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A Bayesian Approach to Recurrence
in Neural Networks

Philip N. Garner, Sibo Tong

Abstract—We begin by reiterating that common neural net-
work activation functions have simple Bayesian origins. In this
spirit, we go on to show that Bayes’s theorem also implies a
simple recurrence relation; this leads to a Bayesian recurrent
unit with a prescribed feedback formulation. We show that
introduction of a context indicator leads to a variable feedback
that is similar to the forget mechanism in conventional recurrent
units. A similar approach leads to a probabilistic input gate. The
Bayesian formulation leads naturally to the two pass algorithm of
the Kalman smoother or forward-backward algorithm, meaning
that inference naturally depends upon future inputs as well as
past ones. Experiments on speech recognition confirm that the
resulting architecture can perform as well as a bidirectional
recurrent network with the same number of parameters as
a unidirectional one. Further, when configured explicitly bidi-
rectionally, the architecture can exceed the performance of a
conventional bidirectional recurrence.

I. INTRODUCTION

IN signal processing and statistical pattern recognition,
recurrent models have been ubiquitous for some time. They

are perhaps exemplified by two cases: the state space filter
of Kalman [1], [2] is appropriate for continuous states; the
hidden Markov model (HMM) [3], [4] for discrete states. Both
of these approaches can be characterised as being statistically
rigorous; each has a forward-backward training procedure that
arises from a statistical estimation formulation.

Recurrence is also important in modern deep learning.
The foundations were laid shortly after the introduction of
the multi-layer perceptron (MLP) [5], [6] with the back-
propagation through time algorithm [5], [7]. Such architectures
can be difficult to train; some of the difficulties were addressed
by the long short-term memory (LSTM) of Hochreiter and
Schmidhuber [8]. The LSTM was subsequently modified by
Gers et al. [9] to include a forget gate, and by Gers et al. [10]
to include peephole connections. The full LSTM is illustrated
in figure 1.

The LSTM’s concept of gates has since been used in the
gated recurrent unit (GRU) of Cho et al. [11], and remains
important. In GRU, the input and forget gates are combined
into a single operation, and the output gate is applied to the
recurrent part of the input instead. It is illustrated in figure
2. The GRU has also been modified: In a minimally gated
unit (MGU), Zhou et al. [12] replace the reset gate with a
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Fig. 1. The long short term memory of [8]. Non-linearities ψ are taken to
be tanh.
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Fig. 2. The gated recurrent unit of [11]. As in the LSTM, the non-linearity
ψ is usually tanh.

signal from the update gate; in the notation here, rt is replaced
by 1 − zt. Ravanelli et al. [13], [14] remove the reset gate
altogether in their light GRU (Li-GRU), equivalent to setting
rt = 1.

Notice that the LSTM and GRU implicitly define three types
of recurrence:

1) A unit-wise recurrence, exemplified by the constant error
carousel (CEC, forget loop) of the LSTM or the GRU
update loop.

2) A layer-wise recurrence, being the vector loop ht−1

from output to input.
3) A gate recurrence, being the vector loop from output to

gate.
Several authors have noted the similarities between HMMs

and (recurrent) networks. Bourlard and Wellekens [15] show
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that the two architectures can be made to compute similar
probabilistic values. Bridle [16] shows that a suitably designed
network can mimic the alpha part of the forward-backward
algorithm. Bridle also points out similarities between the back-
propagation (of derivatives) in the training of MLPs and the
backward pass in HMMs. With the bidirectional recurrent
neural network (BiRNN), in contrast to seeking relationships,
Schuster & Paliwal [17] imposed the backward relationship
between HMMs and MLPs by means of a second recurrence
relationship running in the opposite direction. This was in fact
to explicitly allow the network to take account of “future”
observations. The natural substitution of LSTMs for the same
purpose was described by Graves & Schmidhuber [18] result-
ing in the bidirectional LSTM (BLSTM or BiLSTM); this type
of network remains the state of the art in several fields.

Putting aside the concept of recurrence, probabilistic inter-
pretations of feed-forward MLPs are well known. Although
the sigmoid is usually described as being a smooth (hence
differentiable) approximation of a step function, its probabilis-
tic origin was pointed out by Bridle [19], and is well known
to physicists via the Boltzmann distribution. It has also been
shown that the training process yields parameters that make
sense in a statistical sense; this is evident from the work of
Richard & Lippman [20], summarising work such as that of
[15], and most thoroughly by MacKay [21]–[23] in papers that
constituted his PhD thesis, later popularised by Bishop [24].

In the present paper, we build on this latter body of work,
recalling that several MLP concepts have sound Bayesian
origins. We show that this implies a natural probabilistic recur-
rence, leading to an architecture similar to the GRU [11]. We
go on to show that, because the derivation is probabilistic, a
backward recursion is also evident; this without the explicit ex-
tra backward recurrence of the BiRNN architectures described
above. Experiments on standard speech recognition tasks show
that this recurrent architecture can yield performance near
indistinguishable from that of BiRNNs. Finally, we show that
when this implicit bidirectional network is doubled up to
be explicitly bidirectional, it can exceed the performance of
BiRNNs.

II. BACKGROUND

A. Bayesian interpretation of MLP units

We begin by making explicit a relationship, pointed out
by Bridle [19], between Bayes’s theorem and the sigmoid
activation; we show that the same relationship also applies
to ReLU (rectifying linear unit) activations.

