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Memory of Motion for Warm-starting
Trajectory Optimization

Teguh Santoso Lembono!, Antonio Paolillo?, Emmanuel Pignat!, and Sylvain Calinon'

Abstract—Trajectory optimization for motion planning re-
quires good initial guesses to obtain good performance. In our
proposed approach, we build a memory of motion based on a
database of robot paths to provide good initial guesses. The
memory of motion relies on function approximators and di-
mensionality reduction techniques to learn the mapping between
the tasks and the robot paths. Three function approximators
are compared: k-Nearest Neighbor, Gaussian Process Regression,
and Bayesian Gaussian Mixture Regression. In addition, we
show that the memory can be used as a metric to choose
between several possible goals, and using an ensemble method
to combine different function approximators results in a signif-
icantly improved warm-starting performance. We demonstrate
the proposed approach with motion planning examples on the
dual-arm robot PR2 and the humanoid robot Atlas.

Index Terms—Learning and Adaptive Systems; Motion and
Path Planning

I. INTRODUCTION

OTION planning for robots with high Degree-of-

Freedoms (DoFs) presents many challenges, especially
in the presence of constraints such as obstacle avoidance,
joint limits, etc. To handle the high-dimensionality and the
various constraints, many works [[1] [2] [3] focus on trajectory
optimization methods that attempt to find a locally optimal
solution. In this approach, the motion planning problem is
formulated as an optimization problem

min¢(go.7), s.t.
qo0:T

9(qo.r) <0, h(gor)=0, (1)

where qo.7 denotes the robot’s configurations from time step
t=0tot="T;/(-), g(-) and h(-) are the cost, the inequality
and the equality constraints. The solution of (I)) is the path
y=qir=(q",...,q")" € RPT, with D the dimension
of g;. When the path is parameterized by time, it is called
trajectory.

As an example, consider the planning problem depicted in
Fig. [1} where the PR2 robot has to move its base around an
object or to perform a dual-arm motion to pick items from
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Figure 1. Examples of motion planning problems: moving the PR2 base
between two points while avoiding an obstacle, [(b)] dual arm motion of PR2
to pick items from a shelf to another, and [(c)] whole body motion of Atlas.

the shelves. If the task = = (q]-Ii[,q;Oal)T is to move from
an initial configuration gi,;; to a goal configuration gea While
minimizing the total joint velocity, the optimization problem
can be written as
T—1 )
gcl)l? Z |(@r1—a0)||”, st @ =G, r=qeou. 2)
t=0
Other constraints can also be added, e.g. to avoid collisions,
to comply with joint limits, etc.

Such optimization problems are in general non-convex,
especially due to the collision constraints, which makes finding
the global optimum very difficult. Trajectory optimization
methods such as TrajOpt [1], CHOMP [2], or STOMP [3]
solve the non-convex problem by iteratively optimizing around
the current solution. While such approach is very popular and
yields good practical results, the convergence and the quality
of the solution are very sensitive to the choice of the initial
guess. If it is far from the optimal solution, the method can
get stuck at a poor local optimum.

To overcome this problem, our approach builds a memory
of motion that learns how to provide good initializations
(i.e., a warm-start) to the solver based on previously solved
problems. Functionally, the memory of motion is expected
to learn the mapping f :  — y that maps each task =
to the robot path y. Such mapping can be highly nonlinear
and multimodal (i.e., one task @ can be associated to several
robot paths y), and the dimension of y is typically very high.
Our proposed method relies on machine learning techniques
such as function approximation and dimensionality reduction
to learn this mapping effectively. We use the term memory
of motion to include both the database of motions and the
algorithms to query the warm-starts from the database.

We point out that while other techniques such as sampling-
based motion planners can also be used to warm-start the
solver (e.g. in [4]), such methods typically require a consid-
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erable computation time (i.e. in the order of seconds) that is
comparable to the solver’s convergence time itself, given the
very high dimensional problems considered here. In contrast,
querying the memory of motion can be done very fast, in
the order of milliseconds. Additionally, our proposed method
produces initial guesses that are close to the optimal solutions,
reducing the convergence time.

The contribution of this paper is the following. First, we
propose the use of function approximation methods to learn
the mapping f(x). We consider three methods: k-Nearest
Neighbor (k-NN), Gaussian Process Regressor (GPR) and
Bayesian Gaussian Mixture Regression (BGMR), and discuss
their different characteristics on various planning problems.
We show in particular that BGMR handles multimodal output
very well. Furthermore, we show that the memory of motion
can be also be used as a metric for choosing optimally between
several possible goals. Finally, we demonstrate that using an
ensemble of function approximators to provide warm-starts
boosts the success rate significantly.

