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Abstract—Whether in factory or household scenarios, rhyth-
mic movements play a crucial role in many daily-life tasks. In
this paper we propose a Fourier movement primitive (FMP)
representation to learn such type of skills from human demon-
strations. Our approach takes inspiration from the probabilistic
movement primitives (ProMP) framework, and is grounded in
signal processing theory through the Fourier transform. It works
with minimal preprocessing, as it does not require demonstration
alignment nor finding the frequency of demonstrated signals. Ad-
ditionally, it does not entail the careful choice/parameterization of
basis functions, that typically occurs in most forms of movement
primitive representations. Indeed, its basis functions are the
Fourier series, which can approximate any periodic signal. This
makes FMP an excellent choice for tasks that involve a superpo-
sition of different frequencies. Finally, FMP shows interesting
extrapolation capabilities as the system has the property of
smoothly returning back to the demonstrations (e.g. the limit
cycle) when faced with a new situation, being safe for real-world
robotic tasks. We validate FMP in several experimental cases
with real-world data from polishing and 8-shape drawing tasks
as well as on a 7-DoF, torque-controlled, Panda robot.

I. INTRODUCTION

Upper-body rhythmic movements play a crucial role in

many daily-life tasks. Whether in factory scenarios (e.g.

polishing, sawing) or household (e.g. whisking, hammering,

wiping), such tasks require the use of repetitive patterns that

should adapt to new situations. As opposed to discrete motions

(e.g. reaching, picking, batting), where the final location is

typically used as the parameter to adapt the task, rhythmic

skills contain richer information pertaining to aspects like

frequency, amplitude and phase, which can strongly depend on

various types of inputs, such as the task context (e.g. wiping

a small or large surface). The high number of aspects that

need to be accounted for in rhythmic motions make them

hard to pre-program. We propose to rely on learning from

demonstration (LfD) [4] to learn these rich features.

The problem of learning rhythmic robot skills from demon-

strations has received previous attention from the community,

especially in the context of wiping/polishing tasks [3, 2, 15, 1],

with results along two major research lines. The first one relies

on dynamical system representations, through the popular

dynamic movement primitives (DMP) [13]. Indeed, extensions

of the original DMP [12, 8, 23, 7, 21] have exploited either

periodic basis functions or non-linear oscillators to encode

demonstrated robot motions. The second, and more recent, line

of research leverages probabilistic approaches, either using

Fig. 1: Rythmic tasks such as wiping need to be demonstrated in few
demonstrations (top), while the robot should extract the important
motion features (e.g. amplitude, frequency and phase) and generalize
it in a consistent, safe manner (bottom).

probabilistic movement primitives (ProMP) [19] or kernelized

movement primitives (KMP) [10]. In all cases, sinusoidal basis

functions are used, capturing the periodic aspect, but limiting

the applicability in cases of varying amplitude, frequency and

phase (Section II).

Fourier series have been used extensively during the past

decades for synthesis and analysis of periodic signals (Section

III). We here propose to leverage them in the context of LfD.

The contribution of this paper is a model for learning rhythmic

skills from demonstrations and adapting them to new situations

based on Fourier movement primitives (FMP). We propose

FMP as a movement primitive representation that relies on

a superposition of Fourier basis functions (Section IV), or

complex exponentials, as opposed to the typical choice of

real-value sine/cosine basis functions. The main advantages

of FMP over the state-of-the-art are:

1) Extraction of multiple frequencies underlying

demonstrations - by relying on Fourier series as a basis

representation, FMP can extract the superposition of

various frequencies in a straightforward manner.

2) No manual choice/tuning of the basis functions -

Fourier basis functions do not require hyperparameters,

in contrast to Von-Mises or sinusoidal basis functions

requiring centers, bandwidths and frequencies parame-

ters. The use of the Fourier basis functions is also well

motivated theoretically, as any periodic signal can be

represented in the Fourier domain.

3) Minimal preprocessing - FMP requires very little pre-



processing. Namely, it does not require the demonstra-

tions to be aligned, or the basis frequency of the signal

to be identified.

4) Unified magnitude and phase statistics - the un-

derlying processing with complex numbers allows the

system to achive a statistical analysis over amplitude,

frequency and phase.

