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ABSTRACT

With face-recognition (FR) increasingly replacing fingerprint sen-
sors for user-authentication on mobile devices, presentation attacks
(PA) have emerged as the single most significant hurdle for manu-
facturers of FR systems. Current machine-learning based presenta-
tion attack detection (PAD) systems, trained in a data-driven fash-
ion, show excellent performance when evaluated in intra-dataset
scenarios. Their performance typically degrades significantly in
cross-dataset evaluations. This lack of generalization in current
PAD systems makes them unsuitable for deployment in real-world
scenarios. Considering each dataset as representing a different
domain, domain adaptation techniques have been proposed as a
solution to this generalization problem. Here, we propose a novel
one class domain adaptation method which uses domain guided
pruning to adapt a pre-trained PAD network to the target dataset.
The proposed method works without the need of collecting PAs
in the target domain (i.e., with minimal information in the target
domain). Experimental results on several datasets show promising
performance improvements in cross-dataset evaluations.1

Index Terms— presentation attack detection, domain adapta-
tion, domain generalization, pruning, feature selection

1. INTRODUCTION

Since the introduction of the Face ID by Apple on its iPhone X
on the year 2017, mobile-phone manufacturers are increasingly
turning to face-recognition (FR) as the technology of choice for
user-authentication. Although modern, deep-learning based FR
systems [1, 2, 3] achieve excellent recognition rates, they have
also been shown to be highly vulnerable to presentation attacks
(PA, also referred to as spoof-attacks) [4]. PAs are performed on
the biometric sensor – the camera in an FR system. For example,
the attacker may impersonate the identity of another person by
presenting a printed face photo of the intended victim to the
camera of the FR system. Such an attack is a PA, specifically a
print PA. Another type of PA, called replay attack, is said to occur
when the face image of the intended victim is presented using
a digital display-device (such as a smart-phone screen, or tablet
computer screen) to the camera. Non-PA face-biometric samples
are called bona fide (BF) samples.

This work was funded by the Research Council of Norway (Grant No.
IKTPLUSS 248030/O70). Amir Mohammadi (amir.mohammadi@idiap.ch) is
also affiliated with École Polytechnique Fédérale de Lausanne (EPFL).

1Source code: https://gitlab.idiap.ch/bob/bob.paper.
icassp2020_domain_guided_pruning

Countermeasures designed to prevent face-PAs are called
face presentation attack detection (PAD) systems. Most modern
face-PAD systems rely on machine-learning, and are trained to
discriminate between BF and PA samples using large datasets. In
recent years different research groups have publicly shared several
datasets for face-PAD experiments [5, 6, 7]. Each dataset repre-
sents a specific domain. The term ‘domain’ encapsulates a broad
range of parameters, including the cameras used to capture the bio-
metric samples comprising the dataset, the environmental/imaging
conditions, the various classes of PAs represented in the dataset,
even the set of subjects providing the BF samples, and so on.

Face-PAD datasets include protocols defining mutually dis-
joint data subsets for training, validation, and evaluation of
face-PAD methods. Typical face-PAD studies involve training a
PAD method using the training set of a specific dataset, tuning
hyper-parameters (if any) of the training method using the vali-
dation set, and finally classifying the samples in the evaluation set
using the trained face-PAD system, to quantify the performance
of the system in an unbiased fashion.

For a face-PAD system trained using a given dataset (the
source domain), two evaluation scenarios are possible:
1. intra-domain evaluation: the evaluation set is taken from the
same source dataset, or,
2. cross-domain evaluation: the evaluation set comes from another,
target dataset, different from the source dataset.
Current face-PAD systems, especially those based on convolu-
tional neural networks (CNN), show promising PAD performance
in intra-domain evaluation scenarios [8]. Typically, however, their
performance degrades significantly when tested in cross-domain
scenarios [8]. This lack of generalization may be attributed to the
domain shift (also called covariate shift or dataset bias) present
between source and target datasets [9, 10].

Domain shift in face-PAD datasets is illustrated in Figure 1,
which shows face-image samples of various classes from different
datasets. We note from the figure that the samples from each
class can change drastically between datasets. Among face-PAD
datasets, domain shift may be caused by many factors, such as
the camera device, resolution of images, distance of the subject
to the camera, the instrument used to create the attack, lighting
conditions, and identity. Domain adaptation and domain gener-
alization [9, 10] methods have been developed to mitigate the
problem of domain-shift in machine-learning.