The paper is organized as follows. In Section [lI| we discuss
the related work that use the concept of memory of motion
for various problems. Section explains the methods for
constructing and using the memory of motion. The experi-
mental results are presented and discussed in Section and
Finally, Section [V1] concludes the paper.

II. RELATED WORK

The idea of using a memory of motion to warm-start an
optimization solver has previously been explored in the context
of optimal control and motion planning. In [5] a trajectory
library is constructed to learn a control policy. A set of
trajectories are planned offline using A* algorithm and stored
as library, then k-NN is used online to determine the action
to perform at each state. In [6], they use similar approach to
predict an initial guess for balancing a two-link robot, which
is then optimized by Differential Dynamic Programming. An
iterative method to build a memory of motion to initialize
an optimal control solver is proposed in [7]. They use neural
networks to approximate the mapping from the task descriptors
(initial and goal states) to the state and control trajectories.
Another neural network is trained to approximate the value
function, which is then used as a metric to determine how close
two states are dynamically. In 8] GPR is used to predict new
trajectories based on the library of demonstrated movements
encoded as Dynamic Movement Primitives (DMP) [9]. GPR
is used to map the task descriptors to the DMP parameters.

In robot motion planning, Probabilistic Roadmap
(PRM) [10] can be seen as the construction of memory
of motion by precomputing the graph connecting robot
configurations. Some works exploit Rapidly-exploring
Random Trees (RRT) [11], another popular sampling-based
method. For example, in [12] an offline computation is used
to speed-up the online planning in the form of an additional
bias in sampling the configurations. In [13], an Experience
Graph is built from previously planned solutions. During the
online planning, the search is biased towards this graph. The
Lightning framework is proposed in [14] to plan paths in

high-dimensional spaces by learning from experience. The
path library is constructed incrementally. Given the current
path library and a task to be executed, the algorithm runs
two versions of the planner online, one that plans from
scratch and the other one initialized by the library. In [15] a
high-dimensional (791) task descriptor is constructed, and the
metric between the task descriptors is refined to minimize the
necessary refinement of the initial trajectory using L; norm,
resulting in a sparse metric and hence sparse descriptors.
In [4]], a subindexing is used to reduce the amount of memory
storage and to use the subtrajectories of the original solutions.
In robot locomotion [16], a mapping from the task space
to the optimal trajectory for cyclic walking is learned using
various machine learning algorithms, but the prediction is
not re-optimized online. In [17], the initial trajectories for
real-time catching are predicted using k-NN, Support Vector
Regression, and GPR.

As compared to the above works, our proposed method
has the following differences: (i) none of the above methods
attempt to handle the multimodal output cases. We show that
BGMR can handle well such cases, (ii) we show that the
memory of motion can be used as a metric for choosing
optimally between several possible goals, and (iii) we show
that using an ensemble of methods to provide the warm-start
outperforms the individual methods significantly.

III. METHOD

Section discusses the main idea of building the mem-
ory of motion using function approximation and dimension-
ality reduction techniques to learn the mapping between the
task and the associated robot path. Section |lII-B| explains how
the memory of motion can be used as a metric for choosing
between different goals. Finally, Section explains how
the warm-starting performance can be improved significantly
using an ensemble method.

A. Building a Memory of Motion

To learn the mapping f : * — vy, we firstly generate a
set of tasks {a} and the corresponding robot paths {y}. This
is done by sampling x from a uniform distribution covering
the space of possible tasks and run the trajectory optimizer
to obtain the robot paths y until we obtain N samples (x,y).
Let X = (xg,...,xny-1) and Y = (yo,...,yn—1). The
mapping f can be learned by training function approximators
using the database {X,Y}. In this paper we consider three
function approximators: k-NN, GPR, and BGMR.

1) k-Nearest Neighbor (k-NN): k-NN is a very simple non-
parametric method. Given a task x*, the algorithm finds K
samples {xy, yi }7_, in the database { X ,Y } where {z; }
are the K-nearest to x* according to a chosen metric (in
this paper the Euclidean metric is used). It then predicts the
corres}gonding robot path y* by taking the average y* =
% > k1 Yk- The method is very simple to implement and
it works well if there is a sufficiently dense dataset, but it
suffers from the curse of dimensionality; as the dimension
of x increases, the number of data that needs to be stored
increases exponentially. This method is mainly considered as
the baseline against the next two methods.