We evaluate FMP in 3 different scenarios (Section V). First

we consider data from a polishing task, requiring one single

frequency per degree-of-freedom (DOF). Second we consider

the drawing of an 8-shape, which needs a superposition of

different frequencies. Finally, we use a 7-DOF Panda robot to

perform a whiteboard-wiping task, showing that the robot can

start from arbitrary locations in the workspace while smoothly

converging to the demonstrations and perform the task. We

close the paper with a discussion on the obtained results

(Section VI) and conclusion (Section VII).

II. RELATED WORK

In this section we review related work on the representation

and learning of periodic movement primitives by imitation and

place our contribution in the context of the state-of-the-art.

A. Dynamical-system-based approaches

A prominent line of research based on dynamical systems

stems from the seminal work of Ijspeert et al. [13] on

DMP. The original DMP formulation [13] relies on simple

second order dynamics to learn point-attractor movements,

while exhibiting interesting properties such as convergence to

a desired final state and resistance to perturbations. Owing

to a non-linear term that shapes the dynamics, DMP can

imitate the shape of demonstrations in a straightforward way.

It can be used for both discrete and periodic movements [12],

by considering non-linear oscillators and phase dynamics.

Following from these results, more complex paradigms in

robotics emerged, such as central pattern generators [6] and

adaptive frequency phase oscillators [26].

In [8], Gams et al. exploit the capabilities of adaptive

frequency oscillators proposed by Righetti et al. [26] in

combination with periodic DMP. They propose a two-layered

approach that relies firstly on a set of adaptive frequency

oscillators to identify the fundamental frequency and phase

of a demonstrated signal without prior knowledge of its

frequency. In a second layer, a periodic DMP is trained using

the previously extracted fundamental frequency and phase, to

obtain the waveform of the signal, allowing for reproducing the

skill with the aforementioned DMP properties. This approach

has been further utilized by others in task generalization

[29], human-robot collaboration [21, 22, 24], force control [9]

and improved for automatic frequency extraction [23]. These

approaches share the limitation that it is not straightforward to

perform statistics on the learned model when there is access to

multiple demonstrations. This consequently limits the potential

of application in compliant control, especially at the level of

minimal intervention control [18, 5, 27]. Compliant control is

possible using such kind of dynamical systems, however the

control policies do not reflect the structure of the data and are

typically modulated by external signals, such as EMG [21].

Finally, [1, 16, 15] propose to use autonomous dynamical

systems to learn polishing tasks, relying on formulations that

share similarities with [14]. In these works, learning is done to

the extent that the robot extracts surface normals [1] and adapts

its behavior to new human intentions (either through different

limit cycles [16] or task switches [15]). We, instead, focus on

the learning of the spatiotemporal aspects of demonstrations,

namely magnitude, frequency and phase.

B. Probabilistic approaches

While probabilistic approaches for motor primitive learning

by imitation rose in popularity, two lines of approaches gain

particular relevance for rhythmic skills. Paraschos et al. [19]

propose a formulation relying on basis functions that can rep-

resent either discrete or periodic motions, named probabilistic

movement primitives (ProMP). ProMP represents trajectories

in a weight space where, provided enough data, statistics can

be performed yielding important properties such as adaptation

to new situations and the computation of various forms of un-

certainties. By relying on cosine or Von-Mises basis functions,

however, ProMP has limited adaptation capability in terms of

frequency and phase.

In another direction, following the spirit of non-parametric

learning, Gaussian process regression (GPR) can also model

periodic time series (see [25] ch. 4), and hence can also ap-

proximate well rhythmic robot skills, by relying on appropriate

kernels. However, it is computationally expensive and it is not

straightforward to adapt a demonstrated policy to a new situ-

ation. More recently, kernelized movement primitives (KMP)

[10, 11] have been shown to permit the learning of periodic

skills when using periodic kernel functions. Nonetheless, both

KMP and GPR, despite allowing for statistics, share the

same limitations as ProMP in that the kernels conventionally

employed are not expressive enough to represent a wide range

of frequencies and phases.

C. Constraint-based approaches

A third relevant line of research focuses on learning motion

constraints [3, 2, 17] through the estimation of null space

matrices from data. While [3, 17] perform polishing/wiping

on flat surfaces, [2] extend the approach to be compatible

with curved surfaces (which is also the motivation behind

[1]). Similarly to [1, 16, 15], the focus is not on the learning

of rhythmic motion primitives, hence application to tasks

involving periodic motions (e.g. drumming, hammering) is

not straightforward. However, these approaches rely on policy

learning for generalizing the learned constraints. Hence, there

is a high potential for combinations with FMP in the future.