Say we have an observation vector, x, and we want the
probability that it belongs to class i, where i ∈ {1, 2, . . . , C}.
The Bayesian solution is

P (ci | x) =
p (x | ci)P (ci)∑C
j=1 p (x | cj)P (cj)

, (1)

where ci refers to the event that the class takes value i, and x
refers to the event that the observation random variable takes
value x.

If we take the observations to be from multivariate Gaussian
distributions then, in the two class case, C = 2,

P (c1 | x) =
1

1 + exp (−(ωTx+ υ))
, (2)

where

ωT = (µ1 − µ2)TΣ−1 (3)
υ = logP (c1)− logP (c2)

− 1

2

(
µT

1 Σ−1µ1 − µT
2 Σ−1µ2

)
, (4)

and µi and Σ are respectively the mean and covariance of the
constituent Gaussians. The class priors in this case, P (ci), are
taken to be constant and subsumed in the bias term. This is
the commonly used sigmoid activation.

In the multi-class case, C ≥ 2,

P (ci | x) =
exp

(
ωT
i x+ υi

)∑C
j=1 exp

(
ωT
j x+ υj

) , (5)

where

ωT
i = µT

i Σ−1 (6)

υi = logP (ci)−
1

2
µT
i Σ−1µi. (7)

This is the softmax activation function introduced in [19].
A Gaussian assumption is appropriate for MLP inputs.

However, hidden layers take inputs from previous layers with
sigmoid outputs; their values are closer to beta distributions. If,
instead of a Gaussian, the observations are assumed to follow
independent beta distributions,

p (x) =
1

B(α, β)
xα−1(1− x)β−1 (8)

=
1

B(α, β)
e(α−1) log(x)e(β−1) log(1−x), (9)

where the second line emphasises that the beta is exponential
family. With β = 1, we then have:

P (c1 | x) =
1

1 + exp (−(ωT log(x) + υ))
, (10)

with

αj = (αj,1, . . . , αj,P )T, (11)
ω = α1 −α2 (12)
υ = logP (c1)− logP (c2) (13)

−
P∑
i=1

[logB(α1,i, 1)− logB(α2,i, 1)] (14)

and P is the input dimension.
So, when a sigmoid output is used as the input to a

subsequent layer, the value that makes sense under a beta
assumption is its logarithm. Taking a logarithm of a sigmoid
results in the softplus described by Dugas et al. [25] albeit for
a different reason. Glorot et al. [26] show that the ReLU is a
linear approximation to the softplus.
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III. GENERAL PROBABILISTIC RECURRENCE

In the previous section, we showed that the main activations
used in MLPs have probabilistic explanations. In this spirit, we
derive a recursive activation from a probabilistic point of view.
At the outset, we expect the formulation to dictate the form of
the recursion, removing otherwise ad-hoc aspects of standard
techniques.

A. Conditional independence of observations

Let us assume that we have a (temporal) sequence of
observations x1,x2, . . . ,xT . Equation 1 becomes (abbreviated
for the moment)

P (ci | xT ,xT−1, . . . ,x1)

∝ p (xT | ci,xT−1, . . . ,x1)P (ci | xT−1, . . . ,x1) . (15)

If we then assume that all the xt are conditionally independent
given ci, we have

P (ci | xT ,xT−1, . . . ,x1)

∝ p (xT | ci)P (ci | xT−1, . . . ,x1) . (16)

This is a standard recursion where the posterior at time t− 1
forms the prior for time t.

B. Application to MLP

More generally, say we have a matrix, XT , the rows of
which are observation vectors x1,x2, . . . ,xT . There is a
corresponding matrix, HT , the rows of which are vectors
h1,h2, . . . ,hT . We assume each element ht,i of H repre-
sents a probability P (φi |Xt) of the event that feature i
exists in the observation sequence up to time t. Conversely,
1−ht,i = P

(
φ̄i |Xt

)
. Notice that, at this stage, φi is not time

dependent; the feature exists (or not) for the whole sequence,
with each observation in the sequence updating P (φi |Xt).
Now say that the probabilities P (φi |X) are independent
given some parameters, θ. So the joint probability is the
product

P (φ1, φ2, . . . , φF | θ,Xt) =

P (φ1 | θ,Xt)P (φ2 | θ,Xt) . . . P (φF | θ,Xt) . (17)

For a given feature, φi,

ht,i = P (φi | θ,Xt) (18)

=
p (xt | φi,θ,Xt−1)P (φi | θ,Xt−1)∑
φi
p (xt | φi,θ,Xt−1)P (φi | θ,Xt−1)

(19)

=
1

1 +
p
(
xt | φ̄i

)
p (xt | φi)

·
P
(
φ̄i |Xt−1

)
P (φi |Xt−1)

, (20)

where, in the final line and hereafter, we drop the conditioning
on θ for clarity. The final expression contains two fractional
terms. The first of these follows from the conditional indepen-
dence assumption above, and leads to the sigmoid of equations
2 and 10, but without the priors in the bias terms. Instead of

being static, the priors form the second fractional term which
is a multiplicative feedback

P
(
φ̄i |Xt−1

)
P (φi |Xt−1)

=
1− ht−1,i

ht−1,i
=

1

odds(ht−1,i)
(21)

If this were indeed included as an additive component of the
bias in equations 2 or 10 then the fed back term would be

log

(
ht−1,i

1− ht−1,i

)
= logit(ht−1,i) (22)

= log(ht−1,i)− log(1− ht−1,i). (23)

The logit and odds functions are illustrated in figure 3.
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Fig. 3. Logit and odds curves.

