
On the Recognition Performance of
BioHash-Protected Fingervein Templates

Vedrana Krivokuća
Idiap Research Institute
Martigny, Switzerland

vedrana.krivokuca@idiap.ch
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Abstract

This chapter contributes towards advancing fingervein template protec-
tion research by presenting the first analysis on the suitability of the Bio-
Hashing template protection scheme for fingervein verification systems, in
terms of the effect on the system’s recognition performance. Our results show
the best performance when BioHashing is applied to fingervein patterns ex-
tracted using the Wide Line Detector (WLD) and Repeated Line Tracking
(RLT) feature extractors, and the worst performance when the Maximum
Curvature (MC) extractor is used. The low recognition performance in the
Stolen Token scenario is shown to be improvable by increasing the BioHash
length; however, we demonstrate that the BioHash length is constrained in
practice by the amount of memory required for the projection matrix. So,
WLD fingervein patterns are found to be the most promising for BioHashing
purposes due to their relatively small feature vector size, which allows us to
generate larger BioHashes than is possible for RLT or MC feature vectors.
In addition, we also provide an open-source implementation of a BioHash-
protected fingervein verification system based on the WLD, RLT, and MC
extractors, so that other researchers can verify our findings and build upon
our work.

1 Introduction

As our world is transforming into an interconnected network of individuals and
devices, we are beginning to realise that current data protection mechanisms are
becoming inadequate to meet our growing security needs. Traditional security
mechanisms, such as passwords and access cards, are no longer sufficient for es-
tablishing an individual’s true identity, which is why we are turning to biometrics
for stronger identity assurance. While the unique link between an individual and
their biometric characteristics is the very fact that makes biometric authentication
so reliable, it is this same aspect of biometrics that makes this authentication factor
vulnerable. For this reason, the past decade has seen the emergence of a new field
of research into developing effective biometric template protection strategies to



secure biometric features during storage and transmission in an authentication sys-
tem1. Research in this area is particularly important in light of the recent EU Gen-
eral Data Protection Regulation (GDPR)2, which legally obliges users of biometric
data to exercise caution in processing and storing this data to protect individuals’
digital identities.

A recent review paper on biometric template protection by Sandhya and Prasad
[1] shows that, between the years 2005 to 2016, the smallest amount of effort has
been invested into developing protection mechanisms for fingerveins. Neverthe-
less, fingervein recognition has increased in popularity over the past few years,
with several companies having already deployed fingervein recognition systems
for public use, e.g., M2SYS, Idemia, Hitachi, and NEC. This suggests that there
is an urgent need to direct our attention towards researching effective mechanisms
for protecting fingervein templates.

Although the fingervein template protection field is still in its infancy, a number
of methods have been proposed in the literature. For example, in one of the ear-
liest approaches towards fingervein template protection [2], the fingervein pattern
image is first transformed using the Number Theoretic Transform3, after which the
transformed template is masked by a random filter. Image-based transformations
are also applied towards protecting the fingervein template in [3], where block
re-mapping and mesh warping are (separately) applied to the fingervein image to
derive two versions of a cancellable fingervein template. Random projection is the
template protection method of choice in [4], where the fingervein template con-
sists of end points and intersections. Hybrid template protection strategies have
been proposed for fingerveins in [5, 6]. In [5], the fingervein image is first trans-
formed into a template where the number of black (background) and white (vein)
pixels is approximately equal, then the Fuzzy Commitment scheme is applied to
this template. In [6], the authors propose generating two BioHashes from the same
fingervein template, then encrypting one BioHash using Fuzzy Commitment and
the other using Fuzzy Vault, after which the two encrypted BioHashes are com-
bined. Finally, [7, 8, 9] have focused on multi-biometric systems. More specifi-
cally, in [7], fingervein, fingerprint, finger knuckle print and finger shape features
are fused, then the resulting feature vector is secured via Fuzzy Commitment. A
similar approach is presented in [8], except here the authors also consider score-
level and decision-level fusion, whereby Fuzzy Commitment is used to secure each
individual feature vector, then the scores or decisions, respectively, of the resulting
biometric cryptosystems are fused. In [9], the fingervein feature vector is pro-
tected using the Bloom filter approach, and the authors also investigate a multi-
biometric system whereby the Bloom filter-protected fingervein template is fused
with a Bloom filter-protected face template.