III. PRELIMINARIES

We briefly recall the concepts of discrete Fourier transform

and inverse discrete Fourier transform, which are used to

convert sequences from time domain to frequency domain,

and the other way around.



(a) Weight in the
complex plane

(b) Corresponding basis
function multiplied by weight

Fig. 2: Illustration of reconstructed signals with one Fourier basis
function (for k = 3). The orange and blue points have the same
amplitude but not the same phase, which results in the same signals
that are shifted in time.

A. Discrete Fourier transform

The discrete Fourier transform converts a one-dimensional

sequence y = [y0, . . . , yT−1]
⊤ of T equally-spaced samples

into a same length sequence of complex coefficients corre-

sponding to different frequencies. The basic idea is to consider

the sequence y as a periodic signal of period T 1. The sequence

can be perfectly represented in the frequency domain with T

complex coefficients:

∀k ∈ [[0;T − 1]] : w̃k =

T−1
∑

n=0

yn exp

(

−
2iπ

T
kn

)

, (1)

where i refers to the imaginary part of a complex number.

By concatenating the T coefficients in a vector, we get the

following matrix-form formula:

w̃ = Ψy with:

∀(k, n) ∈ [[0;T − 1]]2 : Ψk,n = exp

(

−
2iπ

T
kn

)

.
(2)

B. Inverse discrete Fourier transform

The discrete Fourier transform is an invertible, linear trans-

formation. Therefore, we can map the frequency domain

representation of the signal back to the time domain:

∀n ∈ [[0;T − 1]] : yn =
1

T

T−1
∑

k=0

w̃k exp

(

2iπ

T
kn

)

. (3)

This can also be expressed in matrix form as:

y = Φ̃w̃ with Φ̃ =
1

T
Ψ

H , (4)

where H denotes the Hermitian transpose operator. An inter-

esting property of Fourier basis functions is that a single basis

function represents variations of amplitude and phase, as we

illustrated in Fig.2.

IV. FOURIER MOVEMENT PRIMITIVES

In this section, we present Fourier movement primitives.

First, we detail how we can compute statistics from demon-

strations, then we explain how this is exploited for minimal

intervention control in the Fourier domain.

1For discrete movements, a periodic signal of period 2T can be constructed
by symmetrizing the original signal of length T, so that the same method can
be applied.

A. Imitation learning

Let (yi)i=1, ... ,N be a series of N demonstrations of length

T . For clarity purposes, we assume that the demonstrations

contain only one degree of freedom (we will discuss in

subsection (IV-D) how it is extended to multiple ones). We

compute using (2) the complex weights (w̃i)i=1, ... ,N such

that

∀i ∈ [[1;N ]] : yi = Φ̃w̃i. (5)

We then learn a distribution of (w̃i)i=1, ... ,N . The main

difference here, with respect to standard ProMP, is that the

weights are complex numbers. As we want to have correlations

between real and imaginary parts of our weights (so that we

can learn correlations in magnitudes or phases), we consider

an expanded real version of our weights where the real and

imaginary parts are concatenated as:

wi = [Re(w̃i)
⊤, Im(w̃i)

⊤] . (6)

It is straightforward to see that wi and w̃i are linear in the

complex space:

w̃i = Awi with AT×2T =
[

IT iIT
]

. (7)

For notation simplicity, we define Φ = AΦ̃, which implies:

∀i ∈ [[1;N ]] : yi = Φwi. (8)

We learn the distribution of the weights (wi)i=1 ... N by

fitting a Gaussian mixture using the Expectation-Maximization

algorithm, initialized with the K-means algorithm. We retrieve

the weights, means and covariances θ = (πj ,µj ,Σj)j=1,...,M
of the Gaussian mixture, whose probability density function

is expressed as:

p(w|θ) =
M
∑

j=1

πjN (w|µj ,Σj),

with N (w|µj ,Σj) =

1

(2π)(2T )/2|Σj |1/2
exp

{

−
1

2
(w − µj)

⊤
Σ

−1
j (w − µj)

}

.

(9)

We will use this distribution in the Fourier domain to perform

minimal intervention control [28]. To do so, we need a way

to transform a partial trajectory (e.g., the starting position of

the robot) to the Fourier domain. In the context of ProMP, this

is typically done by conditioning on the distribution (usually

a single Gaussian). We observed that this is not suitable for

the high number of dimensions we have, hence we propose

a different approach that scales better with the number of

dimensions.