For heterogeneous face recognition [11] and speech recog-
nition [12], it has been shown that adapting only a few layers
of a CNN to a target dataset can significantly improve the per-
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Fig. 1: Examples of domain shift between datasets in face PAD. The
samples of each row belong to the same dataset and samples of each
column are from the same class. The samples can be very different
within classes while they can be very similar between classes. Also,
samples from each class can change drastically between datasets.

formance of the recognition system in the target domain. Both
studies showed that adapting a small number of initial layers
(layers closest to the input layer) led to the most significant
performance improvements in the target domain. In these CNNs
the initial layers may be considered domain specific, whereas the
remaining layers may be considered domain invariant and more
task specific [11]. The approaches proposed in [11, 12] have
been developed under the assumptions that the source and target
domains are clearly defined. For the problem of face-PAD, we
are often not be able to clearly identify distinct domains.

A more significant problem is that of data collection in the
target domain. Specifically, whereas BF samples may be collected
in the target domain at reasonable cost, collecting PAs in the target
domain is usually much more expensive, if not impossible. Also,
in real-world scenarios, a PAD system may be presented with
attacks of previously unseen classes of PA.

In this work, we propose a novel domain adaptation method
relying on minimal information – only BF samples from the target
domain. We hypothesize that, in a CNN trained for PAD using a
source dataset, some learned filters in a layer are domain specific
and others are domain invariant. We assume that by pruning do-
main specific layers, which do not generalize to the target dataset,
we can improve the performance of the model on the target dataset.

In the next section we discuss related works on domain adap-
tation for face-PAD. The proposed domain adaptation method
is presented in Section 3. Implementation details are outlined in
Section 4. Experimental results are presented in Section 5 and
conclusions are summarized in Section 6.

2. RELATED WORK
Of the many domain adaptation and domain generalization
methods [13], and many developed for deep learning based mod-
els [10], some of these methods have been applied to the problem
of face PAD [14, 15, 16, 17]. In most methods, the distribution of
source and target features are matched in a learned feature space.

If the features have similar distributions, a classifier trained on
features of the source samples can also be used to classify the
target samples.

Li et al. [14] propose a domain generalization method by
training on multiple domains and testing on an unseen domain.
They consider different camera devices used to record face videos
as different domains. To conduct the experiments, three publicly
available face PAD datasets (REPLAY ATTACK [18], MSU
MFSD [19], and CASIA FASD [20]) are combined to create 10
protocols. In each protocol, data from one camera is set aside as
the target domain, and a subset of the remaining cameras are used
as source domains. Maximum Mean Discrepancy [21] (MMD) is
used to match the distribution of features at training. The authors
report that the addition of the domain generalization method in
the proposed 3D CNN brings 10% of absolute improvement in
half total error rate (HTER) on average. The main drawback
of this method is that, during training, the factors (here, camera
device) that cause domain shift between datasets must be known
beforehand and labeled. In other scenarios it may not be possible
to explicitly identify the factors causing domain-shift. Also, some
factors, such as lighting conditions, are more difficult to categorize
and label.

Li et al. [15] also introduce an unsupervised domain adapta-
tion method based on MMD where each dataset is considered a
domain. The objective is to learn a mapping that brings the distri-
bution of source features close to the distribution of target features
in a reproducing kernel Hilbert space (RKHS). The mapping is
learned in a way to minimize MMD between source and target
distributions in the RKHS. Once the source features are mapped,
a two-class classifier is trained on the mapped source features. To
classify a new sample in the target domain, target features in the
kernel space are labeled using the trained classifier. The authors
evaluate the proposed method on several hand-crafted and also
deep learning based features. For deep learning based features,
embeddings extracted from AlexNet [22] are used. They compare
the cross-domain evaluation results with and without the proposed
domain adaptation method, and report an absolute improvement
of 24% in HTER (on average, using AlexNet embeddings) when
data from both BF and PAs are used to compute MMD in an
unsupervised manner. When only BF data is used to compute
MMD, the absolute improvement in HTER on average is reported
as 14%. The datasets that are used for evaluation are the same
as in [14]. In this approach, to classify a new sample, the target
domain must be known a priori as different feature extractors are
to be used for different domains, and no feature extractor can be
designed for samples from unknown domains.