LEMBONO et al.: MEMORY OF MOTION FOR WARM-STARTING TRAJECTORY OPTIMIZATION 3

2) Gaussian Process Regressor (GPR): Like k-NN,
GPR [18]] is a non-parametric method which improves its
accuracy as the number of data increases. While having
higher computational complexity as compared to k-NN, GPR
tends to better interpolate, resulting in higher approximation
accuracy. Given the database {X,Y }, GPR assigns a Gaus-
sian prior to the joint probability of Y, ie., p(Y|X) =
N(p(X),K(X,X)). p(X) is the mean function and
K (X, X) is the covariance matrix constructed with elements
K;; = k(x;,x;), where k(x;,x;) is the kernel function that
measures the similarity between the inputs x; and x;. In
this paper we use Radial Basis Function (RBF) as the kernel
function, and the mean function pu(X) is set to be zero as
usually done in GPR.

To predict the output y* given a new input x*, GPR
constructs the joint probability distribution of the training data
and the prediction, and then conditions on the training data to
obtain the predictive distribution of the output, p(y*| *) ~
N(m,X), where m is the posterior mean computed as

m=K(*"  X)K (X, X)Y(X), 3)

and X is the posterior covariance which provides a measure
of uncertainty on the output. In this work we simply use the
posterior mean m as the output, i.e., y* = m.

While having good approximation accuracy, one major
limitation with GPR is that it does not scale well with
very large datasets. There are variants of GPR that attempt
to overcome this problem, e.g., sparse GPR [19] or using
Stochastic Variational Inference (SVI) [20]. More details on
GPR can be found in [18] and [21].

3) Bayesian Gaussian Mixture Regression (BGMR): When
using RBF as the covariance function, GPR assumes that the
mapping from z to y is smooth and continuous. When this
assumption is met, it performs very well, but otherwise it will
yield poor results. For example, when there is discontinuity
in the mapping or there are multimodal outputs, GPR tends
to average the solutions from both sides of the discontinuity
or from both modes. This characteristic is also shared by
many other function approximators. To handle discontinuity
and multimodality problems, using local models is one of the
possible solutions. Each local model can be fit to each side of
the discontinuity or to each mode.

Gaussian Mixture Regression (GMR) is an example of such
local models approaches [22]. It can be seen as a probabilistic
mixture of linear regressions. Given the database {X,Y } it
can be used to construct the joint probability of (x,¥y) as a
mixture of Gaussians

K
pla.y) = N, Z), )

k=1

where 7, pg, and 3 are the k-th component’s mixing
coefficient, mean, and covariance, respectively. Given a query
x*, the conditional probability of the output y* is also a
mixture of Gaussians.

In GMR, the parameters 7y, pi and 3 are determined
from the data by Expectation-Maximization method, while

the number of Gaussians K is usually determined by the

user. Bayesian GMR (BGMR) [23] is a Bayesian extension
of GMR that allows us to estimate the posterior distribution
of the mixture parameters (instead of relying on a single
point estimate as in GMR). The number of components K
can also be automatically determined from the data. As a
Bayesian model, BGMR gives priors to the parameters 7y,
pr and X, and computes the posterior distribution of those
parameters given the data. In high dimensional problems, the
prior reduces the overfitting that commonly occurs with GMR.
The prediction y*, given the input x*, is then computed by
marginalizing over the posterior distribution and conditioning
on x*. The resulting predictive distribution of y is a mixture
of t-distributions,

K
plylz”, X,Y) =Y p(klz*, X,Y)p(ylk, =", X,Y), (5
k=1

where p(k|x*, X,Y) is the probability of x* belonging to
the k-th component of the mixture, and p(y*|k,x*, X,Y) is
a multivariate t-distribution, the mean of which is linear in
x*. We can interpret (3) as K probabilistic linear regression
models, each of which has the probability of p(k|z*, X,Y").
More details about BGMR can be found in [23].