B. Mapping partial trajectories to Fourier domain

Given a partial demonstration y1:K of size K×1, we search

w such that:

y1:K = Φ1:Kw, (10)

with Φ1:K of size K × T (containing the first K rows of

Φ). It is important to note that the approach is also valid for



partial trajectories that do not occur at the beginning of the

movement, or arbitrary keypoints.

A straightforward, but naive, solution would be to choose

w = (Φ1:K)+y1:K , which, in practice, results in a value

for w that is far from the distribution of demonstrated data,

resulting in poor tracking. We instead propose to leverage the

knowledge of the demonstrations distribution in the Fourier

domain (as learned in Section IV-A) to find a set of weights

w that is close to the demonstrations, while respecting (10).

This can be written as the optimization problem:

max
w

p(w|θ) s.t. y1:K = Φ1:Kw, (11)

which is equivalent to:

min
w

(

− log p(w|θ)
)

s.t. y1:K = Φ1:Kw. (12)

To solve this problem more efficiently, we use a Lagrangian

relaxation:

min
w

(

‖y1:K −Φ1:Kw‖2 − λ log p(w|θ)
)

, (13)

where λ is the Lagrange multiplier. We could find the value of

λ by solving the Lagrangian dual problem, but for simplicity

purposes we fix λ to an arbitrary small value (1e − 8) as it

yields good results in all of our experiments. In practice, the

weights w are of high dimensions and therefore the different

Gaussians of the mixture have no overlap (formally, this means

that the mutual information between any two Gaussians of

the mixture is almost zero). The solution of (13) must verify

that p(w|θ) is not numerically zero (otherwise −λ log p(w|θ)
tends to infinity). Under the hypothesis that the Gaussians

have almost-zero mutual information, we can find candidate

solutions by solving M least squares problems:

wj = argmin
w

(

‖y1:K −Φ1:Kw‖2 − λ logN (w|µj ,Σj)
)

= argmin
w

(

‖y1:K −Φ1:Kw‖2 + λ‖w − µj‖
2
Σ

−1

j

)

=
(

Φ
H
1:KΦ1:K + λΣ−1

j

)−1(
Φ

H
1:Ky1:K + λΣ−1

j µj

)

.

(14)

We can then solve (13) by finding the minimum over the finite

set of solutions (wj)Mj=1:

j∗ = arg min
j∈[[1;M ]]

(

‖y1:K −Φ1:Kwj‖2 − λ log(πj)

+ λ‖w − µj‖
2
Σ

−1

j

)

,
(15)

which allows us to map our partial trajectory to the Fourier

domain with:

wK = wj∗ . (16)

The full process is summarized in Algorithm 1. Next, we

Algorithm 1: Partial trajectory mapping

Data: Partial observations y1:K up to timestep K

Result: Fourier weight wK such that y1:K ≃ Φ1:KwK

Find M candidate solutions (wj)Mj=1 with Eq.14

Compute minimum wK with Eqs.15-16

propose a tracking controller in the Fourier domain, leveraging

the distribution learned and the possibility to map partial

trajectories to the Fourier domain.

C. Tracking in the Fourier domain

The ability to do minimal intervention control in the Fourier

domain is a core component of our proposed method, as it

permits to modulate both phase and amplitude by exploiting

the variability of the provided demonstrations. We will track

only one Gaussian for simplicity purposes (the solution of

Eq.15). This seems to be a reasonable assumption because in

high dimensions, the different Gaussians in the mixture are

likely to have a very small overlap. We track this Gaussian in

the Fourier domain with the given covariance.

We could do this by using model predictive control (MPC)

in the Fourier domain, but, as the number of dimensions is

high (T is the trajectory length), it would be too computa-

tionally expensive. We propose to use a simple proportional

controller to track in the Fourier domain: an approach that

proves satisfactory in practice. Given a current trajectory up

to timestep t, represented as wt in the Fourier space, we track

the target µj∗ with precision matrix Σ
−1
j∗ . The update rule of

the tracking controller is:

wt+1 = wt + dt β diag(Σ−1
j∗ )(µj∗ −wt), (17)

where diag(·) is an operator zeroing all offdiagonal elements.

We choose to weigh the updates by diag(Σ−1
j∗ ) and not Σ−1

j∗

since the latter made the controller unstable in practice. More

sophisticated controllers could be used to leverage the full-rank

structure of the precision matrix Σ
−1
j∗ , and we shall address

this in future work.

