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Abstract—Competitive state-of-the-art automatic pathological
speech intelligibility measures typically rely on regression train-
ing on a large number of features, require a large amount
of healthy speech training data, or are applicable only to
phonetically balanced scenarios where healthy and pathological
speakers utter the same utterances. As a result, their performance
in unseen data is unsatisfactory, and they cannot be used in
low-resource languages or in phonetically unbalanced scenarios.
To overcome these drawbacks, we propose a subspace-based
intelligibility (SBI) measure. The SBI measure operates based on
the hypothesis that dominant spectral patterns of pathological
speech differ from intelligible speech (where the pathological
and intelligible speech signals do not need to match in phonetic
content), with the difference increasing as pathological speech
intelligibility decreases. The SBI measure uses a minimal number
of speech recordings to compute dominant spectral basis vectors
spanning intelligible and pathological speech. The subspaces
spanned by the intelligible and pathological spectral basis vectors
are compared to each other through a subspace distance measure,
which is directly used (i.e., without any training) as the patho-
logical speech intelligibility estimate. Exploiting psychoacoustic
evidence on the importance of spectral modulation cues to
the perceived speech intelligibility and clinical evidence on the
degradation of these cues in pathological speech, we show that the
power of the proposed SBI measure lies in capturing the effect
of spectral modulation degradation. To be able to additionally
track possible degradations in the temporal structure of the
pathological speech signal, we also propose two extensions of the
SBI measure by incorporating short-time temporal information.
Experimental results for different languages and speech patholo-
gies show that the proposed intelligibility measures yield high
and significant correlations with subjective intelligibility ratings,
while not requiring any regression training or a large number of
healthy speech recordings and being applicable to phonetically
unbalanced scenarios.

Index Terms—Spectral subspace, SVD, spectral modulation,
Cerebral Palsy, hearing impairment

I. INTRODUCTION

PEECH intelligibility assessment is an important compo-
S nent of the auditory-perceptual evaluation of pathological
speech in clinical settings, since it can be used to charac-
terize the severity of the speech disorder and to monitor
the effectiveness of speech therapy. Clinical approaches to
pathological speech intelligibility assessment are based on sub-
jective listening tests where human listeners directly evaluate
the perceived speech intelligibility [1]. Such subjective tests
are time-consuming and may be biased by the availability of
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syntactic/semantic clues in connected speech as well as by the
familiarity of the listener with the speaker, speech disorder,
or speech task under study [2], [3]. As an efficient and
economical substitute to subjective intelligibility assessment,
automatic pathological speech intelligibility measures have
been proposed. Such objective measures avoid the above-
mentioned drawbacks of subjective listening tests and offer
repeatable assessments with the capability of being used in
real-time and remote speech therapy applications [4].
Approaches to automatic pathological speech intelligibil-
ity assessment can be broadly categorized into blind ap-
proaches [5]-[9] and non-blind approaches [10]-[20]. Blind
approaches refer to approaches that do not exploit any knowl-
edge about healthy (i.e., intelligible) speech and assess patho-
logical speech intelligibility by extracting acoustic features
that are believed to be correlated with intelligibility. In [S]-[9],
individual acoustic features such as jitter, shimmer, fundamen-
tal frequency, formant frequencies, or low-to-high modulation
energy ratio (LHMR), are directly used to assess pathological
speech intelligibility. In [5]-[7], [9], multiple acoustic features
are combined through feature selection/reduction methods and
regression models. Non-blind approaches rely on intelligible
speech recordings from healthy speakers to estimate patho-
logical speech intelligibility. In these approaches, healthy
speech recordings are exploited in different manners. In [10],
a speaker-independent Gaussian mixture model (GMM) is
trained on healthy speech to create an intelligible reference
model. By adapting the parameters of this reference model, a
GMM-based supervector is created to represent the pathologi-
cal speech signal. The intelligibility score is then obtained by
training a regression model on the GMM-based supervector.
A very similar approach is followed in [11]-[14], with the
difference consisting in using an iVector or Gaussian poste-
riogram representation instead of a GMM-based supervector.
In other non-blind approaches, pathological speech intelligi-
bility is evaluated by training regression models on features
produced by automatic speech recognition (ASR) systems,
automatic speech alignment (ASA) systems, or phonological
feature (PLF) extractor systems [15]-[22]. Commonly used
features from such systems are the word error rate (WER),
log-likelihood ratio, phoneme posteriors, and phonological fea-
tures. These systems are typically trained using a large number
of transcribed/segmented healthy speech recordings [15]-[22].
Although promising results have been shown using the
above-mentioned approaches, several drawbacks arise when
using them in practical scenarios. Most approaches require
a large number of features for intelligibility prediction, in-
creasing as a result the risk of over-fitting and limiting the
performance in unseen data. In addition, non-blind approaches



are typically complex and require a large number of healthy
speech recordings for training, which might be infeasible for
low-resource languages. Finally, non-blind approaches relying
on ASR, ASA, and PLF systems require transcriptions of
healthy and/or of pathological speech signals, which can be
a time- and resource-consuming task.

To tackle the aforementioned drawbacks of state-of-the-art
techniques, we have recently proposed a non-blind pathologi-
cal speech intelligibility measure based on the extended short-
time objective intelligibility (P-ESTOI) [23], [24]. P-ESTOI
does not rely on a large number of features, does not require
any training or a large number of healthy speech recordings,
and has been shown to be highly correlated with subjec-
tive intelligibility ratings for patients suffering from several
pathologies. However, for assessing the intelligibility of a
sample utterance from a patient in P-ESTOI, recordings of the
same utterance from several healthy speakers are needed such
that an utterance-dependent reference model can be created.
Intelligibility is then assessed through time-alignment of the
pathological utterance with the utterance-dependent reference
model. Consequently, P-ESTOI cannot be used in scenarios
where such healthy recordings perfectly matching the phonetic
content of the pathological speech signal are not available.

