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Abstract—Face recognition has evolved as a widely used bio-
metric modality. However, its vulnerability against presentation
attacks poses a significant security threat. Though presentation
attack detection (PAD) methods try to address this issue, they
often fail in generalizing to unseen attacks. In this work, we
propose a new framework for PAD using a one-class classifier,
where the representation used is learned with a Multi-Channel
Convolutional Neural Network (MCCNN). A novel loss function
is introduced, which forces the network to learn a compact em-
bedding for bonafide class while being far from the representation
of attacks. A one-class Gaussian Mixture Model is used on top
of these embeddings for the PAD task. The proposed framework
introduces a novel approach to learn a robust PAD system from
bonafide and available (known) attack classes. This is particularly
important as collecting bonafide data and simpler attacks are
much easier than collecting a wide variety of expensive attacks.
The proposed system is evaluated on the publicly available
WMCA multi-channel face PAD database, which contains a wide
variety of 2D and 3D attacks. Further, we have performed
experiments with MLFP and SiW-M datasets using RGB channels
only. Superior performance in unseen attack protocols shows
the effectiveness of the proposed approach. Software, data, and
protocols to reproduce the results are made available publicly.

Index Terms—Presentation Attack Detection, Convolutional
Neural Network, Face Recognition, Anti-spoofing, Reproducible
Research, Unseen Attack Detection.

I. INTRODUCTION

FACE recognition has proved to be a beneficial modality

for biometric authentication. One of the main reasons for

the widespread use of face recognition systems is its non-

intrusive nature of acquisition and ease of use [1]. Face recog-

nition systems have matured a lot in recent years, and several

approaches have reported human parity in the identification

rate in ‘in the wild’ conditions [2]. However, a critical security

issue undermining the widespread use of face recognition

technology is its vulnerability to presentation attacks (a.k.a

spoofing attacks) [3], [4].

Presentation attack refers to an attack using an instrument

with the intention to affect the normal operation of the

biometric system. Often, features such as color, texture [5],

[6], motion [7], and physiological cues [8], [9] and CNN

based methods [10] are used for detection of attacks like 2D

prints and replays. However, detection of sophisticated attacks

like 3D masks and partial attacks are challenging and poses a

serious threat to the reliability of face recognition systems.
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Fig. 1. Illustration of the embedding space with known and unknown attack
classes. The red dotted line shows the decision boundary learned when only
bonafide and known attacks are present in the training set, this results in
misclassification of unknown attacks as bonafide. If a one class decision
boundary (green-dotted lines) is learned, then both known and unknown
attacks can be classified correctly.

Most of the presentation attack detection (PAD) methods

available in prevailing literature try to solve the problem for

a limited number of presentation attack instruments and on

visible spectrum images [3]. Though some success has been

achieved in addressing 2D presentation attacks, performance

of the algorithms in realistic 3D masks and other kinds of

attacks is poor. With the increase in quality of attack instru-

ments, it becomes harder to discriminate between bonafide and

PAs in the visible spectrum alone. Moreover, considering a

real-world situation with a wide variety of 2D, 3D, and partial

attacks, PAD in visual spectra alone is challenging and inade-

quate for security-critical applications. Partial attacks refer to

attacks where the attack instrument covers only a part of the

face. These attacks are much harder to detect as they appear

similar to bonafide in most of the face regions, and they can

fool holistic liveliness detection systems easily. Multi-channel

methods have been proposed as an alternative [11], [12], [13],

[14], since they use complementary information from different

channels to improve the discrimination between bonafide and

attacks. In the multi-channel scenario, the additional channels

used can be any modality which can provide complementary

representation such as depth, infrared, and thermal channels.

Multi-channel PAD approaches are more promising in the

context of a wide variety of attacks since they make PAD

systems harder to fool.
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Even with the use of multiple channels, one of the main

issues with PAD is its poor generalization capacity to unseen

attacks [14]. This is particularly important, since at the time of

developing a PAD system, anticipating all possible attacks is

impossible. Malicious attackers can always come up with new

attacks to fool the PAD systems. In such situations, PAD sys-

tems which are robust against unseen attacks are of paramount

importance. Moreover, while it is comparatively easy to collect

data for attacks like 2D prints and replays, making replicas of

challenging presentation attack instruments (PAI) like silicone

mask are often very costly [15] and resource-intensive. In this

context, it will be ideal to have a framework which can be

trained with bonafide alone, or with a combination of bonafide

and easy to manufacture PAIs.

In real-world scenarios, it can be assumed that all presen-

tation attacks are unseen, as it is not possible to foretell all

the variations a PAD system could encounter a priori. A toy

example of the decision boundary in an unseen attack scenario

is illustrated in Fig. 1. Performances in typical PAD databases

may not be representative of the performance of a PAD system

in real-world conditions. This necessitates the PAD algorithms

to be robust against unseen attacks. Since it is easy (in effort

and cost) to collect data from more straightforward attacks

compared to complex PAIs, we try to learn the representation

leveraging the information from PA classes which are available

at the training stage (while not over-fitting on the available

attacks). To achieves this, we propose a one-class classifier

based framework, where the feature representation is learned

with a CNN to have discriminative properties. The core

of the framework is a multi-channel CNN trained to learn

the embedding using a specific loss function. The proposed

approach aims at learning a compact representation for the

bonafide class while leveraging the discriminative information

for PAD task.

The main contributions of the paper are listed below.

• A novel multi-channel one-class classifier-based approach

is proposed for unseen attack detection.

• A novel loss function is proposed which learns a compact

and discriminative representation of the face for PAD

task, leveraging the information provided from known

attacks.

The features used in the one class classifier are learned with

a multi-channel CNN framework. The proposed approach was

evaluated in known and unseen attack protocols in WMCA

database containing a wide variety of 2D and 3D attacks,

and performed significantly better than baselines in unseen

protocols. We have also performed experiments using RGB

channel in MLFP and SiW-M datasets.

Additionally, the source code and protocols to reproduce the

results are made available publicly and are accessible at the

following link 1.

The rest of the paper is organized as follows. Section 2

describes the related work with a particular focus on unseen

attack detection. Section 3 outlines the proposed framework.

Extensive evaluations, comparison with baseline methods, and

ablation studies are shown in section 4. Section 5 discusses

1Source code: https://gitlab.idiap.ch/bob/bob.paper.oneclass mccnn 2019

the importance of the results, and Section 6 presents the

conclusions.

II. RELATED WORK

Majority of the literature in face PAD is mainly focused on

2D attacks and uses feature-based methods [5], [6], [7],[8], [9]

or CNN based methods. Recently, CNN based methods have

been more successful as compared to feature-based methods

[16], [10], [17], [18]. These methods usually leverage the

quality degradation during ‘recapture’ and are often useful

only for the detection of attacks like 2D prints and replays.

Sophisticated attacks like 3D masks are more challenging

and pose serious threat to the reliability of face recognition

systems.

