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Abstract

This chapter makes the first attempt to quantify the amount of discrim-
inatory information in fingervein biometric characteristics in terms of Rel-
ative Entropy (RE) calculated on genuine and impostor comparison scores
using a Nearest Neighbour (NN) estimator. Our findings indicate that the
RE is system-specific, meaning that it would be misleading to claim a uni-
versal fingervein RE estimate. We show, however, that the RE can be used
to rank fingervein recognition systems (tested on the same database using
the same experimental protocol) in terms of their expected recognition accu-
racy, and that this ranking is equivalent to that achieved using the EER. This
implies that the RE estimator is a reliable indicator of the amount of discrim-
inatory information in a fingervein recognition system. We also propose a
Normalised Relative Entropy (NRE) metric to help us better understand the
significance of the RE values, as well as to enable a fair benchmark of dif-
ferent biometric systems (tested on different databases and potentially using
different experimental protocols) in terms of their RE. We discuss how the
proposed NRE metric can be used as a complement to the EER in bench-
marking the discriminative capabilities of different biometric systems, and
we consider two potential issues that must be taken into account when calcu-
lating the RE and NRE in practice.



1 Introduction

There is no doubt that biometrics are fast becoming ubiquitous in response to a
growing need for more robust identity assurance. A negative consequence of this
increasing reliance on biometrics is the looming threat of serious privacy and secu-
rity concerns in the event that the growing biometric databases are breached1. For-
tunately, the past decade has seen notable efforts in advancing the field of biometric
template protection, which is dedicated to protecting the biometric data that is col-
lected and used for recognition purposes, thereby safeguarding the privacy of the
data subjects and preventing “spoofing” attacks using stolen biometric templates.
Unfortunately, we are still lacking solid methods for evaluating the effectiveness
of the proposed solutions. An important missing ingredient is a measure of the
amount of discriminatory information in a biometric system.

A few approaches, for example [1, 2, 3], have focused on estimating the “invid-
uality” (or discrimination capability) of biometric templates in terms of the inter-
class variation alone (i.e., the False Match Rate or False Accept Rate). Along the
same lines, the best known attempt to measure the amount of information in a bio-
metric system is probably the approach proposed by Daugman [4]. This method
computes the Hamming distance between every pair of non-mated IrisCodes, and
the resulting distance distribution is then fitted to a binomial distribution. The num-
ber of degrees of freedom of the representative binomial distribution approximates
the number of independent bits in each binary IrisCode, which in turn provides an
estimate for the discrimination entropy of the underlying biometric characteristic.
This approach was adopted to measure the entropy of fingervein patterns in [5].
However, as explained in [5], while this method of measuring entropy is correct
from the source coding point of view, the issue with calculating the entropy in
this way is that it only provides a reasonable estimate of the amount of biometric
information if there is no variation between multiple samples captured from the
same biometric instance. Since this intra-class variation is unlikely to be zero in
practice, the discrimination entropy would probably overestimate the amount of
available biometric information [6, 7].

In an attempt to extend the idea of using entropy as a measure of biometric in-
formation while more practically incorporating both inter- and intra-class variation,
several authors have adopted the relative entropy approach. Adler et al. [8] defined
the term “biometric information” as the decrease in uncertainty about the identity
of a person due to a set of biometric measurements. They proposed estimating the
biometric information via the relative entropy or Kullback-Leibler (KL) Divergence
between the intra-class and inter-class biometric feature distributions. Takahashi
and Murakami [6] adopted a similar approach to [8], except that they used compar-
ison score distributions instead of feature distributions, since this ensures that the
whole recognition pipeline is considered when estimating the amount of discrimi-

1For a real-life example, see: http://money.cnn.com/2015/09/23/technology/
opm-fingerprint-hack
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native biometric information in the system. Around the same time, Sutcu et al. [9]
adopted the same method as that employed in [6], with an important difference:
they used a Nearest Neighbour (NN) estimator for the KL divergence, thereby re-
moving the need to establish models for the comparison score distributions prior to
computing the relative entropy.

This paper adopts the approach proposed in [9] to estimate the amount of dis-
criminatory information in fingervein biometrics. We show that the Relative En-
tropy (RE) metric is equivalent to the Equal Error Rate (EER) in terms of enabling
us to rank fingervein biometric systems according to their expected recognition
accuracy. This suggests that the RE metric can provide a reliable estimation of
the amount of discriminatory information in fingervein recognition systems. We
additionally propose a Normalised Relative Entropy (NRE) metric to help us gain
a more intuitive understanding of the significance of RE values and to allow us
to fairly benchmark the REs of different biometric systems. The new metric can
be used in conjunction with the EER to determine the best-performing biometric
system.

