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ABSTRACT

The segmentation of the retinal vasculature from eye fundus images represents one of the most
fundamental tasks in retinal image analysis. Over recent years, increasingly complex approaches
based on sophisticated Convolutional Neural Network architectures have been slowly pushing per-
formance on well-established benchmark datasets. In this paper, we take a step back and analyze the
real need of such complexity. Specifically, we demonstrate that a minimalistic version of a standard
U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated,
closely approximates the performance of current best techniques. In addition, we propose a simple
extension, dubbed W-Net, which reaches outstanding performance on several popular datasets, still
using orders of magnitude less learnable weights than any previously published approach. Further-
more, we provide the most comprehensive cross-dataset performance analysis to date, involving up
to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation problem
is far from solved when considering test images that differ substantially from the training data, and
that this task represents an ideal scenario for the exploration of domain adaptation techniques. In
this context, we experiment with a simple self-labeling strategy that allows us to moderately en-
hance cross-dataset performance, indicating that there is still much room for improvement in this
area. Finally, we also test our approach on the Artery/Vein segmentation problem, where we again
achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity in recent
literature. All the code to reproduce the results in this paper is released.
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1 Introduction and Related Work

Retinal vessel segmentation is one of the first and most
important tasks in for the computational analysis of eye
fundus images. It represents a stepping stone for more
advanced applications like artery/vein ratio computation
[11], blood flow analysis [5], image quality assessment
[12], retinal image registration [13], or retinal image syn-
thesis [14].

Initial approaches to retinal vessel segmentation were
fully unsupervised and relied on conventional image pro-
cessing operations like mathematical morphology [15,16]

or adapted edge detection operations [17]. The idea be-
hind these methods is to apply some kind of transforma-
tion to a retinal image so that vessel intensities are em-
phasized, and then threshold the result to achieve a seg-
mentation. Although research on advanced filtering tech-
niques for retinal vessel segmentation has continued over
more recent years [6, 18], these kind of techniques con-
sistently reach lower performance on established bench-
marks, likely due to their inability to handle images with
pathological structures and generalizing to images with
different appearances and resolutions.
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Figure 1: This work provides the most comprehensive cross-dataset performance study on vessel segmentation to
date. A representative image from each of the 10 databases considered in this paper: DRIVE [1], CHASE-DB 1 [2],
HRF [3], STARE [4], LES-AV [5], IOSTAR [6], DR HAGIS [7], AV-WIDE [8], DRIDB [9], UoA-DR [10]. A detailed
description of each database is given in Table 2.

In contrast, early learning-based approaches quickly
showed more promising results and better performance
than their image processing counterparts [1, 19–22]. The
common strategy of these techniques consisted on the
extraction of specifically designed local descriptors that
were later passed to a relatively simple classifier, and the
focus became to derive the most discriminative visual fea-
tures for the task at hand.

This predominance of machine learning techniques was
reinforced with the emergence of deep neural networks.
After initial realization that Convolutional Neural Net-
works (CNNs) could outperform previous methods, by-
passing any manual feature engineering and directly
learning from raw data [23, 24], a constant stream of
publications has kept appearing on this topic, up to the
point that almost any new competitive vessel segmenta-
tion technique is based now on this approach.

Standard CNN approaches to retinal vessel segmentation
are based on the sequential application of a stack of con-
volutional layers that subsequently downsample and up-
sample input images to reach a probabilistic prediction of
vessel locations. The weights of the network are then iter-
atively updated to improve those predictions by means of
the minimization of a given miss-classification loss, e.g.
cross-entropy. Either processing small image patches [23]
or the entire image [24], these approaches can succeed
in segmenting the retinal vasculature with few annotated
training data.

Extensions to the above paradigm tend to involve com-
plex operations, like specifically designed network lay-

ers. Fu et al. introduced a Conditional Random Field re-
current layer to model more global relationships between
pixels [25], and Shi et al. combined convolutional and
graph-convolutional layers to better capture global ves-
sel connectivity [26]. Guo et al. introduced dense di-
lated layers that adjust the dilation rate based on vessel
thickness [27], and Fan et al. proposed a multi-frequency
convolutional layer (OctConv) in [28]. Other custom con-
volutional blocks and layers based on domain knowledge
have been explored in several recent works [29, 30].

