to sub-segmental architecture and is described in Table 1 as
AF-CNN, except in this case, the single hidden layer MLP contains
1024 hidden units. We then adapted the resulting four AF-CNNs on
the sleepiness data.
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Fig. 3. Overview of transfer learning for sleepiness prediction from CNNs that were initially trained to predict articulatory features.

2.3. Posterior vector fusion with an MLP

We also investigated combining different systems. For that we used
an MLP to fuse scores from different systems. The MLP had one
hidden layer with 128 nodes with ReLU activation, a dropout layer
with 10% and the output layer predicts the nine sleepiness cate-
gories.

3. EXPERIMENTAL RESULTS & ANALYSIS

3.1. Data and experimental protocol

The continuous sleepiness sub-challenge corpus consists of 5564 ut-
terances (5hours 59 minutes) in the training set, 5328 utterances
(5hours 44 minutes) in the development set and 5570 utterances
(5hours 58minutes) in the test set from a total of 915 subjects (364
females, 551 males). No speaker IDs or speaker genders information
are provided. Speech data consists of different reading and speaking
tasks as well as narrative speech. According to the KSS scale, the
labels range from 1 to 9. True labels were averaged between self-
assessment and two expert ratings. Spearman’s cross-correlation co-
efficient, denoted as ρ, is used as the evaluation metric. For further
details, the reader is referred to [3].

3.2. Results

Table 2 compares the performance of the proposed systems with the
baseline systems provided as part of the challenge and systems re-
ported as part of the challenge. It is important to mention that the
challenge allowed only five trials on the test set, hence only five test
results for the proposed systems are reported.

On the first experimental setup i.e. training on the training set
and evaluating on the development set, it can be observed that the
proposed raw waveform modeling methods perform comparable to
the best baseline systems and systems reported as part of the Com-
ParE challenge. We can observe that score fusion leads to improve-
ment in performance. Thus, indicating that different CNNs are cap-
turing complementary information. When comparing on the second
experimental setup, i.e. training on train and development set and
evaluating on the test set, we can see that the raw waveform CNNs
not necessarily generalize well. However, the AF-CNN and fusion
systems generalize well. This shows that integrating speech produc-
tion knowledge is indeed aiding in predicting degree of sleepiness
and yields comparable systems.

Besides the proposed systems, Elsner et al. [12] and Wu et
al. [14] investigated modeling raw waveform using CNNs for the
sleepiness challenge. In [14], a system based on CNN-BLSTM

Table 2. Results of all the presented CNNs on the ComParE 2019
sleepiness challenge data in Spearman’s cross-correlation coefficient
ρ. A + denotes a fusion using the MLP.

ComParE 2019 Baseline systems Dev Test
ComParE2013 [3] .251 .314
COMPARE2013BoAW500 [3] .250 .304
S2SAE−70dB [3] .261 .310
3-best Fusion [3] - .343
Competition systems
Elsner et al. [12] .290 .335
Yeh et al. [13] .373 .369
Wu et al. [14] .343 -
Ravi et al. [15] .300 .331
Gosztolya [10] .367 .383
Wu et al. [10] .326 .365
Proposed raw waveform CNNs
subseg .280 .201
seg .274 .222
Proposed AF-CNNs
height .267 -
manner .292 -
place .262 -
vowel .295 .312
Proposed fusion
manner + place+ vowel 304 -
manner + place .311 -
manner + vowel .317 .325
manner + seg .315 -
manner + vowel + seg .319 -
manner + seg + ComParE .329 -
manner + seg +BoAW500 .344 .321

yielded significantly poor results. In [12], it was found that a CNN-
based system using a considerably longer window of speech input,
more precisely 1.5 s speech, without data augmentation yielded a
competitive system. In our case, the raw waveform based CNNs
without modeling speech production knowledge model 250 ms of
speech at the input. This difference could possibly explain low
performance on the test set. However, when integrating speech
production knowledge, although the CNN hyper parameters were
chosen from previous speech recognition studies, we can observe
that with 250 ms speech input we yield competitive systems. This
suggests that raw waveform CNNs and AF-CNNs are modeling
different information.



3.3. Analysis

We performed a confusion matrix analysis of the results obtained in
the first experimental setup. Figure 4 shows the confusion matrix of
our systemmanner + vowel. Unlike the baseline system [3], it can
be observed that classifications are spread over all degrees of sleepi-
ness. We have highest accuracy for KSS rating of 3 and 8, meaning
that our system is able to differentiate the extreme sleepiness cate-
gories well, whereas accuracy is lower for KSS ratings between 4
and 6, which are naturally difficult to distinguish. Moreover, the
highest number of predictions are reasonably spread along the diag-
onal. KSS label 1 is not correctly classified, presumably because of
a lack of samples – at least 5 times less in both training and develop-
ment set than KSS labels 2 to 8. In general, we found similar trends
in other systems that we investigated.
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Fig. 4. Confusion matrix of the score fusion from the CNNs
manner and vowel.

To get an impression of what frequency regions the first convo-
lutional layer is focusing on, we computed the cumulative frequency
response (CFR) as follows [26]:

Fcum =

Nf∑
k=1

Fk/||Fk||2 (1)

Nf denotes the number of filters and Fk is the frequency response of
filter fk. Figure 5 compares the CFR for raw waveform based sys-
tems. In both subseg CNN and seg CNN frequency regions around
1000 Hz or below are given emphasis.
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Fig. 5. Cumulative frequency responses of first convolutional layer
from raw waveform CNNs.

Figure 6 shows the CFR for AF-CNNs after adaptation/training
on sleepiness challenge data to estimate the degree of sleepiness. It
can be observed that there are differences in the information modeled
by the CNNs for different AFs. However, in general, the emphasis of
frequency regions is similar to CNNs trained for speech recognition
task [26]. Furthermore, when compared to raw waveform CNNs
(Figure 5), the CFRs are very different, i.e. emphasis is given to
frequencies above 1000 Hz that are associated with the articulation
aspect of speech. This indicates that indeed the raw waveform CNNs
and AF-CNNs are focusing on different information. In addition,
it also explains the performance gains obtained when fusing these
systems.
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Fig. 6. Cumulative frequency responses of first convolutional layer
from AF-CNNs.

4. CONCLUSIONS

This paper investigated how to estimate the degree of sleepiness
from raw waveforms by integrating speech production knowledge
into a CNN, by initially training it to predict articulatory features.
We evaluated our methods on the ComParE 2019 continuous sleepi-
ness challenge data. Our investigations showed that integrating this
knowledge yields better systems, when compared to simply model-
ing raw waveforms. Among the AF-CNNs, the manner CNN and
vowel CNN yield the best systems. First convolution layer analysis
shows that raw waveform CNNs and AF-CNNs focus on different
frequency information, hence capture complementary information.
This could be exploited through score fusion. Finally, our experi-
mental studies show that the proposed end-to-end approach can yield
systems comparable to the conventional short-term speech process-
ing based approaches.

From the performance point of view, the CNNs initialized to
predict the manner and vowel categories seem to be more relevant
to predict sleepiness in speech. Our future work will focus on un-
derstanding the speech sound-specific changes that are relevant for
degree of sleepiness estimation.
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