Most of these methods handle the PAD problem as binary

classification, which results in classifiers over-fitting to the

known attacks resulting in poor generalization to unseen

attacks. We focus the further discussion on the detection of

unseen attacks. However, it is imperative that methods working

for unseen attacks must perform accurately for known attacks

as well. One naive solution for such a task is one-class classi-

fiers (OCC). OCC provides a straightforward way of handling

the unseen attack scenario by modeling the distribution of the

bonafide class alone.

Arashloo et al.[19] and Nikisins et al. [20] have shown

the effectiveness of one class methods against unseen attacks.

Even though these methods performed better than binary clas-

sifiers in an unseen attack scenario, the performance in known

attack protocols was inferior to that of binary classifiers. Xiong

et al. [21] proposed unseen PAD methods using auto-encoders

and one class classifiers with texture features extracted from

images. However, the performance of the methods compared to

recent CNN based methods is very poor. CNN based methods

outperform most of the feature-based baselines for PAD task.

Hence there is a clear need of one class classifiers or anomaly

detectors in the CNN framework. One of the drawbacks of one

class model is that they do not use the information provided

by the known attacks. An anomaly detector framework which

utilizes the information from the known attacks could be more

efficient.

Perera and Patel [22] presented an approach for one-class

transfer learning in which labelled data from an unrelated task

is used for feature learning. They used two loss functions,

namely descriptive loss, and compactness loss to learn the

representations. The data from the class of interest is used to

calculate the compactness loss whereas an external multi-class

dataset is used to compute the descriptive loss. Accuracy of the

learned model in classification using another database is used

as the descriptive loss. However, in the face PAD problem, this

approach would be challenging since the bonafide and attack

classes appear very similar.

Fatemifar et al. [23] proposed an approach to ensemble

multiple one-class classifiers for improving the generaliza-

tion of PAD. They introduced a class-specific normalization

scheme for the one class scores before fusion. Seven regions,

three one class classifiers and representations from three CNNs

were used in the pool of classifiers. Though their method
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achieved better performance as compared to client independent

thresholds, the performance is inferior to CNN based state of

the art methods. Specifically, many CNN based approaches

have achieved 0% HTER in Replay-Attack and Replay-Mobile

datasets. Moreover, the challenging unseen attack scenario is

not evaluated in this work.

Pérez-Cabo et al. [24] proposed a PAD formulation from

an anomaly detection perspective. A deep metric learning

model is proposed, where a triplet focal loss is used as a

regularization for ‘metric-softmax’, which forces the network

to learn discriminative features. The features learned in such

a way is used together with an SVM with RBF kernel for

classification. They have performed several experiments on an

aggregated RGB only datasets showing the improvement made

by their proposed approach. However, the analysis is mostly

limited to RGB only models and 2D attacks. Challenging 3D

and partial attacks are not considered in this work. Specifically,

the effectiveness in challenging unknown attacks (2D vs 3D)

is not evaluated.

Recently, Liu et al. [25] proposed an approach for the

detection of unknown spoof attacks as Zero-Shot Face Anti-

spoofing (ZSFA). They proposed a Deep Tree Network (DTN)

which partitions the attack samples into semantic sub-groups

in an unsupervised manner. Each tree node in their network

consists of a Convolutional Residual Unit (CRU) and a Tree

Routing Unit (TRU). The objective is to route the unknown

attacks to the most proper leaf node for correctly classifying

it. They have considered a wide variety of attacks in their

approach and their approach achieved superior performance

compared to the considered baselines.

Jaiswal et al. [26] proposed an end to end deep learning

model for PAD which used unsupervised adversarial invari-

ance. In their method, the discriminative information and

nuisance factors are disentangled in an adversarial setting.

They showed that by retaining only discriminative information,

the PAD performance improved for the same base architecture.

Mehta et al. [27] trained an Alexnet model with a combination

of cross-entropy and focal losses. They extracted the features

from Alexnet and trained a two-class SVM for PAD task.

However, results in challenging datasets such as OULU and

SiW were not reported.

Recently Joshua and Jain [28] utilized multiple GANs

for spoof detection in fingerprints. Their method essentially

consisted of training a DCGAN [29] using only the bonafide

samples. At the end of the training, the generator is dis-

carded, and the discriminator is used as the PAD classifier.

They combined the results from different GANs operating on

different features. However, this approach may not work well

for face images as the recaptured images look very similar to

the bonafide samples.

In safety critical applications, extended range methods have

been proposed over the years [11], [30], [12], [31], [32], [15],

[13], [14] to achieve reliable PAD performance. Even these

methods fail in generalizing to unseen attacks.

Wang et al. [33] proposed multimodal face presentation

attack detection with a ResNet based network using both

spatial and channel attentions. Specifically, the approach was

tailored for the CASIA-SURF [34] database which contained

RGB, near-infrared and depth channels. The proposed model is

a multi-branch model where the individual channels and fused

data are used as inputs. Each input channel has its own feature

extraction module and the features extracted are concatenated

in a late fusion strategy. Followed by more layers to learn a

discriminative representation for PAD. The network training

is supervised by both center loss and softmax loss. One key

point is the use of spatial and channel attention to fully utilize

complementary information from different channels. Though

the proposed approach achieved good results in the CASIA-

SURF database, the challenging problem of unseen attack

detection is not addressed.

Parkin et al. [35] proposed a multi-channel face PAD

network based on ResNet. Essentially, their method consists of

different ResNet blocks for each channel followed by fusion.

Squeeze and excitation modules (SE) are used before fusing

the channels, followed by remaining residual blocks. Further,

they add aggregation blocks at multiple levels to leverage

inter-channel correlations. Their approach achieved state of the

art results in CASIA-SURF [34] database. However, the final

model presented in is a combination of 24 neural networks

trained with different attack specific folds, pre-trained models

and random seeds, which would increase the computation

greatly.

From the discussions above, it can be seen that one class

classifiers could be a good alternative for binary classification

in PAD task. However, the features used for one class clas-

sifiers should be discriminative and compact to outperform

binary classification.

III. PROPOSED METHOD

From a practical viewpoint, it is not possible to anticipate

all the possible types of attacks and to have them in the

training set. This, in turn, make the PAD task an unseen

classification problem in a broad sense. In general, we can

even consider attacks coming from different replay devices as

unseen attacks. Typically, one class classifiers are well suited

for such outlier detection tasks. However, in practice, the

performance of one class classifiers are inferior compared to

binary classifiers for known attacks, since they do not leverage

useful information from the known attacks. Ideally, the PAD

system should perform well in both known and unseen attack

scenarios.

Clearly, there is a necessity of a method which can learn a

compact one class representation while utilizing the discrim-

inative information from known attacks. While the collection

of attacks could be difficult and costly, collecting bonafide

samples are rather easy. A new classification strategy is

required to handle the realistic scenario where a limited variety

of attack classes are available.