Aiming to develop an automatic intelligibility measure
which does not require any time-alignment and can be used in
phonetically unbalanced scenarios, in this paper we propose a
subspace-based intelligibility (SBI) measure. This measure is
inspired by the knowledge that speech pathologies typically
decrease the degree of spectral modulation in pathological
speech signals [25]. We hypothesize that pathology-induced
spectral modulation changes are reflected in the subspace
spanned by the most dominant speech spectral basis vectors.
In addition, we hypothesize that the divergence between intel-
ligible and pathological speech spectral subspaces (computed
from healthy and pathological speech recordings that do not
necessarily share the same phonetic content) can be used
as an automatic intelligibility measure. Some encouraging
preliminary results on the SBI measure have been presented
in [26].

In comparison to [26], the contribution of this paper is
four-fold. First, we propose to characterize spectral subspaces
using a (possibly) different number of spectral basis vectors
for the healthy and pathological speech signals. Second, we
provide empirical evidence on i) the relation between the
SBI measure and low-frequency components of the spectral
modulation of speech which have been shown to be crucial
for speech intelligibility, ii) the robustness of the SBI measure
to gender variations, and iii) the robustness of the SBI measure
to age variations. Third, we propose two techniques to incor-
porate short-time temporal information in the SBI measure.
Finally, we provide an extensive experimental evaluation of
the proposed measures to investigate their applicability in
phonetically balanced and unbalanced scenarios and their
generalisability across languages, i.e., English and Dutch,
and across pathologies, i.e., Cerebral Palsy (CP) and hearing
impairment (HI). Experimental results show that the proposed
measures yield high and significant correlations with sub-
jective intelligibility scores, while not requiring any training

or a large number of healthy speech recordings and being
applicable to phonetically unbalanced scenarios.

This paper is organized as follows. Section II presents a
brief overview of the psychoacoustic evidence on the im-
portance of spectral modulation frequencies on speech in-
telligibility. Section III describes the proposed SBI measure,
and Section IV describes the proposed temporal extensions.
Section V presents empirical insights on the relation between
the proposed SBI measure and spectral modulation frequen-
cies. In addition, its robustness to gender and age variations
is empirically analyzed. Finally, experimental results using
the proposed SBI measure and its temporal extensions are
presented in Section VI.

II. MODULATION SPECTRUM
AND SPEECH INTELLIGIBILITY

In this section, we present a brief overview of the psy-
choacoustic evidence supporting the relation between spectral
modulation frequencies and speech intelligibility.

Fluctuations of the speech power spectrogram in time (at
any frequency) and in frequency (at any time frame) are re-
ferred to as temporal and spectral modulations. Psychoacoustic
studies have shown that the temporal and spectral modulations
of speech are critical to speech perception, since they represent
phonological information such as syllable boundaries and
formant information [27]-[31]. The importance of spectro-
temporal modulations to speech intelligibility is further con-
firmed by the success of several objective intelligibility mea-
sures typically used in speech enhancement which aim to
incorporate (or indirectly assess) modulation cues, such as the
speech transmission index [32], the spectro-temporal modula-
tion index [33], LHMR [7], envelope power spectrum-based
measures [34], [35], and the extended short-time objective
intelligibility (ESTOI) measure [24]. Since our previously
proposed pathological intelligibility measure P-ESTOI is based
on ESTOI, it can be easily deduced that P-ESTOI also reflects
differences in the spectro-temporal modulation of intelligible
and pathological speech. While temporal modulations are
indeed very important to speech intelligibility [28]-[31], the
objective in this paper is to develop a measure which does not
require time-alignment and which can be used in phonetically
unbalanced scenarios. Hence, the proposed SBI measure can
only reflect spectral modulation differences between healthy
and pathological speech.

The effect of spectral modulation cues on the perceived
speech intelligibility by human listeners (i.e., subjective speech
intelligibility) has been extensively analyzed in [28]. In [28],
the spectral modulation pattern is obtained by computing the
Fourier transform of each time frame of the time-frequency
(TF) representation of utterances. TF representations with
a linear frequency axis result in spectral modulations in
units of cycle/kHz, whereas TF representations with one-third
octave band frequency axis result in spectral modulation in
units of cycle/ %octave. To investigate the spectral modulation
frequencies contributing to speech intelligibility, the spectral
modulation spectrum at each time frame is low-pass filtered
at different cut-off frequencies. Using such low-pass filtering,
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Fig. 1. Subjective intelligibility of low-pass spectral modulation filtered ut-
terances based on the percentage of words misunderstood by human listeners.
The spectral modulation spectrum of utterances is low-pass filtered at different
cut-off frequencies (figure adapted from [28]).

the oscillations in the spectral modulation domain with fre-
quencies above the considered cut-off frequency (i.e., higher-
frequency components of the spectral modulation) are removed
while oscillations below the considered cut-off frequency
(i.e., lower-frequency components of the spectral modulation)
are preserved. The time-domain signal corresponding to the
low-pass filtered signal in the spectral modulation domain
is reconstructed, and human listeners are asked to rate the
intelligibility of these synthetically manipulated utterances.

Fig. 1 shows the effect of low-pass modulation filtering
at different cut-off frequencies on the word error rate, i.e.,
the percentage of words misunderstood by listeners. As it
can be observed, the word error rate significantly increases,
i.e., speech intelligibility significantly decreases, when low
spectral modulation frequencies are missing from the speech
signal [28]. Low spectral modulation frequencies represent
spectral amplitude fluctuations imposed by the vocal tract,
i.e., formants and formant transitions [28]. Hence, it is to
be expected that the removal of low spectral modulation fre-
quencies yields a decrease in speech intelligibility. As will be
shown in Section V-A, the SBI measure proposed in this paper
responds to missing spectral modulation frequencies similarly
to Fig. 1, i.e., similarly to how humans rate the perceived
speech intelligibility when spectral modulation frequencies are
missing in the speech signal.