Non-standard losses have also been proposed in recent
years. Yan et al. [31] trained a U-Net architecture [32]
by minimizing a joint-loss that receives output predic-
tions from two separate network branches, one with a
pixel-level and one with a segment-wise loss. The same
authors introduced a similar segment-level approach in
[33], whereas Mou et al. employed a multi-scale Dice
loss [34], Zhao et al. proposed a combination of global
pixel-level loss and local matting loss [35], and Zhang
and Chung introduced in [36] a deeply supervised ap-
proach in which various loss values extracted at differ-
ent stages of a CNN are combined and backpropagated,
with artificial labels in vessel borders turning the prob-
lem into a muti-class segmentation task. Generative Ad-
versarial Networks have also been proposed for retinal
vessel segmentation [37–40], although without achiev-
ing widespread popularity due to the difficulty in training
these techniques.

It is also worth reviewing efficient approaches to retinal
vessel segmentation, as we plan to introduce in this pa-
per high-performance lightweight models. These meth-
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ods typically appear in works focused on retinal vessel
segmentations for embedded/mobile devices In this con-
text, conventional unsupervised approaches are still pre-
dominant. Arguello et al. employ image filtering coupled
with contour tracing [41], Bibiloni et al. apply simple hys-
teresis thresholding [42], whereas Xu et al. adapt Gabor
filters and morphological operations for vessel segmenta-
tion in smartphone devices [43]. Only recently, Laibacher
et al. have explored efficient CNN architectures specifi-
cally designed for vessel segmentation on eye fundus im-
ages [44]. Their proposed M2U-Net architecture lever-
ages an ImageNet-pretrained MobileNet model [45] and
achieves results slightly inferior to the state-of-the-art.

1.1 Goals and Contributions

The goal of this paper is to show that 1) as recently shown
in other computer vision problems [46, 47], there is no
need of designing complex CNN architectures to outper-
form most current techniques on the task of retinal ves-
sel segmentation, and 2) when a state-of-the-art model is
trained on a particular dataset and tested on images from
different data sources, it can result in poor performance.
On our way to establish these two facts, we make several
contributions:

1. We introduce a simple extension of the standard
U-Net architecture, named W-Net, which allows
us to achieve outstanding performance on well-
established datasets.

2. We establish a rigorous evaluation protocol, aim-
ing to correct previous pitfalls in the area.

3. We test our approach in a large collection of reti-
nal datasets, consisting of 10 different databases
showing a wide range of characteristics, as illus-
trated in Fig. 1.

4. Our cross-dataset experiments reveal that do-
main shift can induce performance degradation
in this problem. We propose a simple strategy to
address this challenge, which is shown to recover
part of the lost performance.

5. Finally, we also apply our technique to the re-
lated problem of Artery/Vein segmentation from
retinal fundus images, matching the performance
of previous approaches with models that contain
much fewer parameters.

We believe that our results open the door to a more sys-
tematic study of new domain adaptation techniques in
the area of retinal image analysis: since training one of
our models to reach superior performance takes approxi-
mately 20 minutes in a single consumer GPU, our work
can serve as a first step for quick design and experimenta-
tion with improved approaches that can eventually bridge
the generalization gap across different data sources re-
vealed by our experiments. To favor research in this direc-
tion, we release the code and data to reproduce our results
at github.com/agaldran/lwnet.

2 Methodology

2.1 Baseline U-Net: structure and complexity

One of the main goals of this work is to explore the lower
limits in model complexity for the task of retinal vessel
segmentation. Accordingly, we consider one of the sim-
plest and most popular architectures in the field of medical
image segmentation, namely the U-Net [32]. A standard
U-Net is a convolutional autoencoder built of a downsam-
pling CNN that progressively applies a set of filters to
the input data while reducing its spatial resolution, fol-
lowed by an upsampling path that recovers the original
size. U-Nets typically contain skip connections that link
activation volumes from the downsampling path to the up-
sampling path via concatenation or addition in order to re-
cover higher resolution information and facilitate gradient
flow during training.