IV. PROBABILISTIC FORGET

The BRU described above carries the assumption that a
feature is present (or not) in the entire input sequence. By
contrast, we know from the LSTM that it is necessary to
allow an activation to respond differently to different inputs
depending on the context. In an LSTM this is achieved using
gates. We show here that gates can be derived probabilistically.

Say that P (φi) is somehow dependent upon another vari-
able indicative of context. For instance, if φi is indicative
of a characteristic of a sentence, it is dependent upon the
previous words in the sentence, but resets after a (grammatical)
period, when the sentence changes. Say there is a binary state
variable, ζ, where ζ = 1 indicates the context remaining
relevant, and ζ = 0 indicates that it is not relevant. We can
assign a probability, zt = P (ζt = 1 |Xt) and the inverse
(1 − zt) = P (ζt = 0 |Xt), where zt is predicted by the
network. It is then the prior (in equation 21) that depends
on the context. φ is now dependent upon the time index, t.

Note that the state variable can be defined for one or
multiple features. In the following derivation, we assume only
one feature, removing the need for an index. However, it is
common for recurrence to use one variable per feature.

A. Unit-wise recursion

We first consider the case where the φi are taken to be
independent; it is derived in equations 24–27 below, where pi
is the unconditional prior probability of feature i being present.
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P (φt,i |Xt−1) =
∑
φt−1,i

∑
ζt−1

P (φt,i | φt−1,i, ζt−1,Xt−1)P (φt−1,i |Xt−1)P (ζt−1 |Xt−1) (24)

= P (φt,i | φt−1,i, ζt−1)P (φt−1,i |Xt−1)P (ζt−1 |Xt−1)

+ P
(
φt,i | φ̄t−1,i, ζt−1

)
P
(
φ̄t−1,i |Xt−1

)
P (ζt−1 |Xt−1)

+ P
(
φt,i | φt−1,i, ζ̄t−1

)
P (φt−1,i |Xt−1)P

(
ζ̄t−1 |Xt−1

)
+ P

(
φt,i | φ̄t−1,i, ζ̄t−1

)
P
(
φ̄t−1,i |Xt−1

)
P
(
ζ̄t−1 |Xt−1

) (25)

= 1× ht−1,izt−1

+ 0× (1− ht−1,i)zt−1

+ piht−1,i(1− zt−1)

+ pi(1− ht−1,i)(1− zt−1)

(26)

= (1− zt−1)pi + zt−1ht−1,i, (27)

Notice that the simplifications arise from the interaction of
φt,i, φt−1,i and ζt−1: context remaining relevant implies the
feature should remain. So, for instance, the feature changing
from not present to present when context is relevant has zero
probability.

In a Kalman filter sense, P (φt,i |Xt−1) is the predictor.
The result is an intuitive linear combination of the previous
output with a prior. In this paper, although we deal with
a discrete state variable, we use the Kalman filter analogy
because it is easier to follow. Nevertheless, a correspondence
with alpha, beta and gamma probabilities will be evident to
readers familiar with Markov models.

There is a question of initialisation. The first output corre-
sponding to t = 1 should use the value h0,i = pi; thereafter,
the value from the feedback loop can be taken.

At time t = 1, zt−1 = 0, ht−1,i = pi
At time t = 2, zt−1 = fz(Xt−1), ht−1,i = fh(Xt−1)

where f·(·) is taken to mean “some function of”. If ht−2,i

is required, the same value as ht−1,i can be used. In turn, the
fed back value (equation 21) is actually

1− P (φt,i |Xt−1)

P (φt,i |Xt−1)
=

1

odds ([1− zt−1]pi + zt−1ht−1,i)
,

(28)
with the logarithm of the reciprocal being the additive term
inside the exponential. This is illustrated in figure 4 where,

f(·) = logit ([1− zt−1]pi + zt−1ht−1,i) . (29)

In figure 4, note that the unit-wise recurrence is probabilistic,
but an ad-hoc layer-wise and gate recurrence are also retained
for comparison with a GRU. The ht−2 term in this and later
cases arises to maintain a consistent definition of zt across the
LSTM, GRU and equation 72; we note that, in practice, the
extra delay makes no difference in performance.

B. Discussion

The unit-wise recursion above was an attempt to formalise
the “constant error carousel” (CEC) — the central recurrence
— of the LSTM. Whilst the result is self consistent, in practice
we find two difficulties:

σωxt

υht−1

f(·)

ht

σ

zt−1

ωfxt−1 υfht−2

p BRU cell

Fig. 4. A Bayesian recurrent unit incorporating a probabilistic forget gate.

1) The logit function of equation 29 causes instability in
the training process. This is because it can tend to ±∞.

2) The formulation does not explain the layer-wise recur-
sion around the whole layer of units.

In the following, we address both of these difficulties using
approximations. We find that the resulting layer-wise recursion
is both stable and more complete.

