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Abstract
Light microscopy is a tool of paramount importance for biologists and has been constantly

improved for the past four centuries. Despite many recent developments, microscopy tech-

niques still require improvement, especially to reach better temporal and spectral resolutions.

In particular, many high-end microscopes favor mostly spatial resolution, at the expense of

the latter two types of resolution.

In this thesis, we present methods based on the use of active illumination and computational

algorithms to increase temporal and spectral resolutions of microscopes. Our methods aim

to provide users with the flexibility to chose, within a single instrument, which type of reso-

lution is to be favored based on the application at hand. More generally, our approach has

fundamental implications on the signal sensing procedure, allowing, for example, to mitigate

temporal aliasing in sequences of images.

Our first method performs temporal super-resolution imaging of monochrome scenes using

a hue-encoded shutter. By making use of an active multi-spectral illumination, temporal

information is encoded in the hue of the acquisitions. We characterize the method showing a

resolution improvement of 2.8 and an increase of frame-rate of a factor 3. We demonstrate the

applicability of our method to bright-field transmission microscopy by applying the method

to the beating heart of a zebrafish embryo. We then extend this method to fluorescence mi-

croscopy. We add a temporal regularization term to make the method robust to fluorescent

labelings inhomogeneities. We present an application of the method to the beating heart of a

fluorescently-labeled zebrafish that emits fluorescent light of two different colors. Implement-

ing our method within a light-sheet microscope allows us to reconstruct 3D+time videos of

the beating heart at twice the acquisition frame-rate.

Our second method offers a way to perform temporal generalized sampling by computing

simultaneous inner products with the sampled signal. Similarly to the first method, we take

advantage of working with multiple illumination hues to compute as many simultaneous

inner products, which we retrieve via an unmixing procedure. We use equivalent basic and

dual B-splines representations to ensure having finite-length and positive pre-filters, as well

as finite-support reconstruction functions. We show applications of our method to a fast

rotating target, as well as to the beating heart of a zebrafish embryo, both in transmission and

fluorescence microscopy.
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Abstract

Finally, we introduce a method to perform spectral imaging of repeating processes, such as

the beating heart. The method sequentially acquires multiple movies with various filters,

performs temporal registration of all movies and reconstructs a spectral movie through solving

of a spectral unmixing problem, pixel by pixel, at each time point. We characterize the method

and show a median error of approximately 10%, by comparing reconstructions on a static

sample from our method with measurements obtained with a spectrometer. We then perform

validation by comparing static reconstructions with dynamic ones of the same sample. We

demonstrate the potential of the method to microscopy by performing spectral imaging of the

beating heart of a zebrafish embryo.

Taken together, these methods offer a versatile toolbox to improve the temporal or spectral

resolution in both bright field and fluorescence microscopy, which we foresee could be directly

implemented in a number of specialized instruments.

Keywords: computational imaging, light microscopy, fluorescence microscopy, active illumina-

tion, temporal super-resolution imaging, spectral imaging, unmixing, generalized sampling,

inverse problems.
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Résumé
La microscopie est un outil primordial pour les biologistes, en constante évolution depuis

les quatre derniers siècles. Malgré les multiples développements récents dont a bénéficié

la microscopie, il est toujours nécessaire d’améliorer les résolutions temporelle et spectrale

des microscopes. De plus, les microscopes actuels tendent à ne favoriser qu’une forme de

résolution (en général spatiale), aux dépens des autres formes de résolution.

Dans cette thèse, nous présentons de nouvelles méthodes basées sur des illuminations active

et des algorithmes computationnels pour augmenter la résolution temporelle et spectrale

en microscopie. Nos méthodes permettent aussi plus de flexibilité dans l’utilisation des

microscopes, permettant à l’utilisateur de choisir quel type de résolution favoriser, sans

devoir changer d’équipement. Plus généralement, notre approche a des implications plus

fondamentales en échantillonnage du signal, permettant de fortement réduire les artéfacts de

repliement (aliasing) temporel lors d’acquisitions de vidéos.

Notre première méthode permet de faire de la super-résolution temporelle de scènes mono-

chromes à l’aide d’un obturateur encodé dans les couleurs. Nous caractérisons la méthode

et montrons une amélioration de la résolution temporelle d’un facteur 2.8 ainsi qu’une aug-

mentation de la fréquence des images d’un facteur 3. Nous démontrons l’utilisation possible

de notre méthode en microscopie par transmission, en l’utilisant pour imager un coeur

d’embryon de poisson zèbre. Nous étendons ensuite cette méthode à la microscopie par

fluorescence. Pour rendre la méthode robuste aux variations de marquage fluorescent, nous

introduisons un terme de régularisation temporelle. Nous présentons ensuite une application

de cette méthode sur un coeur d’embryon de poisson génétiquement modifié pour émettre

de la lumière par fluorescence de deux couleurs différentes. En implémentant notre méthode

sur un microscope à illumination par feuille mince, nous pouvons reconstruire un volume en

vidéo (3D + temps) du coeur, à deux fois la fréquence d’acquisition des images.

Ensuite, nous présentons une méthode d’échantillonnage généralisé dans le temps grâce au

calcul simultané de plusieurs produits intérieurs entre une illumination active et le signal

échantillonné. De manière similaire à notre première méthode, divers signaux sont multiplexés

dans le spectre des couleurs et retrouvés après démêlage. Nous utilisons les représentations

B-spline basique et duale, qui sont équivalentes, pour utiliser des pré-filtres de durée finie et

qui restent positifs, ainsi que des fonctions de reconstructions à support fini. Nous montrons
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Résumé

des résultats de notre méthode appliquée à une grille qui tourne à rapidement, ainsi qu’à un

coeur de poisson zèbre en microscopie par transmission et par fluorescence.

Finalement, nous présentons une méthode d’imagerie spectrale de procédés répétitifs, tel

que le battement cardiaque. La méthode acquiert plusieurs vidéos de manière séquentielle,

avec différents filtres, aligne dans le temps toutes les vidéos et reconstruit une vidéo spectrale

en résolvant un problème inverse, à chaque pixel pour chaque point dans le temps. Nous

caractérisons la méthode et montrons une erreur médiane d’environ 10% en comparant des

reconstructions obtenues avec notre méthode et des mesures par spectromètre d’échantillons

statiques, et nous validons la méthode en comparant les reconstructions du même objet,

une fois statique puis dynamique. Nous démontrons le potentiel de la méthode pour la

microscopie en l’appliquant à un coeur d’embryon de poisson zèbre.

Toutes ces méthodes offrent de nouveaux outils flexibles pour améliorer les résolutions tem-

porelle ou spectrale en microscopie par transmission et par fluorescence, qui peuvent être

directement appliquées dans nombre d’instruments spécialisés.

Mots clés : imagerie computationnelle, microscopie optique, microscopie par fluorescence,

illumination active, super-résolution temporelle pour l’imagerie, imagerie spectrale, démêlage,

échantillonnage généralisé, problèmes inverses.
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1 Introduction

1.1 Optical microscopy

Optical microscopy is an essential tool used in many disciplines since the end of the sixteenth

century1. I give hereafter a brief history of optical microscopy with a focus on techniques that

are relevant to my thesis and purposely omit techniques that do not directly relate to my work.

The first reference to a compound microscope2 dates back to 1595 and is attributed to Hans

and Zacharias Jansen, while the origin of microscopy is attributed to Robert Hooke and Antonie

van Leeuwenhoek [1].

Microscopy was intended to see objects invisible to the naked eye, by zooming in on those

objects. However, there is a limitation to the zooming factor: diffraction. When light passes

through a slit, or a lens, it is diffracted, creating Airy discs, as observed by George Airy [2] and

formalized by Ernst Abbe [3]. Abbe stated that, given two points light-sources, the minimal

distance d between them to distinguish them is limited by the wavelength of the light and

cannot be smaller than half the wavelength. This later became the famous Abbe’s limit:

d = λ

2nsin(θ)
= λ

2NA
, (1.1)

where λ is the wavelength, n is the refractive index of the medium and θ is the half-angle of

the converging light cone. NA is the numerical aperture, a crucial property of all optical lenses

that indicates the attainable resolution. Later on, Lord Rayleigh devised a criterion based on

diffraction interferences (known as the Rayleigh criterion) stating that “two point sources are

regarded as just resolved when the principal diffraction maximum of one image coincides with

the first minimum of the other” [4].

1This brief historical introduction to microscopy is largely based on [1].
2A compound microscope consists of at least two lenses with matching focal planes. Single magnifying glasses

existed already around the year 1000.
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Chapter 1. Introduction

Aware of the diffraction limit, scientists continued research on microscopy and the first

fluorescence microscope was built by Auguste Köhler, using a UV illumination and relying

on autofluorescence. He used darkfield illumination to make sure all the captured light was

emitted from the sample. Köhler is still known to all users of optical microscopes as he devised

an illumination method, called Köhler illumination, over a century ago that is still widely used

[5].

The later development of the first fluorescent staining for live tissue (called fluorochromes) and

dichromatic mirrors further pushed the capabilities of microscopes and made them accessible

and universal instruments for biology. From then on, fluorescence microscopy made the

imaging of live cell routine. In the 1960s, the first use of fluorescent antibodies was described

by Albert Coons, which permitted, notably, the visualization of streptococci bacteria [6, 7].

At the same time, researchers introduced a new method, patented by M. Minsky in 1957 [8], to

increase the contrast and resolution of images by cutting off out of focus light reaching the

detector, a well established method now called confocal microscopy [9, 10, 11, 12]. Modern

confocal microscopes block the out-of-focus light with a pair of pinholes and measure a

point-wise light intensity. Spatial scanning of the sample is required to form a full image.

One of the latest microscopy methods introduced, which is of particular relevance to this thesis,

as we built our own version of it for data acquisition, is light sheet fluorescence microscopy

(LSFM), also referred to as selective plane illumination microscopy (SPIM), introduced by

Voie et al. in 1993 [13], which brings excellent sectioning ability along the Z-axis (the optical

axis of the detection axis), low laser exposition to the sample, which reduces photo-damages

and allows for fast imaging. While Voie continued his research on light-sheet microscopy

[14, 15], almost simultaneously and independently from one another, Ernst Stelzer’s group

also developed a light-sheet microscope [16, 17, 18]. In LSFM, the illumination light-sheet

is commonly generated thanks to a cylindrical lens, perpendicularly to the detection axis.

This way, only the imaged plane within the sample is subjected to laser illumination reducing

background signal and permitting great optical sectioning while reducing photo-damage.

Figure 1.1(top) shows the principle of the light-sheet formation. Although the first fluorescence

light-sheet microscope is attributed to Voie et al., in 1902 Siedentopf and Zsigmondy presented

the very first light-sheet microscope to observe particles of gold, where sunlight was projected

on the sample through a slit [19, 20]. Later on, light-sheet microscopy was widely popularized

by Jan Huisken, working in Stelzer’s group at the time [21, 22, 23]. Among others who improved

the LSFM capabilities [24, 25, 26, 27, 28], Philipp Keller, also from Stelzer’s group at the time,

introduced a new kind of light-sheet called digital scanned laser light sheet microscope

(DSLIM) [29, 30, 31] where the excitation light sheet is not made by a cylindric lens, but by

rapidly scanning the sample with a laser beam. Various open source projects made the build

and control of a microscope accessible [32, 33, 34, 35, 36] and we particularly took advantage of
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the OpenSPIM project [33]. Figure 1.1(bottom) shows a picture of the light-sheet microscope

that I built during my thesis, at the Idiap Research Institute.

So far, optical microscopy was diffraction-limited, that is, the highest achievable resolution

was about half the wavelength of the light (typical resolution of 200 nm). Hell and Stelzer were

the first to go below the diffraction limit with their stimulated emission-depletion microscope

(STED) [38, 39] and others soon improved on the technique [40, 41]. Later on, Betzig et al.

presented photoactivated localization microscopy (PALM) [42], while almost simultaneously

Rust, Bates and Zhuang introduced stochastic optical reconstruction microscopy (STORM) [43]

and Hess et alia introduced fluorescence photoactivation localization microscopy (FPALM)

[44]. All of these methods allow us to distinguish single molecules by leveraging specially

designed fluorophores that emit light at random times. Acquisition of multiple images that

are combined together enable to perform single molecule localization microscopy, going way

beyond the diffraction limit and achieve by far the highest spatial resolution obtainable on

optical microscopes (best lateral resolution 10 nm). However, these techniques only work on

fixed samples, as multiple images are acquired and fused together, assuming no motion in the

sample.

1.2 Motivations and contributions

In this thesis, we set out to increase both temporal and spectral resolution for optical mi-

croscopy. Moreover, the available operating modes on most microscopes tend to lack flexibil-

ity as they usually focus on one type of resolution, most frequently the spatial resolution, at

the expense of other kinds of resolution. For example, point-scanning confocal microscopy

requires scanning of the sample, allowing a high spatial resolution but has a low temporal

resolution. One may wonder whether there is a real need for even sharper, more colored, faster

videos for microscopy, or for more flexibility.

In fact, there is substantial need. As medicine and developmental biology advance, the needs

to see smaller details, faster motions and subtler colours keep rising. To illustrate this need,

let us mention the concerning example of congenital heart defects amongst humans. 1%

of newborn infants in the United States carry a congenital heart defect [45], and about 25%

of them are critical [46], which is the leading cause of death at birth in the United States.

In order to understand, diagnose and possibly treat these heart malformations beforehand,

developmental biologists extensively study the zebrafish heart development. The zebrafish

is close to being a perfect model as (i) zebrafish are vertebrates and the first stages of their

heart development is very similar to that of humans [47], (ii) zebrafish can be bred easily and

quickly, (iii) embryos are naturally transparent up to a few days of development and can be

made transparent over longer periods using well-established techniques [48, 49, 50, 51], (iv)
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Figure 1.1 – Light-sheet microscopy illustrated. (top) Light sheet formation principle: an
excitation laser beam is transformed into a thin light sheet using a cylindrical lens. The
detection axis is perpendicular to the excitation axis. Image from [37]. (bottom) Our light-
sheet microscope implementation, based on the OpenSpim initiative [33]. The camera (CAM)
is visible on the bottom right of the image. We have a light-sheet illumination with two lasers,
a 488 nm blue laser (BL) and a 561nm green laser (GL). They both pass through a slit (SL) and
a cylindrical lens (CL) and are then focused on the sample (SA) held by the sample holder (SH)
thanks to the excitation objective (EO). The path of both lasers is shown with the green and
blue dashed lines. The detection objective (DO) then focuses the image from the sample at
infinity within the detection axis (DA) and the image is formed on the camera sensor with
an additional lens. We added a transmission illumination arm (IA) where a light source (LS)
can be spectrally modified or dimmed using a filter wheel (FW). Two additional filters can be
mounted on the detection axis (DA).
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they can be genetically engineered to express fluorescent proteins in specific cell types, and

(v) they have the ability to regenerate their hearts when damaged [52, 53]. Figure 1.2 shows

images of zebrafish embryos at various developmental stages.

Figure 1.2 – Various stages of zebrafish embryo development. Image from [54] with kind
permission of Ed Hendel.

In this thesis we focus on increasing the temporal and spectral resolutions of imaging methods

for microscopy, as well as on how to improve the flexibility of microscopes.
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1.2.1 Fast imaging and spectral imaging are ubiquitous in many areas

There are many fast and colorful processes that one may need to observe. An interesting

example is imaging of live samples in biology. Live processes being mostly dynamic, observing

live samples requires imaging systems that allow for fast enough imaging. For example, cell

migration tracking, organ morphogenesis, and cellular dynamics, all require fast imaging.

Moreover, to track these processes various color markers can be used and color carries impor-

tant information. In the case of fluorescence microscopy, if a sample is labelled with multiple

fluorescent protein types (called fluorophores), the ability to distinguish them is of paramount

importance as it allows, for instance, separation of morphological features. In the case of

transmission microscopy, color also helps to distinguish various features and can provide

quantitative information, such as the oxygenation level of haemoglobin.

High resolution imaging is not limited to biology. Medical imaging also routinely relies on

imaging. Diagnostics are frequently based on images. For instance, when a doctor inspects

a growing foetus in its mother’s womb ultra-sound imaging allows for dynamic imaging. In

the case of brain surgeons, functional neuro-imaging is frequently used to diagnose any dis-

function in the brain. This imaging technique (techniques rather) is still under development,

and is yet another example demonstrating the need for fast imaging. When imaging a heart to

diagnose patients with short breath or chest-pain, echocardiography is used, and once again

fast imaging is needed.

While our examples show how much fast imaging is needed for medical and biological appli-

cations, needs for fast imaging also exist in many other fields. In entertainment, examples

include slow-motion replay of a football goal, which requires high-speed footage to be dra-

matic or slow-motion in movies (for example, the famous bullet-effect in the movie “Matrix").

Most smartphones allow acquiring images at a high frame-rate (up to 240 fps for the high-end

ones at the time of writing this thesis).

Industrial applications also often make use of fast and spectral imaging, and there are countless

examples in this area. When a car company does its crash-tests, it relies on a variety of sensors

and, in particular, on high-speed imaging of the crashes. In the food industry, it is standard

practice to do spectral imaging of fruits and vegetables for non-destructive inspection and

detection of rotten or spoiled goods before they reach the consumer shelves. Companies

building high-speed assembly lines often resort to ultra-high speed (more than 10’000 frames

per second) cameras to analyze vibrations in the machines. Likewise, robots are frequently

imaged at high speed, to look for vibrations and deformations.
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1.2.2 What is the problem with the current instrumentation?

Although fast imaging solutions already exist for many applications, they often have general

limitations such as requiring faster data transfer, imposing higher memory requirements,

and more constraining, imposing a low exposure time to accommodate the high frame rate.

Short shutter times limit the number of photons accumulating on the sensor, thus leading to

a low signal-to-noise ratio (SNR). The usual solution to the latter problem is to increase the

illumination power, but this cannot be done in all applications. In fluorescence microscopy,

the number of photons emitted by the fluorophores can only be increased up to a certain

point, after which photo-bleaching occurs. Moreover, live biological samples are sensitive to

light and increasing the illumination intensity damages them.

Furthermore, as the magnification increases, motions are amplified as well, thereby increasing

the observed motion blur, which is often the limiting factor in dynamic microscopy [55]. Fast

imaging may then be a solution to reduce motion blur.

Moreover, sensitive cameras are usually slow and expensive. When color is needed, color

cameras often sacrifice spatial resolution for spectral resolution, while images of both high

spectral and spatial resolutions may be needed. Another limitation of many color cameras is

that they only capture 3 hues.

In order to conduct developmental biology studies, light imaging is a tool of paramount

importance. This is the raison d’être of this thesis: our goal is to develop methods to push

further the temporal and spectral resolutions of existing light microscopes, as well as increasing

their flexibility of use.

1.3 Related work

There are three main axes along which this thesis relates to existing works: (1) temporal

super-resolution for imaging, (2) spectral imaging and (3) the use of active illumination for

imaging. We give an overview here of the major methods and latest developments, which will

be complemented further in each chapter of the thesis.

To increase the temporal and spatial resolution beyond what cameras can offer directly, the

most common paradigm is to rely on multiple simultaneous (or parallel) observations of

a signal, which are fused together to reconstruct a high-resolution version of the signal of

interest [56, 57, 58, 59].

Another frequent means to do super-resolution is making assumptions about the signal itself.