Though one class classifiers (OCC) offers a way to model

the bonafide class, the efficient use of OCC requires the feature

representation to be compact while containing discriminative

information for PAD task. In the proposed framework, we use

a CNN based approach to learn the feature representation. A

novel loss function is proposed to learn a representation of

bonafide samples leveraging the known attack classes.
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A. Formulation of One Class Contrastive Loss (OCCL)

Consider a typical CNN architecture for PAD, where the

output layer contains one node and the loss function used is

Binary Cross Entropy (BCE), which is defined as:

LBCE = −(y log(p) + (1− y) log(1− p)) (1)

where y is the ground truth, (y = 0 for attack and y = 1 for

bonafide) and p is the probability.

When trained only with BCE loss, the network learns a

decision boundary based on the bonafide and attacks present

in the training set. However, it may not generalize when

encountered with an unseen attack in the test time as it could

be over-fitted to attacks which are ‘known’ from the training

set.

To overcome this issue, we propose the ‘One-Class Con-

trastive Loss’ (OCCL) function which operates on the em-

bedding layer. Proposed One-Class Contrastive Loss (OCCL)

function is used as an auxiliary loss function in conjunction

with binary cross-entropy loss. The feature map obtained from

the penultimate layer of the CNN is used as the embedding

layer. The loss function is inspired from center-loss [36] and

contrastive loss [37], which are usually used in the face

recognition applications.

Fig. 2. Loss functions acting on the embedding space, left) bonafide

representations are pulled closer to the center of bonafide class (green), while
the attack embeddings(red) are forced to be beyond the margin. The attack
samples outside the margin does not contribute to the loss, right) The loss as
a function of distance from the bonafide center.

In face recognition applications, center loss is used as an

additional auxiliary loss function, the task of the center loss

is to minimize the distance of the embeddings from their

corresponding class centers. The center loss is defined as:

Lcenter =
1

2

m
∑

i=1

‖xi − cyi
‖2
2

(2)

Where Lcenter denotes the center loss, m the number of

training samples in a mini-batch, xi ∈ Rd denotes the ith

training sample, yi denotes the label, and cyi
denotes the ythi

class center in the embedding space.

The main issue with center loss in the PAD application is

that the loss function penalizes for large intra-class distances

and does not care about the inter-class distances. Contrastive

center loss [38] tries to solve this issue by adding the distance

between classes (inter-class) in the formulation. However, for

the PAD problem, modeling the attack class as a cluster and

finding a center for the attack class is not trivial. The attacks

could be of different categories: 2D, 3D, and partial attacks,

and it is not ideal forcing them to cluster together in the

embedding space. It is only necessary to have the embeddings

of attacks far from bonafide cluster in the embedding space.

Hence, we put the compactness constraint only on the bonafide

class, while forcing the embeddings of PAs to be far from that

of bonafide.

To formulate the loss function, we start with the equation

for contrastive loss function proposed by Lecun et al. [37].

LContrastive(W,Y,X1, X2) =(1− Y )
1

2
D2

W

+ Y
1

2
max(0,m−DW )

2

(3)

Where W is the network weights, X1, X2 are the pairs

and Y the label of the pair, i.e., whether they belong to the

same class or not. m is the margin, and DW is the distance

function between two samples. The data is provided as pairs

(X1, X2) and the distance function DW can be computed as

the Euclidean distance.

DW =
√

‖X1 −X2‖2
2

(4)

Now, in our loss formulation, the critical difference is how

we define DW . In the original contrastive loss, DW is the dis-

tance between samples. In our case, we need the representation

of bonafide samples to be compact in an embedding space. At

the same time, we want to maximize the distance between

bonafide cluster and attack samples in the embedding space.

This can be achieved by defining DCW to be the distance

from the center of bonafide class as follows.

DCW =
√

‖Xi − cBF ‖22 (5)

Where Xi is the embedding for ith sample, and cBF is the

center of bonafide class in the embedding space.

The center of the bonafide class is updated in every mini-

batch during training as follows.

cBF = ĉBF (1− α) + α
1

N

N
∑

i=1

ei (6)

Where cBF and ĉBF denotes the new and old bonafide-

centers. α is a scalar which prevents sudden changes in the

class centers in mini-batch. ei denotes the difference between

embeddings for the bonafide samples in the current mini-batch

compared to the previous center, and N denotes the number

of bonafide samples in the mini-batch.

Combining the equations, our auxiliary loss function be-

comes:

LOCCL(W,Y,X) =Y
1

2
DC2

W

+ (1− Y )
1

2
max(0,m−DCW )

2

(7)

Where DCW denotes the Euclidean distance between the

samples and the bonafide class center, Y denotes the ground
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Fig. 3. Preprocessed images from a rigid mask attack; channels showed are gray-scale, infrared, depth, and thermal, respectively. Channels were preprocessed
with face detection, alignment and normalization.

truth, i.e., Y = 0 for attacks and Y = 1 for bonafide (note

the change in labels from the standard notation due to the

ground truth convention). It is to be noted that, the proposed

loss function does not require pairs of samples, which is a

requirement in usage of contrastive loss. This makes it easier

to train the model without requiring an explicit selection of

pairs during training.

This auxiliary loss makes the representation of bonafide

compact pushing it closer to the center of bonafide class and

penalizes attack samples which are closer than the margin m.

Attack samples which are farther than the margin m are not

penalized. An illustration of the loss functions acting on the

embeddings of bonafide and attack samples are shown in Fig.

2.

We combine the proposed loss function with standard binary

cross entropy for training. The combined loss function to

minimize is given as:

L = (1− λ)LBCE + λLOCCL (8)

Where L denotes the total loss for the CNN. LBCE and

LOCCL denotes the binary cross entropy, and one-class con-

trastive loss respectively. λ denotes a scalar value to set the

weight for each loss functions. In our experiments we set the

value of λ as 0.5.

The combined loss function L tries to learn a decision

boundary between the available attacks and bonafide while

the auxiliary loss tries to make the feature representation of

the bonafide compact in the embedding space. We expect the

decision boundary learned in this fashion to be more robust

in unseen attacks compared to the network learned only with

BCE. The embedding obtained in this manner is used with a

one-class classifier for the PAD task.

B. Components of the proposed framework

Different stages of the proposed framework are described

below.

1) Preprocessing: Before using the data from the sensors,

a preprocessing stage consisting of face detection, alignment,

and normalization is performed. MTCNN algorithm [39] was

used for face detection in the color channel followed by

face landmark detection using Supervised Descent Method

(SDM) [40]. After these stages, the face image is aligned and

converted to gray-scale with a resolution of 128× 128 pixels.

Since all the channels are aligned, these face locations are

utilized for the alignment of other non-RGB channels as well.

Also, normalization using Mean Absolute Deviation (MAD)

[41] is performed to convert the raw 16-bit values to the 8-bit

range. An example image after preprocessing stage is shown

in Fig. 3.