The remainder of this chapter is structured as follows. Section 2 explains the
adopted RE metric in more detail. Section 3 presents our results for the RE of fin-
gervein patterns and shows how this metric can be used to rank fingervein recogni-
tion systems in comparison with the EER. Section 4 proposes the new NRE metric
and presents NRE results on various fingervein recognition systems. Section 5 dis-
cusses how the NRE could be a useful complement to the EER in benchmarking
the discrimination capabilities of different biometric systems, and we also present
two issues that must be considered when calculating the RE and NRE in practice.
Section 6 concludes this chapter and proposes a primary direction for future work.

2 Measuring Biometric Information via Relative Entropy

Let us say that G(x) represents the probability distribution of genuine (mated)
comparison scores in a biometric recognition system, and I(x) represents the prob-
ability distribution of impostor (non-mated) comparison scores. The RE between
these two distributions is then defined in terms of the KL divergence as follows:

D(G||I) =
n∑

i=1

G(xi) log2
G(xi)

I(xi)
(1)

In information theoretic terms, D(G||I) tells us the number of extra bits that
we would need to encode samples from G when using a code based on I, compared
to simply using a code based on G itself. Relating this to our biometric system,
we can think of D(G||I) as providing some indication of how closely our genuine
score distribution corresponds to our impostor score distribution. The worse the
match, the higher the D(G||I) value and the easier it is to tell the two distributions
apart. Consequently, the higher the RE, the easier it should be for our biometric
recognition system to differentiate between genuine users and impostors based on
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their corresponding comparison scores, and thus the better the expected recognition
accuracy. Figure 1 shows a simple illustration of what the relationship between G
and I might look like for lower and higher D(G||I) values.

Lower D(G||I) Higher D(G||I)

Figure 1: Examples of G and I relationships producing lower and higher D(G||I)
values.

One issue with using Equation (1) to estimate the RE is evident when we con-
sider what is represented by n. Technically, n is meant to denote the total number
of comparison scores, and it is expected that the G and I distributions extend over
the same range of scores. This, however, is not usually the case, since the overlap
between the two distributions should only be partial. One consequence of this is
that we will have at least one division by 0, for the range where I(x) = 0 but
G(x) 6= 0. The result will be D(G||I) = ∞. This makes sense theoretically,
since if a score does not exist in I then it is impossible to represent it using a code
based on I. For our purposes, however, an RE of ∞ does not tell us much, since
we already expect only partial overlap between G and I. So, we would like our RE
metric to generate a finite number to represent the amount of information in our
biometric recognition system.

Another issue with Equation (1) is that this approach requires us to produce
models for the genuine and impostor score distributions, G and I. Since the number
of scores we have access to is generally not very large (this is particularly likely to
be the case for genuine scores), it may be difficult to generate accurate models for
the underlying score distributions.

In light of the issues mentioned above, Sutcu et al. [9] proposed approxi-
mating the RE using the NN estimator from [10]. Let s1g, ..., s

Ng
g and s1i , ..., s

Ni
i

represent the comparison scores from the sets of genuine and impostor scores, re-
spectively. Further, let dgg(i) = minj 6=i||sig − s

j
g|| represent the distance between

the genuine score sig and its nearest neighbour in the set of genuine scores, and let
dgi(i) = minj ||sig − s

j
i || denote the distance between the genuine score sig and its

nearest neighbour in the set of impostor scores. Then the NN estimator of the KL
divergence is defined as:
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D̂(G||I) = 1

Ng

Ng∑
i=1

log2
dgi(i)

dgg(i)
+ log2

Ni

Ng − 1
(2)

Using Equation (2), we can estimate the RE of a biometric system using the
genuine and impostor comparison scores directly, without establishing models for
the underlying probability densities. Moreover, using the proposed KL divergence
estimator, we can circumvent the issue of not having complete overlap between the
genuine and impostor score distributions. For these reasons, this is the approach
we adopted to estimate the amount of information in fingervein patterns.

3 Relative Entropy of Fingervein Patterns

We used the NN estimator approach from [9] to estimate the RE of fingervein
patterns2. Section 3.1 describes our adopted fingervein recognition systems, and
Section 3.2 presents our RE results for fingervein patterns.

3.1 Fingervein Recognition Systems

We used two public fingervein databases for our investigation: VERA3 [11] and
UTFVP4 [12]. VERA consists of two images for each of 110 data subjects’ left
and right index fingers, which makes up 440 samples in total. UTFVP consists
of four images for each of 60 data subjects’ left and right index, ring and middle
fingers, which makes up 1,440 samples in total. Both databases were captured
using the same imaging device, but with slightly different acquisition conditions.
Figure 2 shows an example of a finger image from each database.