For instance, put forward by the extensive research on compressed sensing [60, 61, 62, 63, 64,

65, 66], one may leverage the fact that the signal has a sparse representation in a function basis
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and reconstruct signals from fewer measurements than dictated by the Shannon-Nyquist

criterion [67, 68, 69, 70, 71, 72]. Also, relying on the repeatable nature of the imaged motion

can be taken advantage of to increase the resolution of acquired images [73, 74].

Some approaches use custom-made optical setups or cameras, together with computational

methods to increase the temporal resolution [75, 76]. Generally speaking, we avoided using

custom-made hardware as it makes the research results harder to reproduce and further

distribute.

Controlled illumination is a core aspect of any optical microscope’s performance, as demon-

strated by Köhler over a century ago [5]. In particular, structured illumination has been

proposed as a way to access high-frequency components of the object via multiple modu-

lations [77, 78, 79, 80, 81, 82, 83, 84]. Using controlled lasers, it is possible to gain access to

multiphoton microscopy [85, 86]. Multiphoton microscopy allows fast imaging of deep tissues

[87] and as well as multispectral imaging [88, 89].

Spectral imaging recently gained in popularity in microscopy, due to the substantial amount

of information that color carries [90, 91, 92, 93]. Specific to fluorescence microscopy in

the presence of multiple fluorophores types, linear unmixing permits to distinguish various

fluorophores with overlapping spectra [94, 95].

Due to the high potential of spectral imaging as a quantitative method, there have been many

recent developments to spectral imaging [96, 97, 98, 99, 100, 101, 102, 103]. Using special

probes whose spectrum depends on physical properties [104], measuring spectral information

can provide physiological functional information [105].

1.4 Organization of the thesis

This thesis is organized as follows. In Chapter 3 we introduce a method that enables temporal

super-resolution imaging by exchanging color and temporal information. The method uses a

color camera as well as an active multispectral illumination to encode temporal information in

the hue of the captured images. We recover the temporal information through a computational

procedure (solving an inverse problem). We show applications of our method in transmission

microscopy, imaging the beating heart of a zebrafish embryo. This method allows us to rapidly

switch between fast imaging and color imaging, and to do both simultaneously in different

regions of interest.

We extended the method of Chapter 3 in Chapter 4 by adapting the method to fluorescence

microscopy. We first highlight the important differences between transmission microscopy

and fluorescence microscopy, notably that the light spectrum captured by the camera cannot
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be modified in the case of fluorescence microscopy, as fluorescent proteins have a fixed light

emission spectrum. We then present an application of the method to the beating heart of a

live zebrafish which co-expresses ubiquitous cytoplasmic green fluorescent protein (EGFP)

and red fluorescent protein (mCherry). Since fluorescent labelling can be inhomogeneous, we

show how to select a static calibration area and devise a new algorithm to be more robust to

slight model mismatches. The derivation of the algorithm is given in Appendix A.

In Chapter 5, we introduce a method to implement temporal generalized sampling as intro-

duced by Unser in [106]. We take advantage of the spectral unmixing procedure of Chapter 3

to compute multiple inner products simultaneously. Based on these inner products we can

pre-filter the sampled signal to perform optimal sampling in a B-spline basis. We use an

equivalent dual B-spline representation of the signal [107] to have finite-length pre-filters as

well as signal representation basis.

We proceed in Chapter 6 where we focus on spectral super-resolution of fast repeating pro-

cesses. We introduce a method to do spectral imaging of a beating heart (or any repeating

process). Our method relies on the sequential acquisition of multiple movies of the beat-

ing heart, using various filters in the illumination, a post-acquisition time synchronization

procedure and solving of an inverse problem to retrieve a spectral movie of the beating heart.

We finally conclude in Chapter 7 where we summarize the contributions of this thesis and

present possible future work directions.
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2 Prerequisites

We briefly remind a few concepts to the reader that will be helpful for the comprehension of

the subsequent dissertation.

2.1 Concepts of resolution, sampling and super-resolution

2.1.1 Resolution

Generally speaking, the resolution can be defined as the smallest observable change. More

formally, as previously quoted, to characterize the lateral resolution of an optical system,

Rayleigh’s criterion states that “two point sources are regarded as just resolved when the princi-

pal diffraction maximum of one image coincides with the first minimum of the other”, so the

minimal resolvable distance between two point sources is

d = 1.22λ

2NA
. (2.1)

Figure 2.1 illustrates this criterion in the case of two point-sources that are first impossible to

distinguish (Fig. 2.1(a)), just resolved ((Fig. 2.1(b)) and well resolved ((Fig. 2.1(c)).

In optics, systems are characterized by their point spread function (PSF), which is a system’s

impulse response function to a point-source. When using coherent light, the PSF of a point-

source is that given in Figure 2.1(c) for a single source. Figure 2.2 illustrates the effect of the

(spatial) PSF, in the case of a Gaussian PSF.

Optical microscopy involves three kinds of resolution: (i) spatial, (ii) temporal and (iii) spectral

resolutions. Figure 2.3 displays cartoonized examples of a beating heart with low spatial (top),

spectral (bottom right) and temporal resolution (bottom left).
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Figure 2.1 – Rayleigh criterion illustrated. (a) Two point-sources (dashed lines) are separated
by less than the smallest resolvable distance and the resulting light intensity (blue) cannot
be distinguished. (b) the same point-sources, when they are just resolved according to the
Rayleigh criterion (2.1). (c) Two point-sources are well-resolved as they are separated by 3
times the critical distance.

Figure 2.2 – PSF illustrated. When systems are linear shift-invariant (a general assumption in
optical microscopy), the system’s observation can be modelled by the original signal convo-
luted (shown with ∗) with the PSF of the imaging system.

12
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Figure 2.3 – Three kinds of resolution are involved in microscopy: (i) spatial, (ii) temporal and
(iii) spectral. This thesis focuses on temporal and spectral resolution. The figure illustrates a
schematized low spatial resolution image of a heart at the top, where the features of the heart
are difficult to see and outline. Low temporal resolution is illustrated at the bottom left, where
motion renders the image of the heart blurry. Low spectral resolution of the heart is shown
at the bottom right, where instead of a color gradient from red to orange, there are only two
distinct colours visible. In the middle of this triangle, a high resolution (spatial, temporal and
spectral) image of the heart is sharp, fine structures as well as colours subtleties are visible.
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• Spatial resolution of an imaging system: the smallest distance in the object plane at

which two point sources produce distinguishable blobs in the image.

• Temporal resolution: the spatial resolution concept applies with events, two short

flashes of light that can be distinguished as two separate events in a movie. The concept

of resolution of an imaging system has a dual in the frequency domain (spatial or

temporal) where the system’s bandwidth may give an indication of its resolution.

• Spectral resolution: ability to resolve different spectral features, the smallest spectral

difference (typically in wavelength, nm) between two distinguishable colors.

2.1.2 Sampling, a ubiquitous concept

To complete our introduction to resolution, we briefly describe sampling. Sampling is required

to capture real-world signals, which are continuous signals by essence, and translate them

into discrete sequences of numbers, called samples, which computers can manipulate.

Claude Shannon laid the foundation of sampling in his seminal paper back in 1949 [108] (see

[109] for a reprint) stating that (Shannon-Nyquist theorem): “if a function f (t) contains no

frequencies higher thanωmax (radian/second), it is completely determined by giving its ordinates

at a series of points spaced T = π
ωmax

seconds appart”. With this sampling theorem comes a

reconstruction formula:

f (t ) = ∑
k∈Z

f (kT )sinc

(
t

T
−k

)
, (2.2)

where sinc(t ) = sin(πt )
πt . This theorem had a tremendous impact on the engineering communi-

ties of information theory, communications theory, and signal processing and is still widely

used amongst practitioners. A common way to model sampling is by multiplying the signal

f (t ) with a train of shifted Dirac impulse functions
∑

k∈Zδ(t −k). Thus, the sampling process

makes the signal representation in the frequency domain periodic (see [106]).

This theorem assumes the sampled signal to be band-limited, which never occurs in natural

signals, as a finite support in the frequency domain implies an infinite support in the time

domain. If the sampled signal does not respect the Nyquist criterion (if it has higher frequencies

than ωmax), because of the periodization of the frequency spectrum, an overlap occurs in the

sampled frequencies and the signal is reconstructed with errors. This overlapping is called

aliasing. The standard practice for sampling to avoid aliasing is the following: (1) apply low-

pass filter to cut off all frequencies higher than ωmax, (2) sample filtered signal with train of

Diracs, (3) reconstruct continuous signal with the sinc function. As we will see later on, this

approach suffers from the fact that perfect low-pass filters cannot be implemented in practice.
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Figure 2.4 – Illustration of the concepts of interpolation, rebinning and super-resolution
applied to the imaging of a moving object. (a) A round object moves in the XY plane along a
sinusoidal trajectory displayed with a dashed line. (b)-(d) Images acquisition of the moving
object using three imaging systems that have the same frame-rate but a temporal shift. Notice
that the round object becomes elliptic, due to the motion blur. (e) Interpolation over time by
using the frames acquired in (b). Notice that the ball seems to follow a straight line, due to
aliasing. (f) Rebinning of all acquired frames on (b)-(d). This time the trajectory of the moving
object is apparent but there is still motion blur. Moreover, the sampling rate of the rebinned
sequence is not constant. (g) Super-resolution over time of the frames acquired in (b)-(d). The
object is, again, round, its trajectory is visible and the sampling rate is constant.

2.1.3 Introduction to super-resolution

In this thesis, we seek ways to improve temporal and spectral resolutions thus improving the

resolution beyond the capability of the instrument hardware by itself.

With this definition, let us introduce two more notions:

• Interpolation: is a method to estimate data points in between sampled data, thus it

creates new data based on the measurements. This method is illustrated on Figure 2.4(e).

• Rebinning: when there are multiple measurements of the same dynamic sample, rebin-

ning is the process of re-aligning all measurements on a single time serie. This process

is illustrated on Figure 2.4(f).
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2.1.4 Comparison of super-resolution with binning or interpolation

Sometimes, super-resolution is mistaken with interpolation or signal rebinning, but, as defined

earlier, there are fundamental differences shown on Figure 2.4. Figure 2.4(a) presents a

dynamical object that we are interested in imaging at high time-resolution. Figure 2.4(e),(f)

show the effect of interpolation and rebinning respectively, while Figure 2.4(g) shows what we

mean by temporal super-resolution.

When doing temporal interpolation, it is possible to increase the number of frames per second,

but the interpolated signal remains subject to temporal aliasing. Figure 2.4(e), shows the result

of temporal interpolation on the data acquired in Figure 2.4(b).

Signal rebinning allows to produce aliasing-free signal, as it actually increases the sampling

rate, but has the major drawback that it does not handle motion blur, as shown on Figure 2.4(f).

When performing temporal super-resolution, motion blur will naturally be handled, even

without any knowledge of the movement itself, since it is an artefact of the limited time-

resolution of the imaging system (exposure time).

With temporal super-resolution, we intend to reduce both aliasing and motion blur, as shown

on Figure 2.4(g).

2.2 Fluorescence microscopy

In Section 1.1 we already mentioned fluorescence microscopy, one of the most useful tools in

every biologist’s toolbox. It is possible to have fluorescence light emitted by a sample from

specific biological features such as nuclei, membranes or selected molecules [110]. The light

emission from specific molecules allows imaging small concentration of molecules with a

good signal-to-noise ratio [111].

Fluorescence microscopy works by attaching fluorescent proteins called fluorophores (some-

times also called fluorochromes) to chosen molecules on a (possibly live) sample. These

proteins absorb a certain light spectrum (called the absorption spectrum) and emit another

light spectrum (the emission spectrum). The emission spectrum is always different than the

absorption spectrum, due to the Stoke’s shift [112], the emitted light has always a higher

wavelength (lower frequency) than the excitation light. This shift is taken advantage of, as the

excitation light can be cut off by an optical filter, the emitted light is not filtered out and can

be captured on a camera.

Figure 2.5 shows the light absorption and emission spectra for a typical fluorophore, the EGFP

[113], a variant of the Green Fluorescent Proteins [114, 115, 116].
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2.2. Fluorescence microscopy

Figure 2.5 – Green fluorescent protein (GFP) absorption and emission spectra. A 488 nm laser
is also shown, as it is typically used as the excitation light source for GFPs. The absorption
spectrum shows a measure of the probability of absorbing the excitation light as a function of
the wavelength, this is called the cross-section of the fluorophore.
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3 Hue-Encoded Shutter Method for

Temporal Super-Resolution Mi-

croscopy
This chapter is directly based on our publication in [117]. This paper is also the subject of a

European patent application (application number EP19154253). The authors of the paper are

myself, Emmanuel Pignat, Sylvain Calinon and Michael Liebling. M. Liebling and I had the

original idea of the method and implemented it. E. Pignat supported me for the experiments

involving robotic arms in Sections 3.5.2, 3.5.3 and 3.5.4. He also made suggestions regarding

the implementation of the calibration method in Section 3.4.2, using Tensorflow. S. Calinon

is the head of the Robot Learning and Interaction Group at the Idiap Research Institute, he is

the thesis supervisor of E. Pignat. M. Liebling and I wrote the draft of the manuscript and all

authors discussed the results and contributed to the final manuscript.

To better locate this paper in the context of the whole thesis, Figure 3.1 illustrates the effect of

the method when applied to the schematized heart of Figure 2.3.

3.1 Abstract

Limited time-resolution in microscopy is an obstacle to many biological studies. Despite

recent advances in hardware, digital cameras have limited operation modes that constrain

frame-rate, integration time, and color sensing patterns. In this paper, we propose an approach

Figure 3.1 – The method presented in this chapter exchanges spectral for temporal information,
allowing to increase the frame-rate by a factor 3 while reducing the color from 3 to 1 channel.
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to extend the temporal resolution of a conventional digital color camera by leveraging a multi-

color illumination source. Our method allows imaging single-hue objects at increased frame-

rate by trading spectral for temporal information (while retaining the ability to measure base

hue). It also allows rapid switching to standard RGB acquisition. We evaluated the feasibility

and performance of our method via experiments with mobile resolution targets. We observed

a time-resolution increase by a factor 2.8 with a three-fold increase in temporal sampling rate.

We further illustrate the use of our method to image the beating heart of a zebrafish larva,

allowing the display of color or fast grayscale images. Our method is particularly well-suited to

extend the capabilities of imaging systems where the flexibility of rapidly switching between

high frame rate and color imaging are necessary.

3.2 Introduction

Many biological processes are highly dynamic and a low time-resolution in microscopy seri-

ously limits their study [55]. Several recent developments in both illumination and detection

technology allow pushing towards higher frame rates. Light emitting diodes (LEDs), which are

bright yet emit little heat, are both cost-effective and reliable [32]. Several open-source projects

have made building custom microscopes increasingly accessible [32, 33, 34] and facilitated

hardware control outside of standard operating modes [35, 36]. Despite these developments,

many imaging setups remain constrained by the achievable frame-rate, integration time, and

color sensing patterns, because digital cameras have limited operation modes.

In this paper, we propose to extend the temporal resolution of a conventional digital color

camera (whose frames can be externally-triggered) by leveraging a multi-color LED illumi-

nation source and computational post-processing. Our method assumes that the observed

object is of a single hue (such as obtained by use of a single stain or dye) and embeds time

information into each acquired frame by spectrally encoding temporal light patterns that are

then collected by a color camera. Following acquisition, the images undergo an unmixing

procedure that increases the frame-rate and effective temporal resolution. Our approach is

related or combines approaches leveraged for other imaging methods, which we briefly review

below.

To increase the (temporal and spatial) resolution beyond what cameras can offer directly, sev-

eral computational approaches have been proposed, often relying on multiple simultaneous

observations of a signal, which are then fused to reconstruct a high-resolution version of the

signal of interest [56, 57, 58, 59]. Despite the resolution gains, these methods require availabil-

ity of multiple cameras, which can be hard to integrate in a standard microscopy setup, or

which may not be compatible in low photon count situations. Other methods make assump-

tions on the signal structure itself, for instance assuming the signal has a sparse representation
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in a function basis [71, 72, 69] or relying on the repeatable nature of the imaged motion [73, 74].

Alternative approaches, which require no prior assumptions include a method by Bub et al.

[75], who proposed using a modified camera, whose pixels have staggered exposure times,

which allows for a flexible tradeoff between time and spatial resolution. This method offers

great possibilities for microscopy, yet with the drawback that it requires a modified camera,

requiring low-level hardware control.

Controlled illumination is a core aspect of any optical microscope’s performance, as demon-

strated by Köhler over a century ago [5]. In particular, structured illumination has been

proposed as a way to access high-frequency components of the object via multiple modula-

tions [77, 78, 79, 80, 81]. The modulated signals are combined computationally, and numerical

methods have focused on aspects such as taking into account experimental artefact [82],

performing structured illumination without precise knowledge of the projected pattern [83],

or lowering the number of required images [84]. Our proposed method leverages ideas from

structured illumination, albeit in the temporal domain. Our method also relies on unmixing

spectrally encoded signals, which bears similarities with multi-spectral unmixing in fluores-

cence microscopy [95].

In order to improve temporal resolution and reduce motion blur, several methods have been

proposed that take advantage of the availability of controllable illumination sources driven by

rapid controllers that work in synchrony with the camera, followed by computational post-

processing. For example, Staudt et al. [118] used short light pulses (stroboscopy) to reduce

motion blur (while remaining limited by the camera frame-rate) when imaging the beating

heart. Gorthi et al. [119] proposed a method for linear motion deblurring for fluorescence

microscopy based on the fluttered shutter principle [120] by using a pseudo-random temporal

illumination sequence, allowing to reduce motion blur by a factor of 50. This improvement

is, however, only possible in the case of linear motions, which are common in cytometry, yet

might not be applicable to more general biological motions.

Other active illumination methods have also been proposed in fields other than microscopy.

Shiba et al. in [121] used an active illumination to project six dense dot patterns during an

image acquisition duration and recover both depth and speed of elements in the imaged scene

through computation. Rangarajan et al. in [122] presented active computational imaging

methods to do spatial super-resolution as well as depth-estimation, via the projection of

space-varying illumination patterns.

The main contributions of the present paper are:

1. a procedure to encode temporal details by illuminating each frame with colored light

patterns;
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2. a reconstruction method to achieve temporal superresolution based on the encoded

measurements;

3. the characterization of our method’s performance and its robustness both on synthetic

and experimental data.

The paper is organized as follows: in Section 3.3 we present the signal and imaging models

and detail the assumptions on the image acquisition and the signal. In Section 3.4, we derive

our superresolution method and present a color calibration procedure to adjust the free

parameters of our method and retrieve base hues. In Section 3.5 we characterize our method

in terms of resolution gain and robustness and demonstrate its applicability for imaging

biological samples in microscopy in Section 3.6. We discuss these results in Section 3.7 before

concluding in Section 3.8.

3.3 Imaging Model

We consider an imaging system consisting of L co-located illumination light sources and a

color camera with C color channels. We assume that the camera has a global shutter, meaning

that each pixel collects light over the same, fixed interval of time. We further consider that each

light source has a fixed spectrum while the overall intensity can be varied over the duration of

the camera shutter time. The timing of the illumination is linked to the camera. The imaged

scene is assumed to be of a single hue and the optical parameters are assumed to be constant

over the field of view. Figure 3.2 schematically depicts an example arrangement for three

illumination sources and a color camera with a Bayer pattern.