2) Network architecture and training: Since the data used is

multi-channel, we use a multi-channel PAD framework called

‘Multi-Channel Convolutional Neural Network’(MCCNN)

proposed in [14] as our base network. The main idea in

MCCNN was to use the joint representation from multiple

channels for PAD task, leveraging a pretrained face recog-

nition network. The MCCNN architecture constituted of an

extended version of LightCNN model [42] adapted specifically

for multi-channel PAD task. A pretrained LightCNN face

recognition model was extended to accept multiple channels,

and the embeddings from all channels were concatenated,

and two fully connected layers were added on top of this

joint representation layer for PAD task. The advantage in

this architecture is that only lower layer features (which are

known as Domain Specific Units (DSU) [43] ) and higher-

level fully connected layers are adapted in the training phase.

The first fully connected layer contains ten nodes, and the

second layer contains only one output node. The higher-

level features in the LightCNN part are shared among all the

modalities. This approach has two main advantages; first, there

is a smaller number of parameters since the high-level features

are shared across modalities, second, adapting only DSUs and

final fully connected layers reduce possible over-fitting since

PAD databases are typically small in size. An optimal set of

layers to be adapted was obtained empirically and was used

in the baseline MCCNN and the proposed approach.

In our proposed approach, we use the same MCCNN ar-

chitecture, and the output from the penultimate fully con-

nected layer was used as the embeddings. To quantify the

effectiveness of our approach, we perform experiments on

the MCCNN architecture, while using both embeddings and

the final output for the loss computation. An illustration of

the proposed framework is shown in Fig. 4. At the time of

training, both losses are used, and the model corresponding to

the lowest validation score is selected. It is to be noted that, at

the time of CNN training, both bonafide and (known) attack

samples are used. After the CNN training, the network weights

are frozen, and the bonafide samples are feed-forwarded to

obtain the embeddings.

3) One-Class Gaussian Mixture Model: After the training

of MCCNN with BCE and OCCL, the trained weights of

the network are frozen, and it is used as a fixed feature
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Fig. 4. Schematic diagram of the proposed framework. The CNN architecture is trained with two losses and then used as a fixed feature extractor with frozen
weights. The one-class GMM is trained using the embeddings obtained from bonafide class alone.

extractor for the PAD task. Now that a compact representation

is available, the objective is to learn a one-class classifier using

the features obtained. We use One-Class Gaussian Mixture

Model for this task. The one class GMM is a generative

approach which is used for modeling the distribution of the

bonafide class in the proposed framework.

A Gaussian Mixture Model is defined as the weighted sum

of K multivariate Gaussian distributions as:

p(x|Θ) =

K
∑

k=1

wkN (x;µk,Σk), (9)

where Θ = {wk, µk, σk}{k=1,...,K} are the weights, means

and the covariance matrix of the GMM.

Expectation-Maximization (EM) [44] was used to compute

the parameters of the GMM. A full covariance matrix is

computed for each component, and the number of components

to use was empirically selected as five (K = 5).

During the training phase, embeddings obtained from

bonafide class only are used to train the One-Class GMM.

In test time, a sample is first forwarded though the network

to obtain the embedding x, and then fed to the One-Class

GMM to obtain the log-likelihood score as follows:

score = log(p(x|Θ)) (10)

In summary, the proposed framework can be considered as a

one-class classifier based framework for PAD. The crucial dis-

tinction is that, the features used are learned. The loss function

proposed forces the CNN to learn a compact representation

for the bonafide class leveraging the information from known

attack classes. The algorithm for training the framework is

shown in Algorithm 1.

Algorithm 1: Algorithm for training the proposed

framework

Data: (xi, yi), where xi is multi-channel input and

yi ∈ 0, 1; 0 – for attack and 1– for bonafide

Result: WC – CNN weights, ΘGMM – Parameters of

GMM

1 Constants : λ – weighting factor, µ – learning rate

2 Initialize : CBF – center of bonafide class, WC –

initial weights of CNN from pretrained model

3 for mini-batch ← 1 to P do

4 Forward xi through the CNN

5 Compute the combined loss:

L = (1− λ)LBCE + λLOCCL

6 Back-propagate the loss and update the weights of

DSUs and FC layers

7 Update the bonafide center:

8 cBF = ĉBF (1− α) + α 1

N

∑N

i=1
ei

9 end

10 Forward xj (bonafide, where yj = 1) through the CNN

to obtain Embeddings Ej

11 Estimate parameters of GMM from Ej :

12 ΘGMM= (wk, µk,Σk)
13 Parameters← (WC ,ΘGMM )

C. Implementation details

To increase the number of samples, data augmentation using

random horizontal flips with a probability of 0.5 was used

in training. Adam Optimizer [45] was used to minimize the

combined loss function. Learning rate of 1×10−4 and a weight

decay parameter of 1 × 10−5 was used. The network was

trained for 50 epochs on GPU grid with a batch size of 32. The

model corresponding to minimum validation loss in the dev set

is selected as the best model. For the four-channel models, the

MCCNN architecture has about 13.1M parameters and about
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14.5 GFLOPS. The implementation was done using PyTorch

[46] library.

IV. EXPERIMENTS

In order to evaluate the effectiveness of the proposed

approach, we have performed experiments in three publicly

available databases, namely WMCA [14], MLFP [32], and

SiW-M [25] datasets. Recently published CASIA-SURF [34]

database also consists of multi-channel data, namely color,

depth, and infrared channels with a limited set of attack

instruments. However, the raw data from the sensors were

not publicly available; in the publicly available version of

the database, images were masked and scaled with custom

preprocessing reducing the dynamic range of depth and in-

frared channels severely. Moreover, there was no guaranteed

alignment between the channels. Therefore we can’t use our

framework with CASIA-SURF database due to the mentioned

limitations.

A. WMCA dataset

We have conducted extensive experiments on Wide Multi-

Channel presentation Attack (WMCA) 2 database, which con-

tains a total of 1679 video samples of bonafide and at-

tack attempts from 72 identities. The database contains in-

formation from four different channels collected simultane-

ously, namely, color, depth, infrared, and thermal channels.

The data was collected using two consumer devices, Intel R©

RealSenseTMSR300 capturing RGB-NIR-Depth streams, and

Seek Thermal CompactPRO for the thermal channel. The

database contained around eighty different PAIs constituting

seven different categories of attacks: print, replay, funny

eyeglasses, fake head, rigid mask, flexible silicone mask, and

paper masks. The RGB visualization of the attack categories is

shown in Fig. 5 and the different sessions in Fig. 6. Detailed

information about the WMCA database can be found in the

publication [14]. The statistics of the number of samples in

each category and their types are shown in Table I. We have

made challenging protocols in the WMCA dataset to perform

an extensive set of evaluations emulating real-world unseen

attack scenarios.

1) Protocols in WMCA: To test the performance of the

algorithm in known and unseen attack scenarios, we created

three protocols in the WMCA dataset. The protocols are

described below.

• grandtest : This is the exact same grandtest protocol

available with WMCA database, here all the attack types

are present in almost equal proportions in the train,

development and evaluation sets. The attack types and

bonafide samples are divided into three folds, and the

client ids are disjoint across the three sets. Each presen-

tation attack instrument had a separate client id. The train,

dev, eval splits were made in such a way that a specific

PA instrument will appear in only one fold.