C. Layer-wise recursion

In contrast to the unit-wise recursion above, here we take
the elements of φ to be dependent, meaning the summation
is over the whole vector. The main derivation is equations
30–32 below, The calculation can be rendered tractable if
we model P

(
φt,i | φt−1, ζt−1

)
as ωT

i φt−1, where ωi is a
trainable vector and each element ωj,i models the weight that
φt−1,j has on φt,i. The occurrence of φt,i is considered to
be the weighted average of the occurrences of φt−1. This is
an extension of unit-wise recursion where the occurrence of
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P (φt,i |Xt−1) =
∑
φt−1

∑
ζt−1

P
(
φt,i | φt−1, ζt−1,Xt−1

)
P
(
φt−1 |Xt−1

)
P (ζt−1 |Xt−1) (30)

= P (ζt−1 |Xt−1)
∑
φt−1

P
(
φt,i | φt−1, ζt−1

)
P
(
φt−1 |Xt−1

)
+ P

(
ζ̄t−1 |Xt−1

) ∑
φt−1

P
(
φt,i | φt−1, ζ̄t−1

)
P
(
φt−1 |Xt−1

)
.

(31)

= zt−1

∑
φt−1

P
(
φt,i | φt−1, ζt−1

)∏
i

P (φt−1,i |Xt−1)

+ (1− zt−1)
∑
φt−1

P
(
φt,i | φt−1, ζ̄t−1

)∏
i

P (φt−1,i |Xt−1) .
(32)

φt,i only depends on φt−1,i and ωi is a one-hot vector with
ωi,i = 1. Therefore, we have∑
φt−1

P
(
φt,i | φt−1, ζt−1

)∏
i

P (φt−1,i |Xt−1) = ωT
i ht + c

(33)
where, ωi denotes the ith column of ω and c =∑
j∈{j|ωj,i<0} ωj,i. To understand the above equation, con-

sider N independent lotteries, where N is the total number
of nodes in a layer. The winning rate of the ith lottery is hi,
the corresponding prize is ωi. Now we buy each of the lottery
once. The left side of the above equation actually calculate the
expectation of the total prizes we can win from the lotteries
by listing all the possibilities. On the other hand, each lottery
is independent. Therefore, the expectation prize for ith lottery
is ωihi. The expectation of the total prizes we can get is then
ωT
i h.
In this sense, the recursion is parameterised by matrix ω.

Given the fact that ωT
i φt−1 represents probabilities and the

expectation of probabilities should be positive, it is sensible
to constrain the L1 norm of each column in ω to 1 and add
the bias term c. Thus, equation 32 can be written as

P (φt,i |Xt−1) = zt−1(ωT
i ht−1 + c− pi) + pi

This is illustrated in 5, where,

f(·) = logit
(
zt−1(ωT

i ht−1 + c− pi) + pi
)
. (34)

Note that in figure 5, the unit-wise and layer-wise recurrence
are combined into a single probabilisitic recurrence. However,
the ad-hoc gate recurrence is retained. With reference to figure
3, the function log

(
h

1−h

)
appears linear except for narrow

regions close to 0 and 1. Since we are not aware of the
distribution of h, we further approximate log

(
h

1−h

)
≈ αh+β,

yielding

log

(
P (φt,i |Xt−1)

1− P (φt,i |Xt−1)

)
≈ zt−1(ωT

i ht−1+c−pi)+pi+β,

(35)
where α is absorbed by ωT

i and pi. The range of α is [4,+∞).
Therefore, we do not normalise ωi in the forward pass.

Substituting back into equation 20, that equation can be
rewritten as:

ht = σ(ωihxt + bih + zt−1 � (ωhhht−1 + bhh)) (36)

σσσσσσσσσωxt

f(·)

f(·)f(·)f(·)f(·)f(·)f(·)f(·)f(·)f(·)
υht−1

ht

σ

zt−1

ωfxt−1 υfht−2

p

LBRU cell

Fig. 5. The layer-wise recursion with a forget gate.

which is quite similar to the function of the reset gate in a
GRU:

nt = tanh(ωinxt + bin + rt � (ωhnht−1 + bhn)) (37)

Besides the activation function, another main difference is that
the forget gate zt−1 is computed in the previous time step. If
zt−1 degrades to a constant 1, we get the formulation of a
basic recurrent layer that is used in practice.

V. BACKWARD RECURSION

The recursions described thus far only yield accurate prob-
abilities at time t = T . The earlier ones (1 < t < T ) depend
upon future observations. This is normally corrected via the
backward passes of either the Kalman smoother or forward-
backward algorithm. In this section, we derive backward
recursions for the recurrent units derived above. In fact, the
ability to do this is one of the most compelling reasons to
derive probabilistic recurrence.

A. Unit-wise recursion

Although the unit-wise recurrence (without approximations)
is unstable, it turns out to be beneficial (see section VII) to
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derive the backward pass. It can be done without adding extra
parameters, making it directly comparable to the GRU.

Following the method for the Kalman smoother, we first
integrate over the state at time t and the context variable,

P (φt−1,i |Xt)

=
∑

φt,i,ζt−1

P (φt−1,i | φt,i, ζt−1,Xt)P (φt,i, ζt−1 |Xt)

(38)
= P (φt−1,i | φt,i, ζt−1,Xt)ht,izt−1

+ P
(
φt−1,i | φ̄t,i, ζt−1Xt

)
(1− ht,i)zt−1

+ P
(
φt−1,i | φt,i, ζ̄t−1,Xt

)
ht,i(1− zt−1)

+ P
(
φt−1,i | φ̄t,i, ζ̄t−1Xt

)
(1− ht,i)(1− zt−1).