Our method operates on each pixel and each frame independently. We can therefore proceed

with the derivation of our method by considering a single color pixel, denoted by the vector

y =
(

y1, · · · , yC

)>
, whose C color components can be modeled as:

yc =
∫ E

0

(
L∑
`=1

γ`,c x(t )s`(t )

)
dt +dc (3.1)

= dc +
L∑
`=1

γ`,c

∫ E

0
x(t )s`(t )dt , (3.2)

where x(t ), t ∈ [0,E ) is the imaged time signal (which we wish to recover) at the location in the

scene corresponding to the pixel, E is the exposure duration, s`(t ) ∈R+
0 is the intensity function

of the `th active light over time, dc ∈R+
0 is an electronic bias for channel c and γ`,c ∈R+

0 is the

spectral impact of the `th light source on channel c. Within the duration of one movie frame,
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Figure 3.2 – (a) Acquisition setup. The moving sample is imaged with three active light sources
si (t). The projection of the scene to the camera is shown with x(t). The color (Bayer) filter
makes each pixel sensitive to a specific spectrum that is independent of the light sources.
Each light source has its own time function, capturing the sample at different times and
encoding this information in different spectra which is then captured by the color sensor in
the hue domain. (b) Example of possible temporal functions for the three light sources. (c)
Real example of acquired data with the depicted system of (a). (d)-(e) Close-ups to the real
acquired data, the Bayer filter is visible. (f) Reconstruction of three grayscale frames from the
acquisition shown in (c).
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we model the imaged signal x(t ) as a piecewise constant signal:

x(t ) =
Q∑

i=1
x[i ]β0(Q · (t − i )), (3.3)

with Q an integer number of steps over the exposure time, x[i ], i = 1, . . . ,Q, the values of x(t )

at each step, and

β0(t ) =
1 if 0 ≤ t < E

Q

0 otherwise,
(3.4)

the causal B-spline of degree 0 (box function). Given this model for the signal x(t ), Equation

(3.1) can be rewritten as:

yc = dc +
L∑
`=1

γ`,c

∫ E

0

Q∑
i=1

x[i ]β0(Q · (t − i )
)
s`(t )dt

= dc +
L∑
`=1

γ`,c

Q∑
i=1

x[i ]
∫ E

0
β0(Q · (t − i )

)
s`(t )dt

= dc +
L∑
`=1

γ`,c

Q∑
i=1

x[i ]S`[i ], (3.5)

with the average light intensity S`[i ] in the i th sub-frame interval defined as:

S`[i ] =
∫ E

0
β0(Q · (t − i )

)
s`(t )dt

=
∫ i ·E/Q

(i−1)·E/Q
s`(t )dt . (3.6)

With these notations, we can rewrite Equation (3.5) in matrix form:

y = SQΓQ x +d , (3.7)

where x =
(
x[1] · · · x[Q]

)>
is the vector of signal samples, d =

(
d1 · · · dC

)>
is a bias

vector, and SQ contains the time coefficients of the L lights:

SQ =
(
S1

Q . . . S`Q . . . SL
Q

)
C×CQL

, (3.8)

with:

S`Q =


(S`[1], . . . ,S`[Q]) 01×Q . . . 01×Q

01×Q
. . . . . .

...
...

. . .
. . . 01×Q

01×Q . . . 01×Q (S`[1], . . . ,S`[Q])


C×CQ

. (3.9)
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3.4. Methods

The matrix Γ is built as:

ΓQ =
[(
Γ1

Q . . . Γ`Q . . . ΓL
Q

)>]
CQL×Q

, (3.10)

with:

Γ`Q =
[(
γ1,`IQ . . . γc,`IQ . . . γC ,`IQ

)>]
CQ×Q

, (3.11)

where IQ is the identity matrix of size Q ×Q and 0m×n a matrix with m rows and n columns

of zeros (for clarity, we have indicated the dimensions of certain matrices as subscripts in a

similar fashion).

3.4 Methods

3.4.1 Temporal super-resolution

The super-resolution problem is equivalent to retrieving the signal x from a single color pixel

y by solving Equation (3.7). When the number of channels C is at least equal to the super-

resolution factor Q, we propose to obtain approximate solutions in the least-squares sense

by solving the minimization problem (under the assumption that the data is corrupted by

additive white noise)

x? = min
x

∥∥y −d −SQΓQ x
∥∥2

2 . (3.12)

When Q ≤C and Q ≤ L, this minimization problem can be solved efficiently with a number of

numerical methods (e.g. see Chapter 5.3 in [123], p. 236).

3.4.2 Determination of the system spectral mixing coefficients and electronics

offsets

In order to retrieve x? in Equation (3.12), given the measured color pixel y and the user-

controlled illumination pattern SQ , the coefficients in matrix ΓQ and in the bias vector d must

be known beforehand. We propose to determine these coefficients via a calibration procedure

in which we image a static scene with a series of fixed illumination patterns that combine

contributions from one or several LEDs. The static scene is illuminated with P static intensity

combinations of the LEDs. These patterns are fully specified by the operator, who can choose

which lights to turn on or off and who can manually select an area, comprising M pixels, on

which to calibrate the system. We first consider a single pixel with a given illumination pattern

and set Q = 1 in Equation (3.7) to obtain:[
y
]

C×1
=

[
S1

]
C×C L

[
Γ1

]
C L×1

[
x
]

1×1
+

[
d

]
C×1

, (3.13)
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which we rearrange as:

y =
(

xS1 IC

)(
Γ1

d

)
, (3.14)

where IC is the identity matrix of size C ×C . Then we combine similar equations for M pixels

and P illumination patterns to form the full calibration matrix:



y 1,1

y 1,2

...

y 1,P

y 2,1

...

y M ,P


︸ ︷︷ ︸

ycal

=



x1S1
1 IC

x1S2
1 IC

...
...

x1SP
1 IC

x2S1
1 IC

...
...

xM SP
1 IC


︸ ︷︷ ︸

Acal

(
Γ1

d

)
, (3.15)

where the xm are the intensity of the mth pixel of all M static calibration pixels, Sp
1 is the

pth calibration illumination pattern and y m,p is the measurement vector on pixel m for

illumination pattern p. With this setup, all involved quantities in ycal and Acal are known,

either measured or user-imposed. Note that the expression in Equation (3.14) involves Γ1,

rather thanΓQ , yet even if the dimensions and structure ofΓQ depend on Q, its free parameters,

the γc,`, are independent of Q, which allows their inference from Γ1.

Given these definitions and measurements, we solve for Γ1 and d in Equation (3.14) to mini-

mize the `1-norm cost:

e(Γ1,d ) =
∥∥∥∥∥ycal − Acal

(
Γ1

d

)∥∥∥∥∥
1

. (3.16)

We find the solution to this cost minimization problem by using an Iteratively Reweighted

Least-Squares (IRLS) method [124]. IRLS proceeds by solving, at each iteration, a weighted

least-square problem:

u(t+1) = argmin
u

∥∥W (t ) ycal −W (t ) Acalu
(t )

∥∥2
2 , (3.17)

where W (t ) = diag(w (t )
1 , . . . , w (t )

MP ) is a diagonal weighting matrix, whose entries w (t+1)
k are

updated at each iteration t +1 [125, 126]:

w (t+1)
k =

((
ycal,k − Acalu

(t )
k

)2 +ε(t )
)−1/2

. (3.18)

The weights are initialized with w (0)
k = 1 and ε(0) = 1. We follow an acceleration method similar
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to that proposed by Chartrand and Yin [125], where the variable damping factor ε(t ) is divided

by 10 each time the relative change of the `1-norm of the residual is smaller than
p
ε(t )/100,

until the residual converges or ε(t ) reaches a set minimum value (10−6). Once convergence is

attained, we retrieve the values of Γ1 and d from u(tfinal). In practice, solutions we obtained

with this approach were identical to those obtained by use of an exact linear programing

method (CPLEX [127]). We favored our implementation for its simplicity and the possibility to

make it available [128].

Although a similar approach could be used for minimizing Eq. (3.12) in order to retrieve the

data, we found that for our applications, the least-squares approach, which is direct rather

than iterative, is sufficient. The `1 norm is more robust to mismatches between the affine

response model and the actual measurements. Mismatches may be due to, for example, low

photon count (in dark regions), saturated pixels, or a nonlinear detector response curve. Since

good calibration has a strong influence on the reconstruction quality and can be carried out

offline, we favored the `1-norm in Eq. (3.16) over least-squares, despite it being slower to

mimimize. We note that other robust norms, for which efficient algorithms exist, could be

used.

3.4.3 Base-hue recovery and hue-dependent model-selection for non-gray sam-

ples

Although our method trades spectral information to gain temporal resolution, we can leverage

our use of a color camera to collect the hue of the imaged sample during the calibration

procedure of Section 3.4.2 (using white illumination), and assign the measured and normalized

RGB triplet to build a color pixel x?[i ](R G B)> from the monochromatic, temporally super-

resolved reconstruction x? obtained with our method described in Section 3.4.1.

Furthermore, if the scene to be imaged is made of moving objects of any one hue among

N possible hues, we can recover super-resolved images as follows. We first calibrate the

system according to Sec. 3.4.2 for each one of the possible hues (indexed by n = 0, . . . , N −1),

hence obtaining N parameter sets
(
Γ(n)

Q ,d (n)
)

and base hue triplets (R(n),G (n),B (n)). After

acquiring images of a moving object (whose type or hue index n is unknown), we apply our

temporal super-resolution method using each model
(
Γ(n)

Q ,d (n)
)

in turn (e.g. on a manually

selected region of interest (ROI)). We then evaluate the quality of the reconstructions x?,(n) =[
x(n)[1] · · · x(n)[Q]

]>
, n = 0, . . . , N −1 (obtained with the corresponding models

(
Γ(n)

Q ,d (n)
)
)

by computing

R(n) =
Q−1∑
i=1

∣∣x(n)[i ]−x(n)[i +1]
∣∣ (3.19)

as a measure of smoothness. The rationale behind this criterion is that only correct model
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parameters will reduce flicker in regions and time-intervals where the scene is static (which

we assume are present in the scene), hence decreasing R(n).

3.5 Experiments

3.5.1 Hardware and parameters setup

We implemented the illumination with commonly available and cost effective hardware. We

assembled a light source using a 6-LED chip (SLS Lighting RGBWA+UV, Aliexpress, China). The

LEDs have hues red (λ≈ 620nm), green (λ≈ 525nm), blue (λ≈ 465nm), amber (λ≈ 595nm),

white (broad spectrum via fluorescence), and ultra-violet (λ ≈ 395nm). We drove the LED

via a micro-controller (Arduino Uno, Arduino, Italy), which we programmed to generate the

illumination time-pattern shown on Figure 3.2(b), individually controlling each color. For the

LED-camera synchronization, the micro-controller monitored the flash trigger output of the

camera. Whenever the trigger signal transitions from low to high state, the micro-controller

starts the time-sequence of the LEDs for the frame about to be recorded. The LEDs were

directly powered by the controller’s outputs, without additional power amplification of the

signal.

We used a CMOS color camera (Thorlabs DCC3240C, Thorlabs, Germany) with 1280 × 1024

pixels, each with a standard RGGB-Bayer filter pattern (C = 3). We used this camera both for

imaging macroscopic objects, in which case we used a 12mm focal length camera objective

(Navitar NMV-12M1, HR F1.4/12mm), and for microscopic samples, in which case we attached

the camera to the camera port of a custom-built wide-field transmission microscope consisting

of a 20× Olympus water dipping lens (Olympus Plan Fluorite UMPLFLN 20xW) combined

with a 180mm tube lens (Olympus U-TLU-1-2).

We either used the LED source as-is, when illuminating macroscopic scenes, or placed it

into the illumination port of the microscope, which we adjusted for Köhler illumination

(transmission).

In all experiments presented here, we adjusted the exposure of our camera to E = 60 mil-

liseconds, the target over-sampling factor to Q = 3, and three LEDs per experiment, hence

L = 3.

For the validation experiment in Section 3.5.2 and the beating heart data acquisition of

Section 3.6.2, we used the red, green, and blue LEDs. For the robustness characterization

experiment in Section 3.5.3, we used all available LEDs alternatively, by set of three. In all

of these experiments, the illumination code sequences, S`[i ], i ∈ {0,1,2} corresponding to
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Equation (3.6) were:

S1[i ] = [1,0,0]

S2[i ] = [0,1,0] (3.20)

S3[i ] = [0,0,1],

with s1(t ) the time-function of the first, s2(t ) the second, and s3(t ) the third LED, respectively.

In Section 3.5.4, we investigate various illumination sequences that are specified in Table 3.2.

For all experiments, to calibrate d and Γ1, we acquired P = 30 images (≈ 3 calibration images

per channel and per LED) of a static binary patterned sample, each with one of P different

combinations of LEDs that were turned on or off (see Section 3.4.2).

3.5.2 Resolution improvement characterization

To quantitate the resolution improvement achievable by our method, we moved a test target

(USAF resolution pattern) printed on a white cardboard paper and imaged it either: (i) with

steady white light illumination; (ii) with strobed white light (one 20 ms pulse per frame); and

(iii) with our proposed HESM method, followed by reconstruction.

In order to replicate the same motion in each case and thereby to allow for direct comparison,

we used a robotic arm (Baxter, RethinkRobotics, Boston, MA, USA) to carry out the motion.

Under constant white light illumination (Figure 3.3 a), the resolution bars of the test target

are blurred since the shutter remains open while the test target moves. With a single white

light pulse per frame (Figure 3.3 b) the bars are sharp but only one image per camera frame is

available. Using our method (Figure 3.3 c) we observe both sharp bars (comparable to what

can be obtained with the strobed white light) and an increase in the frame-rate by a factor of

three. We determined the finest resolvable resolution bar triplet in both the images obtained

under white light illumination (0.25 line pairs/mm) and with our proposed HESM method

(0.707 line pairs/mm). This corresponds to a 2.8-fold improvement in lateral resolution, which

directly results from the improvement in temporal resolution of the same factor, given that the

motion of the resolution target was uniform.

3.5.3 Characterization of robustness with choice of illumination hues

Our method allows, in principle, for an arbitrary choice of LED wavelength spectra for the

different LEDs. In practice, however, selecting appropriate wavelengths for the LEDs given the

type of imaged sample is essential to ensure the stability of the reconstruction. To illustrate
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(a) (b) (c)

0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

t

...

...

...

(d)

(e)

(f) (g) (h)

(i)

(j)

const.

illumination

strob.

illumination HESM

Figure 3.3 – Imaging a moving sample with (a, f) a constant white light, (b, g) a 20ms white
pulse and (c, d, e, h, i, j) our proposed method (for the full movie, see [129]). The zoom on the
element 1 of the group -2 of the USAF-grid (close-up in a, b, c) shows that all three methods
can resolve it. It is the limit for the constant illumination. This element is 0.625 mm wide.
The detailed views on the whole group -1 (f, g, h) show that the stroboscopic illumination
and our method (g, h) are able to resolve up to element 4. This corresponds to a resolution
improvement factor of 2.8. Moreover, with our method operating at the same frame-rate, we
have six reconstructed frames (c, d, e, h, i, j) while with the two other methods we have two
acquired frames (a, b, f, g), thus we improved the frame-rate by a factor of 3.
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Table 3.1 – Condition number κ depending on the LEDs used (see [129]).

LEDs R-G-B A-G-UV B-UV-W R-UV-B

κ 1.9 2.6 49.1 91.5
Reconstruction good good noisy, flickering noisy, flickering

this point, we explored different combinations of colors, chosen among the 6 individually

addressable LEDs in our illumination head: red (R), green (G), blue (B), amber (A), white (W),

and ultra-violet (UV). Specifically, we repeated the experiment of the moving target using our

proposed imaging method with the following color combinations: R-G-B, A-G-UV, B-UV-W, or

R-UV-B (each turned on in sequence). In order to characterize the robustness of the imaging

system in each case, we calibrated the system then we calculated the conditioning number

κ(A) (see Chapter 4.4 in [130], p.82) of the obtained system matrix A = SQΓQ :

κ(A) = σmax(A)

σmin(A)
, (3.21)

where σmax(A) and σmin(A) are the highest and lowest eigen-values of the matrix A.

Table 3.1 gives the condition number κ for the 4 combinations of LEDs that we tested. See

[129] for the corresponding videos. We observed that whenever the system matrix was poorly

conditioned, whose likely cause we attribute to overlapping spectra of two (or three) lights in

a given combination (e.g. blue and UV LEDs in the B-UW-W combination), the reconstruction

was noisy and flickering. We think that there is crosstalk in the lights signal contribution,

which translates into a poorly conditioned system matrix. We observed sharp reconstructions

with little noise for the color combinations R-G-B and A-G-UV. The reconstructions with the

two other color combinations B-UV-W and R-UV-B flickered and showed amplified noise.

3.5.4 The conditioning number of the system matrix depends on the illumination

functions

We next investigated the influence of the illumination functions on the quality of the recon-

structions. To that end, we performed an experiment similar to that in Section 3.5.3 but

keeping a single set of LEDs (R-G-B) to image the same repeating motion, while varying

the illumination functions. We then compared the condition number of the system matrix

corresponding to each illumination pattern with the quality of the reconstruction. Table 3.2

shows the illumination intensities of the LEDs in the sub-frame time intervals for the four

different cases with the corresponding condition number of the system matrix. We observed

good reconstructions when the system was well-conditioned. A comparative video is provided
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[129].

Table 3.2 – Condition number κ with various time functions. R1,R2,R3 are the values of the
red LED respectively at the first, second and third time-steps of the whole exposure time (see
[129]).R1 R2 R3

G1 G2 G3

B1 B2 B3

  1 0.5 0
0.15 0 1

0 1 0

  1 0.5 0
0.15 0 1

0 1 0.15

  1 0.5 0
0.15 0.5 1
0.5 1 0.15

  1 0.5 1
0 0.5 1

0.5 1 0.85


κ 1.9 2.6 5.9 9.4

Reconstruction good good good noise, flicker

3.6 Applications

3.6.1 Model selection applied to two samples

To demonstrate our method’s ability to recover both the hue of an object and a temporally

super-resolved sequence, we imaged two paper cards, one whose hue was white and the

other off-white. In both cases, our method could retrieve both a temporally-super-resolved

image sequences as well as assign RGB values for the base-color, directly from the raw images

(Figure 3.4 b,c).

3.6.2 Fast imaging of the beating heart

To illustrate the applicability of our HESM method for biological microscopy, we imaged the

beating heart of a live 4 days post fertilization (dpf) old zebrafish larva mounted in agarose gel,

with a wide-field microscope under transmitted illumination.

Zebrafish (wild-type AB zebrafish strain (Zebrafish International Resource Center) were raised

under standard laboratory conditions (14/10 hour light/dark cycle, fish water of the system

(ZEBTEC Techniplast Aquatic Solution) at 26.5◦C temperature, 500µs conductivity, and pH 7.3)

in a facility approved by the Veterinary Service of the State of Valais (Switzerland). Fertilized

eggs were collected and the embryos raised at 29◦C in standard E3 medium in an incubator

(Termaks B8054), supplemented by 0.003% 1-phenyl 2-thiourea (PTU) from 24 hours post

fertilization (hpf) to prevent pigmentation. For imaging, we embedded 4 dpf larvae, anes-

thetized with 0.1% tricaine (ethyl 3-aminobenzoate methanesulfonate salt, Sigma), in low

melting agarose.