• unseen-2D : In this protocol, we use same splits as

grandtest and removed all 2D attacks from train and de-

velopment groups. Evaluation set contains only bonafide

2Database available at : https://www.idiap.ch/dataset/wmca

Fig. 5. Attack categories in WMCA dataset, only RGB images are shown.
Print and Replay constitutes the 2D attacks and all others are 3D attacks
(Image taken from [14]).

Fig. 6. Different sessions in WMCA dataset, only RGB images are shown. A
total of six sessions was used the WMCA (Image taken from [14])

and 2D attacks. This emulates the performance of a

system when encountered with 2D attacks which was not

seen in training.

• unseen-3D : In this protocol, we use same splits as

grandtest and removed all 3D attacks from train and de-

velopment groups. Evaluation set contains only bonafide

and 3D attacks. This emulates the performance of a

system when encountered with 3D attacks which were

not seen in training. This is the most challenging protocol

as the model sees only the simpler 2D attacks in training

and encounter challenging 3D attacks in testing.

While the grandtest protocol emulates the known attack

scenario, other protocols emulate the unseen attack scenario.

All protocols are made available publicly.



8

TABLE I
STATISTICS OF ATTACKS IN WMCA DATABASE

PA Category Type #Presentations

bonafide - 347
glasses Partial 75
print 2D 200

replay 2D 348
fake head 3D 122
rigid mask 3D 137

flexible mask 3D 379
paper mask 3D 71

TOTAL 1679

B. MLFP dataset

MLFP dataset [32] consists of attacks captured with seven

3D latex masks and three 2D print attacks. The dataset contains

videos captured from color, thermal and infrared channels.

Since channels were captured individually in different record-

ing sessions, multi-channel approaches are not trivial. Also,

the alignment of channels is not possible since they are not

collected simultaneously. Hence, we only use the RGB videos

from the MLFP dataset for our experiments. The database

contains videos of 10 subjects wearing both print and latex

masks. There are 440 videos are consisting of both attacks

and bonafide for the RGB channel.

1) Protocols in MLFP: To emulate known and unseen

attack scenarios, we created three new protocols in the MLFP

dataset. There are two types of attacks, namely print and mask.

Only two sets, i.e., train and evaluation are created due to the

small size of the dataset. We used a subset of the train set

(10%) for model selection. The protocols are described below.

• grandtest : This protocol emulates the known attack

scenario. Both the attacks are present in both train and

evaluation set. However, the subjects and the PAs are

disjoint across the two sets.

• unseen-print : In this protocol, only bonafide and mask

attacks are present in train set; the evaluation set contains

only bonafide and print attacks. This emulates unseen

attack scenario.

• unseen-mask : In this protocol, only bonafide and print

attacks are present in train set; the evaluation set con-

tains only bonafide and mask attacks. This protocol also

emulates unseen attack scenario.

C. SiW-M dataset

The Spoof in the Wild database with Multiple Attack Types

(SiW-M) [25] consists of a wide variety of attacks captured

only in RGB spectra. The database consists of images from

493 subjects, and a total of 660 bonafide and 968 attack

samples. A total of 1628 files, consisting of 13 different

attack types, collected in different sessions, pose, lighting,

and expression (PIE) variations. The attacks consist of various

types of masks, makeups, partial attacks, and 2D attacks. The

videos are available in 1080P resolution.

1) Protocols in SiW-M: To emulate unseen attack scenarios,

we use the leave-one-out (LOO) testing protocols available

with the SiW-M [25] dataset. The protocols consists of only

train and eval sets. In each LOO protocol, the training set

consists of 80% percentage of the live data and 12 types

of spoof attacks. The evaluation set consists of 20% of

bonafide data and the attack which was left out in the training

phase. The subjects in bonafide sets are disjoint in train and

evaluation sets. A subset of the train set (5%) was used for

model selection. Additionally, we have created a grandtest

protocol, specifically for cross-database testing which contains

all the attack types in all the folds.

D. Evaluation metrics

We report the standardized ISO/IEC 30107-3 metrics [4],

Attack Presentation Classification Error Rate (APCER), and

Bonafide Presentation Classification Error Rate (BPCER), and

Average Classification Error Rate (ACER) in the test set. A

BPCER threshold of 1% is used for computing the threshold in

dev set. The APCER and BPCER in both dev and eval sets are

also reported. Additionally, the ROC curves for experiments

are also shown in all the protocols. For the MLFP dataset,

we report only EER in the evaluation set since only two

sets are available. For SiW-M database, we apply a threshold

selected a-priori in all protocols, for computing the metrics,

to be comparable with the results in [25].

E. Baselines

We have implemented three feature-based baselines and

two CNN based baselines. For a fair comparison, all the

benchmarks are multi-channel methods and use the same four

channels. Besides, an RGB only CNN model is also added for

comparison. A short description of the baselines along with

the acronyms used are shown below:

• MC-RDWT-Haralick-SVM: This baseline is the multi-

channel extension of the RDWT-Haralick-SVM approach

proposed in [32]; the images from all channels are

stacked together after preprocessing. For each channel,

the image is divided into a 4 × 4 grid, and Haralick

[47] features obtained from the RDWT decompositions

are concatenated from all the grids in all channels to get

the joint feature vector. The joint feature is used with a

linear SVM for PAD.

• MC-RDWT-Haralick-GMM: Here, the feature extraction

stage is same as MC-RDWT-Haralick-SVM; however, the

classifier used is one class GMM. Only bonafide samples

are used in training this model. This model is added to

show the performance of one class models in unseen

attack scenarios.

• MC-LBP-SVM: Here, again, the same preprocessing is

performed on all the channels first. After this, Spatially

enhanced histograms of LBP representation from all the

component channels are computed and concatenated to a

feature vector. The features extracted are fed to an SVM

for PAD task.

• DeepPixBiS : This is a CNN based system [10] trained

using both binary and pixel-wise binary loss function.

This model only uses RGB information for PAD.
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• MC-ResNetPAD: We reimplemented the architecture from

[35] extending it to four channels, based on their open-

source implementation 3. This approach obtained the first

place solution in the ‘CASIA-SURF’ challenge. For a fair

comparison, instead of using an ensemble we used the

best pretrained model as suggested in [35].

• MCCNN(BCE) : This is the multi-channel CNN system

described in [14], which achieved state of the art per-

formance in the grandtest protocol. The model is trained

using Binary Cross-Entropy (BCE) loss only.

All the baseline methods described are reproducible, and the

details about the parameters can be found in our open-source

package 4.

F. Experiments and Results in WMCA dataset

We have tested the baselines and the proposed approach in

three different protocols in WMCA. The proposed approach is

denoted as MCCNN(BCE+OCCL)-GMM.

• MCCNN(BCE+OCCL)-GMM: Here, the bonafide embed-

dings from the MCCNN trained using both the losses are

used to train a GMM, and in the evaluation stage, the

score from the one class GMM is used as the PAD score.