(39)

Note that, given φt,i, P (φt−1,i) is conditionally independent
of any data after time t − 1. Equations 40–47 show how to
use Bayes’s theorem to expand the remaining terms. Putting
the above together, we initialise

h′T,i = hT,i (48)

then recurse

h′t−1 = P (φt−1,i |Xt) (49)
= h′t,izt−1 + ht−1,ih

′
t,i(1− zt−1)

+ ht−1,i(1− h′t,i)(1− zt−1) (50)

= (1− zt−1)ht−1,i + zt−1h
′
t,i. (51)

B. Layer-wise recursion

Now we consider the case that φt−1,i is dependent on the
whole vector φt.

P (φt−1,i |Xt)

=
∑

φt,ζt−1

P (φt−1,i | φt, ζt−1,Xt)P (φt, ζt−1 |Xt)

(52)

= zt−1

∑
φt

P (φt−1,i | φt, ζt−1,Xt)P (φt |Xt)

+ (1− zt−1)
∑
φt

P
(
φt−1,i | φt, ζ̄t−1,Xt

)
P (φt |Xt)

(53)

Equations 54–58 show how to use use Bayes’s theorem to ex-
pand the remaining terms, where φt−1,̄i denotes the features of
all the units in the layer except the ith unit and pk is the prior
probability of unit k. The first term P (φt−1,i | φt, ζt−1,Xt)
seems intractable, although it allows us to re-use the weights
learnt from the forward pass to smooth the output via back-
ward recursion. Now suppose there is another binary state
variable, ξt, where ξt = 1 indicates the future context
remaining relevant, meaning that φt is dependent on φt+1 and
ξ = 0 indicates that the future context is irrelevant. We can
assign a new probability, st = P (ξt = 1 |Xt) and the inverse

(1 − st) = P (ξt = 0 |Xt). We assume ξt is independent of
future observations XT

t+1. Thus, we can write:

P (φt−1,i |XT )

=
∑
φt,ξt

P (φt−1,i | φt, ξt−1,XT )P (φt, ξt−1 |XT ) (59)

= st−1

∑
φt

P (φt−1,i | φt, ξt−1)
∏
k

P (φt,k |XT )

+ (1− st−1)
∑
φt

P
(
φt−1,i | ξ̄t−1,Xt−1

)
P (φt |XT )

(60)

= st−1

∑
φt

P (φt−1,i | φt, ξt−1)
∏
k

P (φt,k |XT ) (61)

+ ht−1,i(1− st−1). (62)

Similarly, we model P (φt−1,i | φt, ξt−1) as ωT
i φt, the prod-

uct of a trainable vector ωi and φt, and denote h′t,i =
P (φt,i |XT ) and put the above together, we initialise

h′T,i = hT,i (63)

then recurse

P (φt−1,i |XT ) = h′t−1,i = st(ω
T
i h
′
t + c) + ht−1,i(1− st),

(64)

where c =
∑
j∈{j|ωj,i<0} ωj,i. It is sensible to apply the

same constraints discussed in Section IV-C to the backward
recurrent matrix and add the bias term.

The layer-wise backward pass hence requires extra param-
eters. In this sense it is not directly comparable to a similar
GRU. Nevertheless, the parameter count is smaller than for a
bidirectional GRU. The repercussions of this are examined in
section VII.

VI. PROBABILISTIC INPUT

In examining the probabilistic forget derivations above,
whilst we set out to formalise the CEC of the LSTM, the
result is closer to the reset gate of a GRU. In this section, we
show that the update gate of a GRU can also be derived rather
simply.

A. Recursion

In the same spirit as the previous section, say there is a
binary state variable, ρ, where ρ = 1 indicates the current
input is relevant, and ρ = 0 indicates that it is not relevant. We
can assign a probability, rt = P (ρt = 1 |Xt) and the inverse
(1 − rt) = P (ρt = 0 |Xt). We assume if the current input
is irrelevant, then φt is completely dependent on φt−1. For a
given feature, φi, the derivation is shown in equations 65–69
below. The first term follows the same derivations in previous
sections. This is illustrated in Fig. 6, where, as before, the
unit-wise and layer-wise recursions are merged, and the gate
recursion remains ad-hoc; this provides for a fair comparison
with GRU in section VII.

This correlates to the update function in a GRU:

ht = (1− zt)� nt + zth(t−1), (70)
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P (φt−1,i | φt,i, ζt−1,Xt) =
P (φt,i | φt−1,i, ζt−1)P (φt−1,i |Xt−1)∑

φt−1,i
P (φt,i | φt−1,i, ζt−1)P (φt−1,i |Xt−1)

(40)

=
1× ht−1,i

1× ht−1,i + 0× (1− ht−1,i)
= 1. (41)

P
(
φt−1,i | φ̄t,i, ζt−1,Xt

)
=

P
(
φ̄t,i | φt−1,i, ζt−1

)
P (φt−1,i |Xt−1)∑

φt−1,i
P
(
φ̄t,i | φt−1,i, ζt−1

)
P (φt−1,i |Xt−1)

(42)

=
0× ht−1,i

0× ht−1,i + 1× (1− ht−1,i)
= 0. (43)

P
(
φt−1,i | φt,i, ζ̄t−1,Xt

)
=

P
(
φt,i | φt−1,i, ζ̄t−1

)
P (φt−1,i |Xt−1)∑

φt−1,i
P
(
φt,i | φt−1,i, ζ̄t−1

)
P (φt−1,i |Xt−1)

