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Abstract

Multilingual acoustic model training combines data from multi-
ple languages to train an automatic speech recognition system.
Such a system is beneficial when training data for a target lan-
guage is limited. Lattice-Free Maximum Mutual Information
(LF-MMI) training performs sequence discrimination by intro-
ducing competing hypotheses through a denominator graph in
the cost function. The standard approach to train a multilin-
gual model with LF-MMI is to combine the acoustic units from
all languages and use a common denominator graph. The re-
sulting model is either used as a feature extractor to train an
acoustic model for the target language or directly fine-tuned. In
this work, we propose a scalable approach to train the multilin-
gual acoustic model using a typical multitask network for the
LF-MMI framework. A set of language-dependent denomina-
tor graphs is used to compute the cost function. The proposed
approach is evaluated under typical multilingual ASR tasks us-
ing GlobalPhone and BABEL datasets. Relative improvements
up to 13.2% in WER are obtained when compared to the cor-
responding monolingual LF-MMI baselines. The implementa-
tion is made available as a part of the Kaldi speech recognition
toolkit.

Index Terms: speech recognition, multilingual ASR, LF-MMI

1. Introduction

In Automatic Speech Recognition (ASR) for low-resourced
languages, training multilingual systems is an effective way to
compensate for limited amount of data [1, 2, 3, 4, 5, 6]. When
trained with resources from multiple languages, Deep Neural
Networks (DNN) based Acoustic Models (AM) can function as
a feature extractor to train a monolingual acoustic model for the
target language [7, 8, 9]. Alternately, the models can be adapted
to the target language [10, 11, 12, 13, 14, 15]. The multilingual
models can either share the output layer or have separate output
layers (one for each language) [3]. In the former case, mono-
phones may be used to avoid a huge output layer, which is often
followed by retraining the network for the target language with
senones.
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In this work, we focus on sequence-discriminative training
of multilingual AM with the Lattice-Free Maximum Mutual In-
formation (LF-MMI) framework [16]. LF-MMI training has
been shown to have superior performance compared to the con-
ventional cross-entropy (CE) training of DNNs [17, 18]. The
MMI cost function uses a numerator graph modelling the ob-
served feature sequence based on ground truth and a denom-
inator graph computing the probability over all possible se-
quences [19]. The latter enforces the discriminative property
in the training shown to be useful for training AM [20, 21].

Given the advantages of both multilingual and LF-MMI
training procedures, it is natural to combine them to obtain
better performance. In [22, 23], multilingual LF-MMI mod-
els were observed to improve over their monolingual counter-
parts. The multilingual resources are combined by merging the
phoneme sets from all languages either using a universal phone
set such as the International Phonetic Alphabet (IPA), or by
combining acoustic units. In both cases, a universal denomi-
nator graph is shared across all languages during training.

When combining acoustic units for multilingual training,
the output layer size increases rapidly with number of lan-
guages. This may render such a system impractical during de-
coding. We refer to this type of multilingual AM as a single-
task system. Alternately, multitask training solves this issue by
separating the output layers of languages so that during decod-
ing only the output relevant to the language is used. An added
advantage during training is that the cost function can be com-
puted faster as its complexity depends on the number of states
in the denominator.

In this paper, we compare different styles of multilingual
training in the LF-MMI framework. The two styles are broadly
categorized as single-task and multitask depending on whether
the output layer is shared across languages or not. For single-
task training, existing LF-MMI implementation can be easily
extended. For multitask training, we make our implementa-
tion available as a part of Kaldi [24]'. The comparisons are
performed on two commonly used multilingual databases: (1)
GlobalPhone and (2) BABEL. We present results on 5 target
languages for the former and 4 target languages for the latter.
The results show that multitask training provides a much more
scalable approach to develop multilingual AM due to the afore-
mentioned advantages without any loss in performance. The
rest of the paper is organized as follows: in Section 2, the LF-
MMI training procedure is described. In Section 3, the proposed
multilingual LF-MMI training procedure is given. Results of
our experiments on GlobalPhone and BABEL are described in
Section 4.

legs/babel_multilang/s5d/local/chain2/run_tdnn.sh

CAUSAL PRODUCTIONS



Shared

Output ‘0‘
layer

Shared

Hidd

llayeern .\ /.
I

W OCERION®

(a)

Output
layer

Pre-final
layer
Shared
Hidden
layer

Input
layer

(b)

Figure 1: (a) Multilingual LF-MMI system with shared output layer. The objective function Fym; is computed with either a language-
independent or language-dependent denominator graphs. (b) Proposed LF-MMI system with language-dependent objective functions.