III. SUBSPACE-BASED
PATHOLOGICAL SPEECH INTELLIGIBILITY ASSESSMENT

It is commonly accepted that speech spectrograms can be
well approximated by low-rank matrices constructed using
low-dimensional spectral patterns. Because of the reduced
extent of articulatory movements in pathological speakers, the
spectral variations in pathological speech are reduced [25].
Therefore, it can be expected that the dominant spectral
patterns characterizing intelligible (healthy) speech differ from
the ones characterizing pathological speech. Hence, we pro-
pose to estimate speech intelligibility by quantifying the dis-
tance between the spectral subspaces spanned by the dominant
spectral basis of pathological speech and the dominant spectral
basis of healthy speech. A schematic representation of the
proposed SBI measure is depicted in Fig. 2. As depicted in
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Fig. 2. Schematic representation of the proposed subspace-based intelligibility
measure. Intelligible and pathological spectral basis vectors are obtained
from intelligible (i.e., healthy) and pathological utterances. Low-dimensional
spectral subspaces spanned by the most dominant intelligible and pathological
spectral basis are created, where the number of dominant spectral basis vectors
are automatically found. The pathological intelligibility score is computed as
the distance between intelligible and pathological spectral subspaces.

this figure, SBI relies on i) computing spectral basis vectors
characterizing spectral patterns in intelligible (i.e., healthy)
utterances (referred to as intelligible spectral basis vectors),
ii) computing spectral basis vectors characterizing spectral
patterns in the test (i.e., pathological) utterance (referred to
as pathological spectral basis vectors), iii) automatic selection
of the number of spectral basis vectors used to create low-
dimensional spectral subspaces corresponding to intelligible
and pathological spectral patterns, and iv) computing the
intelligibility score as the distance between the intelligible
and pathological spectral subspaces. In the remainder of this
section, the computational details of the proposed SBI measure
are presented.

A. Computing intelligible spectral basis

While several techniques can be used to compute spectral
basis such as approximate joint diagonalization [36], non-
negative matrix factorization [37], and sparse coding [38], in
this paper we propose to use the simple low-rank matrix de-
composition minimizing the approximation error in the least-
squares sense, i.e., the singular value decomposition (SVD).
The SVD provides an analytical solution and results in a high
performance for our application. To obtain meaningful spectral
basis vectors, multiple utterances by several healthy speakers
should be taken into account, such that the spectral basis
vectors can capture patterns which are specific to intelligible
speech but are independent of the particular speaker.

To obtain a signal representation resembling the transform
properties of the auditory system, signals are first transformed
to the TF domain by taking the logarithm of the one-third
octave band spectrum [24], [28]. Let Hyqn(k, m) denote the
short-time Fourier transform (STFT) of the speech signal h(t),
with k& and m being the index of the frequency bin and of the
time frame, respectively. The logarithm of the one-third octave
band representation is computed as

Z \Hsm(kz,m)ﬁ,

kECB;

H(j,m) =logy, (D

where j denotes the one-third octave band index and CB;
denotes the indices of STFT coefficients corresponding to



the j one-third octave band. The parameter settings used in
this paper for computing the TF representations are given in
Section VI-B.

Let H, denote the (J x M,)-dimensional TF representation
of an utterance from healthy speaker s, with J being the total
number of one-third octave bands and M, being the total
number of time frames. We consider TF representations of
(possibly but not necessarily the same) utterances from differ-
ent healthy speakers by concatenating them into a (J x M)-
dimensional matrix H, where M = Zle My, ie.,

H=[H H, ... Hg], 2)
with S being the total number of available healthy speakers.
The SVD of H is given by

H=UxVT, (3)

with U being the (J x J)-dimensional orthonormal matrix
of left singular vectors representing spectral basis vectors, 3
being the (J x M )-dimensional diagonal matrix of singular
values o; assumed to be sorted in descending order, and
V being the (M x M)-dimensional orthonormal matrix of
right singular vectors. The (J x Bp)-dimensional matrix
of dominant intelligible spectral basis vectors Uy is then
constructed from the first By (with By < J) spectral basis
vectors in U. The selection of the number of intelligible
spectral basis vectors By is described in Section III-C.

It should be noted that prior to computing the SVD, the
matrices H,, s = 1,...,5, in (2) are mean-centered in each
octave band and scaled by ——— to remove the bias introduced
by the number of time frames. This way, using the SVD in (3)
to compute the spectral basis vectors is equivalent to using
principal component analysis (PCA) [39]. Although mean-
centering the representations in the framework of SVD is
optional, it has been shown that the non-zero mean vector
across time biases the first spectral basis vector to its direction
rather than to the direction with maximal variability of spectral
information [40], [41].

B. Computing test spectral basis vectors

To be able to assess intelligibility, the test (i.e., pathological)
spectral basis vectors also need to be computed. Let P,
denote the (J x M, )-dimensional TF representation of the
test utterance from patient r, with M, denoting the total
number of time frames. Similarly to Section III-A, the SVD
of P, is computed and the (J x J)-dimensional orthonormal
matrix Up containing all pathological spectral basis vectors
is obtained. Extracting only the dominant Bp basis vectors
(with Bp < J) from Up, the (J x Bp)-dimensional matrix
of test spectral basis vectors Up is constructed. The selection
of the number of test spectral basis vectors Bp is described in
Section III-C. It should be noted that differently from [26], to
be able to obtain a better approximation of the intelligible and
test representations, we allow the number of dominant spectral
basis vectors for intelligible and test speech to be different, i.e.,
By # Bp.

C. Automatic selection of the number of spectral basis vectors

The number of spectral basis vectors By and Bp are
hyperparameters of the proposed technique which obviously
impact its performance. Using a large number of spectral
basis vectors yields a better approximation of the considered
TF representations. However, such an approximation is likely
to capture not only spectral patterns important to speech
intelligibility (i.e., the spectral basis vectors corresponding to
larger singular values), but also spectral patterns describing
extraneous variations such as speaker variability or noise (i.e.,
the spectral basis vectors corresponding to smaller singular
values). The optimal number of spectral basis vectors should
be as small as possible while at the same time it should yield
a small approximation error to the original TF representation.
Due to this inherent trade-off, in the following we propose
to automatically select the number of spectral basis vectors
By and Bp by adapting the L-curve method from [42],
which has been successfully used to automatically select
optimal regularization parameters in regularized least-squares
techniques [43].

To automatically select the number of spectral basis vectors,
we propose to use a parametric plot of the approximation error
of the original TF representation versus the number of spectral
basis vectors. This plot typically has an L-shape, with the
corner (i.e., point of maximum curvature) representing a good
compromise between the minimization of the approximation
error and keeping the number of spectral basis vectors as low
as possible. It should be noted that By and Bp can also be se-
lected based on a user-defined threshold on the approximation
error (as is typically done when using PCA for dimensionality
reduction). However, using such a technique requires the user
to define a threshold, introducing an additional hyperparameter
which needs to be tuned.

