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ABSTRACT
Presentation attacks using 3D masks pose a serious threat to
face recognition systems. Automatic detection of these at-
tacks is challenging due to hyper-realistic nature of masks. In
this work, we consider presentations acquired in near infrared
(NIR) imaging channel for detection of mask-based attacks.
We propose a patch pooling mechanism to learn complex tex-
tural features from lower layers of a convolutional neural net-
work (CNN). The proposed patch pooling layer can be used in
conjunction with a pretrained face recognition CNN without
fine-tuning or adaptation. The pretrained CNN, in fact, can
also be trained from visual spectrum data. We demonstrate
efficacy of the proposed method on mask attacks in NIR chan-
nel from WMCA and MLFP datasets. It achieves near perfect
results on WMCA data, and outperforms existing benchmark
on MLFP dataset by a large margin.

Index Terms— Biometrics, Face Presentation Attack De-
tection, 3D Mask Attacks, Patch Pooling Layer

1. INTRODUCTION

Face recognition (FR) systems have achieved excellent accu-
racies; however, their reliability and security in terms of de-
tecting a presentation attack (PA), or anti-spoofing is still an
important weakness. Presentation attacks can be classified
as 2D or 3D depending on the nature of instrument used to
construct an attack. The detection of all kinds of PAs is cru-
cial for trustworthy functioning of the FR system. A majority
of 2D attacks (print, digital display) can be recognized with
a reasonable accuracy by RGB data alone, or by incorporat-
ing an additional data acquisition channel such as infrared,
thermal, or depth. However, detection of 3D masks is a chal-
lenging task for RGB (visual spectrum) data, as well as, for
data acquired from any aforementioned imaging channels. In
this work, we address the problem of detection of 3D mask
attacks—where the term 3D mask refers to a broad variety of
masks in terms of quality and material- from a simple paper
mask to a hyper-realistic, customized mask made from soft
silicone.
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Fig. 1. Samples of bona fide and different mask attack presentations
from WMCA [1] dataset: (a) bona fide, (b) paper mask, (c) custom
mask, and (d) flexible silicone mask. In each case, the left image is
captured in NIR, and right image is captured in RGB channel.

Fig. 1 shows samples of several types of masks and bona
fide (BF) presentations captured in RGB channel. It can be
seen that sophisticated masks are extremely good at mim-
icking visual appearance of a human face; and thus, PAD
methods based on handcrafted features are less effective at de-
tecting 3D masks. Along with improvising RGB-based PAD
methods, a different imaging channel needs to be explored
for devising a better PAD algorithm. We propose NIR-based
PAD system to detect mask attacks as NIR devices are rela-
tively cheaper, and easily available.

Deep learning-based methods, mainly using convolu-
tional neural networks (CNNs), have demonstrated superior
performance at face PAD [2]. Since textural features are
important cues for detecting PAs, we propose a patch-based
feature descriptor that encodes rich textural information from
last convolutional layer of a CNN. Instead of processing the
entire feature map as a whole, we define a novel patch pool-
ing layer that facilitates learning complex texture features of
an input without emphasizing information related to its shape.
Whereas lack of training data is often a concern for CNN-
based PAD methods; our proposed method can be deployed
using a CNN, pretrained for FR tasks with visual spectrum
data, without any explicit need for finetuning or domain adap-
tation. On training a suitable linear classifier, the proposed



patch-pooled features obtained excellent results with nearly
0% error rates on our test dataset. This dataset is a subset of
challenging WMCA [1] dataset that consists of masks made
from paper, rigid materials, and soft silicone.

Specific contributions of this paper are as follows:
• We propose a PAD method to detect a variety of mask at-

tacks using a single NIR channel. Very few works have
addressed this problem, while most existing works rely on
multiple imaging channels, and their fusion.

• Through patch-pooled feature descriptors, we demonstrate
novel mechanism to encode complex texture cues from
CNN for face PAD.

• We show that a CNN pretrained for FR tasks is an efficient
feature extractor for detecting masks without explicit trans-
fer learning or fine-tuning. The imaging channels used to
train the CNN need not be same as that of presentations for
PAD.

• We demonstrate efficacy of the proposed PAD method
on two publicly available datasets consisting a variety of
masks—where it outperforms state-of-the-art results by a
large margin.