Similarly to ProMP, we can go back from Fourier domain

to time domain and find the next point to track as well as the

appropriate tracking covariance:

ydes
t+1 = Φt+1wt+1,

Σ
y

des
t+1

= Φt+1Σj∗Φ
H
t+1,

(18)

with Φt+1 of size 1× T (containing the (t+ 1)th row of Φ).

The pseudocode of the algorithm is given in Algorithm 2.

Algorithm 2: Tracking in Fourier domain

Data: Partial observations y1:K up to timestep K

Result: desired trajectory ydes
K+1:T for timesteps K + 1

to T and desired covariances

[Σ
y

des
K+1

, . . . ,Σ
y

des
T
]

Calculate wK using Eqs.(14)-(16)

for t← K to T − 1 do
Calculate wt+1 using Eq.(17)

Calculate ydes
t+1 and Σ

y
des
t+1

using Eq.(18)

end



D. Multidimensional case

We discuss here the extension of our method to several

degrees of freedom D. The extension is straightforward as

it consists of concatenating along the dimensions. Following

the previous notation, the data and partial data are written as

such:

yi =







y1
i
...

yD
i






and y1:K =







y1
1:K
...

yD
1:K






, (19)

where the superscript j of y
j
i denotes the j th degree of

freedom. And the Φ matrix is used to construct a block-

diagonal matrix with D entries:

Φ
D =







Φ . . . 0

...
. . .

...

0 . . . Φ






. (20)

Similarly, Φ1:K and Φt are concatenated D times block-

diagonally. It is worth noting that in this case, w is a

vector of length TD, which means that the Gaussian mixture

learned captures correlations between the different degrees of

freedom.

V. EXPERIMENTS

In this section we show the performance of FMP on

various datasets. First, we describe the data acquisition

and preprocessing step. Then, a polishing task and the

task of drawing a 8-shape are presented. Finally, the task

of wiping a whiteboard is considered and applied on a

real robot. When applicable, our method will be compared

against the use of ProMP with Von-Mises basis functions.

Videos of the experimental evaluation can be found at

https://sites.google.com/view/fourier-movement-primitives.

A. Data acquisition and preprocessing

For simplicity and visualization purposes, in all tasks the

data consist of the position of the robot end-effector, and is

therefore 3-dimensional. All demonstrations are obtained by

kinesthetically teaching the robot. As the tasks are rhythmic,

we propose to reduce the human burden by showing only one

(long) demonstration, that is then preprocessed. The demon-

stration is acquired at 20Hz, and we cut it in subdemonstra-

tions of length T , arbitrarily chosen to 120 in our experiments

(corresponding to 6 seconds). To cut the demonstration, we let

a sliding window slide across the demonstration by increments

of 10 timesteps. By doing so, we exploit the fact that the task

is rhythmic and can start anywhere.

B. Polishing task

The polishing task is a representative example because it can

contain as low as one frequency for each degree of freedom.

A 3-minute demonstration is recorded with the robot, which

cuts in the demonstrations as explained above.

The demonstrations are shown in Fig.3. We learn the

distribution of the data in the Fourier domain with M = 10

(a) End-effector position as a
function of time

(b) Demonstrations in the x− y plane
(different colors represent different

demonstrations).

Fig. 3: Demonstrations of the polishing task.

(a) Tracking trajectory x, y, z in
function of time, along with

uncertainties

(b) Scatter plot of the tracking
trajectory on dimensions x and y

(color gradient for time)

Fig. 4: Polishing from different initial positions with FMP.

Gaussians. We show in Fig.4 the tracking for different starting

positions: a position that belongs to the data distribution

(interpolation), and a position outside of the data distribution

(extrapolation).

As we can see, our method permits both interpolation and

extrapolation with respect to the starting position. We compare

now our method to the standard ProMP with Von-Mises basis

functions (later abbreviated ProMP-VM) [20]:

bVM
i (z) = exp

(cos (2πf(zt − ci))

h

)

,

Φi(zt) =
bVM
i (z)

∑n
j=1 b

VM
j (z)

,
(21)

where f denotes the frequency of the signal, ci the center of

the basis function and h the width. This method requires the

demonstrations to be aligned, and to contain exactly one period

of the signal. For illustration purposes, we show how ProMP-

VM performs after alignment of the data and cutting to contain

only one period (roughly at T = 40), and therefore f = 1. We

used 20 basis functions with the centers ci uniformly placed

between 0 and 2π. The hyperparameter h is selected so that

the basis functions become cosine (high value of h, as the

exponential function is locally equal to the identity around 0,

up to a constant). We show in Fig.5a a heatmap of the learned

distribution, where we can see that, in the case of careful data

https://sites.google.com/view/fourier-movement-primitives


(a) T = 40, alignment,
M = 1

(b) T = 120, no
alignment, M = 1

(c) T = 120, no
alignment, M = 10

Fig. 5: Heatmaps of distribution learned with ProMP-VM.

alignment, ProMP-VM can approximate the distribution of

polishing demonstrations well. In the original ProMP method,

only one Gaussian is used to approximate the distribution of

the demonstrations.