Following raw image acquisition (see hardware and parameter setup, above), we selected an

ROI over which we applied our method, keeping the rest of the images in color. Figure 3.5

shows a single frame of Visualization 5 ([129]), where color imaging allows clearly visualizing
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(a)

(e)

(f)

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms t

(b)

Reconstruction 

with automatic 

model selection

(c)

(d)

Active illumination 

data acq.

Figure 3.4 – When any of several objects with different, but known, hues enters the field of
view, the system matrix adapted to the object can be automatically selected. (a) Color image
of a static scene, with two kind of papers illuminated by a white light. The gray areas show
the calibration ROIs. (b) Each sample has a corresponding calibrated set of parameters Γ
and d as well as the sample hue. (c) Data acquisition of a dynamic scene with the active
illumination. (d) Reconstruction with model selection as explained in Section 3.4.3. (e, f) Two
reconstructions with our method after model selection, using RGB LEDs and reconstructing
the hue of the samples from the raw data acquired with our method (see [129]). Scale bar: 5
cm.
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BAv
at

p

AP

D

V

(a)

(b)

Figure 3.5 – Flexible color and fast grayscale imaging of the beating heart in a 4 days post
fertilization zebrafish larva. (a) Single frame of an RGB color movie, with (b) ROI with recon-
structed grayscale (no hue was measured beforehand, gray reconstruction) movie at threefold
increased frame-rate. See [129] Visualization 5 for the full movie. Anatomical features visible
include the ventricle (v), the atrium (at), the bulbus arteriosis (BA) and the pericardium (p).
Orientation is indicated as V: ventral, D: dorsal, A: anterior, P: posterior. Scale bar: 100µm.

cells within the heart wall of both the atrium and ventricle, which are blurred in the color

images. Visualization 5 [129] first shows only color imaging of the beating heart, then it shows

reconstructions from our method within an ROI and finally a comparison side by side of

standard color imaging and our method, both on the same ROI. Our method therefore offers

the flexibility of either using RGB or fast monochrome imaging.

3.7 Discussion

The hardware implementation of our method has only few hard design requirements. In

particular, frame acquisition and illumination must be in synchrony, which is straightforward
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to implement provided the camera has a trigger output. Given variability in hardware clocks

and data transfer, independently running the illumination and acquisition systems results

in rapid asynchrony and departure from the acquisition model (making it difficult to invert

the system matrix). Beyond synchronization, given the frame rate of our camera (60 frames

per second), neither the clock-time of our micro-controller (16 MHz) nor the rise time of our

LEDs (20 ns) appeared to be limiting our method.

In order to calibrate our system as described in Section 3.4.2, it is necessary to manually

select an ROI. We observed that the best results were obtained when calibration ROIs were

chosen among a wide range of intensities. Our method requires a static sample (or scene)

for calibration, ideally with a variety of intensities. Since acquiring calibration images is fast,

many images of identical regions can be acquired fairly rapidly, which allows to limit the

influence of noise, in particular in darker regions. We empirically found that acquiring P = 30

images gave good calibration results and used that number for all experiments in Section 3.5.

The results in Section 3.5.2 show a time-resolution improvement of a factor
p

8 ≈ 2.8 with a

temporal sampling improvement by a factor 3. This factor depends on the number of channels

available and using additional channels (e.g. through wavelength splitting and use of multiple

cameras) higher resolution factors might be achievable. Less motion blur can be obtained

by shortening the illumination pulses yet without improvement of the frame-rate, at the cost

of a higher peak-intensity (which is sometimes undesirable in microscopy) and at the risk of

producing aliasing. Longer-duration pulses are less prone to aliasing and might help preserve

live samples as their peak intensity can be lower for a given camera integration time.

Although the model presented in Section 3.3 is non-specific regarding the precise illumination

functions, the discrete formulation in Equation (3.7) reveals that our model becomes ill-posed

should the matrix SQΓQ not be full rank, i.e. if rank(SQΓQ ) <Q. This provides us with a tool

for verifying that a proposed illumination function does not lead to an ill-posed system. For

example, should data from a particular channel be missing, Q should be lowered such as

to have Q ≤C and the matrices SQ adapted accordingly. Similarly, the matrix ΓQ should be

well-conditioned, which depends on the sample itself, the color-filters of the camera, and

the spectrum of the lighting. The spectrum absorbed and reflected by the sample and then

acquired by the camera should form a matrix of rank Q, when calibrating with the procedure

in Section 3.4.2. With the condition number κ (Section 3.5.3), we have a means of predicting

the quality of reconstructions with our method given the sample, the LEDs, and the chosen

camera. The results in Section 3.5.4 suggest that a condition number above 10 should be

avoided, in order to guarantee a good reconstruction. For a given matrix ΓQ (specified by the

sample, LED, and detection spectra) the matrix SQ containing the temporal patterns could be

optimized for SQΓQ to have maximal rank, an NP-hard problem which we have not pursued

here
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We investigated the impact of the illumination hues in Section 3.5.3. Since the camera captures

transmitted or reflected light, the same conclusions apply to changing the hue of the sample,

rather than the illumination.

Simply using more lights would not necessarily produce a more stable system matrix. Instead,

chasing the proper combination of lights does. A simple case for choosing the number of

LEDs, channels, and super-resolution factor, is to set L =C =Q (of course one must still ensure

that the choice of lights and illumination functions produces well-conditioned matrices, as

discussed above).

In practice, temporal flickering may remain in the reconstructed videos, depending on how

well the system’s matrix SQΓQ matches dynamic conditions. Calibration and experimental

conditions may differ, for example, because calibration is carried out in regions different than

those imaged. Furthermore, LED rise and fall times during calibration and imaging may differ

as the LEDs’ electronic current drivers can be frequency-dependent

For single-hue objects, the possibility of recovering the base hue simultaneously to recon-

structing temporally super-resolved image sequences (as shown in Section 3.4.3) is particularly

appealing as this advantage comes without requiring an increase in the bandwidth of the

system. This capability is preserved even in the case of multiple objects with different hues,

via the model selection scheme we proposed in Section 3.4.3. Furthermore, for applications in

microscopy, where often only a single camera can be mounted, making rapid switching to a

different camera or view-port unfeasible, our method brings clear practical advantages: (i) the

same camera can be used both for color and fast imaging as demonstrated in Section 3.6.2

and (ii) the motion blur can be reduced when acquiring stacks in continuous scanning mode.

While the former may be particularly attractive for building versatile imaging systems, the

latter may be particularly relevant for applications that require fast inspection, such as for

screening or flow cytometry. We also foresee that the improved frame-rates and temporal

resolution could be beneficial for object tracking applications, a point that we may investigate

in the future.

Since the wavelength of the photons emitted by a fluorophore are independent of the exci-

tation wavelength, our method would not be applicable on samples labeled with a single

fluorophore. However, our method could be applied for imaging structures simultaneously

co-labeled with two or more fluorophores: while the individual emission spectra shape would

remain unchanged (except for scaling), as their combined emission intensity (and therefore

the resulting combined spectrum) will vary with the relative excitation intensities of the il-

lumination sources our method could, in principle, provide similar benefits to fluorescence

imaging.

We provide the code, data, and instructions to reproduce results in this paper [128].
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3.8 Conclusion

We introduced a general computational imaging method to carry out temporal super-resolution

with a color camera and a set of multi-spectral active illumination sources. Each frame in-

cludes multiple copies of the signal at various times, encoded in the hue of the image. The

computational procedure retrieves a high time-resolution signal, along with the base-hue,

under the assumption that the imaged sample has a single color. We showed a direct method

to characterize the robustness of the method, depending on the sensing and illumination

spectra, as well as the base-hue of the imaged sample. We experimentally showed a temporal

resolution improvement of a factor 2.8 combined with a three-fold increase of the frame-rate.

We illustrated our method with an application exhibiting both color imaging and fast grayscale

(on a chosen ROI) of the beating heart, showing its applicability to bio-microscopy.
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4 Temporal super-resolution fluores-

cence light-sheet microscopy via a

hue-encoded shutter
This chapter is directly based on our paper [131] currently under review. This paper is also

the subject of a European patent application (application number EP19154253). The authors

of the paper are myself, Alexander Ernst, Nadia Mercader and Michael Liebling. M. Liebling

and I had the original idea of the method and implemented it. A. Ernst provided us with the

zebrafish for the experiments in Section 4.4. Prof. N. Mercader is with the Institute of Anatomy

of the University of Bern, she is the thesis supervisor of A. Ernst. M. Liebling and I wrote

the draft of the manuscript and all authors discussed the results and contributed to the final

manuscript.

To better locate this paper in the context of the whole thesis, Figure 3.1 illustrates the effect of

the method when applied to the schematized heart of Figure 2.3.

4.1 Abstract

Studying dynamic biological processes, such as heart development and function in zebrafish

embryos, often relies on multi-channel fluorescence labeling to distinguish multiple anatom-

ical features, yet also demands high frame rates to capture rapid cell motions. Although a

Figure 4.1 – The method presented in this chapter exchanges spectral for temporal information,
in the presence of multiple co-localized fluorophores, allowing to increase the frame-rate by a
factor 2 while reducing the color from 3 to 1 channel.
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recently proposed method for imaging dynamic samples in transmission or reflection allows

to conveniently switch between color imaging or boosting the frame rate by use of spectrally-

encoded, temporally-modulated illumination sequences and a hue-encoded shutter (hue-

encode shutter method, HESM), the technique is not applicable directly in fluorescence

microscopy, where the emitted light spectrum is mostly independent of the excitation wave-

length. In this paper, we extend HESM by using samples labeled with multiple fluorophores,

whose emission signal can either be used to distinguish multiple anatomical features when

imaged in multi-channel mode or, if the fluorophores are co-localized in a dynamic tissue, to

increase the frame rate via HESM. We detail the necessary steps to implement this method in

a two-color light-sheet microscope to image the beating heart of a zebrafish embryo. Specifi-

cally, we propose an adapted laser modulation scheme for illumination, we identify caveats in

choosing a suitable multi-color fluorophore labeling strategy, and derive an `1-regularized

reconstruction technique that is sufficiently robust to handle the low signal-to-noise ratio

and labeling inhomogeneities in the fluorescence images at hand. Using the case of a beat-

ing heart in a zebrafish embryo, we experimentally show an increase in the frame rate by a

factor two while preserving the ability to image static features labeled in distinct channels,

thereby demonstrating the applicability of HESM to fluorescence. With a suitable illumination

setup and fluorescent labeling, the method could generalize to other applications where

flexibility between multiple channel and high-speed fluorescence imaging is desirable. For

fluorophores that are not co-localized, the imaging system is similar to a conventional light

sheet microscope.

4.2 Introduction

Fluorescence microscopy is a tool used in many biological studies. It is possible to have fluores-

cence light emitted by a sample from specific biological features such as nuclei, membranes,

or selected molecules [110]. In addition to the need for distinctly labeling anatomical, cellular,

or subcellular features, many live biological processes are highly dynamic and a high temporal

resolution in imaging is required to study them [55]. Although a recently proposed method for

imaging dynamic sample in transmission or reflection allows to conveniently switch between

color imaging or boosting the frame rate by use of a spectrally encoded illumination and

a hue-encoded shutter method (HESM), the technique is not applicable directly in fluores-

cence microscopy, where the emitted light spectrum is mostly independent of the excitation

wavelength.

In this paper, we propose to extend the hue-encoded shutter method presented in [117] to

fluorescence microscopy and to apply it to light-sheet microscopy [21]. The method in [117]

increases the flexibility of microscopes by allowing to rapidly switch between color imaging

and fast imaging, or to do both simultaneously, within regions of interest. Briefly, that method

40



4.2. Introduction

Figure 4.2 – Hue-encoded shutter for fluorescence light-sheet microscopy. (a) The excitation
objective (EO) transmits consecutive pulses of different wavelengths within the exposure
time E of one frame. The sample (x) contains co-localized fluorophores (e.g. green and
red fluorescent proteins) that respond to the excitation by emitting fluorescent light. The
sample may also contain static regions that can be labeled with a single fluorophore type.
The color sensor of the camera (CAM) captures the light emitted over the entire exposure
time through the detection objective (DO). (b) Acquired (raw) multi-channel images (c) Our
proposed method converts the color frames to multiple monochrome frames at a higher frame
rate (here, by a factor 2) in a region of interest that contains dynamic features. The color
information can be preserved in static regions outside of the region of interest.

uses a multi-color LED illumination source that is synchronized to a color camera. The scene

(which is assumed to be monochromatic) is illuminated with a temporally-varying hue at

a sub-frame rate frequency. The individual color frames are then processed to convert the

color channels into multiple (monochrome) time frames. The monochrome requirement of

[117] cannot be translated directly to fluorescence microscopy, as the spectral signature of

the illumination is lost in the excitation-emission process at the heart of fluorescence. To

overcome this limitation, we propose to use multiple co-localized fluorophore species with

different emission spectra. The overview of the proposed method is presented in Figure 4.2.

Improving temporal or spatial resolution of microscopes has been tackled by many different

approaches. We briefly review some that are of particular interest or use related concepts.

Several temporal super-resolution methods directly capitalize on strong prior knowledge of

the signal itself, for example that sample motion is repetitive [73, 74] or that the signal is sparse
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in some basis [71, 72, 69]. Other approaches do not require any prior knowledge on the signal.

Bub et al. [75] used a modified camera with individually addressable pixels to stagger exposure

times. This method fits well for fluorescence microscopy, but requires a modified camera,

which may not be widely available. Wagnert et al. [76] presented a method to instantaneously

acquire full volumes of isotropic resolution thanks to two light-field imagers. While limited to

small fields of view and having a lower spatial resolution than light-sheet microscopy, their

method shows great potential as whole volumes can be acquired at camera frame rate, despite

requiring a dedicated setup.

Our method takes advantage of temporally patterned illumination. With illumination long

known to be an essential factor to a microscope’s performance (as shown by Köhler [5]), the

field of structured illumination microscopy has demonstrated the possibility of improving

spatial resolution beyond the limits of the acquisition device [77, 78, 79, 80, 81, 132]. These

methods mostly target spatial resolution improvements, often at the cost of temporal resolu-

tion, since they require multiple modulated images be merged into a higher spatial resolution

image. Methods that specifically seek to improve temporal resolution by taking advantage

of fast modulable illumination sources include the coded illumination method by Gorthi et

al. [119], who perform motion deblurring for fluorescence microscopy using the fluttered

shutter principle [120]. This approach is limited to linear motion deblurring. Yet other ap-

proaches, such as that of Dillavou et al. in [133] assume that the imaged sample is binary

(either black or white) and use the dynamical range of a camera to drastically increase its frame

rate. This strong assumption on the signal might, however, limit applicability to fluorescence

microscopy.

Our method allows to do either color imaging or fast imaging in fluorescence microscopy

without the limitations of the aforementioned methods as it does not require multiple or other

custom modified cameras, neither do we require the signal to be sparse, repetitive, binary, or

following any particular (linear) motion.

The main contributions of the present paper are (i) the adaptation of the method in [117] to

fluorescence microscopy; (ii) an improved temporal super-resolution reconstruction algo-

rithm to compensate for slight model mismatches; (iii) demonstration of the applicability to

light-sheet microscopy for biological applications.

The paper is organized as follows. In Section 4.3, we present the signal and imaging models

and detail the assumptions on the image acquisition and the signal and derive the algorithm

to perform temporal super-resolution. In Section 4.4, we demonstrate our method in practice

by performing frame-rate doubling in light-sheet microscopy of the beating heart of a double-

labeled, 2 days post-fertilization old zebrafish embryo. We finally discuss our experiments and

conclude in Section 4.5.
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Figure 4.3 – Fluo-HESM requires co-localized multi-color fluorescent labeling. (Top row)
HESM [117] assumes a bright field microscopy setup, where the illumination light is transmit-
ted through (or reflected by) a sample then captured by an RGB camera. The transmitted (or
reflected) spectrum directly depends on the combination of the illumination spectrum and
the sample’s spectral transmittance. HESM relies on using a temporally-variable spectrum in
the illumination, which can be decoded following capture with an RGB camera. (Middle row)
If using a single fluorophore and two different illumination sources (C and D), the emission
from the sample only changes in overall intensity, but the shape of the emission spectrum
remains unchanged. Hence, temporal modulation of the illumination spectrum would not
univocally modulate the spectral shape of the emission and HESM could therefore not be
used as-is to improve the frame-rate. (Bottom row) In this paper, we propose to use two light
sources E and F and a sample labeled with two co-localized fluorophore species such that the
combined emitted light spectrum is directly dependent on temporal modulation patterns of
the illumination spectrum, making the use of HESM to improve the frame rate possible.
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4.3 Methods

Before we delve into the details of our proposed method, we briefly recall assumptions of

the HESM method developed in [117] and the limitations that prevent it from being directly

applicable to fluorescence microscopy. In [117], the light captured by the camera (Fig. 4.3 A,

B) was assumed to be either reflected by the imaged scene or transmitted through a sample.

This implied that the light spectrum measured by the camera was that of the illumination

light source modulated by the spectral sample response. To follow a monochromatic object

with higher temporal resolution, temporal variations could be encoded spectrally in the

illumination pattern by using light sources of different hues. In the case of fluorescence

microscopy with a single type of fluorophore (Fig. 4.3 C, D), while the emitted light (which

results from the fluorophores’ relaxation following their excitation by the incoming light) has

an overall intensity that depends on the excitation light via the molecules’ spectral absorption

properties, its spectrum only depends on the emission properties of the fluorophore but not

on the spectrum of the excitation. Hence, the spectrum captured by the camera does no longer

depend on the light source used, which precludes the possibility of using HESM in a way

similar to the brightfield case. Our proposed way to extend HESM to fluorescence involves the

use of multiple co-localized fluorophores (Fig. 4.3 E, F). Although each fluorescent species’

individual emission spectrum is independent of the illumination spectrum, the fluorophores’

combined emission spectrum depends on the spectral overlap of the illumination with the

absorption curve of each fluorophore. An added challenge for the fluorescence case is that

fluorophores typically have broad and overlapping emission spectra, which makes it more

difficult to isolate their contributions in distinct RGB channels as could be done with narrow-

band illuminations in the case of transmission HESM. This overlap, therefore, requires an

unmixing step.