Let us parametrize a U-Net architecture φ by the number
of times the resolution is downscaled/upscaled k, and the
number of filters applied in each of these depth levels, fk.
To simplify our analysis, we will only consider filters of
size 3 × 3, and we double the amount of filters each time
we increase k - this is a common pattern in U-Net designs.
Therefore, in this work a U-Net is fully specified by a pair
of numbers (k, f0), and we denote it by φk,f0 . In addi-
tion, we assume that Batch-Norm layers are inserted after
each convolutional operation and that extra skip connec-
tions are added within each block. An example of such
design pattern is shown in the left hand side of Fig. 2. In
the remaining of this work, we will consider. the φ3,8 ar-
chitecture, which contains approximately 34, 000 parame-
ters. It is important to stress that this represents 1-3 orders
of magnitude less than previously proposed CNNs for the
task or retinal vessel segmentation.

2.2 The W-Net architecture

We also introduce a modification of the U-Net architec-
ture, that we refer to as W-Net. The idea behind a W-Net,
denoted by Φ, is straightforward: for an input image x,
the result of forward-passing it through a standard U-Net
φ1(x) is concatenated to x, and passed again through a
second U-Net, which would be represented as:

Φ(x) = φ2(x, φ1(x)). (1)

In practice, φ1 generates a first prediction of vessels local-
ization that can then be used by φ2 as a sort of attention
map to focus more on interesting areas of the image, as
shown in Fig. 2. Of course a W-Net Φ contains twice
the amount of learnable parameters as a standard U-Net.
However, since the base U-Nets φ13,8, φ

2
3,8 involved in its

definition contain only 34, 000 each, the W-Net consid-
ered in this paper will have around 68, 000 weights, which
is still one order of magnitude below the simplest archi-
tecture proposed to date for vessel segmentation, and three
orders of magnitude smaller than state-of-the-art architec-
tures.

3
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Figure 2: Representation of the WNet architecture. The left-hand-side part of the architecture corresponds to a
standard minimal U-Net φ3,8 with ∼34K parameters, and it achieves performance on-par with the state-of-the-art.
The full W-Net, defined by eq. (1), is composed of two consecutive U-Nets; it outperforms all previous approaches
with just around 70k parameters: 1-3 orders of magnitude less than previously proposed CNNs.

2.3 Training Protocol

In all the experiments reported in this paper, the training
strategy remains the same. Specifically, we minimize a
standard cross-entropy loss between the predictions of the
model on an image x and the actual labels y. It is worth
mentioning that in the W-Net case, an auxiliary loss is
computed for the output of the first network and linearly
combined with the loss computed for the second network:

L(Φ(x), y) = L(φ1(x), y) + L(φ2(x), y) (2)

The loss is backpropagated and minimized by means of
the Adam optimization technique. The learning rate is
initially set to λ = 10−2, and cyclically annealed follow-
ing a cosine law until it reaches λ = 10−8. Each cycle
runs for 50 epochs, and we adjust the amount of cycles
(based on the size of each training set) so that we reach
4000 iterations in every experiment.

Images are all resized to a common resolution and pro-
cessed with standard data augmentation techniques, and

the batch size is set to 4 in all experiments. During train-
ing, at the end of each cycle the Area Under the ROC
curve is computed on a separate validation set, and the
best performing model is kept. Test-Time-Augmentations
(horizontal and vertical image flips) are applied during in-
ference in all our experiments.

2.4 A simple Baseline for Domain Adaptation

One of the main goals in this paper is to show that, even
if simple approaches can outperform much more complex
current techniques, the problem of retinal vessel segmen-
tation is not as trivial as we may extrapolate from this.
The reason is that models trained on a given dataset do
not reach the same level of performance when tested on
retinal images sampled from markedly different distribu-
tions, as we quantitatively show in section 3.3. A relevant
drop of performance appears when a model trained on a
given source dataset S is used to generate segmentations
on a substantially different target dataset T .