1https://www.iso.org/standard/52946.html
2https://ec.europa.eu/commission/priorities/

justice-and-fundamental-rights/data-protection/
2018-reform-eu-data-protection-rules_en

3This is esentially the Fourier transform, constrained to a finite field.
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This chapter contributes towards research on fingervein template protection by
investigating whether the BioHashing template protection strategy [10] is suitable
for protecting fingervein templates, in terms of its effect on the recognition per-
formance of the underlying recognition system. BioHashing is one of the most
widely studied biometric template protection schemes in the literature. It involves
the projection of a biometric feature vector into a random subspace defined by a
user-specific seed, followed by binarisation of the resulting projected vector to pro-
duce a so-called “BioHash”. Although BioHashing has been applied to a number of
biometric characteristics (e.g., fingerprints [10], face [11], palm prints [12], and iris
[13]), the only mention of BioHashing on fingervein templates that we have come
across is the BioHashing/Fuzzy Vault and BioHashing/Fuzzy Commitment hybrid
scheme in [6], mentioned earlier. To the best of our knowledge, there does not
yet exist any published research on applying BioHashing on its own to fingervein
templates. This is where our contribution lies. We also provide an open-source
BioHash-protected fingervein verification system, which can be used by other re-
searchers to verify and build upon our work.

We have chosen to focus on BioHashing for three main reasons. Firstly, one of
the biggest and most well-known advantages of BioHashing is that, theoretically,
there is the possibility of achieving a 0% error rate. While low error rates may
be characteristic of two-factor template protection schemes in general, BioHashing
is currently the most popular in this category. Secondly, fingervein images tend
to be fairly large, so we were interested in seeing whether BioHashing could be
used to produce significantly smaller fingervein templates. Finally, since BioHash-
ing is one of the most well-known template protection schemes in the literature,
we wished to provide an open-source implementation of this method for compari-
son purposes against other template protection techniques developed for fingervein
templates.

Note that the new standard4 for the evaluation of biometric template protection
schemes, ISO/IEC 30136:2018, specifies a number of requirements that should
be considered when assessing the robustness of a biometric template protection
scheme. These include: the recognition performance of a biometric system em-
ploying template protection compared to that of the same system without template
protection; the irreversibility of a template protection scheme, which refers to the
difficulty of recovering information about the underlying biometric characteristic
from its protected template; diversity, renewability (or cancellability), and unlink-
ability, all of which relate to the possibility of generating multiple protected tem-
plates from the same biometric characteristic, such that the protected templates are
effectively seen as different identities and can thus be used to: (i) replace a com-
promised protected template, and (ii) enroll into multiple applications using the
same biometric characteristic without the risk of cross-matching the protected ref-
erence templates. The standard also specifies the need to evaluate the possibility of
impersonating an enrolled individual using information about their underlying bio-

4https://www.iso.org/standard/53256.html
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metric characteristic leaked from one or more of their protected templates, which
may largely be attributed to the template protection scheme’s compliance with the
irreversibility and unlinkability properties. A thorough evaluation of a biometric
template protection scheme must, therefore, take into account all of the aforemen-
tioned requirements. While the evaluation of recognition performance is relatively
established, there are currently no solid, agreed-upon methods for assessing re-
quirements such as irreversibility and diversity/cancellability/unlinkability (despite
some guidelines provided by the new standard). Consequently, a thorough evalua-
tion of a biometric template protection scheme necessitates a dedicated treatise of
each requirement, which, in many cases, may involve the development and justi-
fication of new evaluation methodologies. In light of these reasons, this chapter
focuses on evaluating only the recognition performance of BioHash-protected fin-
gervein templates, and we reserve the analysis of the remaining requirements for
future work.

The remainder of this chapter is structured as follows. Section 2 briefly de-
scribes the implementation of our BioHash-protected fingervein verification sys-
tem. Section 3 presents experimental results on the recognition performance of
this system and discusses memory constraints that should be considered when ap-
plying BioHashing to fingerveins. Section 4 concludes the chapter and suggests
areas for future work.