To obtain a point-prediction y* from (3)), there are several
approaches. One of the most used is to take the mean of
the predictive distribution in (3) using moment matching.
While this approach can provide smooth estimates (as required
in many applications), the same problems as in GPR will
appear in the case of discontinuity and multimodality; taking
average in those cases will give us poor results. Instead,
we propose to take, as the point prediction, the mealﬂ of
the component in (3) having the highest probability, which
approximately corresponds to the mode of the multimodal
distribution. Alternatively, we can also use the mean of each
t-distributions as separate predictions, which gives us several
possible solutions. In some cases (e.g., when we would like
to retrieve all possible solutions) this approach can be very
useful, as will be presented in Section

4) Dimensionality reduction: In our problem, the path
y € RPT is a vector consisting of the sequence of config-
urations with dimension D during 7" time steps, which can be
very high. This motivates us to use dimensionality reduction
techniques to reduce the dimension of y. For example, when
T is large and the time interval is small, RBF can be used to
represent the evolution of each variable as weights of the basis
functions. Techniques such as Principal Component Analysis
(PCA), Independent Component Analysis, Factor Analysis,
and Variational Autoencoder [21]] [24] can also be used. The
mapping to be learned then becomes the mapping from x to
Yy, where g is the projection of y to the lower dimensional
subspace. The advantage is that the memory required to store
the data is reduced significantly, while the approximation
performance is maintained or even improved because the
important correlations between the variables are preserved. In
this work, since the number of time steps is not large, we use
PCA to reduce the dimension of y.

IAs in Gaussian distribution, the mean of a multivariate t-distribution is
also its mode.
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Algorithm 1 Building a Memory of Motion

Algorithm 3 Ensemble Method

INPUT: number of samples N
OUTPUT: the database { X, Y } and the function approximator f
X=[LY=[]
:fori=1,2,..., N do

sample a random task x;

compute the initial guess y; to achieve x; by straight-line
motion

solve x; using TrajOpt warm-started by y;, to obtain the path
Yi

healbedl S s

W

: apply PCA to Y to obtain Y (Optional)
: train the function approximator f on {X,Y}
if PCA is used)

—

6: if y; is valid then

7: add (z;, yi;) to {X, Y}
8: end if

9: end for

0

1

(oron {X,Y}

Algorithm 2 Using the Memory as a Metric

INPUT: A list of goals {z;}}L,, a function approximator f
OUTPUT: The optimal goal * and the corresponding path y*
I: for j=1,2,..., M do
2:  compute the initial guess g; = f(x;)
3:  compute the cost £(g;)
4: end for

5: j* < argmin, £(9;)
6: x* < X

7. Y Y

8: solve @™ using TrajOpt warm-started by §*, to obtain the path

*

Yy

B. Using the Memory as a Metric

In some planning problems, there can be several alternative
goals to be achieved. For example, in robot drilling task [25]],
the orientation around the drilling axis is free (the number
of possible goals is infinite). A naive way is to choose one
of the goals randomly, plan the motion, and if it fails then
select another goal. While this is simple to implement, it does
not make use of the benefit of having multiple goals. Another
method is to plan the paths to each goal and select the one
having the smallest cost, but this is computationally expensive.
It will be useful, therefore, to have a metric that measures the
cost to a given goal. Our idea is to use the memory of motion
as the metric.

In Section function approximators were trained to
predict an initial guess to achieve a task x. The possible goals
can then be formulated as multiple tasks {xq, 1,...,Trp—1}-
For each task x;, the function approximator predicts the initial
guess g; corresponding to the task, and the cost £(g;) can be
computed. The initial guess y; and the corresponding task x;
with the lowest cost is then taken as the chosen goal to be
given to the trajectory optimizer. Since the cost computation
(the total discrete velocity in (2)) can be done quickly rela-
tive to optimization time, this approach can yield significant
improvements to the trajectory optimizer performance.

C. Using Ensemble Method to Provide Warm-Start

In machine learning, methods such as AdaBoost [26] and
Random Forests [27] have shown that using an ensemble of
methods often yields improved performances as compared to

INPUT: Task 2*, a list of function approximators {f;}}Z,
OUTPUT: The path y* that accomplishes the task x*

1: forall j =1, 2,..., M do in parallel

2:  compute the initial guess g; = f;(x*)

3:  solve ™ using TrajOpt warm-started by g;, to obtain the path

Y;
if y; is valid then

4
5 Yy =y

6: Terminate the parallel execution
7:  end if

8: end for

choosing a single method. We propose to use an ensemble
method where we run multiple trajectory optimizations in
parallel, each one warm-started by one of the function ap-
proximators in Section and once one of them finds a
successful path the others are terminated. Since each function
approximator has different learning characteristics, combining
them in this way can significantly improve the motion planning
performance. The method in Section [I[TI-B] can also be used as
one of the ensemble’s component.