The rank-Bjy; approximation of the original healthy repre-
sentation H is obtained using the truncated SVD, i.e.,

H=Uy3,VE, 4)

where 3 denotes the (By x Bp)-dimensional diagonal
matrix containing the first By singular values and v A 1is the
(B x M )—dimensional matrix containing the truncated right
singular vectors in V. The approximation error ¢(By) of the
intelligible TF representation H for different number of basis
vectors By can be computed as

2 J
L= D o (5)

i=By+1

¢(Bp) = HH |

with ||-|| » denoting the matrix Frobenious norm and o; denot-
ing the *" singular value. The approximation error €(Bp) of
the pathological TF representation P.,. for different number of
basis vectors Bp can be computed similarly to (5). To auto-
matically select the number of spectral basis vectors By and
Bp, the parametric plots of ¢(Bpy) versus By and of ¢(Bp)
versus Bp are constructed. Using the triangle method [44],
the corner points of these parametric plots are computed and
used as the number of dominant spectral patterns spanning the
intelligible and pathological subspaces.
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Fig. 3. Typical L-curve obtained for the approximation error e(Bp) versus
the number of basis vectors By for a sample utterance from the PC-GITA
database [45]. The circle depicts the corner point automatically computed
using the triangle method.

Fig. 3 depicts a typical parametric plot of e¢(By) versus
By for a sample utterance from the PC-GITA database [45].
As illustrated in this figure, this parametric plot has an L-
shape, with the approximation error ¢(Bp) decreasing as the
number of spectral basis vectors By increases. The corner
point automatically computed by the triangle method for this
exemplary utterance is also depicted in this figure. Based on
the L-curve criterion, using a larger number of basis vectors
By than the one corresponding to the corner point (i.e., By =
4 in this example) does not provide any significant reduction
in the approximation error. It should be noted that in this work,
typical values for the number of basis vectors found with the
L-curve method are 3 and 4.

D. Computing a distance measure between spectral basis
vectors

As previously mentioned, the pathological intelligibility
score is derived by quantifying the distance between the
subspaces spanned by the spectral basis vectors in Uy (in-
telligible spectral subspace) and the spectral basis vectors in
Up (pathological spectral subspace). Since the dimensions of
the intelligible and pathological subspaces are typically not
the same, i.e., Bp # By, we use a distance measure between
subspaces of different dimensions proposed in [46]. While
other subspace distance measures can be used, in this work
we use the Procrustes distance defined as

min(BH,Bp)

>

i=1

6(Ug,Up) =2 sin2(0;/2), (6)

where 6; denotes the " principal angle between subspaces

which can be readily computed via the SVD! [46]. To
be able to compare and combine intelligibility scores from
different utterances (i.e., derived from using subspaces of
different dimensions), the distance values are normalized to
have a maximum value of 1 when the distance between
the two subspaces is of the largest possible value, i.e.,

't should be noted that the SVD used in [46] for computing the principal
angles 0; is unrelated to the SVD in (3) representing the spectral basis vectors.

when ¢; = 7/2, i = 1,...,min(Bp, Bp). Hence, the distance
5(Up, Up) obtained for each utterance is scaled by the factor

1
/2 min(By, Bp)

It should be noted that the proposed SBI measure is nega-
tively associated with intelligibility, since the distance between
pathological and intelligible spectral subspaces increases as
pathological speech intelligibility decreases.

(7
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IV. INCORPORATING TEMPORAL INFORMATION IN SBI

The proposed SBI measure in Section III exploits only the
spectral basis vectors in Uy and Up for intelligibility assess-
ment, while ignoring temporal patterns. Although temporal
variations are important cues for speech intelligibility, the
temporal basis of intelligible and pathological speech cannot
be directly computed and compared to each other (because of
unaligned and different phonetic contents in the TF represen-
tations of intelligible and pathological speech signals). In the
following, we propose two viable approaches to incorporate
short-time temporal information into the SBI measure. As will
be shown in the experimental results in Section VI-C, using
the proposed approaches to incorporate temporal information
in the SBI measure can significantly improve the intelligibility
assessment performance.

A. Dynamic SBI measure

Motivated by the dynamic PCA approach in [47], [48], in
this section we propose to incorporate short-time temporal
information into the SBI measure by modifying the TF repre-
sentations through concatenating consecutive spectral vectors.
Let h,, denote (J x 1)-dimensional spectral vector at index
m of the TF representation H (i.e., the m™ column of H).
By concatenating d such consecutive vectors, with d being a
user-defined number (d <« M, cf. Section VI-B), a new TF
representation matrix Hpgpy is obtained, i.e.,

hy  hgy he 1yas
Hpsgr = | ) (3)
h; hyg hyq

where k = L%J The matrix Hpggy in (8) is a (Jd x k)—
dimensional matrix. The new pathological representation
Ppspr is obtained similarly to (8). Applying the same pro-
cedure as for computing the SBI measure in Section III to
the modified representations Hpggr and Ppgpy, the dynamic
SBI (DSBI) measure of pathological speech intelligibility is
obtained. It should be noted that the modified TF representa-
tions Hpgpy and Ppgp; are of a larger spectral dimension than
the original TF representations H and P (i.e., the number of
rows in Hpggy and Ppgp; is larger than the number of rows in
H and P). Consequently, the number of spectral basis vectors
required to span these TF representations is also larger.



B. Moving average SBI measure

Motivated by the moving average PCA model in [47], in
this section we propose to incorporate short-time temporal
information into the SBI measure by modifying the TF rep-
resentations through a moving average model. Exploiting a
moving average model serves to account for the short-time
temporal correlation of speech signals, which is ignored in
the SBI measure. It should be noted that while the DSBI
measure proposed in Section IV-A considers multiple time
frames simultaneously, the moving average SBI (MASBI)
measure proposed in this section considers only a smoothed
average across consecutive time frames. Unlike (8) where the
spectral dimension is increased, the modified TF representation
in MASBI has the original spectral dimension of (2).