(44)

=
piht−1,i

piht−1,i + pi(1− ht−1,i)
= ht−1,i. (45)

P
(
φt−1,i | φ̄t,i, ζ̄t−1,Xt

)
=

P
(
φ̄t,i | φt−1,i, ζ̄t−1

)
P (φt−1,i |Xt−1)∑

φt−1,i
P
(
φ̄t,i | φt−1,i, ζ̄t−1

)
P (φt−1,i |Xt−1)

(46)

=
(1− pi)ht−1,i

(1− pi)ht−1,i + (1− pi)(1− ht−1,i)
= ht−1,i. (47)

P (φt−1,i | φt, ζt−1,Xt) =
P (φt | φt−1,i, ζt−1)P (φt−1,i |Xt−1)∑
φt−1

P
(
φt | φt−1, ζt−1

)
P
(
φt−1 |Xt−1

) (54)

=

∑
φt−1,̄i

P
(
φt | φt−1,i,φt−1,̄i, ζt−1

)
P
(
φt−1,̄i |Xt−1

)
P (φt−1,i |Xt−1)∑

φt−1
P
(
φt | φt−1, ζt−1

)
P
(
φt−1 |Xt−1

) (55)

P
(
φt−1,i | φt, ζ̄t−1,Xt

)
=

∑
φt−1,̄i

P
(
φt | φt−1,i,φt−1,̄i, ζ̄t−1

)
P
(
φt−1,̄i |Xt−1

)
P (φt−1,i |Xt−1)∑

φt−1
P
(
φt | φt−1, ζ̄t−1

)
P
(
φt−1 |Xt−1

) (56)

=

∏
k pk∏

k pk(1 + (1− ht−1,i)/ht−1,i)
(57)

= ht−1,i (58)

where nt is defined as equation 37 and zt is the update gate
computed as

zt = σ(ωizxt + biz + ωhzh(t−1) + bhz) (71)

It may be argued that the input gate and the forget gate have
simliar functionality. Indeed, if we only keep the forget gate
and let zt = P (ρt = 0 |Xt), this leads to the MGU [12];
If we keep the forget gate always equal to 1, it leads to the
Li-GRU [14].

We do not derive a backward recursion for the input gate.
Rather, the resulting resemblance to the GRU provides us with
a candidate architecture to compare experimentally; this is
reported in section VII.

B. Summary

The forward pass of this final BRU can be summarised as:

zt = σ(ωizxt + ωhzht−1 + bz) (72)
rt = σ(ωirxt + ωhrht−1 + br) (73)
nt = σ(ωihxt + bih + zt−1 � (ωhhht−1 + bhh)) (74)
ht = (1− rt)� nt + rt � ht−1, (75)

In the backward pass, two cases can be considered, namely
unit-wise BRU (UBRU):

h′t−1 = h′t � zt + ht−1 � (1− zt) (76)

and layer-wise BRU (LBRU):

st = σ(ωisxt + bis + ωhsht−1 + bhs) (77)
h′t−1 = (ωhhbh

′
t + bhhb)� st + ht−1 � (1− st). (78)

Note that in the above, we retain the ad-hoc gate recurrence
as we find that it performs marginally better than not doing
so. However, there is currently no probabilistic reason to do
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ht,i = P (φt,i |Xt) (65)

=
∑
ρt,i

P (φt,i |Xt, ρt,i)P (ρt,i |Xt) (66)

= P (φt,i |Xt, ρt,i)P (ρt,i |Xt) +
∑
φt−1,i

P (φt,i |Xt, φt−1,i, ρ̄t,i)P (ρ̄t,i |Xt)P (φt−1,i |Xt) (67)

≈ P (φt,i |Xt)P (ρt,i |Xt) +
∑
φt−1,i

P (φt,i | φt−1,i, ρ̄t,i)P (ρ̄t,i |Xt)P (φt−1,i |Xt−1) (68)

= rt,iP (φt,i |Xt) + (1− rt,i)ht−1,i (69)

σσσσσσσσσωxt

f(·)

f(·)f(·)f(·)f(·)f(·)f(·)f(·)f(·)f(·)

σ

zt−1

ωfxt−1 υfht−2

p

× +

+++++++++

υht−1

×

ht−1

σ

1− rtrt

ωixt υiht−1

ht

LBRU cell

Fig. 6. The layer-wise recursion with a forget gate and an input gate.

so. We set this matter aside for the future. With reference to
section IV, in defining the gates as vectors, we are assuming
one gate per feature; this is usual in LSTM and GRU, but not
a constraint.

VII. EXPERIMENTS

We present evaluations of the techniques described thus far
on automatic speech recognition (ASR) tasks. Recurrent net-
works are particularly suited to ASR as there is an explicit time
dimension and well known context dependency. Reciprocally,
ASR is a difficult task that has driven recent advances in deep
learning [27]–[30].

A. Hypotheses
In running experiments, we are testing the Bayesian recur-

rent unit (BRU) derived in the previous three sections. This
raises two explicit hypotheses:

1) We would expect the incorporation of a backward pass
to improve upon the performance of a (forward-only)
GRU.