IV. EXPERIMENTS

To evaluate the proposed method, we consider several exam-
ples of motion planning for PR2 and Atlas robots. TrajOpt [[1]
is used as the trajectory optimizer to be warm-started. The
output is the robot path that accomplishes the given task. In
this paper we only work with robot path as the output, but the
method can also be applied to robot trajectory.

We consider 5 motion planning cases presented in ascending
order of complexity. Each case is chosen to demonstrate
certain characteristics of the proposed method. For each case,
we follow the following procedures. First we generate the
dataset by randomly sampling Ny, tasks from a uniform
distribution and run TrajOpt to find the paths achieving the
tasks. The number of time steps 1" is set to 30, except for
Atlas (T" = 15). In all cases, the cost is defined as the discrete
velocity of the states, as defined in (2). The number of Ny,
is different for each case, depending on the complexity of
the task. The function approximators are then trained with
or without PCA using the dataset. We heuristically set 50
components for the PCA; for the k-NN, we use K = 1.

To validate the performance, we sample N random tasks
and use the various methods to warm-start TrajOpt. The
solutions are compared in terms of convergence time, success
rate and cost. The planning is considered successful if the
solution is feasible. The comparison results are presented in
the Tables [[fVI] The values are averaged over Ny tasks, and
the standard deviation is also given for the convergence time
and the cost. In the presented results, we use the label ‘STD’
to refer to the solution obtained by warm-starting the solver
with a straight-line path (via waypoint, if any), and the names
of the function approximators for the rest. The subscript ‘PCA’
is added when PCA is used. The query time for predicting the
warm-starts by each method is negligible w.r.t. the convergence
time, i.e. less than 5 ms for most methods, except for BGMR
without PCA (around 20ms), so they are not included in the
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Table I
BASE MOTION PLANNING, ONE WAYPOINT.

Success Conv. Cost
Method (%) time (s) (rad/s)
STD 80.0 0.554+0.29  1.3740.37
k-NN 93.0 0.354+0.20  1.4540.47
GPR 96.0 0.374+0.15  1.3240.36
BGMR 97.0 0.32+0.14  1.3440.35
Table IT

BASE MOTION PLANNING, TWO WAYPOINT.

Success Conv. Cost
Method (%) time (s) (rad/s)
STD 79.0 0.53+0.23 1.43+0.37
k-NN 95.0 0.324+0.16  1.5340.62
GPR 00.0 - -
BGMR 94.0 0.31+0.15  1.33+0.40

(®) © (d

Figure 2. Motion planning for the PR2 mobile base. Warm-start produced
by straight-line with waypoint, k-NN, GPR and BGMR.

comparison. The codes to run the experiments are provided
in https://github.com/teguhSL/memmo_for_trajopt_codes, and
the videos are submitted as supplementary file.

A. Base motion planning

The task is to plan the motion for the PR2 mobile base from
a random pose in front of the kitchen to another random pose
behind the kitchen (Fig. @) In this case, the state q is the 3
DoF planar pose of the base. The task descriptor is then =
(init» Ggou) - The database is constructed with Nigin = 200
samples and the evaluation is performed with Ny = 100.
Although this is an easy problem, TrajOpt actually finds it
difficult to solve without a proper initialization. For example,
initializing TrajOpt with a straight-line interpolation from gipj
t0 @goa1 Never manages to find a feasible solution because it
results in a path that moves the robot through the kitchen while
colliding, and the solver get stuck in poor local optima due
to the conflicting gradients. To obtain better initialization for
building the database, we initialize TrajOpt with two manually
chosen waypoints on the left and on the right of the kitchen
(qrere and @rigne, respectively).

We consider two cases of building the database: in the first
one, we only use gygne as waypoint, while in the second we
use both gier; and grign,. We initialize TrajOpt with the straight-
line motion from gj,;; to the waypoint and from the waypoint
t0 Qgoal. With this setting we build the database, train the
function approximators, and obtain the results as shown in
Table [ and [

In the first case, the mapping from x to y is unimodal
because all movements go through the right. Table [I] shows
that the performance of k-NN, GPR and BGMR are quite

Table IIT
PLANNING FROM FIXED @init TO RANDOM ggoaL -

Success Conv. Cost
Method (%) time (s) (rad/s)
STD 80.0 0.77+0.37 1.8310.61
k-NN 91.2 0.58+0.29 1.9340.69
GPR 92.4 0.65+0.25 1.8440.57
GPRpca 92.8 0.66+0.26  1.8340.57
BGMR 88.8 0.6440.26 1.85+0.56
BGMRpca 92.0 0.671+0.26 1.84+0.58
Table IV