Even if, to the best of our knowledge, this has not been

proposed in the ProMP literature, we will show that increasing

the number of Gaussians can alleviate the need for demonstra-

tion alignment. Indeed, due to higher variability in the phase

domain, the distribution of weights becomes multi-modal and

hence is more accurately encoded by a mixture. In Fig.5b,

we show the obtained results for ProMP-VM using more

than one period (T=120), where we had to explicitly provide

the frequency of the signal (in this case, f=3). As we can

see, without alignment, ProMP-VM fails to approximate the

distribution of the data. For a fairer comparison, we also extend

ProMP-VM by learning the distribution with a mixture model

(10 Gaussians) and show in Fig.5c that doing so permits to

approximate the distribution well.

The results in Fig.5 show that, by bringing ProMP closer to

FMP, the original ProMP formulation can be greatly improved.

However, a major difference between ProMP-VM and FMP

lies in the way we generate trajectory distributions that go

through keypoints (see IV-B). With ProMP-VM, it is done via

conditioning, whereas in FMP is is achieved by mapping the

keypoint to the Fourier domain, and tracking in the Fourier

domain (here, the keypoint that we evaluate is the starting

point, but it is applicable to any keypoint or partial trajectory).

Indeed, as shown in Fig.6a, when using ProMP-VM with

alignment it is not possible to start the movement from a

different region than the one observed in the demonstra-

tions. When we use multiple Gaussians without alignment,

this adaptation capability becomes possible (Fig.6b). Since

ProMP-VM represents the demonstrations with periodic basis

functions, it can only generate periodic signals that will pass

through the initial point. As seen in Fig.6c, this mechanism

does not allow to cope well with perturbations that require to

extrapolate outside of the demonstrations, while following the

demonstrations in the next cycles. Indeed, when conditioning

outside of the training data, it tends to produce overconfi-

dent trajectory distributions (because the Gaussian mixture is

learned by maximizing the log-likelihood) that do not return to

the demonstrations. In contrast, FMP can generate trajectory

distributions that return back to the training data in a way that

is compatible with the variations that were observed in the

demonstrations, as we can see in Fig.4.

(a) T = 40, alignment,
M = 1

(b) T = 120, no
alignment, M = 10

(c) T = 120, no
alignment, M = 10

Fig. 6: Conditioning on initial position with ProMP-VM.

(a) Demonstrations (b) ProMP-VM-Mult (c) FMP

Fig. 7: Samples of the learned 8-shape distribution.

C. 8-shape drawing

We demonstrate a 3-minute drawing of an 8-shape, used as a

standard benchmark task [8, 7]. This task is interesting because

it involves a superposition of different frequencies. In the stan-

dard ProMP-VM, only one frequency can be approximated.

For a better analysis of the performances of FMP, we propose

here to benchmark FMP against an extension of ProMP-

VM that can approximate a superposition of frequencies. We

include basis functions for different frequencies f , namely for

f from 1 to 5. For each f , 20 offset basis functions are used, as

previously. We use this extension of ProMP-VM on the same

data as FMP (no alignment), and with M = 10 for a fair

comparison. We denote this extension as ProMP-VM-Mult.

Fig.7 shows demonstration samples, ProMP-VM-Mult sam-

ples, and FMP samples. We observe that FMP samples are

smoother and closer to the demonstrations than ProMP-VM-

Mult samples, which suggests that the distribution has been

better learned with FMP than ProMP-VM-Mult. To verify

this observation, we computed a heatmap of the learned

distribution. For ProMP-VM-Mult and FMP, we sample 10000

trajectories from the learned distribution, and compute the

heatmap. Those are shown in Fig.8, next to the demonstrations

heatmap.