  
Pseudo-Labels

Target 
Data

Target 
Data

New Test Set Segmentations

Re-Trained Model

Source 
Data

Annotations

Source 
Data

Annotations

New Training Set

Trained 
Model

Figure 3: Domain Adaptation strategy employed in this work: A model trained on source data is used to generate
pseudo-labels on a target dataset. The original source data and the target data with the pseudo-labels are used to
fine-tune that model and produce better predictions.
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Attempting to close such performance gap is a task falling
within the area of Domain Adaptation, which has been
subject of intensive research in the computer vision com-
munity for the last years [48]. Here we explore a sim-
ple solution to address this challenge in the context of
retinal vessel segmentation. Namely, given a model US
trained on S we proceed by first generating probabilistic
segmentations for each image x ∈ T . We then merge the
source dataset labels yS with the target dataset segmenta-
tions {US(x) | x ∈ T }, which we treat as pseudo-labels.
Lastly, we fine-tune US in this new dataset, starting from
the weights of the model trained on S, with a learning rate
reduced by a factor of 100, for 10 extra epochs. During
training, we monitor the AUC computed in the training set
(including both source labels and target pseudo-labels) as
a criterion for selecting the best model. It is worth stress-
ing that pseudo-labels US(x) remain with probabilistic
values in [0, 1], rather than binary, with the goal of in-
forming the model about the uncertainty present on them.
The rationale behind this is to force the new model to
learn from segmentations in S with confident annotations,
while at the same time exposing it to images from T be-
fore testing on them. A graphical overview of this strategy
is shown in Fig. 3.

2.5 Evaluation Protocol

Unfortunately, a rigorous evaluation protocol for retinal
vessel segmentation is missing in the literature due to
several issues: differences in train/test splits in common
benchmarks, or wrongly computed performance metrics.
Below we outline what we understand as a correct evalu-
ation procedure:

1. All performance metrics are computed at native image
resolution and excluding pixels outside the retinal area,
which are trivially predicted as having zero probability
of being part of a vessel.

2. Whenever an official train/test split exists, we follow
it. When there is none, we follow the least “favor-
able” split we could find in previous works, i.e. the
one assigning less images for training. We make this
decision based on the low difficulty of the vessel seg-
mentation task; this is in contrast with other works that
employ leave-one-out cross-validation, which can use
up to 95% of the data for training [31, 49].

3. We first accumulate all probabilities and labels across
the training set, then perform AUC analysis and de-
rive an optimal threshold (maximizing the Dice score)
to binarize predictions. We then apply the same pro-
cedure on the test set, now using the pre-computed
threshold to binarize test segmentations. This stands
opposed to computing metrics per-image and reporting
the mean performance [50], or using a different thresh-
old on each test image for binarizing probabilistic pre-
dictions [51].

4. Cross-dataset experiments are reported in a variety
of different datasets. No pre-processing or hyper-

parameters are re-adjusted when changing datasets,
since this heavily undermines the utility of a method.
This is a typical shortcoming of unsupervised ap-
proaches, which tend to modify certain parameters to
account for different vessel calibers [6]. Also, the
threshold to binarize predictions on different datasets
is the one derived from the original training set, with-
out using test data to readjust it.

5. We do not report accuracy, since this is a highly imbal-
anced problem; the Dice score is a more suitable figure
of merit. We also report Matthews Correlation Coeffi-
cient (MCC), as it is better suited for imbalanced prob-
lems [52]. Sensitivity and specificity computed at a
particular cut-off value are avoided, as they are useless
when comparing the performance of different models.

3 Experimental Results

In this section we provide a comprehensive performance
analysis of the methodology introduced above.

3.1 Datasets Description

A key aspect of this work is our performance analysis of
a wide range of data sources. For each of the consid-
ered models, we train them on three different datasets,
namely DRIVE [1], CHASE-DB [2] and HRF [3]. The
train/validation/test splits for DRIVE are provided by the
authors, but there is no official split in the other two cases.
We decide to adopt the most restrictive splits we could
find in the literature [44]: only 8 of the 22 images in
CHASE-DB, and 15 of the 45 images in HRF are used
for training and validation.

After training, we test our models on the corresponding
test sets. In section 3.3, we also consider another seven
different datasets for cross-datasets and domain adapta-
tion evaluation. These include a variety of different image
qualities, resolutions, pathologies, and even image modal-
ities. Further details of each of these databases are given
in Table 1.

It is also worth mentioning that, for training, all images
from DRIVE, CHASEDB, and HRF are downsampled to
a 512 × 512, 512 × 512, and 1024 × 1024 resolution
respectively, whereas evaluation is carried out at native
resolution for all datasets. No pre-processing (nor post-
processing) was applied.