(a) VERA (b) UTFVP

Figure 2: Examples of finger images from the VERA and UTFVP databases. Note
that the UTFVP images are larger in size, as shown in this figure.

2Code available at: https://gitlab.idiap.ch/bob/bob.chapter.
fingerveins_relative_entropy

3https://www.idiap.ch/dataset/vera-fingervein
4http://scs.ewi.utwente.nl/downloads/show,Finger\%20Vein/
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Fingervein patterns were extracted and compared using the bob.bio.vein
PyPI package5. To extract the vein patterns from the finger images in each database,
the fingers were first cropped and horizontally aligned as per [13, 14]. Next, the
fingervein pattern was extracted from the cropped finger images using three well-
known feature extractors: Wide Line Detector (WLD) [14], Repeated Line Track-
ing (RLT) [15], and Maximum Curvature (MC) [16].

The comparison between the extracted fingervein patterns was performed sep-
arately for each extractor, using the algorithm proposed in [15]. This method is
based on a cross-correlation between the enrolled fingervein template and the probe
template obtained during verification. The resulting comparison scores lie in the
range [0, 0.5], where 0.5 represents maximum cross-correlation and thus a perfect
match.

3.2 Relative Entropy of Fingerveins

We used Equation (2) to calculate the RE of fingervein patterns6 for each of the
three feature extractors (WLD, RLT, and MC) on both the VERA and UTFVP
databases. One issue we faced when implementing this equation was dealing with
the case where the dgg(i) and/or dgi(i) terms were zero. If dgi(i) = 0 (regardless of
what value dgg(i) takes), this would result in D̂(G||I) = −∞, whereas dgg(i) = 0
(regardless of what value dgi(i) takes) would result in D̂(G||I) = ∞. This is
one of the issues we wanted to circumvent by using the NN estimator in the first
place! Neither the paper that proposed the NN estimator for KL divergence [10],
nor the paper that proposed using this estimator to calculate the RE of biometrics
[9], suggests how to proceed in this scenario. So, we decided to add a small value
(ε) of 10−10 to every dgg(i) and dgi(i) term that turned out to be 0. The choice of ε
was based on the fact that our comparison scores are rounded to 8 decimal places,
so we wanted to ensure that ε would be smaller than 10−8 to minimise the impact
on the original score distribution7.

For this experiment, a comparison score was calculated between a fingervein
template and every other fingervein template in the database. The resulting RE
values are summarised in Table 1, along with the corresponding EERs8.

We can interpret the RE results in Table 1 as providing an indication of how
many bits of discriminatory information are contained in a particular fingervein
recognition system. For example, we can see that using the RLT extractor on the
VERA database results in a system with only 4.2 bits of discriminatory informa-
tion, while the MC extractor on the same database contains 13.2 bits of discrimina-

5https://pypi.python.org/pypi/bob.bio.vein
6Note: RE = D̂(G||I)
7This choice of ε may not necessarily be optimal, but it seems sensible.
8Note that we have chosen to compare the RE to the EER, because the EER is a widely-used

metric for evaluating the overall recognition accuracy (in terms of the trade-off between the False
Match Rate (FMR) and False Non-Match Rate (FNMR)) of a biometric recognition system. The
comparison seems appropriate, since RE aims to provide us with an idea of a biometric system’s
overall discrimination capability.
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DB Extractor RE EER RE Rank EER Rank
VERA WLD 11.8 9.5% 2 2
VERA RLT 4.2 24.3% 3 3
VERA MC 13.2 4.3% 1 1
UTFVP WLD 18.9 2.7% 2 2
UTFVP RLT 18.0 3.2% 3 3
UTFVP MC 19.5 0.8% 1 1

Table 1: Relative Entropy (RE) and Equal Error Rate (EER) for different extractors
on the VERA and UTFVP databases. The RE and EER ranks refer to the rankings
of the three extractors (separately for each database) in terms of the highest RE and
lowest EER, respectively.

tory information. Figure 3 illustrates the genuine and impostor score distributions
for these two RE results.

Figure 3: Genuine and impostor score distributions corresponding to the lowest
(left) and highest (right) RE values for the VERA database from Table 1.

Since our results show the RE to be dependent upon both the feature extractor
and database adopted, it would be misleading to claim a universal fingervein RE
estimate; rather, it makes more sense for the RE to be system-specific.