2. RELATED WORK

Initial research in detecting 3D PAs was confined to rigid
masks provided by 3DMAD [3], and HKBU-MARs [4]
datasets. Most of the face PAD methods were based on
handcrafted features [5–7]. Recently, the research focus has
been detection of customized and high quality masks—since
such masks have become relatively affordable.

Manjani et al. [8] introduced a face PAD dataset, named
SMAD, consisting of silicone mask-based attacks captured
in visual spectrum. They also proposed a deep dictionary
learning method for mask PAD. Agarwal et al. [9] analyzed
a variety of texture-based PAD approaches for detection of
latex masks captured in visual, NIR, and thermal channels.
Their results show that a combination of Redundant Discrete
Wavelet Transform (RDWT) and Haralick features provides
better separation of features (BF v/s PA) for NIR and thermal
data.

Liu and Kumar investigated several CNN configurations
to detect mask attacks captured in RGB and NIR chan-
nels [10]. Their results indicate superiority of NIR-based
PAD methods over processing of presentations acquired in
visual spectrum. In [1], a multi-channel CNN (MC-CNN)
has been proposed to detect a variety of 2D and 3D PAs from
WMCA dataset—that are captured in RGB, NIR, thermal,
and depth channels. The initial convolutional layers of MC-
CNN are adapted for each imaging channel, while the higher
layers are shared across all imaging channels. Kotwal et al.
demonstrated that embeddings (output of pre-final fully con-
nected layer) of FR CNN can be directly utilized to identify
PAs constructed using custom silicone masks [11].

3. PROPOSED METHOD

Masks, with various materials, exhibit different textural pat-
terns than that of a natural human skin. Although PAD meth-
ods using handcrafted texture features have provided good
results for a variety of PAs, their performance at detecting
masks is relatively poor. Most of these methods process low-
level texture features obtained directly from the input presen-
tations. Therefore, learning a set of complex texture features
might be helpful at improving accuracy of mask detection.

Deep CNNs have proved to be an excellent choice for
extracting complex features for a wide range of applications.
A typical CNN consists of a set of convolutional (conv)
layers, followed by one or more fully connected (FC) layers.
The conv layers learn characteristics of local regions in the
input image; wherein the shape related properties are cap-
tured through the FC layers [12]. The output of FC layer of
a CNN encodes spatial information; and thus, emphasizes
shape-related (global) features of input rather than local ones.
Texture, being a local or region-based feature, can be well-
learnt through conv layers with minimal inference of location
information. A better representation of information from final
(or intermittent) conv layers of CNN, with lesser influence of
spatial details, can be more discriminative toward detecting
mask attacks. To obtain this representation, we propose a
novel patch-pooling (PP) layer to be incorporated after the
final conv layer of a CNN. In [11], it has been demonstrated
that FR CNN is a good choice for extracting or learning fea-
tures for PAD. Therefore, we also consider FR CNN as a
backbone or base network for this work.

Patch Pooling (PP) Layer:
Few researchers have addressed the problem of computing a
texture descriptor from conv layers of a deep CNN [12–14].
These works, however, have been developed for data from
visual spectra. To the best of our knowledge, despite increas-
ing popularity of NIR-based face PAD, no work on defining
texture descriptor suitable for PAD using NIR data has been
conducted.

Inspired from texture descriptors in [13,14], we develop a
simple, and computationally inexpensive patch pooling layer
for NIR-based mask detection. Let the last conv layer of a
given FR CNN generate N feature maps of (X × Y ) dimen-
sions each. Each feature map represents densely pooled local
features of the input presentation. We divide each feature map
into spatially non-overlapping patches of (x×y) dimensions,
such that, X = m1x, and Y = m2y, for m1,m2 ∈ Z+.
With this procedure, we obtain tessellated feature maps of
(N × x × y) dimensions for m1m2 patches. Each of these
maps is then linearized to produce a patch-level descriptor,
pk, such that, pk ∈ RNxy, k = 1, 2, · · · , (m1m2). At
this stage, we obtain such m1m2 patch-level descriptors, each
representing a (linearized version of) complex features learnt
by conv layers of CNN over a small patch of input presen-



(a) (b)

Fig. 2. Framework of the proposed PAD method for mask detection (left), and patch pooling (PP) layer (right).

tation. We compute the final descriptor, f , through average
pooling of m1m2 vectors such that,

f ≡ f i =

m1m2∑
k=1

pik; i = 0, 1, · · · , Nxy − 1. (1)

The index i refers to the i-th element of a descriptor; and
pk is the descriptor for k-th patch. We refer to the overall
process of obtaining a feature descriptor, f , through pooling
of patch-level features of last conv layer of a CNN as patch
pooling layer. The schematics of overall PAD framework and
PP layer are provided in Fig. 2.