3.2 Performance Evaluation

For evaluating our approach, we follow the procedure out-
lined in section 2.5, and report AUC, DICE, and MCC val-
ues in Table 2. For comparison purposes, we select a large
set of 20 vessel segmentation techniques published in the
last years in relevant venues. We also report the perfor-
mance of a standard U-Net φ3,8, which contains around
34, 000 parameters, and our proposed W-Net (with twice
as many parameters), referred to as Little U-Net/W-Net.
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Year # ims. Resolution FOV Challenges & Comments

STARE [4] 2000 20 605×700 35◦ Poor quality: scanned and digitized photographs
Healthy and pathological images (10/10)

DRIVE [1] 2004 40 565×584 45◦ Consistent good quality and contrast, low resolution
Mostly healthy patients, some with mild DR (33/40)

CHASE-DB 1 [2] 2012 28 999×960 30◦ OD-centered images from 10-year old children
Uneven background illumination and poor contrast

HRF [3] 2013 45 3504×2336 60◦ High visual quality, images taken with mydriatic dilation
Healthy, diabetic, and glaucomatous patients (15/15/15)

DRiDB [9] 2013 50 720×576 45◦ Highly varying quality, illumination, and image noise
Mostly diabetic patients of varying grades (36/50)

AV-WIDE [8] 2015 30 2816×1880
1500×900 200◦ Uneven illumination, varying resolution due to cropping

Healthy and age-related macular degeneration patients.

IOSTAR [6] 2016 30 1024×1024 45◦ Scanning Laser Ophthalmoscope images
Macula-centered, high contrast and visual quality

DR HAGIS [7] 2017 40 2816×1880
4752×3168 45◦ Multi-center, multi-device macula-centered images

All diabetic patients with different co-morbities

UoA-DR [10] 2017 200 2124×2056 45◦ Both macula and OD-centered images
Healthy, NP-DR and P-DR patients (56/114/30)

LES-AV [5] 2018 22 1144×1620
1958×2196

30◦
45◦

OD-centered images, highly varying illumination
11 healthy and 11 glaucomatous patients

Table 1: Description of each of the ten datasets considered in this paper in terms of image and population character-
istics.

As discussed above, not all techniques were trained on the
same data splits for the CHASE-DB and HRF datasets.
Our splits correspond to those used in [44], which is a
model specifically designed to be efficient, and therefore
contains a minimal amount of learnable parameters. Sur-
prisingly, we see that the Little U-Net model already sur-
passes the performance of [44] in all datasets, even if it
has 16 times less weights. The performance of the Lit-
tle U-Net is overall impressive, achieving a performance
on-par or superior to most of the compared techniques.

When we analyze the performance of the Little W-Net
model, we observe that it surpasses by a wide margin,
both in terms of AUC and DICE score, the numbers ob-
tained by all the other techniques. This is specially re-
markable when considering that the Little W-Net is a far
less complex model than any other approach (excluding
Little U-Net). The only dataset where Little W-Net fails to
reach the highest performance is HRF, which we attribute
to the mismatch in training and test resolutions. The work
in [26] , which achieves the state-of-the-art in this dataset,
was trained on image patches, and it is therefore less sus-
ceptible to such mismatch. Nevertheless, the Little W-Net
achieves the second best ranking in this dataset, within a
short distance from [26].

3.3 Cross-dataset experiments and Domain
Adapation

From the above analysis, one could be tempted to con-
clude that the task of segmenting the vasculature from
retinal images is relatively trivial. Nevertheless, the use-
fulness of these models remains questionable if they are
not tested on data coming from sources different than the
training data. In order to exhaustively explore this as-
pect of the problem, we select the W-net model trained
on DRIVE images and generate predictions on up to ten
different datasets (including the DRIVE test set). We then
carry out a performance analysis similar to the one de-
scribed in section 2.5, and report the results in the first
row of Table 3. We can see how the great performance
of this model on the DRIVE test set is only maintained
on the STARE dataset, which is quite similar in terms of
resolution and quality. However, for data arising from dif-
ferent distributions, this performance is rapidly degraded.
In terms of AUC, the four worst results correspond to: 1)
HRF, which has images of a much greater resolution than
DRIVE, 2) LES-AV, where images are centered in the op-
tic disc instead of in the macula, 3) AV-WIDE, which con-
tains ultra-wield field images of markedly different aspect,
and 4) UoA-DR, which has mostly pathological images of
different resolutions.