PLANNING FROM RANDOM @init TO ggoaL -

Success Conv. Cost

Method (%) time (s) (rad/s)

STD 75.2 0.82+0.43 1.31+0.74
k-NN 65.6 1.16+£0.58  1.5540.88
GPR 85.6 0.85+0.39  1.324+0.74
GPRpca 88.0 0.81+0.36  1.33+0.73
BGMR 84.0 0.81+£0.40 1.3440.76
BGMRpca 78.3 0.88+0.42  1.394+0.78
Waypoints 94.0 1.52+0.67 1.83+1.34
Ensemble 97.2 1.06+0.41 1.4240.82

similar. In the second case, however, the output is multimodal
because the database contains two possible ways (modes) to
accomplish the same task. This affects GPR significantly (see
Table [[), as GPR averages both modes and outputs a path
that goes through the kitchen, while k-NN and BGMR are
not affected. £-NN does not average the modes because we
use K = 1, while BGMR overcomes the multimodality by
constructing local models for each mode automatically.

Fig. 2] shows the examples of warm-starts produced by each
method in the second case. As expected, GPR provides a
warm-start that goes through the kitchen (hence O success
rate). With BGMR, if we retrieve the components with the
two highest probability, both possible solutions are obtained.

B. Planning from a fixed initial configuration to a random
goal configuration

Here g consists of 14 joint angles of the two 7 DoFs arms of
PR2. The task « is to move from a fixed gi,;; to a random goal
configuration ggoai (i.6. = ggoar). The database is constructed
with Nyin = 500, and the evaluation results with Ny = 250
are presented in Table

Since each PR2 arm is redundant, the path from @iy to
gsoal can be multimodal, which may pose a problem for GPR.
However, Table m shows that GPR and BGMR perform
similarly. This is due to the fact that although redundant
robots can achieve a goal configuration in many different ways,
planning using optimization here results in similar motions
for similar goal configurations. The use of PCA does not
improve the performance significantly, but it still helps to
reduce the size of the data. In this case, for each path it
reduces the number of variables from 30 x 14 (D x T') to 50
(number of PCA components), more than 8 times reduction
while maintaining the performance.
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Table V
PLANNING FROM FIXED ginit TO RANDOM CARTESIAN GOAL.

Method Success (%) Conv. time (s) Cost (rad/s)
STD 65.2 1.10+£0.62 1.8640.86
k-NN 73.6 1.2840.96 1.8440.81
GPY 66.4 1.81+0.96 1.87+0.87
GPYpca 66.8 1.68+0.98 1.7840.83
BGMR 74.4 1.3740.82 1.8240.86
BGMRpca 77.2 1.33+0.75 1.84+0.80
METRIC GPRpca 86.8 0.70+0.30 1.49+0.56
Ensemble 98.0 1.504-0.60 1.6040.68
Table VI

PLANNING THE MOTION OF ATLAS FROM FIXED @inir TO RANDOM
CARTESIAN GOAL.

Method Success (%) Conv. time (s) Cost (rad/s)
STD 50.8 6.314+3.90 0.1240.07
k-NN 58.8 1.48+1.39 0.1140.06
GPY 54.4 1.29+1.09 0.10+0.05
GPYpca 60.0 1.54+1.46 0.1140.05
BGMR 56.4 1.324+1.57 0.10+0.05
BGMRpca 58.0 1.36£1.16 0.1140.06
Ensemble 71.2 1.46+£1.40 0.1240.06

C. Planning from a random initial configuration to a random
goal configuration

To proceed with a more complex case, the task here is
to plan a path from a random initial configuration @i, to a
random target ggoa. The task @ consists of the initial and goal

configurations, = = (g, q;)al)T. The database is constructed
with Niyain = 500 and evaluated with Ny, = 250. The result
is presented in Table

k-NN performs poorly here, similar to STD, due to the
dimension of the input space « that is much larger as compared
to Section [[V-B] To achieve good performance, k-NN requires
a much denser dataset. GPR outperforms BGMR by a wide
margin.

The last row of Table [V] shows the result of the ensemble
method described in Section Given an input x*, the
method uses all function approximators to provide different
warm-starts, each of which is used to initialize an instance of
TrajOpt in parallel. Once a valid solution is obtained, the other
instances of TrajOpt are terminated. This method results in a
huge boost of the success rate, with comparable convergence
time and cost to the other methods. As comparison, we also
include here the standard multiple initializations suggested by
TrajOpt (labeled as ‘waypoints). Each initialization is created
by interpolating through a waypoint that is manually defined.
While the success rate is high, the convergence time and the
cost increase significantly. On the contrary, each initialization
in the ensemble method has a good probability of being close
to the optimal solution, resulting in lower cost and convergence
time.