In [16], fast style transfer [23] is used for domain adaptation.
The method works by training a CNN for PAD in the source
domain and also simultaneously learning the style of source sam-
ples using fast style transfer. At test time, given a face image,
the style of the image is first transferred to the source domain
and then it is given to the CNN for classification. They report
an absolute improvement of 2.9% in HTER on average in cross-
domain evaluations when the domain adaptation method was
added. The datasets that are used for evaluation are the same as
in [14]. This method improves the performance of the PAD system



only marginally and there are also some problems when the source
domain images have a lower resolution than target domain images.

Shao et al. [17] present an approach to domain generalization
by training on multiple domains (here, PAD datasets) and testing
on an unseen domain. Using adversarial domain adaptation [24],
they train a feature extractor, which is a CNN, that outputs features
that are both useful for PAD and are also domain invariant. In
other words, the features from a domain are indistinguishable from
other domains. Four PAD datasets of OULU-NPU [6], REPLAY
ATTACK, MSU MFSD, and CASIA FASD are used and an
average absolute improvement of 12% in HTER is reported when
the additional domain generalization method is added. Again, this
work requires samples from both BF and PA classes.

3. DOMAIN GUIDED PRUNING
In this work we hypothesize that, in a CNN trained for PAD,
some of the filters learned in the initial layers (layers closer to
input) are robust filters and generalize well to the target dataset
whereas others are more specific to the source dataset. We further
hypothesize that by pruning the filters that do not generalize well
from one dataset to another, the performance of the network on
the target dataset can be improved.

One way of quantifying domain shift at a given layer in a CNN
is by computing a feature divergence measure (FDM) [25]. Given
two datasets representing different domains, A and B, we want to
determine, how often, on average, a specific filter in layer,L, is ac-
tivated in each domain. Let us denote the average value of a filter
over the spatial dimensions as f and assume a Gaussian distribu-
tion for f with mean µ and variance σ2. The symmetric Kullback-
Leibler (KL) divergence of this filter between domains A and B is:

D(fA||fB)=KL(fA||fB)+KL(fB||fA) (1)
whereKL(fA||fB) is the KL divergence of two Gaussian distri-
butions [26, 27]. Let us denoteD(fiA||fiB) as the symmetric KL
divergence of the ith filter in layer L. Then, the average feature

divergence of layer L is given by D(LA||LB)=
1
C

C∑
i=1

D(fiA||fiB)

where C is the total number of filters in layer L. Higher values in
Equation 1 indicate that the given filter is activated differently be-
tween datasets. Thus, the FDM for a given filter indicates whether
it sensitive to the domain shift.

It is not always feasible to capture PAs in the target domain.
Hence, we propose a method that relies on only BF samples from
the target domain. The details of the proposed method are as
follows. Assuming that there exist two datasets that represents
different domains, A (source) and B (target), and the CNN model
is trained on the source (A) domain:
1. Compute FDM (Eqn. 1) for each filter F at the layer L using only BF
samples of the training set of datasets A and B.
2. Prune N percent of the filters2 of layer L which contribute to the most
feature divergence values at layer L.
3. Re-train the layers L+1 and after on the training set of the source
dataset again (not the target dataset since it is assumed that no PAs are
available for training in the target dataset) using the same classification

2Pruning can be implemented either by multiplying the output of a filter
by zero, or by removing the filter entirely from calculations to reduce the
computational cost. Both methods result in the same behavior.

loss-function to account for the pruned filters.
The pruned CNN is evaluated on the evaluation set of the target
dataset. Intuitively, this method works like a feature selection
method. The first L layers following the input layer of the CNN
may be seen as a feature extractor. Layers L+1 and after may
be seen as a classifier. Then, by pruning features at layer L and
retraining the classifier, the classifier is limited to use only robust
features for prediction.

4. IMPLEMENTATION DETAILS

Table 1: Details of DeepPixBiS. F is the number of filters and S is the
stride. Layers 1 to 5 are identical with DenseNet-161 [28]. The input
to the network is a 224×224 pixel color face image.