Both systems are shown for a simple feedforward architecture.

2. LF-MMI

In LF-MMI, the MMI objective function is used as the cost
function to train the AM [16]. The cost function is given as
follows:

p (x| Muwgy, 0) p(w(w)
P Macn,0)

U
Fumr = Zlog (1)
u=1

where x(*) is the input sequence,

u 1S an utterance,

U is the set of all training utterances,

M (u) corresponds to the numerator graph specific to a
word sequence in transcription,

Mden is the denominator graph modelling all possible
word sequences and

0 is the model parameter.

The numerator can be computed either using alignments
from another acoustic model, or in a completely end-to-end
fashion [17]. In this work, we always use alignments from a
monolingual HMM/GMM model.

The standard implementation of LF-MMI makes several
simplifications to the conventional AM training of DNNss. First,
the HMM topology is modified to a 2-state HMM so that the
final state can be reached in one frame. Next, frame-dropping is
employed during training so that only 1 in 3 frames is required
during decoding. Finally, the segment length of an utterance
during training is limited.

The derivatives of the two quantities—numerator and
denominator—in Equation 1 are computed using two graphs.
The numerator graph is constructed using forced alignment and
the denominator graph is obtained by composing the phone lan-
guage model with the phonetic context-dependency followed
by context-dependent states. Following the notation in [18], if

NUM%(") (s) is the posterior from the numerator at time ¢ for

state s and DEN%(“) (s) is that from the denominator, the gradi-
ent is given by:
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where yt“) (s) is the network output for state s at time ¢ given
input utterance u

While training a multilingual model with the output layer
containing acoustic units from all languages, the objective still
remains the same as above, meaning the PPN~ is language-
independent.

Computing PEN~ requires training a phone language
model. Combining acoustic units across all languages for
single-task multilingual training not only increases the number
of states in the denominator graph, but may also introduce lead
to noisy PN+ estimates. Thus, to reduce the influence of other
languages while computing PN+, we propose to use a set of
language-dependent denominator for AMs trained in multitask
fashion.

3. Multilingual LF-MMI

Multiple approaches exist to train a multilingual AM. Depend-
ing on whether the output layer is shared by languages or not,
we can classify it as either single-task or multitask model. The
difference between these two broad categories of multilingual
LF-MMI systems is shown in Figure 1. In the multitask archi-
tecture, each language has a separate output layer preceded by a
pre-final layer and a corresponding objective function (marked
]-"15,[113[1, e ,]-'I\(,ﬁl in the figure).

The choice between single-task and multitask AM dictates
how the acoustic units are shared across languages. In the
single-task case, one can simply combine the acoustic units by
choosing a union of all non-silence acoustic units from each
language. Alternately, well-defined linguistic units such as IPA
can be used to derive the acoustic units. In the multitask case,
each language will have its own set of acoustic units.

Given such possibilities to train the AM, the single-task
configuration also provides a choice of using language-specific
(i.e. trained with data from all languages) or language-
independent denominator (i.e. trained with data from only one
language), whereas only the language-independent denomina-
tor is applicable in the multitask case. The focus of this paper is
to compare all such possible configurations to better understand
the performance of the resulting models.



In single-task multilingual AM, the case of using language-
independent denominator is equivalent to training monolingual
AMs. However, when using language-specific denominators,
the cost function changes as follows: we have L objective func-
tions, where L is the number of languages, computed indepen-
dent of each other depending only on the language of the utter-
ance:

p (x| Ml 0) p(w(w)
p (X(u) ‘Mflerﬁ 0) 7

Uy
Fign = D _ log 3)
u=1

where Uy is the number of utterances in the minibatch for lan-
guage £, 0 contains the shared and language-dependent param-
eters, /\/lf,v(u) and MY, are language-specific numerator and
denominator graphs, respectively.