2 BioHash-Protected Fingervein Verification System

Our BioHash-protected fingervein verification system5 is an adaptation of the base-
line fingervein verification system implemented in the bob.bio.vein PyPI pack-
age6. Our adapted system consists of four modules, as illustrated in Figure 1.

Figure 1: Enrolment (blue arrows) and verification (red arrows) stages in our
BioHash-protected fingervein verification system. IR and IP denote the reference
and probe finger images, respectively. Similarly, BR and BP denote the reference
and probe BioHashes, respectively.

The pre-processor locates, crops, and horizontally aligns the finger in each
fingervein image, as per [14, 15].

5Code available at the following link: https://gitlab.idiap.ch/bob/bob.
chapter.fingerveins_biohashing

6https://pypi.python.org/pypi/bob.bio.vein
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The extractor extracts the vein pattern from the cropped finger image. We
used three well-known extractors: Wide Line Detector (WLD) [15], Repeated Line
Tracking (RLT) [16], and Maximum Curvature (MC) [17]. The output of each ex-
tractor is a binary image, in which white pixels represent the fingervein pattern and
black pixels represent the background. For each binary image, we then concatenate
its rows to generate a fingervein feature vector.

The fingervein feature vector obtained from the feature extraction stage is next
BioHashed. Our implementation is based on the original BioHash method pro-
posed in [10]. The steps are summarised below:

1. Generate a user-specific7 random projection matrix of size n× l for each unique
finger8 in the database, where n represents the dimensionality of the fingervein
feature vector and l denotes the desired BioHash length. To ensure that the same
matrix can be generated for a specific finger during every verification attempt,
the random matrix generation is seeded with a user-specific seed. (This seed
should be stored on an external token, separately from the BioHash.)

2. Orthonormalise the random matrix.

3. Compute the dot product between the fingervein feature vector and each column
of the orthonormalised random matrix. The result is an l-dimensional projected
vector.

4. Binarise the projected vector using the mean of the vector as the binarisation
threshold, such that all values greater than the mean are set to 1 and all values
less than or equal to the mean are set to 0. The result is an l-dimensional binary
vector, referred to as the “BioHash”.

For the unprotected (without BioHashing) templates in our baseline fingervein
verification system, comparison is performed on the extracted fingervein features
separately for each of the three extractors (WLD, RLT, and MC), using the com-
parison algorithm proposed in [16]. This method is based on a cross-correlation
between the enrolled (reference) fingervein template and the probe template ob-
tained during verification. For the protected (with BioHashing) templates in our
BioHash-protected fingervein verification system, comparison is done by comput-
ing the Hamming distance between the reference and probe BioHashes.

3 Recognition Performance of BioHash-Protected Fingervein
Verification System

This section presents the results of the experiments we conducted to determine the
recognition performance of our BioHash-protected fingervein verification system.

7Note that “user” refers to an individual using the fingervein verification system. While the
standardised term would be “biometric data subject” or “individual”, we have chosen to retain the
term “user” for consistency with [10].

8Each finger represents a different identity or “user”.
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For the experiments reported in this paper, we employed the publicly-available
fingervein database UTFVP9. This database consists of 4 images for each of 60
subjects’ left and right index, ring and middle fingers, which makes up 1,440 im-
ages in total. Each image has a height of 380 pixels and a width of 672 pixels.
Associated with the database are a number of different evaluation protocols. We
used the “nom” protocol10, for which the database is split into three sets (“world”,
“dev”, and “eval”). We employed the “eval” set, which consists of fingers 29–60.
The comparison protocol involved using the first two fingervein images from each
finger for enrolment and the last two as probes.

We chose this database for two reasons. Firstly, it is publicly available, which
means that our results can be easily verified by other researchers. Secondly, it has
been shown [18] that an EER of as low as 0.4% is achievable on this database, so
we wanted to investigate the effects of BioHashing on such remarkable recognition
performance.

3.1 Baseline Recognition Performance

To determine how effective our BioHash-protected fingervein verification system
is for finger verification purposes, it was necessary to first establish the recognition
performance of our baseline verification system, i.e., using unprotected fingervein
features. We had three baselines, one for each of the three extractors.