Intuitively, we can see that, the higher the RE, the greater the amount of dis-
criminatory information, and thus the greater the expected recognition capabili-
ties of the underlying system. This intuition is confirmed when we compare the
REs and EERs of the different systems in Table 1, in terms of the RE-based ver-
sus EER-based rankings. From this analysis, it is evident that the ranking of the
three extractors for each database is the same regardless of whether that ranking
is based on the RE or the EER. In particular, MC has the highest RE and low-
est EER, while RLT has the lowest RE and highest EER. This implies that the
most discriminatory information is contained in fingervein patterns that have been
extracted using the MC extractor, and the least discriminatory information is con-
tained in RLT-extracted fingerveins. These results suggest the possibility of using
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the REs of different fingervein recognition systems to rank the systems according
to the amount of discriminatory information and thus their expected recognition
accuracies. Consequently, it appears reasonable to conclude that the RE estimator
is a reliable indicator of the amount of discriminatory information in a fingervein
recognition system.

While RE quantifies the amount of discriminatory information in a biometric
system, it is difficult to gauge what exactly this number, on its own, means. For ex-
ample, what exactly does x bits of discriminatory information signify, and is a y-bit
difference in the REs of two biometric systems significant? Furthermore, bench-
marking different biometric systems in terms of their RE is not straight-forward,
since the RE estimate depends on both the comparison score range as well as on
the number of genuine (Ng) and impostor scores (Ni) for each database and ex-
perimental protocol. Consequently, REs reported for different biometric systems
usually do not lie in the same [REmin, REmax] range9. To help us better under-
stand the meaning of the RE metric in the context of a biometric system, as well
as to enable fair cross-system RE benchmarking, Section 4 adapts Equation (2) to
propose a normalised RE metric.

4 Normalised Relative Entropy

This section proposes a normalised version of the RE (NRE), based on the NN es-
timator in Equation (2). The reason for this normalisation is to help us interpret the
RE in a more intuitive way, and to enable fair benchmarking of different biometric
systems in terms of their RE.

We propose using the well-known “min-max” normalisation, formulated by
Equation (3):

NRE =
RE −REmin

REmax −REmin
(3)

In Equation (3), REmin and REmax refer to the minimum and maximum pos-
sible RE values, respectively, for a particular biometric system. Thus we need to
begin by establishing REmin and REmax. In this formulation, we assume that
comparison scores are similarity values, such that small scores indicate low simi-
larity and large scores indicate high similarity. Keeping this in mind, the minimum
RE would occur when all dgi values are zero and all dgg values are as large as
possible. Therefore, for each genuine score, there would need to be at least one
impostor score with exactly the same value, and all the genuine scores would need
to be spread apart as far as possible. Let us say that all scores lie in the range
[smin, smax], and that the number of genuine scores for a particular database and

9For the fingervein systems we used, the comparison scores for both the VERA and UTFVP
databases lie in the same range of [0, 0.5]. However, the Ng values across the two databases are
different, as are the Ni values. Consequently, the [REmin, REmax] range is not the same for both
databases, meaning that we cannot fairly compare the RE results across the two databases.
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experimental protocol is denoted by Ng. Then the maximum possible dgg value
would be smax−smin

Ng
. By adapting Equation (2), our equation for the minimum RE

thus becomes:

REmin =
1

Ng

Ng∑
i=1

log2
0

smax−smin
Ng

+ log2
Ni

Ng − 1
(4)

If we now tried to solve Equation (4), we would getREmin = −∞, because of
the 0 dgi term. Since this is an impractical result for measuring the (finite) amount
of information in a biometric system, we replace the 0 with ε. Furthermore, we can
see that the division by Ng gets cancelled out by the summation across Ng, so we
can simplify Equation (4) as follows:

REmin = log2
ε

smax−smin
Ng

+ log2
Ni

Ng − 1
(5)

Equation (5) thus becomes the final REmin equation.
The maximum RE would occur when all dgi values are as large as possible and

all dgg values are zero. The only way this could occur would be if all the genuine
scores took on the largest possible value, smax, and all the impostor scores took
on the smallest possible value, smin. In this case, the genuine and impostor score
sets would be as different as possible. By adapting Equation (2), we thus get the
following equation for the maximum RE:

REmax =
1

Ng

Ng∑
i=1

log2
smax − smin

0
+ log2

Ni

Ng − 1
(6)

If we tried to solve Equation (6), we would get REmax =∞ due to the 0 term
in the denominator. So, once again we replace the 0 term with ε. Furthermore, just
like we did for Equation (4), we can simplify Equation (6) by removing the Ng

division and summation. Our final equation for REmax thus becomes:

REmax = log2
smax − smin

ε
+ log2

Ni

Ng − 1
(7)

We can now use Equation (3), with Equation (5) for REmin and Equation (7)
for REmax, to calculate the NRE of a particular biometric system.