The results in each protocol are described below.

1) Experiments in grandtest protocol: The grandtest pro-

tocol emulates the known attack scenario. Table II tabulates

the results in the grandtest protocol. The proposed approach

outperforms the feature-based methods by a large margin as

expected. The model MC-RDWT-Haralick-GMM trained using

a one-class model achieves the worse results. It is interesting

to note that the MC-RDWT-Haralick-SVM model, trained using

the same feature as a binary classifier performed much better.

This shows one weakness of one-class classifiers in a known

attack scenario, as they do not use the known attacks in

training. The MCCNN(BCE) achieves much better perfor-

mance as compared to MC-ResNetPAD. The MCCNN(BCE)

trained as a binary classifier achieves the best performance

in this protocol. The proposed MCCNN(BCE+OCCL)-GMM

approach achieves comparable performance to MCCNN(BCE).

This indicates that the one class GMM classifier performs on

par with the binary classification, provided they are trained

with compact feature representations.

2) Experiments in unseen-2D and unseen-3D protocol: The

unseen-2D and unseen-3D protocols emulates the unseen at-

tack scenario. The unseen-3D is the most challenging protocol

since it is trained only on 2D - print and replay attacks and

encounters a wide variety of 3D attacks such as silicone masks,

fake heads, mannequins, etc. in the eval set.

Most of the approaches perform well in the unseen-2D

protocol. This result is intuitive as these models are trained

on challenging 3D attacks, detection of 2D attacks is much

easier. Moreover, the 2D attacks can be easily identified in

depth, thermal, and infrared channels. Even some feature-

based methods perform well in this protocol, with MC-RDWT-

Haralick-GMM method achieving the best performance. This

3Available from: https://github.com/AlexanderParkin/ChaLearn liveness
challenge

4Source code: https://gitlab.idiap.ch/bob/bob.paper.oneclass mccnn 2019

shows the advantage of one class model in an unseen at-

tack scenario. The proposed approach MCCNN(BCE+OCCL)-

GMM and MCCNN(BCE) baseline perform comparably in

this protocol. Notably, the DeepPixBiS model achieves much

worse results in this protocol. This could be because discrimi-

nating between bonafide and 2D attacks are harder when only

RGB information is used.

The unseen-3D protocol shows important results. All the

baselines show inferior performance when encountered with

unseen 3D samples. This shows the failure of binary clas-

sifiers in generalizing to challenging unseen attacks. The

MCCNN(BCE) approach, while being architecturally similar,

fails to generalize when trained in the binary classification

setting. With the proposed approach, performance improves

to 9.7% when the one class GMM is used on the bonafide

representations. Since the network learns to map the bonafide

samples to a compact cluster in the feature space, even in

the presence of unseen attacks, the decision boundary learned

for the bonafide class performs well. The unseen attacks map

far from the bonafide cluster and hence becomes easy to

discriminate from bonafide samples. This result is encouraging

since the network was shown only 2D attacks in training,

and still, it manages to achieve good performance against

challenging 3D attacks. The ROCs for all the protocols are

shown in Fig. 7.

The t-SNE [48] plots of the embeddings for all protocols are

shown in Fig. 8. Five frames from each video in the evaluation

sets of the protocols are used for this visualization. While

the difference between bonafide and attacks are clear in the

grandtest and unseen-2D, difference in unseen-3D protocol is

very evident. It can be clearly seen that the bonafide class

clusters together and is far from the bonafide representation

in the embedding space in the unseen-3D protocol when the

proposed loss is used. Unseen attacks overlaps with bonafide

embeddings when only BCE is used. This clearly demonstrates

the effectiveness of the proposed approach for unseen attack

detection. The unseen attacks which are overlapping with

the bonafide region are shown in Fig. 9. It can be seen

that some video replay samples and flexible silicone 3D

masks get misclassified in unseen-2D and unseen-3D protocols

respectively.
3) Ablation study with channels: To evaluate the per-

formance of the proposed framework on different set of

channels, we perform an ablation study by including a dif-

ferent set of channels. We used only the best performing

MCCNN(BCE+OCCL)-GMM approach in this ablation study.

In all combinations, the gray-scale channel is present since it

is used as a reference. This is required as the embedding from

the gray-scale part can be used for face recognition as well.

The acronyms for different channels are shown below:

• G: Gray-scale image

• D: Depth image

• I: Infrared channel

• T: Thermal channel

Various combinations of these channels are experimented

with, and the results are tabulated in Table IV. It is to be

noted that the channels G, D and I come from the same device

and T is coming from a different device. Usually, thermal
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Fig. 7. DET curves for the eval sets of different protocols of WMCA dataset a) grandtest, b) unseen-2D, c) unseen-3D protocol.

TABLE II
PERFORMANCE OF THE BASELINE SYSTEMS AND THE PROPOSED METHOD IN grandtest PROTOCOL OF WMCA DATASET. THE VALUES REPORTED ARE

OBTAINED WITH A THRESHOLD COMPUTED FOR BPCER 1% IN dev SET.

Method
dev (%) test (%)

APCER ACER APCER BPCER ACER

MC-RDWT-Haralick-SVM 3.6 2.3 5.4 1.2 3.3
MC-LBP-SVM 3.6 2.3 8.5 0.6 4.6

MC-RDWT-Haralick-GMM 43.4 22.2 47.7 1.7 24.7
DeepPixBiS (RGB only)[10] 1.0 1.0 8.2 3.7 6

MC-ResNetPAD [35] 3.8 2.4 3.5 1.6 2.6
MCCNN(BCE)[14] 0.4 0.7 0.5 0 0.2

MCCNN(BCE+OCCL)-GMM 0.1 0.6 0.6 0.1 0.4

TABLE III
PERFORMANCE OF THE BASELINE SYSTEMS AND THE PROPOSED METHOD IN UNSEEN PROTOCOLS OF WMCA DATASET. THE VALUES REPORTED ARE

OBTAINED WITH A THRESHOLD COMPUTED FOR BPCER 1% IN dev SET.

Method
unseen-2D unseen-3D

APCER BPCER ACER APCER BPCER ACER

MC-RDWT-Haralick-SVM 0.3 0.1 0.2 66.0 0.1 33.1
MC-LBP-SVM 40.7 0.1 20.4 38.9 0.2 19.5

MC-RDWT-Haralick-GMM 0.0 0.2 0.1 70.8 1.9 36.4
DeepPixBiS (RGB only)[10] 77.7 0.3 39 74.7 16.3 45.5

MC-ResNetPAD [35] 4.1 0.9 2.5 92.2 6.4 49.3
MCCNN(BCE)[14] 0.0 1.0 0.5 62.0 0.0 31.0

MCCNN(BCE+OCCL)-GMM 0.3 0.6 0.5 15.4 3.9 9.7
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(a) grandtest (b) unseen-2D (c) unseen-3D

(d) grandtest (e) unseen-2D (f) unseen-3D

Fig. 8. t-SNE plots of embeddings in the protocols in WMCA dataset. First row (a,b,c) shows the embeddings when only BCE loss was used. Second row
(d,e,f) shows the embeddings when both the losses are used. Embeddings of both known and unseen attacks are shown in the figures for each protocol.
Grandtest protocol contains only known attacks in the test set.