We then apply the strategy described in section 2.4: for
each dataset we use the model trained on DRIVE to gen-

6
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DRIVE CHASE-DB HRF
# Pub/Year # Params AUC DICE MCC AUC DICE MCC AUC DICE MCC

Maninis et al. [24] ECCV/2016 — 82.20 — — — — — — —
Zhang et al. [6] TMI/2016 96.36 — — 96.06 — — 96.08 — 74.10
Fu et al. [25] MICCAI/2016 94.04 78.75 — 94.82 75.49 — — — —
Liskowski et al. [23] TMI/2016 48,000,000 97.90 — — 98.45 — — — — —
Orlando et al. [22] TBME/2017 95.07 78.57 75.56 95.24 73.32 70.46 95.24 71.58 68.97
Gu et al. [53] TMI/2017 — 78.86 75.89 — 72.02 69.08 — 77.49 75.41
Wu et al. [54] MICCAI/2018 98.07 — — 98.25 — — — — —
Yan et al. [31] TBME/2018 97.52 81.83 — 97.81 — — — 78.14 —
Wang et al. [55] BSPC/2019 — 81.44 78.95 — 78.63 76.55 — — —
Wang et al. [56] MICCAI/2019 97.72 82.70 — 98.12 80.37 — — — —
Araujo et al. [57] MICCAI/2019 97.90 — — 98.20 — — — — —
Fu et al. [58] MICCAI/2019 97.19 80.48 — — — — — — —
Wang et al. [59] PatRec/2019 — 80.93 78.51 — 78.09 75.91 — 77.31 —
Wu et al. [60] TMI/2019 97.79 — — — — — — — —
Zhao et al. [39] TMI/2019 — 78.82 — — — — — 76.59 —
Laibacher et al. [44] CVPR-W/2019 549,748 97.14 80.91 — 97.03 80.06 — — 78.14 —
Shin et al. [26] MedIA/2019 7,910,000 98.01 82.63 — 98.30 80.34 — 98.38 81.51 —
Zhao et al. [35] PatRec/2020 — 82.29 — — — — — 77.31 —
Zhuo et al. [51] CMPB/2020 97.54 81.63 — — — — — — —
Mou et al. [34] TMI/2020 56,030,000 97.96 — — 98.12 — — — — —
Little U-Net 34,201 97.98 82.41 79.81 98.22 80.29 78.23 98.11 80.59 78.60
Little W-Net 68,482 98.09 82.82 80.27 98.44 81.55 79.60 98.24 81.04 79.11

Table 2: Performance Comparison of methods trained/tested on DRIVE, CHASE-DB, and HRF. Best results are
marked bold.

erate segmentations that we use as pseudo-labels to retrain
the same model in an attempt to close the performance
gap. Results of this series of experiments are displayed
in the second row of Table 3, where it can be seen that in
almost all cases this results in an increased performance
in terms of AUC, DICE score, and MCC, albeit relatively
modest in some datasets. In any case, this implies that
the retrained models have a better ability to predict ves-
sel locations on new data. Figure 4 illustrates this for two
images sampled from the CHASE-DB and the LES-AV
datasets. Note that DRIVE does not contain optic-disc
centered images. For the CHASE-DB example, we see
that some broken vessels, probably due to the strong cen-
tral reflex in this image, are recovered with the adapted
model. In the LES-AV case, we see how an image with
an uneven illumination field results in the DRIVE model
missing much of the vessel pixels in the bottom area.
Again, part of this vessels are successfully recovered by
the adapted model.

3.4 Artery/Vein Segmentation

We also provide results for the related problem of
Artery/Vein segmentation. It should be stressed that this
is a different task than A/V classification, where the the
vessel tree is assumed to be available, and the goal is to
classify each vessel pixel among the two classes. In this
case, we aim to classify each pixel in the entire image
as artery, vein, or background. In order to account for

the greater difficulty of the problem, we consider a big-
ger W-Net composed of two U-Nets φ4,8, which still con-
tains far less weights than current A/V segmentation mod-
els [61, 62]. In addition, we double the number of train-
ing cycles, and train with 4 classes having into account
uncertain pixels, as it has been proven beneficial for this
task [61].