Due to the “min-max” operation in Equation (3), the NRE will lie in the range
[0.00, 1.00]. We can thus interpret the NRE as follows. An NRE of 0.00 would
suggest that the system in question contains zero discriminative information (i.e.,
recognition would actually be impossible), whereas an NRE of 1.00 would indi-
cate that the system contains the maximum amount of discriminative information
possible for that system (i.e., the recognition accuracy would be expected to be
perfect).

Figure 4 illustrates what the impostor and genuine comparison score distribu-
tions might look like for a minimum NRE system and a maximum NRE system,
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when the comparison score range is [0, 0.5] (i.e., the score range corresponding to
our fingervein recognition systems).

Figure 4: Illustration of impostor and genuine score distributions for a minimum
and a maximum NRE system, when the comparison score range is [0, 0.5].

In general, therefore, we can look at the NRE as providing an indication of the
proportion of the maximum amount of discriminatory information that the corre-
sponding biometric system contains. An NRE of 0.50, for example, would indicate
that the biometric system achieves only 50% of the maximum attainable recogni-
tion accuracy. Therefore, the higher the NRE, the better the expected recognition
accuracy of the biometric system we are measuring.

Table 2 shows the NRE results for our aforementioned fingervein recognition
systems. Note that, for these fingervein systems: smin = 0; smax = 0.5;Ng = 440
for VERA; Ng = 4, 320 for UTFVP; Ni = 192, 720 for VERA; Ni = 2, 067, 840
for UTFVP.

System RE NRE
VERA-WLD 11.8 0.48
VERA-RLT 4.2 0.34
VERA-MC 13.2 0.50

UTFVP-WLD 18.9 0.58
UTFVP-RLT 18.0 0.56
UTFVP-MC 19.5 0.59

Table 2: Relative Entropy (RE) and Normalised Relative Entropy (NRE) for dif-
ferent fingervein recognition systems.

Note that the first column of Table 2 refers to the fingervein recognition system
constructed using the specified database and feature extractor. We have pooled the
databases and extractors into “systems” now to indicate that the NRE values can
be benchmarked across systems (as opposed to, for example, in Table 1, where the
databases were separate to indicate that RE-based benchmarking of the different
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extractors should be database-specific).
As an example of how the NRE results from Table 2 can be interpreted, let

us compare the NRE of VERA-RLT to that of UTFVP-MC. The NRE of 0.34 for
VERA-RLT tells us that this system achieves only 34% of the maximum attainable
discrimination capability. Comparatively, the UTFVP-MC system contains 59% of
the maximum amount of discriminative information. So, we could conclude that
the UTFVP-MC fingervein recognition system contains 25% more discriminatory
information than the VERA-RLT system.

Using the NRE also helps us gauge the significance of the differences in the
REs across different biometric systems. For example, if we look at the RE on its
own for the UTFVP-WLD and UTFVP-MC systems in Table 2, we can see that
the latter system’s RE is 0.6 bits larger than the former system’s RE. It is difficult
to tell, however, whether or not this is a significant difference. If we then look at
the NREs of the two systems, we can see that their difference is only 0.01. This
indicates that the 0.6-bit difference between the two systems’ REs is not too sig-
nificant in terms of the proportion of the maximum discriminatory information the
two systems contain. On the other hand, the 15.3-bit difference in the REs between
the VERA-RLT and UTFVP-MC systems seems much more significant, and we
may be tempted to conclude that the latter system contains about five times more
discriminative information than the former system. Looking at the two systems’
NREs, we do see a fairly significant difference, but we would have to conclude that
the UTFVP-MC system contains not five times, but two times, more discriminative
information than the VERA-RLT system.

In this section, we have shown how the NRE can be used for RE-based bench-
marking of different fingervein recognition systems, for which comparison scores
were evaluated on different databases. The main reason for using the NRE in our
case was thus to conduct fair cross-database system benchmarking. Our proposed
NRE metric, however, can also be used to fairly benchmark the REs of systems
based on different biometric modalities, tested on different databases using dif-
ferent experimental protocols. For example, part of our future work will involve
benchmarking the NRE of our best fingervein recognition system, UTFVP-MC,
against NREs of systems based on different types of biometrics. This makes the
proposed NRE metric a flexible tool for both quantifying and benchmarking the
amount of discriminative information contained in different biometric systems.