We can see that the heatmap of ProMP-VM-Mult is more

blurred compared to the FMP heatmap (more samples seem

to fall inside the 8 holes). To confirm this, we propose to

evaluate quantitatively the learned distribution. We compare

the distributions learned with ProMP-VM-Mult and FMP to

the ground truth (obtained from the demonstrations). We

note Q the ground truth distribution, and P the approximate

distribution (respectively obtained with ProMP-VM-Mult or

FMP). The distributions are discrete probability distributions,

(a) Demonstrations (b) ProMP-VM-Mult (c) FMP

Fig. 8: Heatmaps of the learned 8-shape distribution.



ProMP-VM-Mult FMP

Forward KL 0.20 0.11

Reverse KL 0.53 0.28

TABLE I: Quantitative comparison of distributions learned with
ProMP-VM-Mult and FMP versus ground truth distribution for 8-
shape task.

defined over the finite set of cases X of the heatmap. We

considered two different metrics:

• the Forward Kullblack-Leibler divergence:

DKL(P ||Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
.

Forward KL is known as zero avoiding, as it penalizes

Q(x) = 0 when P (x) > 0. This therefore quantifies

if the distribution learned covers well the ground truth

distribution.

• the Reverse Kullblack-Leibler divergence:

DKL(Q||P ) =
∑

x∈X

Q(x) log
Q(x)

P (x)
.

Reverse KL is known as zero forcing, as it does not

penalize Q(x) = 0 when P (x) > 0. This therefore

measures how well our distribution Q approximates a part

of the ground truth distribution.

The results are presented in Table I. We observe that FMP

has learned a distribution that is about twice closer to the

ground truth distribution compared to ProMP-VM-Mult. This

can be interpreted easily, as ProMP-VM-Mult has several basis

functions for a given frequency, which gives many more basis

functions for the same given number of frequencies, resulting

in poor statistics. Finally, we evaluate how FMP can generate

trajectories that start at any given position. In Fig.9, we can

see that, even for tasks that involve a superposition of different

frequencies, FMP can generate trajectory distributions that get

back to the training data in a way that is compatible with the

variations observed in the demonstrations. The results with

ProMP-VM-Mult were unsatifactory, consistently with Fig.7

(these results are not included in the manuscript due to space

constraint).

D. Real-world wiping task

Finally, we apply FMP to a real-world robotic task of white-

board wiping. Our robot is a 7-DoF torque-controlled Panda

robot. We record a 2-minute demonstration of whiteboard wip-

ing with kinesthetic teaching. The demonstration is then split

into subdemonstrations of length T = 120 (6s) as explained

previously. For simplicity purposes, only the position of the

robot end-effector is recorded, the statistics are therefore made

on end-effector position trajectories (with M = 10 Gaussians).

The robot is then controlled with an impedance controller that

tracks the desired trajectory with manually specified gains,

with a fixed orientation (we allow the robot to be compliant

around the normal to the plane by setting low orientation

gains around that axis). An overview of the setup is shown

in Fig.1. In this experiment we show that we can generate

Fig. 9: 8-shape from different initial positions with FMP.

movements of arbitrary durations with FMP. While this should

be trivial because we have periodic basis functions over the

duration T , this is not in practice as we did not preprocess

the data so that the beginning and end of the demonstrations

are equal. We alleviate this by recomputing at timestep T the

Fourier weights w given the partial trajectory from T −K to

T (in practice, we use K=10), and subsequently can use the

desired trajectory between timesteps T and 2T −K . We then

repeat this process (it is interesting to note that every time we

recompute w using the partial trajectory mapping, we allow

the trajectory to change the Gaussian that is tracked). While

this might appear cumbersome, this is in practice very efficient,

and much easier than having to align the demonstrations. To

evaluate the quality of the learned distribution, we propose to

show two movements given a desired initial position:

• One where we track the Gaussian mean as explained in

Section IV-C.

• One where we sample from the Gaussian distribution and

track this sample instead of the mean.

We observe in Fig.10 that FMP is successful at generating

trajectories of arbitrary lengths. In addition, sampling instead

of tracking a Gaussian provides an interesting possibility,

as we can see that the generated trajectory shows much

more variability. This is useful for tasks that require some

(co)variations in the movement (such as wiping tasks where

we do not want artifacts to arise from a movement that repeats

itself exactly).

VI. DISCUSSION

We now discuss the results from Section V and emphasize

the advantages of FMP over other state-of-the-art methods.