Figure 2 illustrates the outputs of each of the three feature extractors on a fin-
ger image from UTFVP, and Table 1 shows the dimensionalities of the fingervein
feature vectors from each extractor. Although the images in Figure 2 have all been
scaled to the same size for easier visual comparison of the extracted patterns, the
three extractors actually produce images of different sizes, as is evident from Table
1. The MC extractor is the only one that outputs a binary image of the same size
as the original image from the database, plus a little extra background padding for
comparison purposes. On the other hand, both the WLD and RLT extractors output
binary images that are much smaller than the original image. Our adopted WLD
extractor reduces the image to a quarter of its original size in each dimension prior
to feature extraction to speed up the processing, and the RLT extractor reduces each
dimension of the image to a third of its original size. These dimensionalities will be
shown to play an important role in the practical feasibility of applying BioHashing
to fingervein patterns, a point which will be discussed further in Section 3.3.

Figure 3 presents a visual comparison of the recognition performance of the
three extractors in terms of Receiver Operating Characteristic (ROC) plots. We
refer to this as the baseline recognition performance (i.e., the performance of the
fingervein recognition systems prior to incorporating BioHashing).

Considering the recognition performance of the three extractor baselines in
Figure 3, it is evident that the MC extractor has the best performance. Looking at

9http://scs.ewi.utwente.nl/downloads/show,Finger\%20Vein/
10Defined by Idiap Research Institute. See https://www.beat-eu.org/platform/

databases/utfvp/1/ for more details.
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(a) WLD (b) RLT (c) MC

Figure 2: Fingervein patterns extracted using three different feature extractors on
the same finger image from UTFVP.

Extractor Image Size (pixels) Feature Vector Dimensionality
WLD 94× 164 15,416
RLT 234× 409 95,706
MC 390× 682 265,980

Table 1: Sizes of the extracted binary fingervein pattern images and corresponding
fingervein feature vectors.
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Figure 3: Comparing baseline ROCs across the three feature extractors on the UT-
FVP database.

Figure 2, this makes sense, because the MC extractor seems to produce the clean-
est, thinnest fingervein patterns, which would be expected to contribute to more
accurate recognition. The fact that the recognition performance of the WLD and
RLT extractors is very similar may be attributed to the fact that the two extrac-
tors produce fingervein patterns of similar quality (thick, with a fairly noisy back-
ground), even though the RLT-extracted pattern in Figure 2 appears cleaner than
the WLD-extracted pattern.
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3.2 BioHashing Recognition Performance

This section presents experimental results on the recognition performance of our
BioHash-protected fingervein verification system. We consider two scenarios: the
Normal scenario and the Stolen Token scenario. The Normal scenario refers to
the scenario where each user of the verification system employs their own secret
seed and associated random projection matrix in the generation of their BioHash.
This is the expected scenario for most cases in practice. The Stolen Token scenario
refers to the scenario where a genuine user’s secret seed is stolen and used with
the impostor’s own fingervein template to generate the impostor’s BioHash. While
it is hoped that such a scenario would not occur in practice, the fact that the user-
specific seed is a valuable secret means that we must consider the scenario where
that secret is leaked.

To determine the recognition performance of our BioHash-protected fingervein
verification system in both the Normal and Stolen Token scenarios, we generated
BioHashes of lengths l = {100, 200, 300, 400, 500} (number of bits) for fingervein
feature vectors resulting from each of our three feature extractors (WLD, RLT, and
MC). For the Normal scenario, the unique ID of the finger image was used as the
seed11, and for the Stolen Token scenario the same seed (seed = 100) was used to
generate the BioHashes for all fingers. Table 2 indicates the dimensionality reduc-
tion resulting from applying BioHashing to the fingervein feature vectors (refer to
Table 1 for the original fingervein feature vector dimensionality). Figure 4 shows
the recognition performance of the three fingervein extractors in both the Normal
and Stolen Token scenarios, in terms of ROC plots.