Fig. 9. The attack samples which are closer to bonafide cluster in a)
unseen-2D (Fig.8(E)) and b) unseen-3D ((Fig.8(F))) protocol for the proposed
framework.

cameras are expensive, compared to RGB-D cameras, and

hence the combinations involving subsets of G, D and I are

more interesting from a deployment point of view.

From Table IV, it can be seen that the performance de-

grades as channels are removed. However, the combination

GI achieves reasonable performance while considering the

performance-cost ratio. The ROCs for different protocols are

shown in Fig. 10.

G. Experiments and Results in MLFP dataset

We have used only the RGB channel for the experiments

since the other channels were not captured simultaneously. For

the MCCNN framework and other baselines, ‘R’, ‘G’, and ‘B’

are considered as the different channels in these experiments.

TABLE IV
PERFORMANCE OF THE PROPOSED FRAMEWORK WITH DIFFERENT

COMBINATIONS OF CHANNELS IN ALL PROTOCOLS OF WMCA DATASET.
THE VALUES REPORTED ARE OBTAINED WITH A THRESHOLD COMPUTED

FOR BPCER 1% IN dev SET.

Channels
grandtest unseen-2D unseen-3D

ACER ACER ACER

GDIT 0.4 0.5 9.7
GDI 1.1 11.2 23.1
GT 2.2 3.2 21.5
GD 2.3 49.4 45.4
GI 1.1 2.2 22.6

We have performed the experiments in the three newly created

protocols and the results are tabulated in Table V.

From the results in Table V, it can be seen that the CNN

based approach outperforms the feature-based approaches.

The MCCNN framework, with the addition of the newly

proposed loss outperforms the architecture trained with BCE

only, showing the effectiveness of the proposed approach.

Even though the proposed approach performs better than the

baselines, it is to be noted that the key point of the proposed

approach, leveraging multi-channel information, is not utilized

here. The architecture is not optimized for PAD in RGB

and this experiment is performed only to show the change

in performance with the new loss function. Nevertheless, the

proposed approach achieves better performance as compared

to the baselines in all the protocols.
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Fig. 10. Ablation study with different combination of channels, DET curves for the eval sets of different protocols of WMCA dataset a) grandtest, b)
unseen-2D, c) unseen-3D protocol.

TABLE V
PERFORMANCE OF THE PROPOSED FRAMEWORK IN THE PROTOCOLS IN

MLFP DATASET. ONLY RGB CHANNEL WAS USED IN THIS EXPERIMENTS.
THE VALUES REPORTED ARE THE EER IN THE evaluation SET.

Algorithm grandtest
unseen
print

unseen
mask

MC-RDWT-Haralick-SVM 9.8 12.0 32.2
MC-LBP-SVM 6.3 27.1 9.3

MC-RDWT-Haralick-GMM 27.4 40.8 21.5
DeepPixBiS (RGB only)[10] 6.3 24.8 17.5

MCCNN (BCE) 5.5 9.2 5.2

MCCNN (BCE+OCCL)-GMM 1.2 3.3 3.4

H. Experiments and Results in SiW-M dataset

Table VI shows the performance of the proposed framework,

again in RGB only scenario. CNN based methods performs

much better than feature based methods in this case. It can

be seen that the proposed approach achieves better perfor-

mance as compared to baseline methods. The performance of

the MCCNN (BCE+OCCL)-GMM is better compared to the

MCCNN(BCE) model. It can be seen that the addition of the

new loss function makes the classification of unseen attacks

more accurate.

I. Cross-database evaluations

As we could not perform cross-database evaluation between

a multi-channel database and an RGB only database, we used

only the RGB channels from two datasets for the cross-

database evaluation. We have selected WMCA and SiW-M

datasets as they are relatively large and consist of a wide

variety of attacks.

From Table IV-I, it can be seen that the MCCNN model with

and without the new loss performs comparably. In general, the

performance in the cross-database setting is poor for all the

models. The poor performance could be due to the disparity in

acquisition conditions and the attack types. A wider variety of

attacks makes it difficult for the classifier to identify attacks

using RGB channels alone. The cross-database performance

with this wide variety of attacks seems more challenging

to typical cross-database evaluations using only 2D attacks.

Using multiple channels [14] may alleviate these issues. This

also points to the limitation of RGB only methods while

dealing with a wide variety of attacks.

V. DISCUSSIONS

From the experiments in WMCA database, it can be clearly

seen that CNN based method outperforms the feature-based

methods by a large margin. While comparing the MC-

CNN(BCE) method to the proposed method, the performance
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TABLE VI
PERFORMANCE OF THE PROPOSED FRAMEWORK IN THE LEAVE ONE OUT PROTOCOLS IN SiW-M DATASET. ONLY RGB CHANNEL WAS PRESENT IN THIS

DATASET.

Methods Metrics (%) Replay Print
Mask Attacks Makeup Attacks Partial Attacks

Average
Half Silicone Trans. Paper Manne. Obfusc. Imperson. Cosmetic Funny Eye Paper Glasses Partial Paper

MC-RDWT-Haralick-SVM

APCER 19.80 19.15 30.76 28.15 33.35 0.29 4.50 68.91 0.00 35.20 53.12 34.53 3.49 25.4± 20.8

BPCER 14.50 13.89 14.66 16.83 15.38 16.68 15.88 16.03 16.53 16.37 14.58 14.47 15.73 15.5± 0.9

ACER 17.15 16.52 22.71 22.49 24.37 8.49 10.19 42.47 8.26 25.79 33.85 24.50 9.61 20.4± 10.3

EER 16.88 16.53 21.80 20.73 21.94 7.34 9.88 32.56 2.37 23.51 31.72 21.94 10.05 18.2± 9.0

MC-LBP-SVM

APCER 10.77 12.91 10.28 35.19 37.78 0.59 6.50 96.09 0.00 26.00 40.91 35.51 2.73 24.2± 26.3

BPCER 22.90 22.18 22.48 22.33 23.13 23.70 23.59 22.79 23.93 22.90 19.92 21.11 23.74 22.6± 1.1

ACER 16.83 17.54 16.38 28.76 30.46 12.15 15.04 59.44 11.97 24.45 30.41 28.31 13.24 23.4± 12.9

EER 15.96 16.83 16.87 28.51 29.77 10.54 12.75 52.60 1.90 24.61 28.32 26.76 11.29 21.2± 12.6

Auxiliary [16]

APCER 23.7 7.3 27.7 18.2 97.8 8.3 16.2 100.0 18.0 16.3 91.8 72.2 0.4 38.3± 37.4

BPCER 10.1 6.5 10.9 11.6 6.2 7.8 9.3 11.6 9.3 7.1 6.2 8.8 10.3 8.9± 2.0

ACER 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6± 18.5

EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0± 17.7

Deep Tree Network [25]