Table 4 shows the results of our W-Net, compared with
two recent A/V segmentation techniques. In this section,
we train our model on DRIVE and HRF, following the
data splits provided in [62]. We also show results of
a cross-dataset experiment in which a model trained on
DRIVE is tested on the LES-AV dataset.

A similar trend as in Section 3.2 can be observed: other
models designed for the same task contain orders of mag-
nitude more parameters than our approach, but we observe
an excellent performance of the W-Net architecture: it
seems competitive with the compared methods, ranking
even higher than [62] in terms of Dice score and higher
than [61] in terms of MCC, at a fraction of computational
cost. Some qualitative results of the W-Net trained on
DRIVE and tested on LES-AV are shown in Fig. 5.

3.5 Ablation Study: W-Net vs U-Net

As shown in Section 3.2, the iterative structure of the W-
Net architecture helps in achieving a better performance
when compared to the standard U-Net. However, it should

7
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DRIVE CHASE-DB HRF STARE IOSTAR
Training Set AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC

DRIVE 98.09 82.82 80.27 97.22 75.13 72.44 95.90 70.39 68.05 98.11 79.48 77.30 97.97 78.77 76.47
PSEUDO-L 98.09 82.82 80.27 97.56 76.49 74.02 96.12 71.12 68.86 98.28 79.76 77.65 98.06 78.95 76.73

DRiDB LES-AV DR HAGIS AV-WIDE UoA-DR
Training Set AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC

DRIVE 96.17 68.45 66.62 95.45 76.60 74.32 97.17 67.92 66.79 86.54 61.51 59.02 82.32 38.29 35.51
PSEUDO-L 96.52 68.25 66.59 97.34 77.93 75.92 97.34 68.67 67.49 87.64 62.46 59.97 82.71 37.68 34.97

Table 3: Our domain adaptation strategy improves results in a wide range of external test sets. First row: W-Net
trained on DRIVE, second row (pseudo-l): same model fine-tuned using the strategy illustrated in Fig. 3. Best metric
marked bold.

(a) (b)

Figure 4: The Domain Adaptation strategy from section 2.4 recovers some missing vessels. Segmentations produced
by a model trained on DRIVE (which contains macula-centered images) when using data from CHASE-DB and LES-
AV (which contain OD-centered images). In (a) and (b), the retinal image (left), the segmentation by the model trained
on DRIVE (center) and the one produced by the model trained on pseudo-labels (right).

be noted that W-Net contains twice as many weights as the
considered Little U-Net. Since these are two relatively
small models, it might be that U-Net is simply underfit-
ting, and all the benefits observed in Table 2 just come
from doubling the parameters and not from any algorith-
mic improvement.

In view of this, it is worth investigating the question of
whether W-Net brings a significant improvement over a
standard U-Net architecture. For this, we consider a larger
U-Net φ3,12, which actually contains more parameters
than the above W-Net ( 76K vs 68K). To determine
statistically significant differences in AUC and DICE be-
tween these two models, we train them under the ex-
act same conditions as in Section 3.2, and after generat-
ing the corresponding predicted segmentations on each of
the three test sets, we apply the bootstrap procedure as
in [63, 64]. This is, each test set is randomly sampled
with replacement 100 times so that each new set of sam-
pled data contains the same number of examples as the
original set, in the same proportion of vessel/background
pixels. For both models, we calculate the differences in
AUCs and dice scores. Resampling 100 times results in
100 values for performance differences. P-values are de-
fined as the fraction of values that are negative or zero,
corresponding to cases in which the better model in each
dataset performed worse or equally than the other model.
The statistical significance level is set to 5% and, thus,
performance differences are considered statistically sig-

nificant if p < 0.05. The resulting performance differ-
ences are reported in Table 5, were we refer to the U-Net
φ3,12 as “Big U-Net”. We see that, in all cases, the larger
U-Net’s results are slightly better than the smaller U-Net
in Table 2, but the performance of the W-Net is still sig-
nificantly higher, even if it has approximately 10% less
weights.