Extractor l = 100 l = 200 l = 300 l = 400 l = 500
WLD 99.35% 98.70% 98.05% 97.41% 96.76%
RLT 99.90% 99.79% 99.69% 99.58% 99.48%
MC 99.96% 99.92% 99.89% 99.85% 99.81%

Table 2: Dimensionality reduction (percentage of dimensionality lost) as a result
of converting fingervein feature vectors to BioHashes of different lengths (l).

From Table 2, it is evident that generating BioHashes of 100–500 bits from
fingervein feature vectors results in a significant dimensionality reduction for all
three feature extractors. The greatest dimensionality reduction is observed for the
MC extractor, and the WLD extractor shows the smallest dimensionality reduction.
This makes sense, since MC fingervein feature vectors have the largest dimen-
sionality and WLD fingervein feature vectors the smallest (see Table 1). While
“dimensionality” does not necessarily equal “information”, and thus “dimension-
ality reduction” does not necessarily imply “information loss”, the size of the di-
mensionality reductions noted in Table 2 makes it highly probable that mapping

11In practice, the seed should be randomly generated. We only used the finger ID as the seed so
that our results are more easily reproducible.
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fingervein feature vectors to BioHashes does result in some information loss. In
particular, from the results in Table 2, we would conclude that BioHashing on MC
fingervein feature vectors would incur the largest information loss and WLD fea-
ture vectors the smallest. This should be evident when comparing the recognition
performance of the BioHash-protected fingervein recognition system to the base-
line system (i.e., the system without BioHashing). We refer to Figure 4 for this
purpose.
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Figure 4: Recognition performance of our BioHash-protected fingervein verifica-
tion system in the Normal and Stolen Token scenarios.
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There a number of important observations from Figure 4. Firstly, in the Normal
scenario, the BioHash-protected fingervein recognition performance for the WLD
and RLT extractors is generally better than the baseline and has an error rate of
approximately 0% at all FMR values, for l > 100. This is interesting, since the
BioHashes are significantly smaller than the original fingervein feature vectors, as
noted in Table 2. However, the additional entropy introduced by the user-specific
projection matrices make the resulting BioHashes more discriminative than the
original fingervein feature vectors, so the superior performance of BioHashes is
not surprising. The fact that the BioHashed MC fingervein patterns struggle to
reach the baseline recognition performance as quickly as WLD or RLT BioHashes
is probably because BioHashing on MC fingervein feature vectors results in the
largest dimensionality reduction (see Table 2). It is interesting to note, however,
that although the dimensionality reduction for both RLT and MC is greater than
99% for all BioHash lengths tested (refer to Table 2), RLT BioHashes perform
much better than MC BioHashes. So, perhaps such a large dimensionality reduc-
tion is too severe for MC fingervein patterns. Nevertheless, we can see that the
recognition performance improves as the BioHash length increases, and for all
three extractors the Normal scenario recognition performance in the BioHashed
domain equalises or surpasses the baseline recognition performance as the FMR
approaches 10−1.

As for the Stolen Token scenario, from Figure 4 we can see that the recognition
performance for all three extractors is significantly worse than the baseline. Such
a trend has been shown for other biometric characteristics in the literature (e.g.,
[19]), and it makes sense because in the Stolen Token scenario we are essentially
performing a huge dimensionality reduction using the same projection matrix for
each finger12. So, here we see the ‘real’ effect (i.e., without the additional entropy
introduced by the user-specific projection matrix in the Normal scenario) of the sig-
nificant dimensionality reduction reported in Table 2. Since we cannot, in general,
expect better recognition performance than the baseline when the dimensionality
of our feature vectors is reduced via random projection, the best we can hope for
is that the performance of our BioHash-protected fingervein verification system in
the Stolen Token scenario is as close as possible to our baseline. From Figure 4, we
can see that, as in the Normal scenario, the recognition performance in the Stolen
Token scenario approaches that of the baseline as the BioHash length increases.

If we were to rank our three extractors in the Normal scenario based on Figure
4, we would place WLD and RLT first equal, followed by MC. This is an interesting
turn of events, since the baseline ranking in Figure 3 is the opposite. Our suspicion
is that this is due to the thinness of the fingerveins extracted by MC, which means
that the MC feature vector may need a much higher resolution than the WLD or
RLT feature vectors. So, a BioHash in the range of 100–500 bits might just be too
small to represent the MC features.