The modified moving average TF representation is con-
structed as

Hyaspr = [} hy by 1], ©)

;o1 m+q—1 . B B )

where h), = . > hjform=1,...,M —q+1and qis
Jj=m

a user-defined number of time frames (cf. Section VI-B). The
matrix Hyaspr in (9) is a (J x (M — ¢+ 1))—dimensional
matrix. The new pathological representation Pyasp; is also
obtained similarly to (9). Applying the same procedure as for
computing the SBI measure in Section III to the modified
representations Hyasgr and Pyaspr, the MASBI measure of
pathological speech intelligibility is obtained.

V. EMPIRICAL INSIGHTS
INTO THE PROPOSED SBI MEASURE

The objective of this section is to show through empirical
analyses that the proposed SBI measure focuses on low-
frequency spectral modulation cues to assess pathological
speech intelligibility. This property can be justified by the psy-
choacoustic evidence confirming that low-frequency spectral
modulations contribute to the perceived speech intelligibility
by human listeners (cf. Section II). In addition, we provide
empirical evidence on the robustness of SBI to gender and
age variations. For these analyses, the algorithmic settings
described in Section VI-B and recordings of healthy speakers
from the PC-GITA database [45] are used. This database
contains recordings of 50 Spanish-speaking healthy speakers
(25 males and 25 females), with each speaker uttering 10
sentences. The age of the speakers ranges from 31 to 86 years
old, with a median age of 62 years old [45].

A. SBI and spectral modulation of speech

In analogy to the experiment conducted in [28] (cf. Sec-
tion II), in this section we analyze the effect of spectral
modulation cues on the proposed SBI measure. To this end,
the modulation spectrum obtained from the TF representation
of each utterance from the PC-GITA database is low-pass
filtered at different cut-off frequencies. Instead of asking
human listeners to evaluate the perceived intelligibility of the
low-pass spectral modulation filtered signals as in [28], we
compute the proposed SBI measure based on the spectral
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Fig. 4. Automatically estimated intelligibility using the proposed SBI measure
for low-pass spectral modulation filtered utterances. The cut-off frequency
units are cycle/%octave. The lack of low-frequency spectral modulations of
speech has a similar effect on the estimated intelligibility by SBI as on the
subjective intelligibility perceived by human listeners as depicted in Fig. 1.

basis vectors spanning the original utterances (representing
e.g. healthy speech signals) and the low-pass filtered utter-
ances (representing e.g. pathological speech signals).

Fig. 4 depicts the mean intelligibility estimated using the
proposed SBI measure across all considered low-pass spectral
modulation filtered utterances for different cut-off frequen-
cies.” It can be observed that the effect of missing spectral
modulation frequencies on SBI is similar to Fig. 1, i.e., similar
to the effect of missing spectral modulation frequencies on the
subjective speech intelligibility perceived by human listeners.
In other words, the lack of low-frequency modulations in
speech signals decreases the intelligibility estimated through
the proposed SBI measure in a similar trend to how the
perceived intelligibility by human listeners decreases. This
observation shows that low-frequency components of spectral
modulations are crucial for speech intelligibility assessment
through SBI as they are also crucial for the perceived speech
intelligibility by human listeners (cf. Section II). This observa-
tion is not surprising since the dominant spectral basis vectors
obtained using the SVD span low-frequency spectral patterns.
Consequently, the manipulation of these spectral patterns will
be reflected in the proposed SBI measure.

B. Robustness of SBI to gender and age variations

A robust objective intelligibility measure should not be
significantly impacted by non-pathological characteristics of
speech such as gender- and age-related features. In this section
we investigate the robustness of the proposed SBI measure to
the gender and age of speakers. To ensure that the only source
of variability is the gender or the age instead of pathology-
related features, the following analyses are conducted on
healthy (i.e., perfectly intelligible) speech recordings from the
PC-GITA database.

To investigate the effect of gender on SBI, utterances of
20 (10 males and 10 females) speakers are used to represent

%It should be noted that the cut-off frequencies we use differ from [28]
due to differences in the parameters of the TF representations. In addition,
while [28] uses a linear frequency representation resulting in units of cy-
cle/kHz, we use a logarithmic frequency representation resulting in units of
cycle/ % octave



the intelligible speech signals. To represent the test speech
signals, utterances of 30 (15 males and 15 females) speakers
are used. The disjoint subsets of intelligible and test speakers
are randomly chosen from all available healthy speakers in
the PC-GITA database, and the selection of these subsets is
repeated 100 times. The SBI measure is then computed for
each test utterance from each of the test male and female
speakers. For each test utterance, the healthy TF representation
is computed as in (2) by concatenating multiple instances of
this utterance from the 20 speakers representing the intelligible
speakers.

To investigate the robustness of SBI to age, a similar
analysis is conducted by dividing the speakers into two age
groups (i.e., a young group of speakers with age < 62 years
old and an old group of speakers with age > 62 years old). To
represent the intelligible speech signals, utterances of 18 (9 old
and 9 young) speakers are used. To represent the test speech
signals, utterances of 30 (15 old and 15 young) speakers are
used. The disjoint subsets of intelligible and test speakers are
also randomly chosen from all available healthy speakers in
the PC-GITA database, and the selection of these subsets is
also repeated 100 times. The SBI measure is then computed
for each test utterance from each of the test young and old
speakers. For each test utterance, the healthy TF representation
is computed as in (2) by concatenating multiple instances of
this utterance from the 18 speakers representing the intelligible
speakers.

Figs. 5 and 6 depict the mean and standard deviation of
the obtained SBI values for each utterance across the male
and female speakers and across the young and old speakers.
These results are obtained for one disjoint subset of intelligible
and test speakers randomly chosen from all available healthy
speakers in the PC-GITA database. It can be observed that
the obtained mean SBI values are very similar across the
two gender and age groups, independently of the considered
utterance. This shows that the proposed SBI measure is barely
affected by the gender or age of speakers. In addition, it can be
observed that the mean SBI values for all groups of speakers
and for all utterances are typically low. This is to be expected,
since the test signals are perfectly intelligible independently
of the gender or age of speakers and the distance between
spectral subspaces of intelligible speech should be minimal.