It may be noted that our PP layer does not produce output
that is strictly independent of spatial information. The local
geometry of a patch is implicitly encoded during its lineariza-
tion. A small region of image, however, is essential to learn
texture through spatial neighborhood. Since, area of a patch
is significantly lesser than the entire input presentation, it
results in nominal emphasis on overall shape information.
Additionally, we are average-pooling such m1m2 patch-level
features (p) to obtain the final descriptor, f ; thereby further
mitigating the effect of location information. The output of
PP layer is, thus, mean-local representation of textural fea-
tures learnt by conv layers of FR CNN.

Classifier: We formulate mask-based PAD as a binary classi-
fication problem. We train a linear classifier from the outputs
of PP layer to compute final score.

4. EXPERIMENTS

We demonstrate efficacy of the proposed PAD method over
two publicly available datasets1.

4.1. Datasets & Protocols

Very few publicly available PAD datasets consist of 3D mask
attacks in NIR channel. We conduct our experiments on two
such datasets- (a) Wide Multi Channel Presentation Attack

1Python code for all experiments described in this paper: https://
gitlab.idiap.ch/bob/bob.paper.nir_patch_pooling

(WMCA) [1]; and (b) Multispectral Latex Mask based Video
Face Presentation Attack (MLFP) [9].

We consider the subset of WMCA dataset consisting of
BF and 3D mask attacks acquired in NIR channel. The PAs
include masks made from paper, latex, and silicone. Some
samples of these presentations in RGB and NIR (860nm)
channels are shown in Fig. 1. This subset of WMCA consists
of 240 BF presentations, and 487 PA mask-based PAs. We use
a grandtest protocol derived from the original protocol of cre-
ators of dataset. It consists of three fixed partitions (training,
development, evaluation) that are disjoint (non-overlapping)
in terms of subjects. Our second test dataset comprises of NIR
presentations from MLFP dataset. The PAs in this dataset are
constructed using paper and latex masks. It consists of 40 BF
and 400 attack presentations in NIR channel captured using
Kinect (Windows V2). We design our cross validation (CV)
protocol using the subject-based partitioning devised by the
creators of dataset [9, Sec. 4.1]. For brevity of space, we do
not provide details of any protocol. The exact details of both
protocols can be obtained from our code.

4.2. Experimental Setup

Our proposed face PAD method, based on PP layer, derives
features from conv layers of FR CNN. We utilize the 9-layer
LightCNN [15], one of the state-of-the-art FR CNNs, as a
backbone or feature extractor (for conv layers). We consider
the outputs of final conv layer of LightCNN-9 (MFM5 as
per [15]) as input to the PP layer to compute the proposed
feature descriptor. This descriptor is then used to train or test
the logistic regression (LR)-based classifier.

We use the equal error rate (EER) on the dev set to
compute the score threshold—which refers to approximately
equal number of incorrect classifications in both classes. We
evaluate PAD experiments using the following performance
metrics: (a) APCER (Attack presentation classification error
rate) defined as the proportion of incorrectly classified PAs;
(b) BPCER (Bona fide presentation classification error rate)
defined as the proportion of incorrectly classified BF pre-
sentations; and (c) ACER (Average classification error rate)
calculated as the average of APCER and BPCER.



For all experiments, we prepared the input presentation to
match the specifications of our FR CNN (LightCNN-9). Each
frame of NIR data has been clipped to 8-bit range, where clip-
ping limits were computed using the median absolute devia-
tion (MAD). We have used the Multi-Task Cascaded Convo-
lutional Network (MTCNN) [16] to detect facial region. For
very few samples, we were not able to detect the faces either
due to highly non-face like appearance of sample (such as
poor mask), or due to limitation in our face detection mecha-
nism.