2) We would expect the LBRU to approach the perfor-
mance of a conventional GRU-based BiRNN architec-
ture. It has the same contextual knowledge, but does not
have higher representational capability. If it falls short
of a BiRNN architecture then either the approximations
in the derivation are not valid, or the BiRNN is taking
advantage of temporal asymmetry in the data.

This is all dependent upon the number of parameters: A
BiRNN has roughly twice as many parameters as a Bayesian
RNN with a backward pass.

B. Corpora and method

Detailed statistics of the corpora considered in this work are
summarised in table I.

TABLE I
STATISTICS OF DATASETS USED IN THIS WORK: SPEAKERS AND

SENTENCES ARE COUNTS, THE AMOUNTS OF SPEECH DATA FOR TRAINING
AND EVALUATION SETS ARE IN HOURS.

Dataset Speakers Sentences Train Eval
TIMIT 462 3696 5 0.16
WSJ 283 37416 81.3 0.7

AMI-IHM 10487 98397 70.3 8.6

A first set experiments with the TIMIT corpus [?] was
performed to test the proposed model for a phoneme recogni-
tion task. We used the standard 462-speaker training set and
removed all SA records, since they may bias the results. A
separate development set of 50 speakers was used for tuning all
meta-parameters including the learning schedule and multiple
learning rates. Results are reported using the 24-speaker core
test set, which has no overlap with the development set.
Following the implementation of [?], [14], all the recurrent
networks tested on this dataset have 5 layers, each consisting
550 units in each direction and use 40 fMLLR features
(extracted based on the Kaldi recipe) as the input.

The second set of experiments was carried out on the Wall
Street Journal (WSJ) speech corpus to gauge the suitability of
the proposed model for large vocabulary speech recognition.
We used the standard configuration si284 dataset for training,
dev93 for tuning hyper-parameters, and eval92 for evaluation.
All the tested recurrent networks have 3 layers, each consisting
of 320 units in each direction. We used 40 fMLLR features
as input for speaker adaptation.
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The TIMIT and WSJ datasets yield results with modest
statistical significance. In order to yield more persuasive sig-
nificance, a set of experiments was also conducted on the AMI
corpus [33] with the data recorded through individual headset
microphones (IHM). The AMI corpus contains recordings of
spontaneous conversations in meeting scenarios, with 70 hours
of training data, 9 hours of development, and 8 hours of test
data. All the tested recurrent networks have 3 layers, each
consisting of 512 units in each direction and use 40 fMLLR
features as the input.

The neural networks were trained to predict context-
dependent phone targets. The labels were derived by perform-
ing a forced alignment procedure on the training set using
GMM-HMM, as in the standard recipe of Kaldi1 [34]. During
testing, the posterior probabilities generated for each frame
by the neural networks are normalised by their priors, then
processed by an HMM-based decoder, which estimates the
sequence of words by integrating the acoustic, lexicon and
language model information. The neural networks of the ASR
system were implemented in PyTorch2, including, crucially,
the gradient calculation; they were coupled with the Kaldi
decoder [34] to form a context-dependent RNN-HMM speech
recogniser.

C. Training details

The network architecture adopted for the experiments con-
tains multiple recurrent layers, which are stacked together prior
to the final softmax context-dependent (senon) classifier. If
the networks are bidirectional, the forward hidden states and
the backward hidden states at each layer are concatenated
before feeding to the next layer. A dropout rate of 0.2
was used for regularisation. Moreover, batch normalization
[?] was adopted on each layer to accelerate the training.
The optimization was performed using the Adaptive Moment
Estimation (Adam) algorithm [36] running for 24 epochs with
β1 = 0.9, β2 = 0.999, ε = 10−8. The performance on the
cross validation set was monitored after each epoch, while the
learning rate was halved when the performance improvement
dropped below a certain threshold (0.001).

D. Phoneme recognition performance on TIMIT

In order to confirm the suitability of the proposed model
for acoustic modeling, TIMIT was first considered to reduce
the linguistic effects (such as lexicon and language model) on
the performance evaluation. The state of the art for this task
is probably that of Ravanelli et al. [14], with a phone error
rate (PER) of 14.9%. We duplicate the architecture of those
authors and aim for a similar figure. We performed the com-
parison with GRU as shown in Fig. 7. The error bars indicate
equal-tailed 95% credible interval for a beta assumption for
the error rate. The numbers in the parentheses indicate the
number of parameters each model contains. It is clear that
the unidirectional GRU (Uni-GRU) is significantly worse than
bidirectional GRU (Bi-GRU) as the credible intervals do not

1http://kaldi-asr.org/
2https://pytorch.org/
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Fig. 7. Phoneme Error Rate (%) on TIMIT for various RNN architectures.

overlap. By contrast, the unit-wise BRU (UBRU) yields much
better performance compared to Uni-GRU with exactly the
same model size, and the layer-wise BRU (LBRU) is slightly
better than UGRU, yielding similar performance to Bi-GRU.

Since the test set in TIMIT is quite small, we also performed
a matched-pair t-test between Uni-GRU and UBRU, the test
statistic being the utterance-wise difference in word-level er-
rors normalised by the reference length. This yields p < 0.001,
showing that the UBRU is significantly better. This confirms
our first hypothesis that the incorporation of a backward pass
can improve upon the performance of a unidirectional GRU.
The t-test between Bi-GRU and LBRU yields p = 0.230,
which implies there is no significant difference between the
two systems. The two comparisons together show that our pro-
posed model can achieve performance indistinguishable from
the Bi-GRU, without the explicit extra backward recurrence.