To evaluate whether there are significant differences be-
tween the mean SBI values for each utterance across the
groups of speakers (i.e., male vs. female groups and old vs.
young groups), an independent samples t-test is conducted.
The t-test is conducted for each repetition of the speakers’
subset selection in both gender- and age-based analyses. Out of
the 10 considered utterances, the average number of utterances
across all repetitions which yield a statistically significant
difference (i.e., p < 0.01) between the mean SBI values of
male and female speakers is only 1. Similarly, the average
number of utterances across all repetitions which yield a
statistically significant difference (i.e., p < 0.01) between the
mean SBI values of old and young speakers is also only 1.
For the speakers’ subset selection used in Fig. 5 and Fig. 6,
no statistically significant differences for any of the utterances
are found. Hence, it can be said that the difference in the mean
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Fig. 5. Mean and standard deviation of the obtained SBI values across male
and female speakers for one repetition of the speakers’ subset selection.
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Fig. 6. Mean and standard deviation of the obtained SBI values across old
and young speakers for one repetition of the speakers’ subset selection.

SBI values across male and female speakers and the difference
in the mean SBI values across old and young speakers is
generally not statistically significant.

In summary, our analyses show that the proposed SBI
measure is not sensitive to the gender and age of speakers and
is able to construct representations which can mainly reflect
intelligibility-related degradations.

VI. RESULTS AND DISCUSSION

In this section, the performance of the proposed intelligi-
bility measures is extensively investigated and compared to
state-of-the-art measures. To demonstrate the applicability of
the proposed measures for several languages and pathologies,
we evaluate the performance on databases of English-speaking
CP patients and Dutch-speaking HI patients with a speech
disorder. To demonstrate the applicability of the proposed
measures for a wide range of scenarios, we consider both
phonetically balanced and phonetically unbalanced scenarios.

A. Databases and preprocessing

The performance of the proposed intelligibility measures is
evaluated on the following two pathological speech databases.
Universal access speech (UA-Speech) database [49]. The
UA-Speech database includes recordings of 15 English-
speaking dysarthric patients (11 males, 4 females) suffering
from CP and of 13 healthy speakers (9 males, 4 females). Each



speaker read 763 isolated words, with 155 of the words uttered
three times and referred to as common words (CW). The
remaining 298 words were uttered only once and are referred
to as uncommon words (UW). A 7-channel microphone array
is used for recording the speakers at 16 kHz sampling rate.
For the evaluations presented in this paper, we consider the
recordings of the 5th (arbitrarily selected) channel. In addi-
tion, to extract speech-only segments, an energy-based voice
activity detection is applied to the speech recordings [50]. The
subjective intelligibility scores of patients range from 2% to
95% [49].

Dutch corpus of pathological and normal speech
(COPAS) [51]. In addition to the English-speaking CP
patients, we consider recordings of 16 Dutch-speaking HI
patients with a speech disorder (6 males, 10 females) and
of 22 healthy speakers (11 males, 11 females). For each
speaker, recordings of 10 sentences sampled at 16 kHz are
used. Individual words are extracted from all sentences using
forced alignment from an ASR system followed by manual
corrections, resulting in 47 available words for each speaker.
The subjective intelligibility scores of patients range from
53% to 98% [51].

B. Algorithmic settings, state-of-the-art measures, scenarios,
and evaluation

In this section, we present the algorithmic settings for
the implementation of the proposed intelligibility measures.
In addition, the considered state-of-the-art measures that are
compared to the proposed measures are briefly described. Fi-
nally, the considered scenarios and the performance evaluation
metrics are presented.

Algorithmic settings. To compute intelligible representa-
tions for the proposed measures, we use speech signals from
both healthy male and female speakers. Intelligible represen-
tations for the CP patients are constructed using the speech
signals of 9 male and 4 female healthy speakers from the
UA-Speech database. Intelligible representations for the HI
patients are constructed using the speech signals of 11 male
and 11 female healthy speakers from the COPAS database.
To obtain the TF representations in (1), the same STFT and
octave band settings as in [23] are used. The empirically
selected number of time frames used to incorporate temporal
information in the DSBI and MASBI measures is d = 5
(cf. (8)) and ¢ = 9 (cf. (9)), respectively. It should be noted
that the computation of spectral basis vectors for the proposed
measures is efficient when PCA is used in practice. For the SBI
and MASBI measures, spectral basis vectors are obtained by
applying PCA on the 15 x 15—dimensional correlation matrices
HH” and H,,,,H’ . Running PCA for such matrices
on a computer with a 2.7 GHz processor and 8 GB RAM
requires only 0.0003 seconds. For the DSBI measure, spectral
basis vectors are obtained by applying PCA on the 75 x 75—
dimensional matrix HDSBIH]Z;BI (since d = 5). Running PCA
for such matrices on a computer with a 2.7 GHz processor
and 8 GB RAM requires only 0.003 seconds.

State-of-the-art measures. The performance of the pro-
posed measures is compared to the performance of sev-

eral non-blind state-of-the-art measures, i.e., P-ESTOI [23],
iVector-based approach [13], and ASR-based approach [13].
The algorithmic settings for P-ESTOI are the same as in [23],
and the performance of P-ESTOI is evaluated on both consid-
ered databases. For the iVector- and ASR-based approaches,
we report the results from [13] where these approaches are
evaluated only on the UA-Speech database following a leave-
one-subject-out validation strategy.

Scenarios. The performance of the considered intelligibil-
ity measures is evaluated for the following two scenarios.

Phonetically balanced scenarios. In these scenarios, we as-
sume that all speakers (healthy and pathological) utter exactly
the same words. All 763 available words are considered for the
UA-Speech database, and all 47 available words are considered
for the COPAS database. The intelligibility score is calculated
for each word, and the final intelligibility score is computed
as the mean intelligibility score across all words. Only in
such phonetically balanced scenarios can the performance of
the proposed measures be compared to the performance of
P-ESTOI (since otherwise healthy speech reference models for
P-ESTOI cannot be constructed). In addition, the performance
of the iVector- and ASR-based approaches in [13] has been
analyzed also in such a phonetically balanced scenario (only
for the UA-Speech database).