3.6 Computational and Memory Requirements

The reduced complexity of the models proposed in this
paper enhance their suitability for resource-constrained
scenarios, both in terms of training them and of deploy-
ing them in, e.g., portable devices. Training a little U-Net
and a little W-Net to reach the performance shown in Ta-
ble 2 is feasible even without a GPU. When training on a
single GPU (GeForce RTX 2080 Ti), the training time of a
little U-Net on the datasets shown in Table 2 was 24 mins
(DRIVE), 22 mins (CHASE-DB) and 102 mins (HRF),
whereas the little W-Net took 32 mins (DRIVE), 30 mins
(CHASE-DB) and 140 mins (HRF). Regarding disk mem-
ory requirements, Table 6 shows a comparison of both ar-
chitectures with another two popular models in terms of
performance vs. number of parameters/disk size. We see
that a little U-Net, which already attains a great perfor-
mance, has the lowest disk storage space (161Kb), and
the top-performant W-Net takes approximately twice this
space, which is still well within limits for its deployment
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DRIVE HRF LES-AV∗

# Params DICE MCC DICE MCC DICE MCC

[61] ∼29M 96.31 | 96.25 74.79 | 25.07 —– —– 96.59 70.58

[62] ∼5M 96.71 | 95.81 77.57 | 24.67 96.88 76.89 — —

W-Net ∼279K 96.69 | 95.55 77.73 | 25.23 96.89 76.19 96.46 70.30

Table 4: Performance Comparison for the artery/vein segmentation task. For DRIVE, performance is reported on
the entire image domain | on a ring-shaped region around the Optic Disc [62]. Performance is computed using the
predictions and code provided by [62]. ∗Predictions on LES-AV are generated from models trained on DRIVE.

(a) (b)

Figure 5: Generalization ability of a W-Net trained for A/V segmentation. Results of our model trained on DRIVE
and tested on (a) DRIVE, (b) LES-AV.

in embedded/portable devices. It must be noted, however,
that in both cases the inference time was slightly slower
when compare to other efficient approaches, partly due to
implementation of Test-Time Augmentation.

4 Conclusions

This paper reflects on the need of constructing algorithmi-
cally complex methodologies for the task of retinal ves-
sel segmentation. In a quest for squeezing an extra drop
of performance on public benchmark datasets and adding
certain novelty, recent works on this topic show a trend to
develop overcomplicated pipelines that may not be neces-
sary for this task. The first conclusion to be drawn from
our work is that sometimes Occam’s razor works best:

minimalistic models, properly trained, can attain results
that do not significantly differ from what one can achieve
with more complex approaches.

Another point worth stressing is the need of rigor in eval-
uating retinal vessel segmentation techniques. Employing
overly favorable train/test splits or incorrectly computing
performance leads to reporting inflated metrics, which in
turn saturate public benchmarks and provides a false sen-
sation in the community that the retinal vessel segmenta-
tion problem is solved. Our experiments on a wide range
of datasets reveal that this is not the case, and that reti-
nal vessel segmentation is indeed an ideal area for ex-
perimenting with domain adaptation techniques. This is
so because a) performance of models trained on a source
dataset rapidly degrades when testing on a different kind

DRIVE CHASE-DB HRF

# Params AUC DICE AUC DICE AUC DICE

“Big” U-Net 76,213 98.00 82.53 98.29 81.09 98.15 80.73

Little W-Net 68,482 98.09 82.78 98.44 81.52 98.24 81.05

W-Net vs U-Net -7,731
+0.09
p<0.05

+0.25
p<0.05

+0.15
p<0.05

+0.43
p<0.05

+0.09
p<0.05

+0.32
p<0.05

Table 5: Performance comparison between a W-Net and a U-Net configured to have a comparable amount of weights.
W-Net achieves higher performance, despite having slightly less parameters. Statistically significant results marked
bold.
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DRIVE CHASEDB HRF

# Params Size AUC DICE AUC DICE AUC DICE

DRIU [24] 15M 57Mb n/a 82.20 n/a n/a n/a n/a

M2U-Net [44] 0.5M 2.2Mb 97.14 80.91 97.03 80.06 n/a 78.14

Little U-Net 34K 161Kb 97.98 82.41 98.22 80.68 98.11 80.59

Little W-Net 68K 325Kb 98.09 82.82 98.44 81.55 98.24 81.04

Table 6: Parameters and memory requirements vs performance for several retinal vessel segmentation models.

of data, and b) training models to achieve high perfor-
mance is cheap and fast, which enables fast experimenta-
tion of new ideas.
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