Although the difference between Bi-GRU and LBRU is
not significant, the latter one is slightly worse. This can be
explained by our second hypothesis. Physiological filters are
known to have asymmetric impulse responses [37]. This is
one explanation for the large improvement arising from dou-
bling up the Uni-GRU to explicitly modelling the backward
recursion. However, the proposed BRU does not have the
explicit extra backward recurrence of the BiRNN architectures.
Therefore, we further doubled up the LBRU to be explicitly
bidirectional and compared it with Bi-GRU and Bi-LSTM, as
shown in Fig. 8. Similarly, we plot the error bars and the sizes
of the models; this shows that GRU and LSTM perform almost
the same while the Bi-LBRU seems to be slightly better with
a few more parameters, although the difference is insignificant
from the t-test (p = 0.43). Our hypothesis is that BRU has a
stronger modelling ability in each of the directions because the
prediction is always conditioned on the whole sequence due
to the implicit backward recursion. We note that the average
PER of 14.6% obtained with Bi-LBRU outperforms the state
of the art 14.9% of [14] on the TIMIT test-set, although it is
well within the 95% confidence bounds.

E. Speech recognition performance on WSJ

Since TIMIT is too small to yield significant comparisons,
in this sub-section, we evaluate the RNNs on WSJ, a large
vocabulary continuous speech recognition task. Following the

http://kaldi-asr.org/
https://pytorch.org/
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Fig. 8. Phoneme Error Rate (%) on TIMIT for various RNN architectures.

TIMIT case, we plot the word error rate (WER) in Fig. 9,
together with the corresponding error bars and model sizes.
These results exhibit a similar trend to that observed on TIMIT.
Both UBRU and LBRU outperform the Uni-GRU (p = 0.19
from the t-test). LBRU is slightly better than UBRU and it
yields very similar performance to that of Bi-GRU (p = 0.21
from the t-test). The Bi-LBRU still performs slightly better
than Bi-GRU and Bi-LSTM. Again, the differences are not
significant owing to the fact that the test set of WSJ is
still quite small. Overall, the results are comparable with the
baselines reported in the Kaldi software; for instance, 4.27%
using a Bi-LSTM and i-vectors.
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Fig. 9. Word Error Rate (%) on WSJ for various RNN architectures.

F. Speech recognition performance on AMI

Owing to the small test set of WSJ, in this sub-section we
conduct the evaluation on AMI, which is a more challenging
task with a much larger test set. AMI is more challenging as
the data is recorded in meetings, capturing natural spontaneous
conversations between participants who play different roles
in the meeting. Overlapping speech segments appear in both
training and testing. State of the art results on AMI tend
to be for complicated systems with elements of speaker and
environment adaptation, e.g., Kanda et al [38] report a WER of
17.84%. Rather than aim to duplicate such results, we simply
aim for a self-consistent comparison of techniques; our results
are in the same range as the 26.8% of Dighe et al [39].

Fig. 10 summarises the results obtained on AMI. These
results show the same trend as previous experiments, but
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Fig. 10. Word Error Rate (%) on AMI for various RNN architectures.

also exhibit more significant differences. Both UBRU and
LBRU significantly outperform Uni-GRU while LBRU is
also significantly better than UBRU (p < 0.001 from the t-
test), showing that the layer-wise backward recursion is able
to capture richer characteristics in the backward transition.
Comparison between LBRU and Bi-GRU shows that LBRU
can achieve similar performance without an extra explicit
backward network. Bi-LSTM does not have any advantages
over Bi-GRU, although it contains one more gate and, there-
fore, more parameters. However, if we double up the LBRU to
be explicitly bidirectional, the model yields significantly better
performance than both Bi-GRU and Bi-LSTM (p < 0.001
from the t-test). This confirms the hypothesis that BRU has a
stronger unidirectional modelling ability and explicit bidirec-
tional modelling can help capture the asymmetric characteris-
tics in physiological filters.

VIII. CONCLUSION

Given a probabilistic interpretation of common neural net-
work components, it is possible to derive recurrent components
in the same spirit. Such components have two advantages:

1) The architecture of the recursion is dictated by the
probabilistic formulation, removing otherwise ad-hoc
choices.

2) They naturally support a backward recursion of the type
used in Kalman smoothers and the forward-backward
algorithm of the HMM.

Unit-wise recursions follow analytically, but are found to
lead to instabilities. Approximations lead to stable layer-wise
recursions. Nevertheless, useful backward recursions can be
derived for both cases. The resulting Bayesian recurrent unit
(BRU) can be configured with a probabilistic input gate, being
directly comparable to a common GRU.

Evaluation on simple and on state of the art speech recog-
nition tasks shows that:

1) Even the unit-wise backward recursion can out-perform
a standard GRU.

2) A more involved layer-wise backward recursion can
approach the performance of a bidirectional GRU. This
shows that the approximations in the derivations are
reasonable.
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Further, an explicit bidirectional BRU can out-perform a state
of the art bidirectional GRU.

There are some ad-hoc methods in our approach: the gate
recurrences are retained for performance; some approxima-
tions may be better formulated. These remain matters for
future research. Nevertheless, we have shown that recurrence
in neural networks can be formulated much more rigorously
than conventional wisdom would hold. This in turn can lead
to significant performance advantages.
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