Ranking the three extractors in the Stolen Token scenario, once again MC takes
12Recall that each finger corresponds to a different identity.
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last place, with WLD and RLT fighting for first. It seems as if WLD has slightly
better recognition performance than RLT for all but a BioHash length of 500, where
RLT marginally takes over. We would expect that the smallest feature vector,
that produced by WLD, would incur the smallest information loss as a result of
the smallest dimensionality reduction in the projection to a 100–500 bit BioHash,
while the greatest information loss would be incurred by the largest feature vector,
that produced by MC. So, we would predict that the WLD extractor recognition
performance would be closest to its baseline and MC furthest from its baseline in
the Stolen Token scenario. This is, more or less, what we observe in Figure 4.

If we had to draw a conclusion about the suitability of applying BioHashing to
a fingervein verification system based on the recognition performance observed in
Figure 4 alone, we would probably have to say that BioHashing is not a suitable
template protection scheme in this case. While we would assume that the system
would operate in the Normal scenario most of the time, in which case BioHashing
would be great for achieving a 0% error rate with the WLD or RLT feature ex-
tractors (or even the MC extractor, depending on what FMR the system needs to
operate at), unfortunately we cannot ignore the possibility of the Stolen Token sce-
nario. Since the recognition performance of all three extractors in the Stolen Token
scenario is significantly worse than the baseline for the BioHash lengths tested, it
seems too risky to recommend incorporating BioHashing into a fingervein verifi-
cation system.

However, we have observed that the recognition performance of the BioHash-
protected fingervein verification system improves as the BioHash length increases.
So, this brings to mind a possible solution: Why not just try larger lengths? We
discuss this point in Section 3.3.

3.3 Memory Constraints

This section investigates the possibility of increasing the BioHash length to gain
better recognition performance for our BioHash-protected fingervein verification
system in the Stolen Token scenario. Since we know that, theoretically, we can-
not achieve better recognition performance than the baseline in the Stolen Token
scenario, our first approach might be to choose the MC extractor, since Figure 3
shows that it has the best baseline out of the three extractors tested. Even though
the recognition performance of the BioHashed MC fingervein features in Figure
4 was shown to be worse than the performance of the WLD and RLT features,
our hope might be that if we choose a large enough BioHash length then perhaps it
would be possible to push the performance of our BioHashed MC features up to the
MC baseline performance. The question is, how large would this BioHash need to
be in order for us to achieve such an improvement in the recognition performance?

Figure 5 shows a plot of the amount of memory required, in bytes, to generate
the projection matrix for a single feature vector for each of our three extractors,
as the BioHash length increases from 100 to 2,000. Remember that the projection
matrix consists of n rows by l columns, where n denotes the number of bits in the
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binary feature vector (see Table 1) and l represents the BioHash length.
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Figure 5: Amount of memory required for the projection matrix as the BioHash
length increases. Note that memory ranges from 0 to just over 4GB in this plot.

From Figure 5, we can see that the amount of memory required for a projection
matrix corresponding to a WLD feature vector grows quite gradually as the Bio-
Hash length increases, that for an RLT feature vector grows faster, and that for an
MC feature vector the fastest. For example, it seems that for a 1,000-bit BioHash
we would require less than 0.1GB for a WLD projection matrix, about 0.75GB for
RLT, and over 2GB for MC! This immediately suggests that anything close to or
larger than a 1,000-bit BioHash would probably be impractical for MC features,
possibly doable for RLT features but not for a much larger l, and manageable for
larger BioHashes on WLD features.

We attempted 1,000-bit BioHashes for our three extractors. As expected, the
result was a memory error for our MC feature vectors (i.e., insufficient memory
available). This confirms our suspicion that, although MC has the best baseline,
it may be impractical for BioHashing. We might consider re-scaling the MC-
extracted fingervein pattern image so that we have a smaller feature vector to work
with, but this is currently not a characteristic of our adopted MC extractor imple-
mentation. As for the WLD and RLT extractors, Figure 6 compares their recogni-
tion performance on 1,000-bit BioHashes in the Stolen Token scenario (note that
both extractors had an error rate of 0% in the Normal scenario, so this is not shown).