5 Discussion

In this section, we begin by presenting a discussion on an important aspect of the
NRE, which supports its adoption in the biometrics community. We then discuss
two potential issues that may arise when calculating the NRE, and we suggest
means of dealing with them. Sections 5.1, 5.2 and 5.3, respectively, tackle these
three discussion points.
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5.1 NRE as a Complement to EER

So far, we have shown how the RE can be used to measure the amount of discrim-
inatory information in fingervein recognition systems. We also proposed the NRE
metric to fairly benchmark the REs across different biometric systems. In this sec-
tion, we discuss how an NRE estimate could complement the EER to provide a
more complete picture of the performance of a biometric recognition system.

In Section 2, we explained how, in the context of a biometric recognition sys-
tem, the RE metric provides some indication of how closely our genuine score
distribution matches our impostor score distribution. Let us explore the meaning
of this by considering Equation (2). Equation (2) tells us that we are attempting
to estimate the relative entropy of a set of genuine comparison scores (G) in terms
of a set of impostor comparison scores (I). In other words, we wish to quantify
the “closeness” of these two sets10 of scores. The dgi and dgg terms represent the
distance between a genuine score and its closest score in the set of impostor and
genuine scores, respectively. Larger dgi values will result in larger RE results,
whereas larger dgg values will result in smaller RE results11. We can thus see
that larger REs favour a larger inter-class variance (i.e., greater separation between
genuine comparison trials and impostor trials) and a smaller intra-class variance
(i.e., smaller separation between multiple biometric samples from the same bio-
metric instance). This makes the RE suitable as a measure of the performance of
a biometric recognition system: the larger the RE value, the better the recognition
accuracy. The best (highest) RE would, therefore, be obtained in the case where all
the dgi values are as large as possible, while the dgg values are as small as possible,
and vice-versa for the worst (lowest) RE.

The RE metric thus informs us about two things: how far genuine scores are
from impostor scores, and how far genuine scores are from each other. Consider
the case where we have a set of impostor scores, I, and a set of genuine scores, G.
The larger the intersection between I and G, the smaller the dgi values and thus the
lower the RE. Conversely, the smaller the intersection between the two sets, the
greater the dgi values and thus the higher the RE. So far, the RE metric appears
to tell us the same thing as the EER, since a smaller EER indicates less overlap
between genuine and impostor comparison scores, while a larger EER indicates
more overlap. Where the two metrics differ, however, is in the scenario where I and
G are completely separated. In this case, the further apart the two sets of scores are,
the higher the resulting RE. The EER, however, would be 0% regardless of whether
the separation is small or large. Imagine if we had to benchmark two biometric
systems, both of which had complete separation between the genuine and impostor
comparison scores, but where for one system the separation was much larger than
for the other, as illustrated12 in Figure 5. If we considered only the EER, it would

10Note: We are purposely using the word “set” as opposed to “distribution”, since the NN estimator
in Equation (2) works directly on the scores as opposed to distributions representing the scores.

11Assume constant Ng and Ni values.
12Note: The only reason for using probability density plots in this figure is to present a cleaner
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indicate that the two systems are the same (i.e., both have an EER of 0%). The
NRE13, however, would clearly indicate that the system with greater separation
is better in terms of distinguishing genuine trials from impostors, since the NRE
value would be higher for that system. In this case, complementing the EER with
an NRE estimate would provide a more complete picture of the system comparison.
This could come in useful particularly in situations where the data used for testing
the biometric system was collected in a constrained environment, in which case
an EER of 0% could be expected. The NRE, on the other hand, would provide
us with more insight into the separation between the genuine and impostor score
distributions.

EER = 0%

Lower NRE

EER = 0%

Higher NRE

Figure 5: Two biometric systems with the same EER of 0%, but where the system
on the right has greater separation between the impostor and genuine comparison
scores, and thus a higher NRE than the system on the left.

Another example of a scenario in which the NRE metric would be a useful
complement to the EER is when we have two biometric systems for which I is the
same and the separation (or overlap) between I and G is the same, but G differs.
In particular, in the first system the genuine scores are closer together, while in
the second system the genuine scores are further apart from each other. Figure 6
illustrates this scenario14. In this case, since the separation between I and G for
both systems is the same, the EER would also be the same, thereby indicating that
one system is just as good as the other. The NRE, however, would be smaller for the
second system due to the larger dgg values. The NRE would thus indicate that the
larger intra-class variance in the second system makes this system less preferable
in terms of biometric performance when compared to the first system, for which

illustration of our point. Probability density functions are not used to represent genuine and impostor
score distributions for the NRE calculation.