4.3. Experimental Results

WMCA dataset using grandtest protocol: In this main ex-
periment, we evaluated performance of the proposed PAD
method on the WMCA dataset using grandtest protocol. The
train set is used to compute the feature descriptor using (a part
of) LightCNN and PP layer. These features are then used to
train LR classifier. The score thresholds are computed on the
dev set. Table 1 provides performance evaluation of the pro-
posed method along with some common and recent baseline
methods.

For baseline, we consider following commonly used PAD
approaches: (a) IQM+LR method: based on image quality
measures (IQM) as described in [17], and classified using an
LR classifier. (b) LBP+LR method: We compute uniform
LBPu2

8,1 codes on input presentations, and their histograms
are classified using an LR classifier. (c) LBP+SVM method:
Here, the LBP histograms (as described in previous method)
are classified using a support vector machine (SVM) with
a radial basis function kernel. (d) CNN+LR method: This
method considers CNN embeddings as features [11]. These
are classified using an LR classifier.

For the proposed PAD method, using patch-based pool-
ing, the ACER on dev set was dropped to 0.1%. On eval set,
only a single BF frame was misclassified as attack, and all
mask presentations were correctly identified. Therefore, for
11390 frames in eval set, we obtained ACER of 0.008%. With
near-perfect classification, the proposed method clearly out-
performed the baselines on every set. The CNN+LR method
from [11] is of particular interest since it also uses FR CNN
to generate feature descriptors. However, it considers the out-
put of prefinal FC layer as the features, while the proposed

Table 1. Performance evaluation of the proposed method and base-
lines on the WMCA dataset for grandtest protocol. All measure rates
are in %. The numbers in parenthesis indicate the number of incor-
rectly classified samples for total samples in the given class.

PAD Method dev set eval set
ACER APCER BPCER ACER

IQM + LR 10.9 4.8 (372/7691) 9.7 (360/3699) 7.3
LBP + LR 7.6 1.4 (104/7691) 2.1 (79/3699) 1.7
LBP + SVM 5.4 0.7 (52/7691) 1.0 (38/3699) 0.9
CNN + LR 1.4 0.3 (26/7691) 1.4 (52/3699) 0.9
Proposed 0.1 0.0 (0/7691) 0.0 (1/3699) 0.0

(a) dev set (b) eval set

Fig. 3. ROC of PAD methods on WMCA dataset using grandtest
protocol.

method replaces FC layer(s) with a novel PP layer that pools
the features from patches of input presentations. The im-
provement in results indicates superiority of patch-level fea-
tures over FC-level features toward extracting textural cues;
and thereby, detecting mask attacks on FR systems.

Fig. 3 illustrates the receiver operating characteristics
(ROC) curves for dev and eval sets of the WMCA dataset.
For both sets, a near-zero value of BPCER can be observed
for the entire range of APCER—which is an ideal condition
for any PAD system.

MLFP dataset using subject-based protocol: We con-
ducted 3-fold CV experiments using subject-based partition-
ing of MLFP dataset. The score thresholds were chosen a
posteriori on the testing partition for given trial. The ACER
values for each trial are provided in Table 2. The proposed
PAD method resulted in ACER of 1.9% averaged across
trials. This is nearly 20× improvement over the baseline
results from [9]. It should also be noted that the classification
accuracy of the worst trial is above 97%.

5. CONCLUSION

We have proposed a CNN-based face PAD method to de-
tect 3D mask attacks in NIR channel. This method employs
a patch-pooling mechanism to learn textural cues from fi-
nal conv layer of CNN. We have also demonstrated that a
CNN, pretrained for FR using visual spectrum data, can be
directly used to compute the patch-pooled feature descriptor.
The proposed PAD method has been tested on two publicly
available datasets that consists of masks made of paper, latex,
and silicone. Excellent results, on both datasets, indicate that
the patch pooling mechanism is well-suited for discriminating
mask-based PAs in NIR channel.

Table 2. Performance evaluation of the proposed method on the
MLFP dataset for cross validation trials. All values are ACER (%).

Trial CV1 CV2 CV3 Average
Baseline (frame-based) - - - 44.4
Baseline (video-based) - - - 42.0
Proposed 2.9 1.5 1.4 1.9
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