4.3.1 Imaging model

The fluorescence imaging setup we consider is made of a color camera with C channels and L

lasers of different wavelengths (Fig. 4.2). We further consider a dynamic sample x(t ) labeled

with F different, co-localized fluorophore species. We write the intensity measured in the c th

channel of a single pixel, during the kth acquisition at time tk , as:

yc,k =
∫ tk+E

tk

L∑
`=1

F∑
f =1

γc, f b f ,`s`(t )x(t )dt +dc , (4.1)

where E is the exposure time of the camera, s`(t) the time-varying intensity function of the

`th laser, b f ,` is the absorption cross section of the f th fluorophore to the `th laser, γc, f is

the’ sensitivity of the c th color channel to the f th fluorophore emission spectrum and dc is
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an offset from the sensor’s electronics. Similarly to the model in [117], we assume that the

temporal signal of interest lies in the space spanned by shifted B-splines of degree 0 , i.e.:

x(t ) = ∑
i∈Z

x[i ]β0((t − i )Q
)
, (4.2)

where Q is the super-resolution factor (i.e. x(t) takes Q different values over the time of an

exposure time E) and β0(t ) is the indicator function over the interval [−1
2 , 1

2 ]. We can rewrite

Equation (4.1) as:

yc,k = dc +
L∑
`=1

F∑
f =1

γc, f b f ,`

∫ tk+E

tk

s`(t )
Q−1∑
i=0

x[tk,i ]β0
((

t − E

Q
i

)
Q

)
dt

= dc +
L∑
`=1

F∑
f =1

γc, f b f ,`

Q−1∑
i=0

x[tk,i ]
∫ tk+ E

Q (i+1)

tk+ E
Q i

s`(t )dt︸ ︷︷ ︸
s`[tk,i ]

, (4.3)

where tk,i is the index for the values of x[·] and s`[·] at time tk + E
Q i . We adopt a matrix notation

to write Eq. (4.3) for the full system:

yk = SΓxk +d0, (4.4)

where Γ ∈RLCQ×Q expresses both the response of the fluorophores to the excitation light (b f ,`)

and the sensitivity of the camera’s sensor to the emitted fluorescent light (γc, f ), S ∈RC×LCQ is

the matrix built by computing the integral in Eq. (4.3) and by shifted zero-padded vectors of

time-functions for each laser, xk = [
x[tk,0], x[tk,1], ..., x[tk,Q−1]

]> is the unknown vector of Q

values of x(t ) during E , and d0 ∈RC×1 is the offset vector [134].

As a concrete example (which is the case we will consider in our experiments) we set C = 3,

L = 2, and Q = 2. We choose to set the illumination temporal functions of the L = 2 lights as

s1 = [1,0] and s2 = [0,1]. That is, each light source will be switched on for half of the exposure

time, consecutively. In this setting, the matrix S is written as S =
(
S1 S2

)
and (see [117] for

further details):

S1 =
 s1[0] s1[1] 0 0 0 0

0 0 s1[0] s1[1] 0 0
0 0 0 0 s1[0] s1[1]

=
(

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

)
(4.5)

is the matrix expressing the first light source’s temporal activation pattern. Similarly,

S2 =
 s2[0] s2[1] 0 0 0 0

0 0 s2[0] s2[1] 0 0
0 0 0 0 s2[0] s2[1]

=
(

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

)
(4.6)
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Figure 4.4 – Forward matrix SΓ combines temporal illuminations patterns of two lasers and
the combined absorption and emission responses of the two fluorophores, together with the
spectral response of the camera. Notice that the left part of the matrix S, boxed in green,
contains repetitions of the temporal function of the green laser: s1[i ] and the right part of S
contains the same information for the blue laser. We also framed in green, respectively blue,
the part that corresponds to the green, respectively blue, laser in the Γ matrix which expresses
the efficiency of each fluorophore to the lasers combined with the sensitivity of the camera to
the fluorescence emission spectra.

is the matrix expressing the second light source’s temporal activation pattern. We recall that

S1,S2 ∈ RC×CQ=3×6 and S ∈ RC×CQL=3×12. Our example further leads to Γ =
(
(Γ1)> (Γ2)>

)>
with Γ`, `= 1,2, the spectral mixing matrix for the `th light source:

Γ` =


(γ1,1b1,`+γ1,2b2,`)I2

(γ2,1b1,`+γ2,2b2,`)I2

(γ3,1b1,`+γ3,2b2,`)I2

 , (4.7)

where I2 is the identity matrix of size 2×2. We recall that γc, f is the spectral impact of the

f th fluorophore on the c th channel, and that b f ,` is the response of the f th fluorophore to the

`th light. Thus, (γ2,1b1,1 +γ2,2b2,1) is the compound contributions from both fluorophores

reacting to the first illumination source as captured by the camera’s second channel. Figure 4.4

further illustrates these quantities and displays the values corresponding to the experimental

setting in Section 4.4.
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Require: ρ, λ, ε, kmax, A, y , d , T
u0 = 0MQ×1;
z0 = 0MQ×1;
k = 0;

while
∥∥xk+1 −xk

∥∥
2 < ε and k < kmax do

xk+1 = (
A>A +ρT >T

)−1 (
A>(y −d )+T >(ρuk − zk )

)
;

uk+1 = Sλ/ρ(T xk+1 + zk );

zk+1 = zk +T xk+1 −uk+1;
k = k +1;

end

with Sλ/ρ(si ) =


si −λ/ρ if si >λ/ρ

si +λ/ρ if si <−λ/ρ

0 if |si | <λ/ρ

, the soft threshold operator [135].

Algorithm 1: ADMM to solve the problem presented in Equations (4.9) and (4.10)

4.3.2 Temporal super-resolution from hue encoded signal

In [117] we performed temporal super-resolution by solving

x?k = argmin
xk

∥∥yk −d0 −SΓxk
∥∥2

2 (4.8)

for every acquired frame, where d0 and Γ were obtained via calibration. We solved Eq. (4.8)

for each pixel and each acquired frame independently, without any dependency between

consecutive frames. While this approach performs well as long as the hue is homogeneous

over the imaged scene, we observed that fluorophore labeling can be inhomogeneous, as

illustrated in Figure 4.6.

To make the method in [117] more robust to model mismatches, we propose to add a regulariza-

tion term over time which introduces a dependency over consecutive frames (temporal depen-

dency). Given the model presented in Eq. (4.4), the vector d0 and matrix Γ obtained through

calibration [117] and a sequence of M acquired color pixels y = [
y>

0 , y>
1 , . . . , y>

M−1

]> ∈RMC×1,

we want to reconstruct the temporal high-resolution signal x = [
x>

0 , x>
1 , . . . , x>

M−1

]> ∈RMQ×1

with a temporal super-resolution factor of Q. We propose to solve

x? = argmin
x

1

2

∥∥y −d − Ax
∥∥2

2 +λ‖T x‖1 , (4.9)

where T ∈RMQ×MQ is a first-order derivative matrix, λ ∈R+ is a free parameter and d ∈RMC×1

is d0 stacked M times. The matrix A ∈RMC×MQ is a block-diagonal matrix built by repeating SΓ

along the diagonal M times. The regularization is known as Total Variation [136] and promotes

piecewise-constant solutions, which is natural in time series of images as it preserves sharp

edges. Equation (4.9) has the generalized LASSO form [137] and can be solved with the
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Alternating Direction Method of Multipliers (ADMM) [138, 135], an efficient choice among

other possible methods [137, 139, 140]. The ADMM considers a problem equivalent to that in

Eq. (4.9),

minimize 1
2

∥∥y −d − Ax
∥∥2

2 +λ‖u‖1

such that T x = u
, (4.10)

and builds the augmented Lagrangian defined as

L (x ,u, y) =∥∥y − Ax −d
∥∥2

2 +λ‖u‖1

+ z>(T x −u)+ (ρ/2)‖T x −u‖2
2 , (4.11)

where ρ > 0 is a penalty parameter, u is a primal variable (as well as x) and z is a dual

variable, also called Lagrangian multiplier. The ADMM algorithm consists of iterative steps

in which the gradient of the augmented Lagrangian is set to zero for the primal variables

[135]. At each iteration k, we alternate between solving a least-squares problem with fixed

regularization weights and updating the regularization parameters (Lagrange multipliers).

The global regularization weight λ, which balances the relative importance of the data and

regularisation terms, is fixed during the entire process (we set its value empirically but it could

be set using an L-curve method [141, 142]). The iterations stop when a maximal number of

iterations kmax has been reached or when the difference between consecutive solutions for xk

is lower than a given value ε ∈R+. Algorithm 1 provides the corresponding pseudo-code in our

case.

4.4 Experiments

We used our implementation of a light sheet microscope (based on OpenSPIM [33]), with

two lasers (Stradus, Vortran Laser Technology) of wavelengths 488nm and 561nm to generate

the excitation illumination light sheet. A four-dimensional stage (USB 4D-STAGE, Picard)

held the sample. The detection axis consisted of a 20×/0.5 water immersion microscopy

lens (UMPLFLN 20×W, Olympus) coupled to a 180 mm tube-lens (U-TLU-1-2, Olympus),

terminated by a 1.2 mega pixels CMOS color camera equipped with an RGGB Bayer filter

(DCC3240C, Thorlabs Instruments). The lasers and camera were electronically synchronized

using a micro-controller (Arduino Due, Arduino, Italy). The micro-controller monitored the

flash output of the camera and controlled the lasers using their ON/OFF electrical input,

similarly to the electronics scheme provided in [128].

We conducted experiments on more than one fish sample, and there were differences in

fluorescent proteins expression between different samples. In order to have acceptable SNR in

the acquired images, we adjusted the exposure time of the camera, hence different frame-rates

in the following experiments.
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4.4.1 Temporal super-resolution light-sheet imaging of the beating heart of a ze-

brafish

To illustrate the potential of our method, we tested whether it was applicable to imaging

the beating heart of a zebrafish embryo. To that end, we chose zebrafish that co-express

ubiquitous cytoplasmic green fluorescent protein, EGFP, and red fluorescent protein, mCherry

[143] (two co-localized fluorophores, F = 2). We embedded the embryos on a glass bottom

dish in 1% low melting agarose and acquired 30 frames (M = 30) with our RGB camera

(C = 3); setting the super-resolution factor to Q = 2, the two lasers (L = 2) were controlled

so that they were each switched on for half of the exposure time (consecutively), so that

we had s1[i ] = [1,0] and s2[i ] = [0,1], i ∈ {0,1}. Figure 4.5 shows two consecutively acquired

frames (Fig. 4.5(a),(e)), all color channels of the acquisitions (Fig. 4.5(b)-(d), (g)-(h)), and the

corresponding four reconstructed frames (Fig. 4.5(i)-(l)). Note that, as discussed in Fig. 4.4,

the blue layer (Fig. 4.5(d),(h)) contains very little energy. Our method was therefore capable of

doubling the frame rate. Here, we had F = 2, which limited the frame rate increase to Q = 2, but

with additional fluorophore species and acquisition channels, higher Q could be considered.

The matrix Γ and the vector d were obtained with the calibration procedure in [117], using the

code available online [128]. The area used for calibration is shown in Figure 4.6(d). Figure 4.4

illustrates how the matrix A = SΓ is built. We observe that the green laser has a high impact

(first value, 0.7) on the red channel of the camera, which is due to the green laser mostly

exciting the red fluorophores and the ensuing red fluorescent light will mostly be captured on

the red channel of the camera. Similarly, the blue laser has a high impact on the green channel

of the camera (value of 0.8), as it mostly excites the green fluorophores. Finally, note that none

of the lasers really impact the blue channel, since there are no blue fluorophores. The values

displayed on Figure 4.4 are the ones obtained after calibration and were used for the following

experiments.

4.4.2 Homogeneity of the fluorescent co-expression ratio

Our method requires that the imaged sample shows consistent fluorescent co-expression.

We set out to make sure that the (static) calibration area and the (dynamic) heart area have

indeed homogeneous and matching green and red fluorescent protein expression levels. To

that end, we computed the red over green ratio (R/G) for each pixel on the images we acquired

to compute the calibration, displayed on Fig. 4.6(b). We then computed the R/G histograms

over various areas to compare them (Fig. 4.6(c’), (d’) and (e’)).

Figure 4.6 shows an acquired color image where the lasers were temporally controlled as

explained in Figure 4.4. The ventricle (V), atrium (At) and pericardium (p) are outlined. In the

pericardium on Fig. 4.6(a), some patches appear green, while the heart appears orange. This
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Figure 4.5 – Fluo-HESM allows simultaneous fast imaging of the beating heart and color
imaging of its surroundings. (a),(e) two consecutive acquired frames. (b)-(d), respectively (f)-
(h) are the red, green and blue layers of the image in (a), respectively (e). (i)-(l) reconstructed
frames using Algorithm 1 with λ = 0.001. The super-resolution factor is 2, hence for two
acquired frames, we observe 4 reconstructed frames. Note that there are 60 milliseconds
between the two acquired frames (a) and (e) and 30 milliseconds between the super-resolved
region in frames (i)-(l), framed in a white rectangle. Outside of this region, our method
allows keeping the color information. On (j), we marked two regions with drastically different
colors, green (♥) and orange (♣). To highlight the link between this data and the schematic of
Figure 4.2, (a) and (e) on this figure correspond to Fig. 4.2 (b) and (i)-(l) to Fig. 4.2 (c). See [129]
Visualizations 1 and 2 for the full movie. Fish orientation indicated: anterior (A), posterior (P),
right (R) and left (L). Scale bar: 100 µm.

is better seen on Fig. 4.6(b), comparing (c), (d) and (e) and their corresponding histograms on

(c’), (d’) and (e’).

Inhomogeneities in the co-expression of red and green fluorescent proteins are visible over the

sample (for example Fig. 4.6(e) and (e’) compared to Fig. 4.6(d) and (d’)). Given this expression

variability (which is common from individual to individual or within the sample), it is thus

important to choose a motionless calibration area (Fig. 4.6(d) and (d’)) that exhibits similar

R/G ratio than that of the dynamic phenomenon of interest, like the beating heart (Fig. 4.6(c)

and (c’)). Even with a careful choice, slight differences in the histogram remain (compare (c’)

and (d’)). This justifies the use of an algorithm that is sufficiently robust to mismatches than

a plain least-squares method without regularization. We further investigated this aspect in

Section 4.4.4.
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Figure 4.6 – A static region is required to calibrate our method. The region must also have a
similar red over green (R/G) ratio than in the heart. (a) Hue-encoded light-sheet image of a 2
days post-fertilization zebrafish heart. The ventricle (V), the atrium (At) and the pericardium
(p) are outlined. (b) The ratio R/G of each pixel on the image in (a). Notice that the ratio R/G is
not homogeneous over the whole image. In order to calibrate our method, we need a static
region with the same ratio R/G as in the heart; it is shown in (d). (d’) shows the histogram of
values within (d). Similarly, (c’) and (e’) show histograms of their corresponding regions (c)
and (e). Notice that the calibration region (d) has a histogram similar to that of the heart (c),
with a maximum centered around 1.5. The histogram in (e’) is obviously different to that in (c’)
and (d’), so our method would require another calibration to be used in the area of (e). Fish
orientation indicated: anterior (A), posterior (P), right (R) and left (L). Scale bar: 100µm.
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4.4.3 Combined fast and color imaging on the beating heart of a zebrafish

We applied Algorithm 1 only in the region comprising the beating heart. In this way we could

maintain the color information in static areas and do fast imaging where needed. Since

we require the imaged sample (in this case, the heart) to be homogeneously labeled for

temporal super-resolution, after Algorithm 1 we can virtually assign the (single) hue back

to the reconstructed images. Figure 4.7 shows two frames where we have temporal super-

resolution reconstructed frames only in a region of interest (Fig. 4.7(c)) and where the acquired

hue is preserved in static areas (Fig. 4.7(a) and (b)).

4.4.4 ADMM compared to least-squares without regularization

As observed in Section 4.4.2 and Figure 4.6, there can be inhomogeneities in the co-expression

ratios of the fluorescent proteins over the sample. We investigated whether the algorithm we

introduced in Section 4.3 (ADMM) is more robust to these variations than the least-squares

method (LSTSQ) without regularization of [117]. To that end, we compared reconstructions

obtained using either ADMM or LSTSQ with the same input data. Figure 4.7(d) shows a

comparison of both reconstructions at the same location, where the heart beats. The cardiac

period is visible in both plots yet the ADMM reconstruction is smoother with sharp transitions

maintained, unlike the LSTSQ reconstruction. This behavior is to be expected with the Total-

Variation regularization. In Figure 4.7(e), we compared ADMM and LSTSQ reconstruction at a

location where the imaged sample is mostly static. There the reconstructions is expected to

be nearly constant, which is indeed the case for the ADMM reconstruction, while the LSTSQ

reconstructions oscillates, most likely because of a slight image model mismatch.

For the ADMM reconstruction, the processing time for 45 time-points on a single pixel (i.e.

90 reconstructed time-points) was ≈ 1.7 milliseconds on a MacBook Pro 2018 (2.9 GHz 6-

Core Intel Core i9, 32 Gb RAM). The code is in standard Python 3. We believe that with GPU

programming, separating the processing of each individual pixel, and some tweaking, the

code could run in real-time.

4.4.5 Impact on the reconstruction of 3D volumes of the beating heart

Light-sheet microscopy is a well-established tool for developmental studies thanks to its high

spatio-temporal resolution and its low level of induced optical damage to the sample [144].

Furthermore, it has good sectioning capabilities, which we took advantage of to produce

a dynamic 3D+time volume series (XYZ + time). We acquired movies of optical sections at

different depths within the sample, applied our temporal super-resolution method to each

individual movie, then temporally registered consecutive (in z) movies for the heartbeat to
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Figure 4.7 – Fluo-HESM is robust to fluorescence labeling inhomogeneities thanks to the
temporal `1 regularization. (a)-(b) Composite color images and temporal super-resolution
reconstructions. The dynamic area of the scene (c), with the beating heart, has been manually
selected and inside of (c), the frame rate is twice that of outside. This illustrates the ability
to choose between fast single hue imaging and slow color imaging. (d) Reconstructions at
the location shown on (c) with a heart symbol (♥) using least-squares (without regularization,
LSTSQ) or ADMM. The TV regularization we used in Eq. (4.9) favors piecewise constant
reconstructions and preserves sharp edges. (e) Reconstructions at the location shown on
(c) with a club symbol (♣) using LSTSQ or ADMM. At this location, there is little motion of
the sample, and the LSTSQ reconstructions oscillate a lot, while the ADMM reconstructions
show little motion, justifying the use of ADMM over LSTSQ. Within (c), we assigned a hue to
the reconstructed images, which we measured at calibration. Scale bar: 100µm. See [129]
Visualization 3 for the full movie.
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be synchronous in all slices. For the temporal registration, we used a dynamic programming

method [145]. The method finds the best warping function of a temporal series onto another

one by maximizing the sum of normalized mutual information between all frames of both

time-series, which has already been shown to be well-suited for cardiac images [146, 147, 148].

Visualization 4 in [129] shows a 3D+time rendering that highlights the raw data, where motion

is encoded within the color channels, and the doubled frame rate reconstruction.

4.4.6 Roadmap to higher super-resolution factors

In this paper, we presented a method to double the frame-rate of imaging in fluorescence

microscopy. According to our model, the temporal super-resolution factor is determined

by the rank and conditioning number of matrix A in Eq. (4.9). The rank is upper-bounded

by both C , F , and L (respectively the number of color channels, the number of co-localized

fluorophores and the number of lasers at our disposal), so to have a super-resolution factor of,

say, Q = 3, we would need at least three color channels, three co-localized fluorophores and

three lasers.

Also, the conditioning number of the matrix A provides a means to predict the quality of the

reconstructions, as we have illustrated in [117]. If the chosen fluorophores have too close light

emission spectra, this conditioning number will increase, hence lowering the quality of the

reconstruction. In [110], Shaner et al. provide insights on how to chose fluorescent proteins

and optical filters for maximal spectral separation, which improves the conditioning of our

system. A recommended setup of [110] would have so little spectral cross-talk that we could

have Q = 3 with close to a perfect conditioning number, hence good quality reconstructions

at three times the frame-rate. This setup recommends using three bandpass detection filters

centered at 480 nm (bandpass width 40 nm), 575 nm (bandpass width 25 nm) and 675 nm

(bandpass width 130 nm) and the following three co-localized fluorophores: Cerulean (center

wavelength of emission 475 nm), mOrange (center wavelength of emission 562 nm) and

mPlum (center wavelength of emission 649 nm).