As expected from the Stolen Token plots in Figure 4, the recognition perfor-
mance of the two extractors in Figure 6 is fairly close, with RLT doing slightly
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Figure 6: WLD versus RLT when BioHash length is 1,000.

better at the larger BioHash length. Overall, however, this recognition performance
may still be impractically low, so we might need to consider an even larger Bio-
Hash length to try to improve the performance.

We attempted a BioHash length of 5,000 for our WLD and RLT features. As
expected, the RLT-based BioHash generation resulted in a memory error. This
means that, with our current implementation of the RLT extractor, we cannot expect
to gain a significant improvement in the recognition performance of RLT-based
BioHashes in the Stolen Token scenario. The WLD-based BioHashes, on the other
hand, had no memory issues. Figure 7 compares the recognition performance of
our BioHash-protected fingervein verification system for 1,000-bit and 5,000-bit
BioHashes on the WLD fingervein features in the Stolen Token scenario to the
WLD baseline (note that both BioHash lengths had an error rate of 0% in the
Normal scenario, so this is not shown).

Figure 7 confirms our previously-observed trend (in Figure 4) that the recog-
nition performance of our WLD-based BioHash-protected fingervein verification
system approaches the performance of the corresponding baseline in the Stolen
Token scenario as the BioHash length increases. The final length will depend on
how much of a drop in recognition performance is acceptable in the Stolen Token
scenario. Technically, we can expect the BioHash recognition performance to be
approximately the same as the baseline performance when the BioHash length is
the same as the length of the original feature vector. The issue here is that, in this
case, the BioHash is more or less fully invertible, meaning that it would be possible
to recover the original feature vector if the user’s secret seed and thus their projec-
tion matrix is leaked to an attacker. So, it is important to try to find a large enough
BioHash length to ensure we have reasonable recognition performance in both the
Normal and Stolen Token scenarios, while keeping the length small enough to
ensure that the resulting BioHash is sufficiently privacy-preserving. The privacy-
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Figure 7: 1,000-bit versus 5,000-bit BioHashes on WLD compared to the baseline
recognition performance.

preserving properties of our BioHash-protected fingervein verification system must
be investigated before we can fully justify any conclusions on whether or not Bio-
Hashing is a suitable template protection scheme for fingerveins.

4 Conclusions and Future Work

This chapter presented the first investigation into the suitability of BioHashing as
a fingervein template protection scheme for fingervein verification systems based
on three feature extractors (WLD, RLT, and MC), in terms of recognition perfor-
mance only. Our experiments showed that, in the Normal scenario, it is possible
to achieve a 0% error rate for BioHashes that are significantly smaller than the
original fingervein feature vectors. BioHashes generated from WLD and RLT fin-
gervein feature vectors were found to perform the best, while BioHashed MC fea-
tures were shown to approach the baseline recognition performance as the FMR
approached 10−1. As expected, the recognition performance for all three extrac-
tors was worse than the baseline in the Stolen Token scenario due to the huge
dimensionality reduction that is incurred in projecting a fingervein feature vector
to a relatively small BioHash. While the recognition performance was shown to
improve by increasing the length of the BioHash vectors, it was also demonstrated
that the choice of length is constrained in practice by the amount of memory re-
quired for the projection matrix. Consequently, the WLD extractor was found to
be the most promising for BioHashing purposes, since the relatively small size of
WLD feature vectors allows for much larger BioHashes than would be possible for
RLT or MC feature vectors. One issue with generating large BioHashes, however,
is that, the larger the BioHash length, the easier it becomes to invert the BioHash
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to recover the original feature vector, thereby jeopardising the privacy of the verifi-
cation system’s users. To determine an optimal BioHash length that would ensure
a reasonable balance between recognition performance and privacy preservation,
we would need to conduct a full security and privacy analysis for the BioHashed
WLD fingervein patterns. This will form part of our future work. Another area
for future work could be to investigate the effect on BioHashing recognition per-
formance when the three extractors are modified to produce feature vectors of the
same size.
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