Each denominator graph is built from the language-specific
phone language model (the same as that used in monolingual
LF-MMI training). Gradients for language-dependent layers are
computed and updated for each minibatch. Using backpropoga-
tion, the shared parameters are then updated. The overall cost-
function is the weighted sum of all language-dependent cost-
functions:

L
Fuvmr = Z aeFyrars 4
=1

where oy is language-dependent weight. Note that each mini-
batch is expected to have samples (sequence of MFCCs) from
multiple languages. To facilitate such a training in Kaldi, we
modify the training procedure to select the denominator graph
for each sequence in the minibatch according to the language.
In practice, this only requires the knowledge of the language of
each sequence in the minibatch. Assuming the sequences are
grouped by language, we simply iterate over the languages in
the minibatch to call the existing procedures for monolingual
training with the appropriate denominator graph. Such multi-
task models also simplify addition or removal of languages and
applying language-specific operations during training.

4. Experiments

Experiment results are reported on GlobalPhone [25] and BA-
BEL datasets. All experiments are performed with the Kaldi
toolkit [24]. For GlobalPhone, we used the French (FR), Ger-
man (GE), Portuguese (PO), Russian (RU) and Spanish (SP)
datasets from the GlobalPhone corpus [23]. Each language has
roughly 20 hours of speech for training and two hours for devel-
opment and evaluation sets, from a total of about 100 speakers.
The development sets were used to tune the hyper-parameters
for training. Only the results on evaluation sets are reported.
The trigram language models that we used are publicly avail-
able®. The detailed statistics for each of the languages is given
in Table 1.

We also investigated our proposed method with the BABEL
dataset. Datasets for several languages with limited resources
were released during the BABEL project with the main goal
of building keyword spotting systems. We considered 4 BA-
BEL languages for evaluation: Tagalog (TGL), Swahili (SWA),
Zulu (ZUL), and Turkish (TUR). The statistics of the target lan-
guages are given in Table 2. Trigram language models are used
during testing.

Zhttp://www.csl.uni-bremen.de/GlobalPhone/

Table 1: Statistics of the subset of GlobalPhone languages used
in this work: the amounts of speech data for training and eval-
uation sets are in hours.

Language Vocab PPL  #Phones Train Dev Eval

FR 65k 324 38 227 21 2.0
GE 38k 672 41 149 2.0 1.5
PO 62k 58 45 22.7 1.6 1.8
RU 293k 1310 48 21.1 2.7 2.4
Sp 19k 154 40 176 2.0 1.7

Table 2: Statistics of BABEL target languages used for testing.
Note that the Eval sets mentioned refer to the "dev” set in the
official BABEL release. Only conversational speech is consid-
ered for both training and testing. All durations are calculated
prior to silence removal. (PPL: perplexity)

Language Vocabulary PPL  Train (h) Eval (h)

Tagalog 22k 148 84.5 10.7
Swahili 25k 357 38.0 9.3
Turkish 41k 396 772 9.8
Zulu 56k 719 56.7 9.2

4.1. GlobalPhone Setup

We used 40-dimensional MFCCs as acoustic features, derived
from 25 ms frames with a 10 ms frame shift. The features were
normalized via mean subtraction and variance normalization
on a speaker basis. We used a frame subsampling factor of 3
which speeds up training by a factor of 2. We also augmented
the data with 2-fold speed perturbation in all the experiments.
The network consists of 8 layers of Time Delay Neural Network
(TDNN), with 450 nodes in each layer [26].

‘We compare the monolingual systems to three multilingual
systems: (1) single-task system trained with language indepen-
dent denominator, (2) single-task system trained with language
dependent denominator, and (3) multitask system trained with
language dependent denominator. For the single-task systems,
we concatenate the phonemes from the five languages to create
the universal phone set for multilingual training. We did not use
IPA-based phone set as in [23] because we found that the con-
catenated phone set performs better in preliminary experiments.

4.2. GlobalPhone Results

The results on GlobalPhone are presented in Table 3. The
single-task multilingual systems trained with concatenated
phone set improve over the monolingual LF-MMI systems on
four out of five languages. Using language-dependent denom-
inator, in this case, does not make a significant difference in
terms of WERs, thus only providing computational benefits dur-
ing training. The single-task system performs better on FR
and GE than the multitask system. The difference on the other
languages is marginal. The multitask multilingual system im-
proves over the monolingual baseline for 4 out of 5 languages.
The relative improvements range from 0.7% (for PO) to 10%
(for RU). We do not compare to the CE system as its results are
poorer compared to the two LF-MMI baselines. We believe that
the LF-MMI baselines are superior due to the controlled nature
of the dataset (read speech and clean acoustic conditions).