D. Planning to Cartesian goals from a fixed initial configu-
ration

In Section [IV-B| and [[V-C| we use TrajOpt to plan to goals
in configuration space. In practical situations, however, the
task is often to reach a certain Cartesian pose using the
end-effector (e.g., to pick an object on the shelf), instead of

planning to a specific joint configuration. One way to solve
this problem is to first compute a configuration that achieves
the Cartesian pose using an inverse kinematic solver and
plan to this configuration, but it does not make use of the
flexibility inherent in the task. TrajOpt has an option to plan
directly to a Cartesian goal, but it typically requires longer
convergence time and lower success rate than planning to a
joint configuration goal.

We present two approaches to use the memory of motion in
this problem. In the first approach, we rely on the similar
procedure as in }%revious cases: we formulate the task as
T = (plzﬂ,plght) where pire and prign; are the Cartesian
positions of the right and left hand of PR2. The database
is then constructed with Ny, = 1000 and the function
approximators are trained. In this approach, TrajOpt plans
to a Cartesian goal directly. The second approach relies on
the fact that a Cartesian goal corresponds to multiple goals
in configuration space. In Section [[V-B| we have already
constructed several function approximators that can predict an
initial guess ¥ = qo.7, given a goal g in configuration
space. The second approach uses one of them as a metric
(Sect. to choose between the different goals in con-
figuration space. First, given a Cartesian goal o, we run an
inverse kinematic solver to find M = 5 joint configurations
that satisfy this pose. For each joint configuration, we use
the function approximator to predict the initial guess of the
robot path to reach that configuration, and we compute the
cost of that path. Finally, the goal configuration and the path
with the lowest cost are chosen, and TrajOpt is run to reach
this goal configuration with the given path as the warm-start.
Note that in this second approach, TrajOpt plans to a joint
configuration instead of a Cartesian goal. For this approach
we choose the method GPRpca from the Section |IV-B| and
use the term ‘METRIC GPRpc4’ to differentiate from the first
approach (denoted in standard notation).

We present the results in Table E with Ny = 250. Among
the methods using the first approach, we note that BGMR
yields better result than GPR because the mapping from the
Cartesian goal x to the robot path y here is multimodal,
as planning to a Cartesian pose has more redundancy as
compared to planning to a joint configuration. This again
demonstrates that BGMR handles multimodal output better
than GPR. However, the second approach METRIC GPRpca
outperforms even BGMR. The improvement over the first
approach is very significant in all three criteria. This demon-
strates that using the memory as a metric to choose the optimal
goal results in large improvements. We point out that the
additional computational time required to find M = 5 IK
solutions and the corresponding warm-starts is only around
0.1 s, which is negligible compared to the convergence time.
Finally, we use the ensemble method that uses all function
approximators in parallel, including METRIC GPRpca. This
boosts the success rate to 98%.

E. Planning whole-body motion for an Atlas robot

Finally, we also applied our method for planning the motion
of the 34-DoFs Atlas robot (28-DoFs joints and 6-DoFs
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root pose). We consider the same task as in Section
i.e. planning from a fixed initial configuration to a random
Cartesian pose, in this case chosen to be the location of Atlas’
right hand. The task £ = (p.,py,p.)' corresponds to the
target position of Atlas’ right hand, while the orientation is
not constrained. The feet location are fixed, while the Zero
Moment Point (ZMP) is constrained to be between the two feet
location. We use here the first approach as explained in Section
i.e. treating it as a regression problem where the input
x is the Cartesian goal and the output y is the trajectory, and
use the various function approximators to predict the initial
guesses. The database is constructed with Ny, = 1000 and
the evaluation is performed with Ny = 250. The results are
presented in Table

k-NN performs quite well, as the input size of x is small
(the position of the hand is constrained to be inside the shelf).
Unlike in Section [[V-D] the performance of GPR and BGMR
are quite similar, although the goals are also in the Cartesian
space. This is due to the difference in the implementation;
in Section given a Cartesian goal, we use an inverse
kinematic solver to calculate the joint configuration that sat-
isfies this goal, and calculate the initial guess as straight-
line interpolation from the fixed initial configuration to the
goal configuration. This initial guess is used when building
the database. Due to the redundancy of the PR2 dual arm,
similar Cartesian goals can correspond to very different joint
configurations, resulting in the multimodality of the solutions
in the database. In this Atlas experiment, however, we do
not provide initial guesses to TrajOpt when building the
database, so TrajOpt always tries to solve the problem with
zero initialization. This results in more uniform solutions, and
hence GPR can still perform quite well. Finally, using the
ensembe method again shows superior results, giving us an
increase of the success rate by more than 10%.