APCER 1.0 0.0 0.7 24.5 58.6 0.5 3.8 73.2 13.2 12.4 17.0 17.0 0.2 17.1± 23.3

BPCER 18.6 11.9 29.3 12.8 13.4 8.5 23.0 11.5 9.6 16.0 21.5 22.6 16.8 16.6± 6.2

ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8± 11.1

EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1± 12.2

DeepPixBiS [10]

APCER 19.18 8.97 1.74 21.30 60.68 0.00 1.00 100.00 0.00 26.90 64.66 77.52 0.29 29.4± 34.4
BPCER 8.70 7.63 11.03 11.76 10.27 8.85 8.63 10.53 11.60 10.99 10.31 10.23 7.10 9.8± 1.4
ACER 13.94 8.30 6.38 16.53 35.47 4.43 4.81 55.27 5.80 18.95 37.48 43.87 3.69 19.6± 17.4
EER 11.68 7.94 7.22 15.04 21.30 3.78 4.52 26.49 1.23 14.89 23.28 18.90 4.82 12.3± 8.2

MCCNN (BCE)

APCER 38.93 30.60 7.85 20.00 32.56 0.00 2.00 70.65 0.00 29.00 46.69 57.32 23.20 27.6± 22.1

BPCER 7.10 6.45 7.48 10.04 12.56 8.59 10.04 9.96 11.72 11.37 12.75 7.71 9.89 9.6± 2.0

ACER 23.01 18.52 7.66 15.02 22.56 4.29 6.02 40.31 5.86 20.19 29.72 32.52 16.54 18.6± 11.1

EER 17.08 11.83 7.56 12.82 16.09 0.71 6.85 25.94 2.29 16.30 18.90 22.82 13.13 13.2± 7.4

MCCNN (BCE+OCCL)-GMM

APCER 11.79 9.53 3.12 3.70 39.20 0.00 3.12 44.57 0.00 21.60 19.34 35.55 0.00 14.7± 15.9

BPCER 13.44 16.15 16.26 20.23 11.11 13.74 8.66 15.23 12.67 10.42 14.31 18.40 27.33 15.2± 4.8

ACER 12.61 12.84 9.69 11.97 25.16 6.87 5.89 29.90 6.34 16.01 16.83 26.97 13.66 14.9± 7.8

EER 12.82 12.94 11.33 13.70 13.47 0.56 5.60 22.17 0.59 15.14 14.40 23.93 9.82 12.0 ± 6.9

TABLE VII
THE RESULTS FROM THE CROSS-DATABASE TESTING BETWEEN WMCA
AND SIW-M DATASETS USING THE GRANDTEST PROTOCOL, ONLY RGB

CHANNELS WERE USED IN THIS EXPERIMENT.

Method

trained on
WMCA

trained on
SiW-M

tested on
WMCA

tested on
SiW-M

tested on
SiW-M

tested on
WMCA

MC-RDWT-Haralick-SVM 14.6 29.6 15.1 45.3
MC-LBP-SVM 26.6 45.5 19.6 38.6

MC-RDWT-Haralick-GMM 27.9 34.0 25.5 43.6
DeepPixBiS 7.5 49.1 14.7 44.4

MCCNN (BCE) 12.1 34.0 9.9 42.3

MCCNN (BCE+OCCL)-GMM 12.3 31.9 9.5 41.8

is comparable in the known attack scenario. This indicates that

the proposed One-Class GMM based approach performs par

with binary classification, thanks to the embedding learned

with the proposed loss function. Most of the approaches

perform well in the unseen-2D protocol since it can be clearly

discriminated in many channels. Moreover, it shows that if

the network is trained in challenging attacks, simpler attacks

are easy to detect. While the performance is comparable

in grandtest and unseen-2D protocols, the proposed method

achieves a large performance boost in the most challenging

unseen-3D protocol. The proposed loss function forces the

network to learn a compact representation for bonafide sam-

ples in the feature space. Both known and unknown attacks get

mapped far from the bonafide cluster in the feature space. The

decision boundary learned by the one class model seems to be

robust in identifying both seen and unseen attacks in such a

scenario. This result is significant for several reasons. It is to be

noted that in the unseen-3D protocol, the network is trained

with only 2D attacks, i.e., prints and replays. The proposed

method achieves excellent performance in a test set consisting

of challenging 3D attacks such as custom silicone masks,

paper masks, mannequins, etc. The real-world implications of

this approach is very promising. The proposed method can be

used to develop robust PAD systems without the requirement

of having to manufacture costly presentation attacks. The

models can be trained on easy to obtain attacks based on

availability. The proposed framework utilizes the available

(known) attack categories to learn a robust representation to

facilitate known and unseen attack detection. It is to be noted

that the compact representation is made possible by the joint

multi-channel representation used.

In practical deployment scenarios, it may not be possible

to use all the four channels due to the computational or cost

constraints. In such a situation, models trained on available

channels can be selected based on the performance-cost ratio

by sub selecting the channels. The results from the ablation

study presented in Table IV can be used to determine which

channels should be used in such cases.

Similarly, the experiments in MLFP and SiW-M database

also shows CNN based methods outperform feature-based

baselines. Although we have not used multi-channel informa-

tion in the experiments, the experiment results showcase the

performance improvement with the new loss function. Using

the proposed framework together with network backbones

designed specifically for RGB PAD might improve the results.

The cross-database performance shows the limitations of

the RGB channel when tested with a wide variety of attacks.

The performance of the baselines as well as the proposed

approach is poor when only RGB data is used. This shows

the challenging nature of RGB only PAD while considering

a wide variety of attacks. The usage of multiple channels as

done in WMCA dataset might improve the performance.

VI. CONCLUSIONS

Face presentation attack detection is often considered as a

binary classification task which results in over-fitting to the

known attacks leading to poor generalization against unseen

attacks. In this paper, we address this problem with a new

framework using a one-class classifier. A novel loss function
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is formulated, which forces the CNN to learn a compact yet

discriminative representation for the face images. The bonafide

samples form a compact cluster in the feature space, thanks

to the proposed loss function. A decision boundary around

the bonafide representation can be obtained using a one-class

model. Both known and unknown attacks map far from the

bonafide cluster in the feature space which can be classified

by the one-class model. The proposed framework introduces a

new way to learn a robust PAD system from bonafide and

available (known) attack classes. The proposed system has

been evaluated in the challenging WMCA, MLFP, and SiW-M

databases and was shown to outperform the baseline feature-

based and CNN based methods in both known and unseen

attack scenarios. The drastic improvement in the performance

in unseen-3D protocol in WMCA shows the robustness of

the proposed approach against unseen attacks, thanks to the

multi-channel information. The proposed method also shows

improvement even when used together with RGB channels

alone. The source code and protocols to reproduce the results

are made available publicly to enable further extensions of the

proposed framework.
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