13When benchmarking different biometric systems, the NRE should be used instead of the RE to
ensure that the benchmarking is fair. The only exception to this rule would be in the case where the
different systems had the same comparison score range, and the same Ng and Ni values, in which
case the resulting REs would lie in the same [REmin, REmax] range.

14Note: In Figure 6, the EER for both systems is 0%; however, it could also be possible for both
systems to have the same non-zero EER. In this case, I and G would partially overlap.
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the genuine scores are closer together and thus the intra-class variance is smaller.
Using both NRE and EER together, we could thus conclude that, although both
systems can be expected to achieve the same error rate, the system with the smaller
intra-class variance would be a superior choice.

EER = 0%

Higher NRE

EER = 0%

Lower NRE

Figure 6: Two biometric systems with the same I, the same separation between I
and G and thus the same EER, but with different G. In particular, G for the system
on the right has a larger variance, and thus the NRE is lower to reflect this.

When choosing between the EER and NRE metrics for evaluating the perfor-
mance of a biometric system, we would still recommend using the EER as the
primary one, since it is more practical in providing us with a solid indication of our
system’s expected error rate. The NRE, however, would be a useful complement to
the EER when we are trying to decide on the best of n biometric systems that have
the same EER.

5.2 Selecting the ε Parameter

As mentioned in the introductory paragraph of Section 3.2, ε is a parameter chosen
to deal with zero score differences (i.e., dgg = 0 or dgi = 0) in order to avoid an
RE of ±∞ (which would be meaningless in the context of measuring the amount
of discriminatory information in a biometric system). It is clear from Equations
(2), (3), (5) and (7), however, that the choice of ε could potentially have a signif-
icant effect on the resulting RE and, therefore, NRE, particularly if the number of
zero score differences is large. While the number of zero score differences will be
dependent on the biometric system in question and this number is, therefore, diffi-
cult to generalise, we wished to see what effect the choice of ε would have on the
RE and NRE of our best fingervein recognition system, that obtained when using
MC-extracted fingerveins from the UTFVP database. Figure 7 shows plots of the
RE and NRE versus ε, when ε is selected to lie in the range [10−12, 10−8]. For
convenience, Table 3 summarises the RE and NRE values from Figure 7.

From Figure 7 and Table 3, we can see that, while the choice of ε does affect
the RE and NRE to some degree (more specifically, the RE and NRE decrease as
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Figure 7: RE versus ε and NRE versus ε, when ε takes on different values in the
range [10−12, 10−8], for MC-extracted fingervein patterns in the UTFVP database.

ε RE NRE
10−8 19.5 0.62
10−9 19.5 0.60
10−10 19.5 0.59
10−11 19.5 0.58
10−12 19.5 0.57

Table 3: RE and NRE for MC-extracted fingerveins from UTFVP, when ε is varied
in the range [10−12, 10−8]. Note that, for consistency with Table 2, RE and NRE
values are rounded to 1 d.p. and 2 d.p., respectively.

ε decreases15), this effect does not appear to be significant. So, we may conclude
that, as long as the ε parameter is sensibly chosen (i.e., smaller than the comparison
scores, but not so small that it is effectively zero), then the RE and NRE estimates
should be reasonable.

5.3 Number of Nearest Neighbours

The method proposed in [9] to estimate the RE of biometrics uses only the first
nearest genuine and impostor neighbours of each genuine score. An issue with this
approach is that it makes the RE estimate highly dependent on any single score,
even if that score is an outlier. This might be particularly problematic if we do not
have a large number of scores to work with, which is often the case.

It seems that a safer approach would be to use k nearest neighbours, where
k > 1, then average the resulting dgg(i) and dgi(i) values over these k neighbours
prior to estimating the RE. This would introduce some smoothing to the underlying
score distributions, thereby stabilising the RE estimates. While the effect of k on

15In general, the RE, and thus the NRE, would be expected to decrease with a decrease in ε when
there are more dgi than dgg zero score differences. Alternatively, the RE, and thus the NRE, would
be expected to increase with a decrease in ε when there are more dgg than dgi zero score differences.

15



the RE, and therefore NRE, is difficult to generalise since it would, in practice,
be dependent on the biometric system in question, we wished to test the effect of
the choice of k on the RE and NRE of our best fingervein recognition system, that
obtained when using MC-extracted fingerveins from the UTFVP database. Figure
8 shows plots of the RE and NRE versus k, when k increases from 1 to 5. For
convenience, Table 4 summarises the RE and NRE values from Figure 8. Note that,
for this experiment, ε = 10−10, as for the RE and NRE experiments in Sections 3
and 4.