Table 3: Comparison between target languages in Global-
Phone in WER(%). (FR: French, GE: German, PO: Portugese,
RU: Russian, SP: Spanish)

System FR GE PO RU SP
Monolingual LF-MMI 204 127 152 246 7.1

Single-task multilingual system

Language independent 21.3 125 149 221 6.6
Language dependent 213 124 15.0 221 6.6

Multitask multilingual system

5 languages 20.7 117 151 221 6.5

Table 4: BABEL languages used for training and testing.

Category Languages

Target languages Tagalog, Swahili, Zulu, Turkish
& 4 Language Training

14 Language Training Tagalog, Swahili, Zulu, Turkish,

Assamese, Bengali, Cantonese,
Haitian, Kazhak, Kurmanji,
Tamil, Telugu, Tok, Vietnamese

4.3. BABEL setup

We consider two training configurations: training with only 4
of the target languages and training with 14 languages. The 14-
language system is used to demonstrate the scalability of the
multitask system. In both cases, results for only 4 target lan-
guages are reported (see Table 4). We follow the feature con-
figuration (except for feature mean and variance normalization)
and data augmentation of GlobalPhone systems. In addition, an
online i-vector extractor of dimension 100 is trained for each
configuration. The transcripts are used for speech/non-speech
labels. The online i-vectors are appended to MFCCs as input
to the DNN. TDNN architecture is used with 8 hidden layers.
Each hidden layer has 1024 units. The pre-final layer has only
200 units. Frame-dropping is enabled for all models.

In order to obtain alignments to train all the TDNN models,
HMM/GMM models were first trained for each language. The
standard recipe from Kaldi was followed.

4.4. BABEL results

The results on target languages from BABEL are presented in
Table 5. The performance of the monolingual LF-MMI mod-
els are already better compared to those presented in literature,
thus forming a strong baseline. Next, we compare the mono-
lingual models to three multilingual models trained with the 4
language setup: (1) single-task system trained with language in-
dependent denominator, (2) single-task system trained with lan-
guage dependent denominator, and (3) multitask system trained
with language dependent denominator. The results show that in
conditions with high acoustic variability, as in the case of BA-
BEL data-sets, multilingual training brings considerable ben-
efits. The multilingual systems show improvements over the
monolingual systems for all languages. This clearly demon-
strates the benefit of multilingual LF-MMI training for low-
resource languages. Both single-task and multitask setups out-
perform the monolingual baseline, with relative improvements

Table 5: Comparison between target languages in BABEL in
WER(%). Improvements with LF-MMI are in bold. (TGL: Taga-
log, SWA: Swahili, TUR: Turkish, ZUL: Zulu)

System TGL SWA TUR ZUL
Monolingual LF-MMI 453 387 472 535

Single-task multilingual system

Language independent 444 355 434 524
Language dependent 444 354 430 519

Multitask multilingual system

4 languages 439 356 435 510
14 languages 422 336 439 508

ranging from 2% to 8.8% for the former and 3% to 8% for the
latter. In the single-task setup, as in the case of Globalphone,
language-dependent denominator provides only marginal gains
over language-independent denominator. Overall, the benefits
obtained are dependent on the language, but no significant loss
is observed by choosing one technique for multilingual train-
ing over the other for majority of the languages (Zulu being the
exception).

To demonstrate the scalability of the multitask system, we
also train an AM with 14 languages (final row in Table 5; the 14
languages are in Table 4). Compared with the 4 languages sys-
tem, the 14 language system improves on 3 out of 4 languages.
Relative improvements range from 0.4% (ZUL) to 5.6% (SWA)
suggesting that adding more languages to the AM training can
be beneficial without any additional cost during decoding. In
addition, compared to the monolingual baseline relative im-
provement of up to 13.2% (SWA) is obtained.

5. Conclusions

In this work, we compared different styles of training multi-
lingual acoustic models in the LF-MMI framework. The sys-
tem was evaluated on GlobalPhone and BABEL datasets. The
results on target languages in GlobalPhone show that the multi-
task training approach leads to a system that outperforms single-
task models trained with either IPA or combined phone sets.
The results on BABEL datasets show similar trends in im-
provement for 3 out of 4 target languages. By further increas-
ing the number of languages in training significant benefits are
achieved demonstrating the scalability of our method. We ob-
tained relative improvements up to 13.2% when compared to
the monolingual model.
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