Phonetically unbalanced scenarios. In these scenarios, the
applicability of the proposed measures is analyzed in the pres-
ence of phonetic variability in the considered speech signals
from each speaker. Since speakers utter different words in such
scenarios, a robust spectral subspace can only be constructed
when longer utterances (i.e., longer than a single word) are
taken into account. Different sets of words are concatenated
to create longer utterances for each speaker, and a single
intelligibility score is estimated for each patient. Since the
UA-Speech database contains a large number of words which
can be combined in different ways for different speakers, these
analyses are done on the UA-Speech database. We assess the
effect of different levels of phonetic variability on the proposed
intelligibility measures by concatenating multiple words for
each speaker in the following manners.

i) The phonetic content within the speakers in each group
is the same, while the phonetic content across the two
groups of speakers is partially different. To generate this
scenario, the set UW is randomly divided into two subsets
of equal size (149 words). The utterance uttered by all
healthy speakers is created by concatenating one such
subset of UW and one repetition (155 words) of the set
CW. The utterance uttered by all pathological speakers is
created by concatenating the other subset of UW and one
repetition (155 words) of the set CW. The total number
of concatenated words in each utterance is 304.

ii) The phonetic content within the speakers in each group
is the same, while the phonetic content across the two
groups of speakers is completely different. To generate
this scenario, a similar procedure as in i) is followed.
Differently from 1), the set CW is also randomly divided
into two disjoint subsets (of size 77 and 78 words). The
utterance uttered by all healthy speakers is created by



concatenating the previously considered subset of UW
and one such subset of CW. The utterance uttered by
all pathological speakers is created by concatenating the
previously considered subset of UW and the other subset
of CW. The total number of concatenated words for
each healthy speaker is 226, whereas the total number
of concatenated words for each pathological speaker is
227.

iii) The phonetic content across all speakers is partially
different. To generate this scenario, the utterance for
each speaker is created by concatenating 200 randomly
selected words from the UW and CW sets. Since there
are only a total of 763 words available, there is a partial
overlap between the phonetic content across the different
speakers.

iv) The phonetic content across all speakers is completely
different. To generate this scenario, the utterance for
each speaker is created by concatenating 16 distinct (and
randomly selected) words from the UW and CW sets.

The subset of words to be concatenated for creating longer
utterances for each speaker in the above-mentioned scenarios
is randomly selected. This selection is repeated 100 times, and
the performance of the proposed measures is analyzed in terms
of the mean and standard deviation of the performance across
all repetitions.

Performance metrics. To evaluate the performance of the
automatic pathological intelligibility measures, the Pearson
correlation coefficient (R) and the Spearman rank correlation
coefficient (Rg) between the automatically estimated intel-
ligibility and the subjective intelligibility scores of the CP
patients [49] and HI patients [S1] are computed. In addition,
the statistical significance of these correlation values is also
assessed. To evaluate the statistical significance, the critical
values of R and Rg, denoted by R. and Rg., respectively,
are computed using a significance level o = 0.05 and taking
into account the number of patients in each database [52], [53].
The obtained critical values are presented in Table I. The corre-
lation values obtained for the different intelligibility measures
are considered to be statistically significant if |R| > |R,| and
|Rs| > [Rsc|-

C. Performance in phonetically balanced scenarios

In this section, the performance of the proposed measures
in phonetically balanced scenarios is compared to the perfor-
mance of state-the-art measures.

Table II presents the Pearson and Spearman correlation
values obtained for the CP and HI patients using the proposed
measures and the P-ESTOI measure. In addition, the Pearson
correlation values obtained for the CP patients using the
iVector- and ASR-based approaches in [13] are also presented.
As previously mentioned, only the Pearson correlation coeffi-
cients for the CP patients have been reported in [13]. Hence,
results for HI patients and Spearman correlation values for CP
patients are not available. To assess the statistical significance
of the reported correlation values, entries in Table II are
compared to the corresponding critical correlation values in
Table I (cf. Section VI-B).

TABLE I
CRITICAL VALUES FOR THE PEARSON AND SPEARMAN CORRELATION
COEFFICIENTS OBTAINED USING o = 0.05. THE NUMBER OF PAIRS OF
SCORES IS CONSIDERED TO BE THE NUMBER OF PATIENTS IN EACH
DATABASE [52], [53].

15 English CP patients | 16 Dutch HI patients

R Rsc ‘ R
—0.441 —0.426

Rsc
—0.443

TABLE 11

PERFORMANCE OF THE PHONETICALLY BALANCED INTELLIGIBILITY

ASSESSMENT ON THE ENGLISH CP AND DUTCH HI DATABASES USING
THE PROPOSED (I.E., SBI, DSBI, AND MASBI) AND STATE-OF-THE-ART
(L.E., P-ESTOI, IVECTOR, AND ASR) MEASURES. THE ENTRY DENOTED

BY {-}* INDICATES NON-SIGNIFICANT CORRELATION, AND ENTRIES

DENOTED BY {-} INDICATE THAT CORRELATION VALUES ARE NOT
AVAILABLE.

| 15 English CP patients | 16 Dutch HI patients

Measures | R Rg | R Rgs
P-ESTOI 0.944 0.945 0.804 0.805
iVector 0.74 - - -
ASR 0.55 - - -
SBI —0.856 —0.877 —0.480 —0.397*
DSBI —0.863 —0.934 —0.641 —0.603
MASBI —0.821 —0.877 | —0.682 —0.650

It can be observed that P-ESTOI gives the highest cor-
relation values on both databases, which is to be expected
since P-ESTOI takes both the temporal and spectral distortions
into account by aligning the pathological speech signals to
the intelligible reference representations. However, this lim-
its the application of P-ESTOI to only such phonetically
balanced scenarios. For the CP patients, the proposed SBI,
DSBI, and MASBI measures also yield very high and sig-
nificant correlations with the subjective intelligibility scores,
significantly outperforming the state-of-the-art iVector- and
ASR-based approaches. In comparison to the SBI measure,
incorporating short-time temporal information as in the DSBI
measure slightly increases the obtained correlation on this
database. Incorporating short-time temporal information as in
the MASBI measure slightly decreases the Pearson correlation
coefficient, whereas the Spearman rank correlation coefficient
is the same as for the SBI measure. However, the SBI measure
does not show significant Spearman rank correlation values on
the HI database. Incorporating short-time temporal information
through the DSBI and MASBI measures significantly improves
the performance over the SBI measure on this database.