4.5 Discussion and Conclusion

In this paper, we investigated whether a hue-encoded shutter method (HESM) to improve

the temporal resolution[117] could be applied to fluorescence microscopy. We showed that

despite the physical differences between fluorescence (where the illumination spectrum

cannot be inferred from the emission spectrum) and light absorption or reflection properties

(which directly modulates the illumination spectrum to produce the transmitted or reflected

light), HESM can still be used in fluorescence microscopy, provided one can use temporally

modulated illumination, a color camera, and samples labeled with co-localized fluorophores
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in the dynamic regions where a frame rate boost is desired. We showed imaging of the beating

heart of a zebrafish labeled with co-localized red and green fluorescent proteins at twice

the acquisition frame rate on a light-sheet microscope, with the ability to preserve the hue-

information in static areas. Although we experimentally showed an increase of the frame

rate by a factor of 2, our method is general enough that it should allow for higher factors

if additional co-localized fluorescent species, lasers, and color channels are available as

discussed in Section 4.4.6.

Our use of a low SNR RGB camera leads to the performance of the current implementation

of our method to be below that of the highest frame-rates achievable with dedicated high-

sensitivity cameras (100–200 fps) built into some light-sheet microscope implementations, we

foresee that the use of alternative imaging components (light splitting and multiple high-speed

cameras) could lead to even higher frame rates.

A key element that we introduced in this paper for the HESM approach to be sufficiently

robust in practice, is the temporal regularization, which can cope with sample labeling inho-

mogeneities and low signal quality inherent to fluorescence imaging, as shown in Figure 4.7

(d). We further observed that two aspects are particularly important when selecting a fluores-

cent sample for HESM: (1) the co-localized fluorescent labels should be as homogeneous as

possible in the dynamic regions and (2) a static area with a labeling ratio sufficiently similar to

the dynamic region is required to calibrate the system. This means that a sample where only

moving cells are labeled would not be suitable to our method, as the calibration could not be

performed.

In Section 4.4.3, we illustrated the versatility afforded by our method (either slow color imaging

or fast monochrome imaging), by applying it to a region of interest surrounding the beating

heart of a zebrafish, while preserving the acquired color images outside of the region. Fur-

thermore, the added possibility of using fluorescence opens the use of HESM to sectioning

methods that rely on fluorescence (such as light-sheet microscopy). We illustrated the benefits

of a doubled frame rate in the reconstruction of the beating heart in four dimensions (3D + t).

Our method is generic enough that it could potentially speed-up other fluorescence mi-

croscopy methods, provided samples with co-localized fluorophores can be generated and

multiple lasers can be modulated in time at high-speed, in synchrony with the color camera.
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5 Generalized temporal sampling with

active illumination in optical mi-

croscopy
This chapter is directly based on our publications in [149] and [150]. The authors are myself

and Michael Liebling.

To better locate this paper in the context of the whole thesis, Figure 5.1 illustrates the effect of

the method when applied to the schematized heart of Figure 2.3.

5.1 Abstract

Generalized sampling is a flexible framework for signal acquisition, which relaxes the need for

ideal pre-filters. Nevertheless, implementation remains challenging for dynamic imaging ap-

plications because it requires simultaneously measuring multiple overlapping inner-products

and because only positive signals (intensities) can be measured by cameras. We present a

method to collect videos of monochromatic objects by projecting the incoming signal at each

pixel in a temporal B-spline space of degree 0, 1, or 2 by using a conventional RGB camera and

a modulated three-color light source for illumination. Specifically, we solve the basis function

overlap problem by multiplexing the acquisition in different color ranges and use B-spline

pieces (which are positive) as projection kernels of a biorthogonal projection-expansion bases

pair. The steps to recover signal samples include spectral unmixing and inverse filtering.

Reconstructions we obtained from simulated and experimentally-acquired microscopy data

demonstrate the feasibility of our approach.

5.2 Introduction

Observing phenomena in live biological samples in microscopy requires sufficient time-

resolution [55]. Besides the development of faster and more sensitive cameras and clever
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Figure 5.1 – The method presented in this chapter performs temporal generalized sampling
imaging. The effect of a sampling scheme are not obvious alone, so we compare generalized
sampling with a naive sampling scheme where the Nyquist criterion is not respected. The
simulated reconstructions are shown in orange. In the case of generalized sampling, the
high-frequency signal is reconstructed as its average value. In the case of naive sampling, we
observe aliasing as the reconstructed signal seems to follow a low frequency sine curve.

pixel rebinning methods [75], various sensing and computational approaches to increase the

temporal resolution of microscopes have been proposed. Some rely on multiple observations

of a signal [56, 57, 58, 59] or make clever use of the signal structure itself, e.g. its sparsity

in a known basis [71, 72, 69] or its repeatable nature [73, 74]. The ability to modulate the

illumination rapidly in a controlled and cost-effective way (in particular, with LED-based

illuminators [32]) also opens the way for promising methods. For instance, short light pulses

(stroboscopy) have been used to reduce motion blur [118] or the fluttered shutter principle

[120, 119] uses a pseudo-random temporal illumination sequence to computationally improve

the temporal resolution.

Despite the above developments, many imaging systems still rely on direct image acquisi-

tion, which is vulnerable to aliasing if the imaged signal contains frequencies higher than the

Nyquist frequency, since perfect low-pass filters cannot be implemented in practice. Gen-

eralized sampling [106] offers a framework to implement sampling operations that relaxes

the need for ideal filters. Applications that build upon this framework have been proposed in

optics [151] or to sample signals with a finite rate of innovation on multiple channels [152].

Due to the shift-invariant nature of generalized sampling, the implementation of pre-filters in

time can be problematic because of the temporal overlap of the inner product kernels. Indeed,

if the pre-filter used is longer than a unit of time (sampling interval), several inner-products

must be carried out simultaneously, which requires a multiplexed acquisition approach.

Moreover, in standard (incoherent light) optical imaging applications, only the intensity

of the light, which is always positive can be measured. While modulation is possible by

illuminating the sample with a variable intensity over time, this illumination suffers from the

same positivity limitations (only positive illumination functions can be considered). In this
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paper, we present an approach to overcome the above positivity and multiplexing limitations

to carry out generalized sampling in the context of optical microscopy imaging. We propose

to use active multicolor illumination and a color camera for collection, allowing spectral

multiplexing and ideal prefiltering of the signal. Specifically, we modulate the illumination

signal over time with independent signals in different color channels of the illumination lamps,

which produces modulated signals whose integration by a camera shutter can be converted

to the inner product between the signal and the prefilter kernel. Following recovery of these

coefficients and reconstruction of the signal in the projection basis’ dual basis, we obtain

samples of the incoming signal, projected on the space spanned by a shift-invariant B-spline

basis.

This paper is organized as follows. In Section 5.3, we provide a formal description of our

problem. In Section 5.4, we derive our method. In Section 5.5, we illustrate our approach

on both synthetic signals and from data collected on a transmission wide-field microscope.

Finally, we conclude in Section 5.6.

5.3 Problem statement

We consider a continuous-time signal f (t), of which we want to estimate the least-squares

approximation f̃ (t ) in the shift-invariant space spanned by B-splines of degree n, V = {
βn(·−

k),k ∈Z}
, which can be obtained via a biorthogonal projection[106]:

f̃ (t ) = ∑
k∈Z

〈 f , β̊n(·−k)〉︸ ︷︷ ︸
c[k]

βn(t −k), (5.1)

with

〈 f , g 〉 =
∫ ∞

−∞
f (t )g (t )dt (5.2)

and where β̊n(t ) is the dual B-spline[107], a function which, in addition to satisfying,

〈βn(·−`), β̊n(·−k)〉 = δ[`−k], (5.3)

also spans the subspace V (and is therefore unique).

A practical system should therefore provide the measurements ck , which correspond to

weighted integrals of the input signals. There are two issues when implementing this. First, the

β̊n have infinite support and hence overlap in time (except for degree n = 0), which requires

some way of splitting the input signal to perform the inner products in parallel, and, second,

the signals in this setting are light intensities, which have to be positive.

To implement the projection settings, we consider a conventional imaging system with a
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camera that has C color channels (e.g. an RGB pixel of a color camera corresponds to C = 3).

We further assume that the system has L light sources that uniformly illuminate the scene,

each with a different, yet possibly overlapping, color spectrum. The intensity of each light

source can be controlled as a function of time and independently. These functions can only be

positive (as light intensities are necessarily positive) and their duration should be less than the

integration time of each of the camera’s frames. We model the imaging system by taking into

account the crosstalk that arises from the use of broadband light sources and wide camera

(RGB) filters. For a single pixel at time k, we simultaneously measure the intensities yc [k] in

channels c = 1, . . . ,C :


y1[k]

...

yC [k]

=


γ1,1 · · · γ1,L d1

...
. . .

...
...

γC ,1 · · · γC ,L dC




a1[k]
...

aL[k]

1

 (5.4)

or in condensed form:

y =Γa, (5.5)

where the matrix Γ contains the crosstalk mixing terms (including an affine offset dc ) and the

coefficients a`[k] are the inner products:

a`[k] = 〈 f , s`(•−k)〉. (5.6)

where s`(t ) are the positive illumination functions, whose support covers the sensor exposure

interval.

With this formulation, the problem of recovering the samples c[k] in Equation (5.1) from

measurements yc [k], can be broken down into the following sub-problems:

1. find suitable illumination functions s` (in particular, positive and with a finite support)

such that the sequence c[k] can be derived from the multi-channel sequence a`[k].

2. determine the coefficients c[k] from the coefficients a`[k] (via inverse filtering)

3. determine the coefficients a`[k] from the yc [k] (via spectral unmixing).

We detail these steps in the section below.
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Figure 5.2 – Equivalent basic and dual B-spline representations of the same signal for degrees
n = 1 (top row) and n = 2 (bottom row). Notice that both represented signals (in blue in
all plots) are equivalent, i.e.

∑
k c[k]βn(t − k) = ∑

k c̊[k]β̊n(t − k), while the basic B-spline
representation uses functions of finite support.

5.4 Methods

5.4.1 Multi-color B-spline segments as prefilter kernels

Our goal is is to compute the inner products in Eq. (5.1) via active illumination by choosing

illumination functions s`(t −k) appropriately. The challenge of this task is that we cannot

use s`(t −k) = β̊n(t −k) directly (which would be the natural choice) because the dual of a

B-spline is not positive for all t (except when n = 0) and s`(t ) being a light intensity, it must be

positive. We work around this problem by using an equivalent representation of the projection

described in Equation (5.1) and illustrated in Figure 5.2, by switching the role of the dual

bases[107] namely:

f̃ (t ) = ∑
k∈Z

〈 f , β̊n(·−k)〉βn(t −k) = ∑
k∈Z

〈 f ,βn(·−k)〉β̊n(t −k). (5.7)
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Figure 5.3 – Illumination functions s`(t −k) over three frames for stroboscopic imaging (top
left), n = 0 (top right), n = 1 (bottom left), and n = 2 (bottom right). The color of the line
corresponds to the color of the illumination light. For n = 1 and n = 2 (bottom plots), multiple
frames are involved to compute a single coefficient c̊[k] from the coefficients a`.

Specifically, the coefficients in the dual B-spline basis are given by:

c̊[k] = 〈βn(·−k), f 〉 =
∫ n+1

2

− n+1
2

βn(t −k) f (t )dt , (5.8)

where we note that all involved functions are positive and, since the B-spline have a finite

support, the inner-product can be computed over a finite interval. Nevertheless, since the

support of B-splines of degree n is n +1, we have n +1 shifted B-splines that overlap in the

signal representation at any given time (see Figure 5.2) making the sequential computation

of the c̊[k] problematic. In order to still acquire several inner products simultaneously, we

spectrally multiplex the measurements according to Equation (5.4), by splitting each B-spline

into n +1 regions, which gives the following illumination functions s`(t ), for n illumination

sources (`= 1, . . . ,n); for n = 0, we have

s1(t ) =β0(t ); (5.9)
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for n = 1, we have:

s1(t ) =
β

1(t ) = 1− t , 0 < t < 1

0, otherwise,
(5.10)

s2(t ) =
β

1(t −1) = t , 0 < t < 1

0, otherwise;
(5.11)

and for n = 2, we have

s1(t ) =
β

2(t +1) = 1
2 ( 1

2 − t )2 −1/2 < t < 1/2

0, otherwise,
(5.12)

s2(t ) =
β

2(t ) = 3
4 − t 2, −1/2 < t < 1/2

0, otherwise,
(5.13)

s3(t ) =
β

2(t −1) = 1
2 ( 1

2 + t )2 −1/2 < t < 1/2

0, otherwise,
(5.14)

where

β2(t ) =


1
2

(3
2 −|t |)2, 1

2 < |t | < 3
2

3
4 − t 2, |t | ≤ 1

2

0, otherwise.

(5.15)

Figure 5.3 shows the illumination functions over three consecutive acquired frames for n = 0

n = 1, and n = 2. The color of the line corresponds to the color of the illumination. Notice that

in order to reconstruct c̊[k] we have to combine measurements over multiple frames (see the

bold lines in Fig. 5.3 for n = 1 and n = 2).

The red illumination is light 1 (a1), the blue illumination is light 2 (a2) and the green illumina-

tion is light 3 (a3). For degrees n = 0,1 and 2 the coefficients c̊[k] can be recovered from a`[k]

as described below (assuming mirror boundary conditions).

Degree n = 0:

c̊[k] = a1[k] (5.16)

Degree n = 1:

c̊[k] =
a1[k]+a2[k +1], 0 ≤ k < K −1

2a1[K −1], k = K −1
(5.17)
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Degree n = 2:

c̊[k] =


a1[k −1]+a3[k]+a2[k +1], 1 ≤ k < K −2

a2[0]+a3[0]+a2[1], k = 0

a1[K −1]+a1[K −1]+a1[K −2], k = K −1

(5.18)

5.4.2 Spectral unmixing

The spectral unmixing procedure is similar to the setting described in [117]. Specifically, we

recover the vector a by solving the minimization problem:

a? = min
a

‖Y −d −Γa‖2
2 . (5.19)

5.4.3 Converting to samples

We obtain the basic B-spline representation through filtering of the coefficients in the dual-

spline representation [107]:

c[k] = (b2n+1)−1 ∗ c̊[k]. (5.20)

We can further obtain samples by carrying out interpolation

f̃ [k] = f̃ (t )
∣∣

t=k= c ∗bn
1 [k], (5.21)

where

bn
1 [k] =βn (t )

∣∣∣
t=k

. (5.22)

5.5 Experiments

5.5.1 Reconstructions from synthetic data

We conducted an experiment to illustrate the impact of the chosen sampling basis. We

generated a 1D signal containing shifted B-splines of various degrees, shown on Figure 5.4. We

then simulated active sampling using B-splines of degrees 0 to 2 as pre-filters. Figure 5.4 shows

the reconstructions obtained by sampling the signal on the top left of the figure. We observe

that the B-splines in the sampled signal are perfectly reconstructed when the pre-filter is of the

same degree than the B-spline. We also see overshooting and ringing after sharp transitions,

for degrees n ≥ 1.

We set out to investigate the effect of our method in the presence of high frequencies, which

we compared to a stroboscopic imaging system. We generated a 1D temporal chirp signal and
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β0(t −5)+β1(t −10)+β2(t −15)+β3(t −20)

Figure 5.4 – Shifted B-splines of degrees 0, 1 and 2. We observe that each B-spline is perfectly
reconstructed when the sampling is done with B-splines of the same degree.
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Figure 5.5 – Sampling simulations of the signal f (t ) = 1+ si n( t 2

35 + π
2 ) (top left). We simulated

stroboscopic imaging (top right) and generalized sampling with B-splines of degree 1 (bot-
tom left) and 2 (bottom right). Notice that the B-spline sampling reconstructions for high
frequencies (t ≥ 80) goes to the average of the signal, while the stroboscopic imaging shows
aliasing.

simulated sampling with B-splines of degree 2 as well as stroboscopic imaging. The signal

and sampling simulations are shown on Fig. 5.5, where we notice that stroboscopic imaging

is strongly subject to aliasing, while generalized sampling by projection on B-spline bases

gracefully handles higher frequencies.

5.5.2 Rotating chirp

We used a printed black and white grid that we rotated using a stepper motor (Nema 14,

Bipolar, Stepper Online, China) controlled by a micro-controller (Arduino Due, Arduino, Italy)

through a power driver module (L298N dual H-bridge driver chip, Electronicmodule Store,

China). We incrementally increased the grid’s rotation speed by steps, while acquiring images

with either stroboscopic illumination or using the illumination functions shown in Figure 5.3.

The exposure time was set to E = 200ms. We then used the method presented in Section 5.4.1

to reconstruct image series and compared them to those obtained via stroboscopic imaging

(Figure 5.6). Fig. 5.6(a)-(d) show acquired images using either stroboscopic imaging (a) or
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B-spline sampling with degrees 0 to 2 (b)-(d). Fig. 5.6(e) shows a graph with all reconstructions

over time at the same location, marked with a cross (“X”) on (a)-(d). Fig. 5.6(f)-(i) show

reconstructed images when the grid was rotating at high speed. We can see strong temporal

aliasing in (f) as the grid appears to be almost static over consecutive frames, although it

has undergone multiple rotations. On Fig. 5.6(g)-(i), the rotating grid takes the aspect of

a uniform gray disk, with minor intensity variations where aliasing is slightly visible. This

experiment shows that the sampling scheme presented in Section 5.4.1 does not allow for

perfect sampling, which would be free of aliasing and motion-blur. Nevertheless, the pre-filter

is optimal for the sampling in the bases in which we sample (project) the imaged signal,

hence the reconstructions of (g)-(i) are the optimal representations of the signal in our chosen

B-spline bases. In other words, even if our reconstructions are not perfect, they are more

reliable than that of Fig. 5.6(f). Similarly to the experiment in Section 5.5.1, we can see that the

reconstructions on Fig. 5.6(e).

5.5.3 Microscopy

We set out to investigate if our method could be implemented in optical microscopy. Specifi-

cally, we considered bright field and fluorescence (light-sheet) microscopy. We further investi-

gated the feasibility of using this method for in vivo imaging of dynamic processes, specifically,

to image the beating heart of zebrafish embryos.

Hardware and parameters setup

For bright-field microscopy (experiments in Section 5.5.4), we implemented the illumination

scheme with commonly available and cost-effective hardware. We assembled a light source

using a 6-LED chip (SLS Lighting RGBWA+UV, Aliexpress, China). We drove the red (λ ≈
620nm), green (λ≈ 525nm) and blue (λ≈ 465nm) LEDs via a micro-controller (Arduino Uno,

Arduino, Italy), which we programmed to generate the illumination time-pattern shown on

Figure 5.3, individually controlling each color. For the LED and camera synchronization, the

micro-controller monitored the flash trigger output of the camera. Whenever the trigger signal

transitions from low to high state, the micro-controller starts the time-sequence of the LEDs

for the frame about to be recorded. The LEDs were directly powered by the controller’s outputs,

without additional power amplification of the signal.