1 2 3 4 5

k

18.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

R
E

RE versus k for MC-extracted Fingervein Patterns

1 2 3 4 5

k

0.555

0.560

0.565

0.570

0.575

0.580

0.585

N
R

E

NRE versus k for MC-extracted Fingervein Patterns

Figure 8: RE versus k and NRE versus k, when k increases from 1 to 5, for MC-
extracted fingervein patterns in the UTFVP database.

k RE NRE
1 19.5 0.59
2 18.8 0.57
3 18.5 0.57
4 18.2 0.56
5 17.9 0.56

Table 4: RE and NRE for MC-extracted fingerveins from UTFVP, when k increases
from 1 to 5. Note that, for consistency with Tables 2 and 3, RE and NRE values
are rounded to 1 d.p. and 2 d.p., respectively.

From Figure 8 and Table 4, it is evident that increasing k tends to decrease both
the RE and NRE, but the decrease is not drastic for k ≤ 5. This decrease makes
sense, since a larger k means a greater degree of smoothing, which decreases the
effects of individual comparison scores. Another consequence of using a larger k
would be that the effect of the ε parameter on RE and NRE would be expected
to be less pronounced. This is because a larger k means that a larger number of
neighbouring scores are averaged when calculating the RE and NRE, so we are less
likely to encounter zero average scores than in the scenario where only one nearest
neighbouring score is considered. Keeping the aforementioned points in mind, it
is important to sensibly tune the k and ε parameters depending on the biometric
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system in question (e.g., if there are outlier scores, use k > 1, and select ε based on
the score precision, as discussed in Section 5.2). Furthermore, we urge researchers
adopting the RE and NRE measures to be transparent about their selection of these
parameters to ensure fair system comparisons across the biometrics community.

Note that the NN estimator on which Equation (2) is based [10] is actually a
k-NN estimator, where k denotes the number of nearest neighbours. It is not clear,
however, whether the proposed k-NN estimator is based on averaging the k nearest
neighbouring scores, as we have done for Figure 8 and Table 4, or whether the
authors meant that only the kth neighbour should be used. If their intention is the
latter, then our averaging approach represents an effective new way of stabilising
the k-NN estimator for RE measures.

6 Conclusions and Future Work

This chapter represents the first attempt at estimating the amount of information
in fingervein biometrics in terms of score-based Relative Entropy (RE), using the
previously-proposed Nearest Neighbour estimator. We made five important contri-
butions.

Firstly, we showed that the RE estimate is system-specific. In our experiments,
the RE differed across fingervein recognition systems employing different feature
extractors and different testing databases. For this reason, we refrain from claiming
a universal fingervein RE estimate, since this would be misleading.

Secondly, we showed that the RE can be used to rank different fingervein recog-
nition systems, which are tested on the same database using the same experimen-
tal protocol (in our case, the difference was the feature extractor employed), in
terms of the amount of discriminative biometric information available. The rank-
ing was shown to be comparable to an EER-based ranking, which implies that the
RE estimate is a reliable indicator of the amount of discriminatory information in
fingervein recognition systems.

Thirdly, we proposed a new metric, the Normalised Relative Entropy (NRE),
to help us gauge the significance of individual RE scores as well as to enable fair
benchmarking of different biometric systems (in particular, systems tested on dif-
ferent databases using different experimental protocols) in terms of their RE. The
NRE lies in the range [0.00, 1.00] and represents the proportion of the maximum
amount of discriminatory information that is contained in the biometric system
being measured. The higher the NRE, the better the system is expected to be at
distinguishing genuine trials from impostors.

Fourthly, we discussed how the NRE metric could be a beneficial complement
to the EER in ranking different biometric systems in terms of their discrimina-
tion capabilities. The NRE would be particularly useful in choosing the best of n
biometric systems that have the same EER.

Finally, we discussed two potential issues in calculating the RE and NRE,
namely, the effects of the ε parameter and the number of nearest neighbours (k)
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used for computing the genuine-genuine and genuine-impostor score differences.
We showed that, as long as ε is sensibly selected, its effect on the RE and NRE is
unlikely to be significant. We also showed that increasing the number of nearest
score neighbours may be expected to slightly decrease the RE and NRE, but the
upside is that using a larger number of nearest neighbours would help to dilute the
effects of outliers among the genuine and impostor comparison scores. We con-
cluded by suggesting that ε and k be tuned according to the biometric system being
evaluated and that researchers be transparent in terms of reporting their selection
of these two parameters.

At the moment, our primary aim for future work in this direction is to use our
proposed NRE metric to benchmark fingervein recognition systems against sys-
tems based on other biometric modalities, in terms of the amount of discriminatory
information contained in each system.
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