Planning for such high DoFs problem with many constraints
(feet location, ZMP constraint, kinematic constraint) requires
quite a lot of computational time (~ 6.3 s in average without
warm-start). Using the memory of motion in this complex task
further exemplify the benefit of the approach, as our method
speeds up the computational time significantly by more than
four times faster. We note that the tasks are sampled randomly,
and there is no guarantee that the task is indeed feasible. This
explains why even the best method (i.e. the ensemble method)
only achieves ~ 70% success rates.

V. DISCUSSIONS
A. Choice of function approximators

In Section we have compared the performance of k-
NN, GPR and BGMR over different tasks, and shown that
they have different characteristics. When the dataset is quite
dense or the input space is small, £-NN usually manages to

obtain good performance (as shown in Section and

TV-D), while for larger input space (Section [[V-D) it does not
yield good results. GPR performs the best when the output

is unimodal (Section and [TV-C)), while for multimodal
output BGMR has a better performance than GPR (Section
I[V-DJ)). This comparison can guide us to select the best method

for each task. However, it may not be obvious whether a
given task (and its solution) is unimodal or multimodal (e.g.
compare Section and [[V-E). A better way is to combine
the different methods via an ensemble method, as we have
shown in this paper.

B. Data requirement

In Fig. we plot the performance of various methods
against the number of training samples, with STD given as the
baseline. We choose the task in Section since it has the
largest input space among the other tasks. It is interesting that
when the training size is small, GPR performs quite well, while
k-NN and BGMR are even worse than STD. As training size
increases, k-NN and BGMR start to approach the performance
of GPR. On the contrary, the performance of the ensemble
method is quite stable even when the training size is small.
As the training size grows, its convergence time decreases,
while the success rate is already high even when the training
size is small.

C. Ensemble method

Using an ensemble method for motion planning has been
explored in [28], which uses an ensemble of motion planners.
While such approach also manages to boost the performance
successfully, it is not easy to design and set up several motion
planners for a given task. On the contrary, many function
approximators are available and can be used easily, since our
problem is formulated as a standard regression problem. We
only need to configure one motion planner (in this work, Tra-
jOpt, but other optimization frameworks can also be used) for
a given task, unlike in [28]. Another benefit of our ensemble
method is that each of the ensemble’s component starts from
an initial guess that has good probability of being close to
the optimal solution. This reduces the average computational
time, as we have shown by comparing it against the multiple
waypoints initialization in Table

D. Dynamic environment

In this work we assume that the environment is static, so
that the trajectories previously planned remain valid. When
the environment changes, a new memory of motion has to be
built. For the simple example in Section building the
memory takes only ~3 minutes of computational time, but
complex example such as Section [[V-E] takes ~3 hours. While
paralellization can be used to speed up the building process,
more effective strategies would be interesting to explore. In
[29], an efficient way of updating a dynamic roadmap when the
environment changes is presented. Such method can possibly
be used to modify the existing memory of motion, so that
we do not have re-build from scratch but only modify those
affected. Alternatively, when the environment largely remain
the same but a few obstacles are moving (as in many real
tasks), we can include these obstacles’ locations as additional
inputs to the regression problem, at the expense of larger input
size. We will explore these ideas in our future work.
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Figure 3. Performance comparison against the number of training samples Nipin

VI. CONCLUSION

We have presented an approach to build a memory of motion
to warm-start trajectory optimization solver, and demonstrate
through experiments with PR2 and Atlas robots that the
warm-start can improve the solver’s performance. Function
approximators and dimensionality reduction are used to learn
the mapping between the task descriptor and the corresponding
robot path. Three function approximators are considered: k-
NN as baseline, GPR, and BGMR, and their different charac-
teristics have been discussed. The use of PCA also improves
the solution, although not very significantly, while reducing
the memory storage. We have also shown that we can use the
memory of motion as a metric to choose optimally between
several alternative goals, and this results in a significantly
improved performance for the case of Cartesian goal planning.
Finally, the different function approximators can be combined
as an ensemble method, which boosts the success rate signif-
icantly.
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