For fluorescence microscopy (experiments in Section 5.5.5), we used an implementation of the

OpenSPIM light-sheet microscope [33], with two lasers (Stradus, Vortran Laser Technology)

of wavelengths 488nm and 561nm to generate the excitation illumination light sheet. Again,

we used a micro-controller (Arduino Uno) to modulate the laser intensities over time, using

pulse-width modulation control on their fast ON/OFF electrical connexion to generate the
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Figure 5.6 – Rotating grid imaged using various sampling methods. The grid is visible on (a).
(a)-(d) acquired images at the same speed and position of the grid. The rotating arrow in (a)
shows the rotation direction. The speed was increasing with the time. (a) was acquired with
a stroboscopic illumination. (b)-(d) were acquired using B-splines as pre-filters of order 0
(b), 1 (c) and 2 (d). (e)-(h) show all reconstructions over time at the same location marked
with an “X” on (a)-(d). Notice that on (e) (stroboscopic case), for t > 6, the plot oscillates
between the maximal and minimal values (corresponding to white and black in the image),
indicated with black arrows, while in (f)-(h) (generalized sampling cases), the plots tends to
the average value (grey in the images). (i) images acquired with the stroboscopic illumination
when the grid was rotating fast. Strong aliasing is visible, as between consecutive frames the
grid appears to have moved very little, while it has made more than one rotation between
each frame. (j) reconstructions with B-spline pre-filters of degree 0. (k) reconstructions with
B-spline pre-filters of degree 1. (l) reconstructions with B-spline pre-filters of degree 2. The
images in (j)-(l) show little to no aliasing: the rotating grid becomes a uniform gray disk, as is
consistent with the simulation in Figure 5.5. Full movie available online [129], Visualization 1.
Scale bars: 2 cm.
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illumination functions in Figure 5.3 up to degree 1 (the highest degree achievable with only 2

lasers).

For both the bright-field and fluorescence experiments, we used a CMOS color camera (Thor-

labs DCC3240C, Thorlabs, Germany) with 1280 × 1024 pixels and a standard RGGB-Bayer filter

pattern. We attached the camera to the camera port of our microscope (for both transmission

and light-sheet microscopy) consisting of a 20× Olympus water dipping lens (Olympus Plan

Fluorite UMPLFLN 20×W) combined with a 180mm tube lens (Olympus U-TLU-1-2) and

terminated by a 0.5× zoom lens (Olympus U-TV0.5XC-3).

For imaging, we embedded 3 dpf zebrafish larvae, anesthetized with 0.1% tricaine (ethyl

3-aminobenzoate methanesulfonate salt, Sigma), in low melting agarose.

5.5.4 Generalized sampling of the beating heart of the zebrafish under transmis-

sion microscopy

To illustrate the applicability of our method for biological bright field microscopy, we imaged

the beating heart of the zebrafish larva with transmission illumination. We first acquired

images of the beating heart using stroboscopic imaging then repeated the acquisition using

the generalized sampling method from Section 5.4 with degrees 0, 1, and 2. The exposure time

was set to E = 60ms. Figure 5.7 shows 3 consecutive images either acquired with a strobed

illumination (Fig. 5.7(a)) or using temporal generalized sampling (Fig. 5.7(b)-(d)).

Although the strobed illumination (Fig. 5.7(a)) produces slightly sharper images, this approach

is subject to aliasing at high frequencies. This means that even though the image appears

sharper, one cannot trust the observed motions to be representative of the actual motion

sequence of the heart. Although the images obtained with our proposed method (Fig. 5.7(b)-

(d)) exhibit stronger motion blur than those obtained with strobed light, one can be confident

that the perceived motion is accurate.

5.5.5 Generalized sampling of the beating heart of the zebrafish on light-sheet

fluorescent microscopy

We set out to investigate whether our generalized sampling method is applicable to fluores-

cence microscopy. To take advantage of the temporally-modulated color illumination, we

imaged a zebrafish that co-expresses ubiquitous cytoplasmic green fluorescent protein, EGFP,

and red fluorescent protein, mCherry [143, 131]. Taking advantage of the fluorophores being

co-localized we computed the inner products in Eq. (5.8) simultaneously and used the method

of Section 5.4 to perform temporal generalized sampling.
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Figure 5.7 – Generalized sampling of a 3 dpf zebrafish beating heart under transmission
microscopy. (a) Three consecutive frames of stroboscopic imaging. (b)-(d) Three consecutive
reconstructed frames using our method in Section 5.4 for B-spline sampling of degrees 0 (b)
,1 (c), and 2 (d). There are no obvious differences between (a)-(d), (a) is slightly sharper than
(b)-(d) due to the short light pulse. Full movie in Visualization 2 [129]. Scale bar: 100 µm.

We acquired images of the beating heart of the zebrafish first using stroboscopic imaging, then,

via the generalized sampling method from Section 5.4 with degrees 0 and 1. The exposure

time was set to E = 60ms. Since we had only two lasers and two fluorophores in our system,

only generalized sampling up to degree 1 was possible.

Figure 5.8 shows 3 consecutive images acquired with either the strobed illumination (Fig. 5.7(a))

or our method (Fig. 5.7(b),(c)).

Similarly to the experiment in Section 5.5.4 for transmission microscopy, the strobed illumi-

nation produces slightly sharper images. However, the strobed image sequence is subject to

stronger aliasing.
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Figure 5.8 – Generalized sampling of a 3 dpf zebrafish beating heart under light-sheet fluo-
rescence microscopy. (a) Three consecutive frames of stroboscopic imaging. (b),(c) Three
consecutive reconstructed frames using our method in Section 5.4 for B-spline sampling of
degrees 0 (b) and 1 (c). There are no obvious differences between (a)-(c), while the reconstruc-
tions in (b) and (c) can be trusted more than (a). Full movie in Visualization 3 [129]. Scale bar:
100 µm.

5.6 Conclusion

We presented a method to perform temporal generalized sampling in optical microscopy. Our

approach allows for the use of implementable pre-filters that have finite temporal support

and that verify the positivity constraint. Via our proposed spectral multiplexing approach, we

could compute multiple inner products simultaneously and, after spectral unmixing, retrieve

each individual inner product. Our method leverages the equivalence between basic and

dual B-spline representations [107]. Since our method follows the projection framework

of generalized sampling, it offers the prospect of avoiding aliasing despite not using ideal

pre-filters.

Although the experiments on the beating zebrafish heart of Section 5.5.3 show sharper images

using strobed illumination, our method increases the trust one can have in videos as insuffi-

cient frame-rate results in motion blur instead, which is visible even in still frames. Using our

method, sharp image sequences are therefore more likely to be devoid of temporal aliasing.

Higher degree B-splines have a higher approximation power [153, 154]. Therefore, as high a
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degree as possible would be preferable. The highest achievable degree, in our experimental

setting with an RGB color camera, was 2 since we could compute no more than three simul-

taneous inner products. While this paper focused on implementing B-spline pre-filters, our

method of computing multiple inner products simultaneously could be extended to other

sensing methods, provided the modulation functions are positive and have finite support.

Our experimental implementation relies on a global shutter camera. That is, all pixels share

the same integration time and no light is captured by the sensor during the readout (when the

image is transferred from the camera to the computer). On the camera we used, this readout

time is about 3 milliseconds for images of resolution 500x500 pixels. This implies that the

partition of unity [106] condition is not strictly respected. Nevertheless, in practice, this did

not visibly affect our method.Some rolling shutter cameras permit continuous exposure of

the sensor, where lines are sequentially exposed and transferred to the computer, but would

require additional adaptation to take this exposure sequence into account.
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6 Multi-Spectral Widefield Microscopy

of the Beating Heart through Post-

Acquisition Synchronization and

Unmixing
This section is directly based on our publication in [148]. The authors are myself, Linda Bapst-

Wicht, Daniel Schorderet and Michael Liebling. M. Liebling and I had the original idea of the

method and implemented it. L. Bapst-Wicht provided us with the zebrafish embryos for the

experiment in Section 6.5.2 and she wrote the first paragraph about fish breeding in Sec. 6.5.2.

Prof. D. Schorderet is with the Institut de Recherche en Opthalmologie, Sion, Switzerland. He is

the supervisor of L. Bapst-Wicht. M. Liebling and I wrote the draft of the manuscript and all

authors discussed the results and contributed to the final manuscript.

To better locate this paper in the context of the whole thesis, Figure 6.1 illustrates the effect of

the method when applied to the schematized heart of Figure 2.3.

6.1 Abstract

Multi-spectral imaging allows distinguishing biological structures. For cardiac microscopy,

available devices are either too slow or require illumination intensities that are detrimental

to the sample. We present a method for spectral super-resolution imaging of samples whose

motion is quasi-periodic by sequentially acquiring movies in wavelength ranges with filters

of overlapping bands. Following an initial calibration procedure, we synchronize and unmix

the movies to produce multi-spectral sequences. We characterized our approach to retrieve

the transmittance of a colored microscopic target whose motion we controlled, observing

measurements within of 10% that of a reference spectrometer. We further illustrate our

approach to observe the beating embryonic zebrafish heart, demonstrating new possibilities

for studying its development.
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Figure 6.1 – Our method in this chapter performs spectral imaging of the beating heart by
combining multiple videos acquired with various filters.

6.2 Introduction

Live cardiac imaging in the developing heart is a complex task as the heart beats while it

develops and illumination must be limited to prevent damage to the sample. Multi-spectral

imaging could benefit the study and differentiation of cardiac structures but as the available

light is limited, multi-spectral imagers require operation times that are too slow for cardiac

applications.

We propose a method to perform multi-spectral imaging of the beating heart by acquiring a

set of movies of the beating heart over multiple heartbeats, each recording a signal filtered in

different (and possibly overlapping) range of wavelengths. From these multi-channel data, we

build a single multi-spectral movie of the beating heart through temporal registration of the

movies followed by color unmixing to yield non-overlapping wavelength ranges (Fig. 6.2).

The importance of multi-spectral imaging in wide-field (non-fluorescence) microscopy and

biomedical imaging has been identified in the past. Aach et al. [155] detected cancerous cells

through spectral imaging. Blasinski et al. [156] have shown that spectral imaging improves the

classification accuracy of ablated heart tissue using machine learning.

Spectral cameras typically acquire multiple images sequentially with narrow-band filters or

split the incoming light onto multiple sensors, based on the wavelength [157]. While the

first solution makes the imaging process slow, hence unsuitable to image dynamic sample,

the second solution trades spatial resolution or signal intensity for spectral resolution. Also,

building such cameras requires high opto-mechanical precision and little flexibility for the

end user to adjust to particular wavelength ranges.

To overcome these limitations, methods to achieve spectral imaging through computational
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Figure 6.2 – Overview of the method: (1) we acquire M movies of a live beating heart with M
different filters, where the first filter is an all-pass that serves as registration reference; (2) we
register all acquired movies to the reference sequence; (3) we perform unmixing pixel-by-pixel
in order to retrieve a multispectral movie of the beating heart.

approaches with less constraining hardware have been proposed. For example, multiple

observations of the same scene, observed through a set of colored filters are combined to

reconstruct a multi-spectral view [158, 159, 160]. Other approaches have considered spectral

imaging as an interpolation or a learning process, using priors on the signal to be recon-

structed [161, 162, 71].

Here, we build upon the former class of methods (direct unmixing) that we combine with

the multi-channel synchronization step described in Ohn et al. [147] for cardiac imaging of

multiple fluorescence channels imaged one after the other, with a brightfield movie as the

common reference to synchronize movies collected in 6 bands.

The contributions of this work are (i) presentation of a pipeline to sequentially collect and

process multi-spectral images of the beating heart (described in Sections 6.3 and 6.4), (ii)

characterization of the proposed approach on a controlled dynamic microscopy sample

(Section 6.5) and (iii) demonstration of the applicability for imaging the beating heart of a

zebrafish (Section 6.5.2). We discuss results and conclude in Section 6.6.
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6.3 Problem Statement

We consider a multispectral, T -periodic signal s such that:

s(x ,λ, t ) = s(x ,λ, t +T ), for all time t ∈R, (6.1)

where x = (x1, x2) are spatial coordinates and λ the wavelength. The signal s represents the

transmissivity of a sample to incoming light over time. We further consider M movies:

ym[k ,`] = ∑
λ1,...,λN

am[λn]s(k∆x,λn ,`∆t +τm)+ c, (6.2)

with pixels indexed by k = (k1,k2) ∈K = {0, . . .K1}× {0, . . .K2}, frames indexed by 0 ≤ `< L, ∆x

and ∆t the sampling steps in space and time, respectively. The factors am incorporate the

combined effect of illumination source, bandpass filters (indexed by m ∈ {1, . . . , M }), and the

spectral response and gain of the camera. c is a scalar offset of the camera and τm is a delay

that describes the fact that we acquire movies with different filters in different cardiac cycles,

starting at an arbitrary (non-triggered and unknown) cardiac phase. We further assume that

the movie duration covers at least a full heartbeat, i.e., we have L > T /∆t .

The problem we address is to determine an estimate s̃ of the multi-spectral transmission

function of the sample s such that s̃[k ,λn ,`] ≈ s(k∆x,λn ,`∆t), for k ∈ K , λn ∈ {λ1, . . . ,λN }

and 0 ≤ `< bT /∆tc given the M movies ym[k ,`] in Equ. (6.2).

6.4 Methods

Our methods cover the determination of the unknown time-delays between channel acquisi-

tions (τm > T ), spectral unmixing to invert Equ. (6.2), and a calibration procedure to determine

the factors am[λn].

6.4.1 Temporal registration of movies acquired with different filters

Since we collect the spectral response (channels) in different cardiac cycles without any caring

signal, before we can merge the channels to obtain the spectral transmission we first need to

temporally synchronize the movies.

We proceed to the registration using a method described before by Liebling et al. [145] and,

in particular, Ohn et al. [146, 147] for the problem of synchronizing microscopy image series

of the beating heart imaged of differing contrasts. Briefly, for each of the M movies ym

corresponding to the M channels, the method determines the shifts τm such that the P frames

that we aim to reconstruct (and which cover a cardiac heartbeat) maximize the normalized
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Figure 6.3 – Setup for the acquisition of data; MO: microscope objective, HAL: halogen lamp,
CAM: camera, SP: spectrometer, FW: filter wheel. For the calibration, we both use (a) a camera
or (b) a spectrometer at the measuring end of the setup, with no setup. After calibration, the
system may be used for spectral imaging with dynamic samples (c).

mutual information between the movie of the channel to be registered, shifted by a candidate

shift, and the reference channel (which we take to be a movie acquired using a broadband

illumination):

τ̃m = argmin
τ

P∑
`=1

NMI(ym[·,`−τ/∆t ], y0[·,`]), (6.3)

where NMI(a,b) is the normalized mutual information [163, 146] between two images. After

we determine the estimates τ̃m , 1 ≤ m ≤ M , we apply them to obtain synchronized movies

ỹm[k ,`] = ym[k ,`− τ̃m/∆t ], k ∈K and 0 ≤ `< P .

6.4.2 Spectral imaging/unmixing

Given synchronized movies in M channels, we can consider the spectral recovery problem as a

point-wise problem and we drop the spatial (k) and temporal (`) dependency for brevity. Our

aim is to reconstruct a discrete transmission spectrum s =
(
sλ1 , . . . , sλN

)> =
(
s(λ1), . . . , s(λN )

)>
.

We start by describing the acquisition model in more detail, considering our imaging system

that consists of a monochrome camera, an illumination source, and M interchangeable filters

(Fig. 6.3). Combining the effect of the wavelength-dependent light source emission intensity

eλn , transmissivity fm,λn of the mth filter and the spectral response gλn of the camera, the
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measured intensity at a pixel is:

ym = c + ∑
λ1,...,λN

gλn eλn fm,λn︸ ︷︷ ︸
am [λn ]

sλn , (6.4)

where we identified the factors am[λn] of Equ. (6.2). In matrix form, with y = (
y1, . . . , yM

)>, we

can write:

y = F G s +c , (6.5)

with

F =


f1,λ1 eλ1 . . . f1,λN eλN

...
. . .

...

fM ,λ1 eλ1 . . . fM ,λN eλN

 , (6.6)

G = diag(gλ1 , . . . , gλN ), c = c1M×1.

With these notations, we formulate the problem of retrieving an estimate of the spectral

transmittance s̃? of the sample can be formulated as the solution to a minimization problem:

s̃? = argmin
s

∥∥y −c − As
∥∥
`1

(6.7)

where A = F G . We solve this problem using a simplex method [164] with the additional

constraints that 0 ≤ s̃ ≤ 1. Detailed information about how to solve Equation (6.7) is given in

the Appendix B.

6.4.3 Calibration of the imaging system

Before solving Equation (6.7), we must calibrate the system to populate matrices F and G . We

use a spectrometer to directly measure the combined spectral response of each filter with the

light source spectrum (Fig. 6.3 (b)) and populate the M rows of F . To calibrate G , we place the

camera in the acquisition setup (Fig 6.3 (a)) and sequentially acquire M images with an empty

sample holder (sλn = 1 in Equation (6.4)):


y1,cal

...

yM ,cal︸ ︷︷ ︸
ycal

 =
(
F 1M×1

)
diag(gλ1 , . . . , gλN ,c)1N×1

=
(
F 1M×1

)(
gλ1 . . . gλN c︸ ︷︷ ︸

gcal

)
>. (6.8)
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To retrieve g?
cal, we solve (with constraint 0 ≤ g?

cal ≤ 1):

g?
cal = argmin

g

∥∥∥ycal −
(
F 1M×1

)
g
∥∥∥
`1

. (6.9)

The algorithm used to solve Equation (6.9) is given in the Appendix B.

6.5 Results

We used the transmission line of an OpenSPIM microscope [33], equipped with a condenser

and illuminator (Fig. 6.3). We used a halogen light source (Decostar, Osram), a band-pass filter

set (FKB-VIS-40, Thorlabs) with 5 filters (FB500-40, FB550-40, FB600-40, FB650-40, FB700-40,

Thorlabs) mounted on a 6-position filter wheel (FW102CNEB, Thorlabs). The sample was held

by a four dimensional stage (USB 4D-STAGE, Picard). We used a 20×/0.5 water immersion

microscopy lens (UMPLFLN 20xW, Olympus) coupled to a 180 mm tube-lens (U-TLU-1-2,

Olympus), a 4Mpixels CMOS camera (Zyla 4.2 sCMOS, Andor, Oxford Instruments) and a single

pixel CCD spectrometer (CCS100, Thorlabs).

6.5.1 Experimental validation

Static validation: We evaluated the performance of our multi-spectral imaging method by

placing color filters (E009, E010, E022, E036, E053, E075 filters, E-colors set, Rosco Laboratories)

in the sample holder and comparing the recovered spectra with those measured directly with

the spectrometer. We observed a median error of around 10%.

Dynamic validation: we laser-printed a color pattern on a transparency that we mounted on

the sample holder (Fig. 6.4(a)). We first reconstructed the transmittance from measurements

carried out with the sample at rest (Fig. 6.4(c)). Next, we collected movies of the target

displaced laterally with the positioning stage of the microscope, repeating the same motion

for each filter, hence generating a pseudo-periodic signal (Fig. 6.4(d)). The recovered spectra

in the static and dynamic case concur (Fig. 6.4(b)).