We have shown that FMP does not require demonstration

alignment, as it performs statistics directly over phase shifts



(a) Tracking the Gaussian mean (b) Tracking a Gaussian sample

Fig. 10: Generated trajectories of length 400 (20s) for a given initial
position.

in the complex weight space. It therefore goes beyond ProMP

with cosine or Von-Mises basis functions, which fails when

demonstrations are not aligned (see Fig.5). However, we have

seen that increasing the number of Gaussians in ProMP can

also permit to alleviate the need for demonstrations alignment.

Moreover, when using ProMP-VM, only one frequency can be

approximated, and it additionnally requires the extraction of

this frequency as an external preprocessing step. FMP does

not require such preprocessing.

FMP can learn tasks that involve a superposition of

signals of different frequencies. This could not be done with

the standard ProMP-VM. However, for a fairer comparison,

we proposed to extend ProMP-VM to different frequencies

by adding basis functions of different frequencies. We have

shown that doing so permits to learn tasks that require different

frequencies, but that the distribution learned is not as accurate

as the one learned with FMP (we identified a factor 2 in

terms of performance for our experiment, see Table I). Also,

FMP can represent variations of phase and amplitude for a

given basis function in a single weight, by exploiting complex

number properties. Furthermore, as many basis functions need

to be placed for each frequency for ProMP-VM-Mult, this

would not scale with the number of basis functions needed.

We observed empirically that we could not include higher

frequencies in ProMP-VM-Mult, as the redundancy and num-

ber of the basis functions led to numerical instabilities when

learning the Gaussian mixture. In contrast, FMP scales well

with the number of basis functions, as we use all of them in our

experiments. Better statistics might be obtained by performing

dimensionality reduction of the number of basis functions and

we plan to address this in future work.

Defining appropriate hyperparameters for basis functions

in ProMP can be cumbersome. This holds true for ProMP-

VM with periodic signals as well. Indeed, the number and

centers of the basis functions need to be appropriately chosen

(too few would make a very coarse discretization of the

phase shifts, too many would lead to a very high number

of basis functions, and hence poor statistics and/or numerical

instabilities). With FMP, no such choice is required, as

the complex exponentials form a basis and can approximate

any signal. We therefore have a theoretical guarantee that

demonstrations can be represented by weights.

In practice, one of the few hyperparameters that needs to

be chosen with FMP is the length of the signal T to cut the

demonstration(s). We noticed empirically that it had no effect

on the final solution, as long as T is big enough to contain

one or more periods. FMP does not require T to be set such

that subdemonstrations are equal at the beginning and at the

end. FMP just uses higher frequencies to compensate for this,

but we did not observe any problem in our experiments.

We also showed that FMP has interesting extrapolation

capabilities. While theoretically possible, conditioning to find

a distribution that goes through a keypoint is not applicable in

high dimensions, as it collapses to the mean of the distribution

and hence does not go through the desired keypoint. We

therefore proposed another way that is fast (solving of a

least squares problem) and applicable to our high-dimensional

setting (see Section IV-B). Additionnaly, we showed that it

is safe when faced with a new situation (see Section V-C).

Not only does it return to the demonstrations, but it does

so in a way that exploits the variations of magnitude and

phase that were observed in the demonstrations. In the first

two experiments (polishing and 8-shape), this means that the

generated trajectories return back to the limit cycle. This is

a property that is usually desirable for dynamical systems,

which is not satisfied by ProMP-VM, as we saw in Fig.6.

Moreover extrapolation with ProMP-VM might not be safe,

as conditioning far from the Gaussian mean can result in

overconfident trajectory predictions and hence highly stiff

control around a potentially poor generalized trajectory.

VII. CONCLUSION

We proposed a method based on discrete Fourier transform

and Probabilistic Movement Primitives, which we call Fourier

Movement Primitives (FMP) for the learning of rhythmic

movements from demonstrations. Our basis functions are

theoretically well motivated and no demonstrations alignment

is required, which reduces the engineering burden. We have

shown that FMP can learn tasks that involve a superposition

of basis functions of different frequencies. The extrapolation

capabilities of FMP are also relevant, generating trajectories

that go back to the demonstrations when faced with a situation

different from what was observed.

Future work will consider dimensionality reduction in the

space of weights, which could enable the use of better control

strategies in the Fourier domain, by using for example a

Linear Quadratic Regulator (LQR). We will also study the

possibility to perform statistics separately for the phase and

magnitude of the weights, as it could yield richer compliance

control strategies with an adaptive modulation of phase and

amplitude.
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line frequency adaptation and movement imitation for

rhythmic robotic tasks. International Journal of Robotics

Research, 30(14):1775–1788, 2011.
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