It should be noted that the results presented here are ob-
tained using an arbitrarily selected subset of healthy speakers
to generate intelligible representations. We have additionally
investigated the sensitivity of the proposed measures to the
choice of healthy speakers for computing intelligible represen-
tations. Although we have omitted these results due to space
constraints, they show that the performance of the proposed
measures is insensitive to the specific healthy speakers used for
generating reference representations. Additionally, we have
compared the proposed measures to other state-of-the-art blind



intelligibility measures which have been shown to yield a high
correlation with subjective intelligibility scores in [7], i.e.,
kurtosis of the linear prediction residual, voicing percentage,
LHMR, etc. [7]. However, these measures resulted in a signif-
icantly worse performance than the proposed measures, and
these results are omitted in this paper for the sake of brevity.

In summary, it can be said that the proposed measures are
applicable to phonetically balanced scenarios and result in
high and significant correlations with subjective intelligibility
scores. In addition, it can be said that incorporating short-time
temporal information (i.e., as in the DSBI and MASBI mea-
sures) can yield a significant performance improvement as
opposed to considering only spectral information (i.e., as in
the SBI measure).

D. Performance in phonetically unbalanced scenarios

In this section, the performance of the proposed measures
is analyzed in phonetically unbalanced scenarios. It should
be noted that the P-ESTOI measure is inapplicable to such
scenarios since the phonetic content among all speakers should
be the same to be able to create an intelligible reference
representation.

Table III presents the mean and standard deviation of
the Pearson and Spearman rank correlation values across
all repetitions of words’ subset selection obtained using the
proposed SBI, DSBI, and MASBI measures for all considered
phonetically unbalanced scenarios. To assess the statistical sig-
nificance of the reported correlation values, entries in Table III
are compared to the corresponding critical correlation values
in Table I (cf. Section VI-B). Overall it can be observed that all
proposed measures typically yield high and significant correla-
tions with the subjective intelligibility scores. In addition, the
performance of individual measures for scenarios i)—iii) is very
similar, showing that the different levels of phonetic variability
in these scenarios do not significantly affect the performance
of the proposed measures. However, it can be observed that the
performance of the proposed measures for scenario iv) is lower
than for the other scenarios. This performance degradation in
scenario iv) is to be expected since intelligibility is assessed
using only 16 words which are different across all speakers.
Such a small number of words with different phonetic content
does not suffice to construct a robust subspace reflecting
speech intelligibility. While the performance of all proposed
measures decreases in this scenario, the performance of the
proposed DSBI measure is particularly lower. The DSBI
measure relies on a TF representation of a larger spectral
dimension than the SBI and MASBI measures. The number
of spectral basis vectors required to span the intelligible and
test representations for this measure is larger. Consequently, to
construct robust subspaces when the phonetic content among
speakers differ, longer utterances are required for this measure
than for the SBI and MASBI measures.

In summary, it can be said that the proposed measures are
applicable to phonetically unbalanced scenarios and result in
high and significant correlations with subjective intelligibility
scores. Since the phonetic content across speakers differs in
such scenarios, incorporating short-time temporal informa-
tion (i.e., as in the DSBI and MASBI measures) does not

TABLE III
PERFORMANCE OF THE PHONETICALLY UNBALANCED INTELLIGIBILITY
ASSESSMENT ON THE ENGLISH CP DATABASE USING THE PROPOSED
MEASURES. THE ENTRIES DENOTED BY {-}* INDICATE NON-SIGNIFICANT

CORRELATIONS.
Measures | R Rg
Phonetically unbalanced scenario i)
SBI —0.742 + 0.025 —0.760 £ 0.033
DSBI —0.693 + 0.050 —0.714 + 0.060
MASBI —0.726 + 0.040 —0.763 £ 0.057
Phonetically unbalanced scenario ii)
SBI —0.735 £ 0.028 —0.755 £ 0.038
DSBI —0.699 + 0.059 —0.731 £ 0.062
MASBI —0.710 £ 0.060 —0.739 £ 0.073
Phonetically unbalanced scenario iii)
SBI —0.733 £ 0.033 —0.758 £ 0.041
DSBI —0.690 + 0.062 —0.718 £ 0.074
MASBI —0.721 £+ 0.052 —0.755 £ 0.061
Phonetically unbalanced scenario iv)
SBI —0.697 £ 0.070 —0.724 £ 0.077
DSBI —0.372* £0.157 —0.407* £0.166
MASBI —0.651 +0.112 —0.653 £ 0.122

yield a performance improvement as opposed to considering
only spectral information (i.e., as in the SBI measure).

The presented analyses show the successful applicability
of the proposed measures on speech disorders arising due to
CP and HI. The applicability of the proposed measures on
other types of speech disorders should be further investigated.
To the best of our knowledge, a systematic comparison of
spectral modulation changes across different pathologies has
never been done. If the induced spectral modulation changes
are dependent on the pathology, it can be expected that the pro-
posed measures perform differently on different pathologies.
Given the advantageous intelligibility assessment results, such
spectral subspace-based representation of speech might prove
useful in other applications of pathological speech assessment,
e.g., in pathological speech detection. This research direction
remains to be investigated in the future.

VII. CONCLUSION

In this paper, we have proposed the automatic pathological
speech intelligibility SBI measure, which is based on the as-
sessment of the distance between subspaces spanned by dom-
inant spectral patterns of intelligible (i.e., healthy) and patho-
logical speech. Exploiting psychoacoustic evidence on the
importance of spectral modulation cues to the perceived speech
intelligibility, we have shown that the proposed SBI measure
is advantageous since it can capture pathology-induced dis-
tortions in the spectral modulation cues. In addition, we have
shown that the proposed measure is robust to gender- and
age-induced changes in the acoustical properties of signals.
To be able to additionally track possible degradations in the
temporal structure of the pathological speech signal, we have
also proposed two extensions of the SBI measure, i.e., the
DSBI and MASBI measures. Experimental results show that
the proposed measures obtain high correlations with subjective



intelligibility scores, with the incorporation of temporal infor-
mation into the DSBI and MASBI measures yielding a better
performance in phonetically balanced scenarios. In addition, it
has been shown that the proposed measures outperform several
non-blind state-of-the-art measures, while not requiring any
regression training or a large amount of healthy speech training
data and being also applicable to phonetically unbalanced
scenarios.
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