6.5.2 Spectral imaging of the beating heart of a zebrafish

To illustrate the potential of our method in practice, we image the heart of a live zebrafish larva.

All experiments were approved by the Veterinary service of the State of Valais (Switzerland).

We raised and kept zebrafish (wild-type AB zebrafish strain (Zebrafish International Resource

Center) under standard laboratory conditions (14/10 hour light/dark cycle, fish water of the

system (ZEBTEC Techniplast Aquatic Solution) at 26.5◦C temperature, 500µs conductivity, and

pH 7.3). We raised embryos at 29◦C in standard E3 medium in an incubator (Termaks B8054),
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Figure 6.4 – Experimental validation. (a) color target mounted on a motorized sample holder.
(b) Spectral transmission calculated in four points from static (solid curve) and dynamic data
(dashed curve). (c)-(d) RGB-colorized reconstruction, five unmixed wavelength ranges, and
acquired bright-field image in (c) static case and (d) dynamic case. Scale bars are 50 µm.
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Figure 6.5 – (a) Color rendering of the reconstructed multi-spectral zebrafish heart. The
atrium (a), ventricle (v), bulbus arteriosus (BA), and pericardium (p) are outlined. (b) Spectral
transmittance computed at times covering a full cardiac period. Scale bar is 100 µm. Full
movie is available online [129].

supplemented by 0.003% 1-phenyl 2-thiourea (PTU) from 24 hours post fertilization (hpf)

to prevent pigmentation. For imaging, we embedded 48 hpf larvae (hatched from chorion),

anesthetized with 0.1% tricaine (ethyl 3-aminobenzoate methanesulfonate salt, Sigma), in

low melting agarose for imaging until aged 5 days post fertilization at most. We reconstructed

both a color movie and transmittance spectra in multiple areas of the heart (Fig. 6.5) clearly

showing spectral variations (background, red blood cells, cardiac tissue).

6.6 Discussion and Conclusion

We observed median errors on the recovery of transmittance data around 10%, with averages

around 30% due to higher errors at low wavelength ranges where the illumination source

provides insufficient intensity. In addition to images with high signal-to-noise (which requires

illumination of consistent intensity in all wavelength ranges), for Equations (6.8) and (6.9) to
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be well-posed we must have N +1 ≤ M (we must have at least one more filter than wavelength

range to be recovered) and the filter band should be such that F has high rank (small overlap

between filters). A critical point of the method is the temporal registration of the acquired

movies. Poorly synchronized movies lead to worse spectral recovery. In conclusion, we pre-

sented and characterized a practical method to perform dynamic multi-spectral microscopy

of samples with periodic motion. Results from the beating heart of a zebrafish larva show the

potential applicability for studying cardiac dynamics and differentiating tissues and cells.
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7 Conclusions

In this thesis, we investigated methods to increase temporal resolution, spectral resolution,

and flexibility of microscopes by enabling rapid switching between color and fast imaging.

We also explored methods to limit temporal aliasing and, thus, increase trust in the observed

dynamics.

All our methods rely on the use of active illumination and computational procedures and

they are particularly well suited for microscopy as they are simple to implement on existing

microscopes with cost-effective hardware.

Moreover, we presented real data, with live samples, which we acquired on our imaging plat-

form for all of our publications, demonstrating the applicability of our methods to microscopy.

7.1 Main contributions of the thesis

In Chapter 3 we presented a computational imaging method leveraging a color camera and

a multi-spectral active illumination. Each frame includes multiple copies of the signal at

various times, encoded in the hue of the image. The computational procedure retrieves a

high time-resolution signal, along with the base-hue, under the assumption that the imaged

sample has a single color. We characterized our method using robotic arms to generate a

repeating sample and presented a temporal super-resolution factor of 2.8 with a threefold

increase of the frame rate. Thanks to HESM, it becomes easy to rapidly switch between color

imaging and fast imaging, or to do both simultaneously in different regions of the image. One

should use a color camera and an active multi-spectral illumination that can be simple LEDs,

following instructions and code provided online [128].

We adapted the method of Chapter 3 to fluorescence microscopy in Chapter 4, dubbed fluo-

HESM. We presented an increase of the imaging frame rate of a factor 2. Provided that one can
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generate a sample with multiple co-localized fluorophores and temporally modulate excitation

lasers at high speed, which can be tricker than just the LEDs in Chapter 3, fluo-HESM is also

relatively simple to implement. It has the possibility to further speed-up well-established fast

fluorescence microscopy techniques, while maintaining the ability to do color imaging within

regions of interest.

In Chapter 5, we presented a method to perform temporal generalized sampling in optical

microscopy. Our approach allows for the use of implementable pre-filters with finite support

and verifying the positivity constraint. We presented an applied way to perform generalized

temporal sampling in a B-spline basis, and our work can be extended to other bases as long

as the positivity constraint (measured light intensity can only be positive) is respected and

pref-filters are of finite support.

Finally, in Chapter 6 we proposed a method to perform spectral imaging of repeating processes.

The method relies on a simple data acquisition procedure followed by temporal registration

and solving of an inverse problem. We characterized the method on static samples and showed

a median error of around 10% by comparing reconstructions from our method with measure-

ments from a spectrometer, and validated the method comparing static reconstructions with

dynamic ones of the same sample. We applied this method to the beating heart of a zebrafish

larva to demonstrate the potential applicability for studying cardiac dynamics and differenti-

ating tissues and cells. The method could easily be extended to fluorescence microscopy to

perform linear unmixing fluorescence in presence of a potentially high number of fluorophore

species.

7.2 Further research outputs

The multi-disciplinary nature of my thesis topic required me to set up the infrastructure to

demonstrate the feasibility of the theoretical ideas in practice.

Set up of a light-sheet microscopy platform

A key component to carry out my experiments was the ability to have a fully customizable

instrument available. An important part of my time was therefore devoted to building a light-

sheet microscope, based on the OpenSPIM project [33]. We were fortunate to the mechanical

shop at the “Base aérienne de Sion” (Switzerland), who kindly manufactured custom parts,

necessary to building the microscope.

My original setup is now further being developed by other lab members towards the goal

of obtaining a more versatile instrument. Our choice of using an open microscope design,

allowed me to make the specifications of the software and hardware necessary to replicate my

experiments directly available to this community [128].
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7.3 Proposed Future work

In this thesis, we pushed the capabilities of microscopes by increasing temporal or spectral

resolution, by increasing their operating flexibility, and by mitigating temporal aliasing in

image sequences. These contributions could have direct implications for other application

and benefit from further extensions. We list some possible future work below.

Calibration-free hue-encoded shutter method

The methods of Chapters 3 and 4 both require calibration on a static part of the sample. This

can probably be avoided by making assumptions, typically that the imaged scene should on

average be slowly moving. Finding any suitable criterion that depends on the sample, typically

that its temporal Total Variation should be as low as possible, Equation 3.12 can be solved

using a variational approach and solving for the parameters in d0 and Γ as well as finding the

best solution x .

Machine learning for the inverse problem solving

In Chapters 3 and 4, a forward model is built, assuming linearity which is likely incorrect.

A deep learning model could be trained to learn the non-linear relation between the color

camera, a set of active illuminations, and a dynamic sample. This would also take care of the

calibration.

In preliminary works, I adapted a widely-used image segmentation convolutional neural

network, called U-Net [165], for regression as shown on Figure 7.1. I could train this network to

perform the least-squares inversion of Eq. (3.12) by simulating acquired data using calibration

parameters from Chapter 3. I trained the network using three different calibrations and the

test-reconstructions obtained, simulating acquisition with any of the three models show

promising results.

I further believe that a similar network can be adapted and trained to output, from a series of

RGB images, another series of RGB images with a three-fold increase of the frame-rate. This

would be a major step forward as it would acquire color images with an active multi-spectral

illumination and reconstruct 3-times the number of acquisitions, without losing the color

information.

Compressed sensing of the heart with random codes and sorting

In Chapters 4 and 6, we sequentially acquire various beats of a heart and treat each acquisition

as parallel observations of the same process. This has been used to perform simultaneous

denoising and temporal super-resolution of the beating heart [73], to build volume videos

(3D+time) of the beating heart [145] or to superpose images from multiple acquisition modali-

ties [147].
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Figure 7.1 – U-Net adapted for regression. An input RGB image of size 512×512×3 is processed
and the output has the same shape. The color information has been transformed by the
network in temporal information. To adapt the U-Net for regression, the last layers have been
changed to be convolution + non-linearity layers, followed by a hyperbolic tangent layer. This
network has 30K parameters.

Another application of this idea would be to perform compressed sensing of the beating

heart through imaging with a known pseudo-random pulsed code. Performing sorting post-

acquisitions [166], one can do compressed sensing reconstruction and possibly reconstruct a

very high temporal resolution video of the beating heart.

Taking advantage of the simultaneous computation of multiple inner products of Section 5.4.1,

it could also be possible to do temporal compressive sensing if one would be to devise an

optical acquisition system with many color channels.

Hue-encoded shutter method for 2-photons imaging

2-Photons imaging is an imaging modality that is well-suited for imaging live samples in vivo,

thanks to its low photo-damaging of the sample, fast, and deep tissue imaging capabilities

[87]. It would likely be possible to apply our method of Chapter 4 to 2-photons imaging. This

modality would particularly benefit from our approach as it offer alternative illumination-

excitation sequences and use of fluorophores [88] which could be taken advantage of or benefit

from HESM.

Fully aliasing-free temporal imaging

As mentioned in Section 5.6, of our generalized sampling method of Chapter 5, during the

image transfer from the camera to the computer, the partition of unity condition [106] is not
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respected. This issue can be solved using two cameras whose exposure times are staggered in

time, or using rolling-shutter special mode where lines on the photosensitive sensor of the

camera are sequentially capturing light and transferring their pixels to the computer.

This could prove useful for motion analysis of the beating heart [167, 168, 169].

Spectral imaging of repeating processes using more filters

In our method of Chapter 6, we used 6 filters in our experiments and presented results with

the visible spectrum divided in bands of 60nm. It would be interested in using more filters,

and applying the method for a quantitative study.

For instance, measuring the percentage of oxygenated haemoglobin within the heart of ze-

brafish embryos. Also, I would find it interesting to see the method applied in fluorescence

microscopy for spectral imaging in the presence of many fluorophores.

7.4 Final words

To conclude this dissertation, we state again the main contributions of the thesis.

First, we presented a temporal super-resolution method, which we applied to both transmis-

sion microscopy [117] as well as fluorescence light-sheet microscopy [131]. The sectioning

ability of light-sheet microscopy allowed us to apply our temporal super-resolution method

and reconstruct a whole volume of the beating heart of a zebrafish embryo.

Second, we introduced a way to strongly mitigate temporal aliasing in imaging by performing

temporal generalized sampling [149, 150]. This method introduces a new way to simulta-

neously compute multiple overlapping inner products of the sampled signal with chosen

pre-filters. This can be taken advantage of for other purposes than generalized sampling.

Third, we presented a method to perform spectral imaging of repeating processes [148]. We

illustrated its potential by performing spectral imaging of the beating heart of the zebrafish

embryo.

Finally, all our methods rely on the use of active illumination and computational procedures

and they are particularly well suited for microscopy as they are simple to implement on

existing microscopes with cost-effective hardware. For all of our publications, we presented

real data of live samples, which we acquired on our imaging platform.
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A Derivation of the Alternating Direc-

tion Method of Multipliers for tempo-

ral super-resolution
A.1 Introduction

For our paper [117] of Chapter 3, we minimize an `2-norm to solve an inverse problem to

do temporal super-resolution. The minimized energy e(A, x , y) is the `2-norm of the error

between the observations vector y and the solution x linearly transformed by a forward model

A, that is

e(A, x , y) = ∥∥Ax − y
∥∥2

2 . (A.1)

The above super-resolution inversion works as long as the matrix A is well conditioned. In

practice, two things make our reconstructions “flicker” (i.e. a static part of the imaged scene

flickers along time, which is an error); (1) our linear model is wrong and (2) the parameters in

our model are slightly off.

In our paper [131] of Chapter 4 , to increase the robustness of our inversion method, we add a

temporal total variation regularization term, that is the `1 norm of the first order derivative of

the reconstructions. To implement this regularization and solve a regularized inverse problem,

we are interested in the alternating direction method of multipliers (ADMM), a variant of the

augmented Lagrangian methods [170, 171].

A.2 Alternating direction method of multipliers

ADMM allows to solve constrained optimization problems; they typically have the form [139,

135]:
minimize f (x)+ g (z)

such that Ax +B z = c .
(A.2)
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with x ∈ Rm , z ∈ Rn , A ∈ Rp×m , B ∈ Rp×n and c ∈ Rp . We start by forming the augmented

Lagrangian associated with Problem (A.2):

L (x , z , y) = f (x)+ g (z)+ y>(Ax +B z −c)︸ ︷︷ ︸
Lagrangian

+(ρ/2)‖Ax +B z −c‖2
2 ,

where y ∈Rp is called a dual variable. Notice the extra quadratic term, explaining the term

augmented Lagrangian [135].

As for the penalty method, we do the optimization on the augmented Lagrangian instead of

the constrained problem. The optimization iterations are:

while not converged do

xk+1 = argminx L (x , zk , y k );

zk+1 = argminz L (xk , z , y k );

y k+1 = y k +ρ(Axk+1 +B zk+1 −c);

end
Algorithm 2: ADMM algorithm generic steps: (1) primal variables (x and z) update, (2)

dual variables update, also called dual ascent.

where ρ ∈R+ is a penalty parameter.

A.3 ADMM applied to the temporal super-resolution problem of Chap-

ter 4

A.3.1 LASSO-formulation of the problem

The model in [117] is an over-simplification of the underlying physical process, but we know it

is a rather natural thing that the reconstructed signal x? be piecewise constant. We enforce

this by adding a regularization on the `1-norm of the first derivative of x . We now seek the

solution to the unconstrained problem

minimize
1

2

∥∥Ax − y
∥∥2

2 +λ‖T x‖1 , (A.3)

where T is a first-order Tikhonov matrix (also known as the Total Variation regularization).

Problem (A.3) is commonly referred to as LASSO. We then split Problem (A.3) to a constrained

problem [172]:

minimize 1
2

∥∥Ax − y
∥∥2

2 +λ‖u‖1

such that T x = u
, (A.4)
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and build the augmented Lagrangian for Problem (A.4) (notice the introduction of a new

variable, which is a common trick with ADMM [173, 135, 172]):

L (x ,u, z) = 1

2

∥∥Ax − y
∥∥2

2 +λ‖u‖1 + z>(T x −u)+ (ρ/2)‖T x −u‖2
2 . (A.5)

The ADMM algorithm requires computing the gradient of L (x ,u, z):

∂

∂z
L (x ,u, z) = T x −u (A.6)

∂

∂x
L (x ,u, z) = A>(Ax − y)+ρT >(T x −u)+ z>T (A.7)

∂

∂u
L (x ,u, z) = ∂

∂u
{λ‖u‖1}+ρ(u −T x)− z>. (A.8)

We now compute the values to have ∇L (x ,u, z) = 0 for the primal variables. Here is the update

for x :

0 = A>(Ax?− y)+ρT >(T x?−u)+ z>T (A.9)

x? = (A>A +ρT >T )−1(A>y +T >(ρu − z)). (A.10)

For u, it is a tad harder because of the `1-norm, which is not differentiable at 0. It is, however,

still convex and the properties of sub-gradients hold (see Section 23 in [174], p. 213, or

[170, 171]). The component-wise derivative of the `1-norm is defined as:

∂

∂u
{‖u‖1}i =

sign(ui ) ui 6= 0

[−1,1] ui = 0.
(A.11)

Taking the first case into account (ui 6= 0), we can compute ∂
∂u L (x ,u, z) = 0:

λ(sign(ui ))+ [ρ(u −T x)− z]i = 0 (A.12)

=
[λ+ρ(u −T x)− z]i if ui > 0

[λ−ρ(u −T x)− z]i if ui < 0
(A.13)

→ ui =


zi−λ
ρ + [T x]i if ui > 0

zi+λ
ρ + [T x]i if ui < 0.

(A.14)

=
si −λ/ρ if ui > 0

si +λ/ρ if ui < 0
(A.15)
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where si = [T x]i + zi
ρ . Instead of expressing the ui as a function of itself, we can express it in

terms of si ,λ and ρ. Also, looking at the second case in Equation (A.11) (ui = 0), we have that

0 ∈λ[−1,1]+ [ρ(u −T x)− z]i (A.16)

0 ∈ [si −λ/ρ, si +λ/ρ] (A.17)

⇒|si | <λ/ρ if ui = 0. (A.18)

We can now write ui according to a condition on si :

ui =


si −λ/ρ if si >λ/ρ

si +λ/ρ if si <−λ/ρ

0 if |si | <λ/ρ

. (A.19)

Equation (A.19) is a component-wise soft threshold noted as Sλ/ρ(s) [135]. Solving for∇L (x,u, y) =
0, Algorithm 2 becomes

while not converged do

xk+1 = (A>A +ρT >T )−1(A>y +T >(ρuk − zk ));

uk+1 = Sλ/ρ(T xk+1 + zk );

zk+1 = zk +T xk+1 −uk+1;

end
Algorithm 3: ADMM applied to temporal super-resolution in [117]
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B Constrained `1-norm minimization

with linear programming

In [148], we minimize the following `1 norm, with constraints on the solutions:

minimize
∥∥y −d − As

∥∥
`1

subject to 0 ≤ s ≤ 1
, (B.1)

with y ,d ∈Rm×1, A ∈Rm×n and s ∈Rn×1. We explain in the paper that we solve this using the

simplex, a linear programming (LP) technique [127, 164].

However, LP packages as CPLEX [127] or CVXPY [175, 176] solve problems of the form:

minimize c>x

subject to

Ax = b

x ≥ 0

, (B.2)

with c , x ∈Rn×1. Similarly to [73], we re-formulate the problem in Equation (B.1) to match the

LP form, by adding a variable and introducing an equivalent problem.

minimize c>z

subject to −z ≤ As − y −−−d ≤ z

and z ≥ 0

, (B.3)

where z ∈Rm×1 is a helper variable bounding the absolute values of As − y −−−d . We separate

the two inequalities and rewrite Eq. (B.3) as

minimize c>z

subject to As − y +d ≤ z ⇒ As − z ≤ y −d

and −(As − y −−−d ) ≤−z ⇒−As − z ≤−(y −d )

and z ≥ 0

, (B.4)
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which we can rewrite in matrix form:

minimize

(
0n×1

1m×1

)>
︸ ︷︷ ︸

c̃

(
s

z

)

subject to


A −Im×m

−A −Im×m

0n×n −Im×m


︸ ︷︷ ︸

Ã

(
s

z

)
︸︷︷︸

x̃

≤


y −−−d

−(y −−−d )

0m×1


︸ ︷︷ ︸

b̃

. (B.5)

We now see the familiar looking problem of Equation (B.2), where the vectors and matrices to

feed an LP package are underligned. Most LP packages accept input as given in Equation (B.5)

and offer the possibility to set lower and upper bounds on the solution. From the solution

return by the LP package, the vector s minimizing Eq. (6.7) is obtained by keeping the first n

values of the returned solution x̃ .
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