# Layer Details Output Shape Number of Parameters

1 conv0 Conv2D F=7 S=2 112 x 112 x 96 14,496
pool0 MaxPool2D F=3 S=2 56 x 56 x 96 0

2 dense1 Dense Block 56 x 56 x 384 756,288
3 trans1 Transition Block 28 x 28 x 192 75,264
4 dense2 Dense Block 28 x 28 x 768 2,077,056
5 trans2 Transition Block 14 x 14 x 384 297,984
6 dec Conv2D F=1 S=1 14 x 14 x 1 385

The face PAD datasets used in this study are: OULU-NPU [6],
Replay-Mobile [5], SWAN [29], and WMCA [7]. Only print and
replay attacks are considered from each dataset. OULU-NPU
has been chosen as the source dataset in our experiments and
other three datasets are considered target datasets. Since the
proposed method uses only BF samples, we have also tested a
scenario when the model is not pruned using BF samples of a
PAD dataset but rather, using an FR dataset. We have used the still
images of IARPA Janus Benchmark C (IJB-C)3FR dataset for this
purpose. We removed the low quality face images of this dataset
manually and have used around 3000 high quality face images.
The classification performances is reported in terms of area under
the curve (AUC) of log-scale receiver operating characteristic
(ROC) curves. The ROC curves are computed with false positive
rate (APCER in [30]) along the x-axis (log-scale) and true
positive rate (1−BPCER in [30]) on the y-axis4. The proposed
method is tested on the DeepPixBiS CNN architecture [8] which
is detailed in Table 1.

5. EXPERIMENTS

For analysis, feature divergences of each layer of DeepPixBiS
between the training set of OULU-NPU and the evaluation set of
four datasets are shown in Figure 2. We can see that the last three
final layers have the highest divergences compared to the three
initial layers. We assume that re-training these last three layers,
using only robust filters of the fourth layer from the end, would
improve the performance. Hence, in our experiments, the trans1
layer is chosen as the layer (L) at which the filters are pruned, and
layers 4 to 6 are re-trained after pruning.

The proposed method requires the feature divergences for
each filter at layer L to be computed between the source and
target datasets. We have computed the feature divergences for

3https://www.nist.gov/programs-projects/face-challenges
4Note that since AUC of log-scale ROCs are reported, their values can be higher than 1.

https://www.nist.gov/programs-projects/face-challenges
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Fig. 3: FDM of each filter at layer L between OULU-NPU (source)
and four target datasets: Replay-Mobile, SWAN, WMCA, and IJB-C.

both BF and PAs. Note that FDM values for PAs have been
computed only for illustrative purposes – they are not used in the
pruning process. We have observed that some of the pruned filters
also have high FDM values for PAs. FDM values between the
training set of OULU-NPU and the training set of four datasets
are shown in Figure 3. In each plot, the filter indices are sorted in
ascending order of FDM values calculated using the BF samples.
The index at whichN% of the filters would be pruned is shown
using a vertical dashed black line. N was intuitively chosen to
be 20 by observing the feature divergences in the plots.

The proposed method is evaluated using the following ap-
proach. First, DeepPixBiS is trained on OULU-NPU dataset
and is evaluated on all four PAD datasets. This establishes
intra-domain and cross-domain evaluations of the baseline. Then,
DeepPixBiS is pruned according to the proposed method us-
ing four datasets; The resulting CNN is tested again on all
four PAD datasets. The results are shown in Figure 4. The
dataset that is used for pruning is mentioned in the plot-title.
We can draw several conclusions from this figure:
1. Pruning does not significantly affect the performance of the model on
the source dataset. This is shown in the results by testing all models on
the OULU-NPU dataset.
2. We observe the performance improvement between the baseline
and the proposed domain guided pruning method when the both test
dataset is used for pruning. For example, comparing the performance
of the original DeepPixBiS model on the Replay-Mobile dataset with

Fig. 4: Performance evaluation of the proposed method. The higher the
value the better is the performance of the system. The evaluation-dataset
is mentioned on the x axis. The models are compared to the baseline
when no pruning is performed.

that of the new version of the DeepPixBiS model pruned using the
Replay-Mobile dataset, we note that the new model performs slightly
better on the target (Replay-Mobile) dataset. We note that a model
pruned using the target dataset performs better in the target domain.
This improvement is clear for the WMCA dataset (AUC increases from
∼0.75 to∼1.1).
3. The effect of pruning using a different dataset than the test dataset
is also observed. For example, we note that when the DeepPixBiS
architecture is pruned using the IJB-C dataset, its performance de-
grades slightly on the Replay-Mobile dataset, improves slightly
on the SWAN dataset, and improves significantly on the WMCA
dataset.

6. CONCLUSIONS
In this work we have formulated the problem of generalization in
PAD systems as a domain adaptation problem. Domain adaptation
methods are often designed assuming that sufficient training data
is available for all classes in the target domain. In reality, although
collecting new BF samples in a target domain is usually affordable,
collecting presentation attacks in the target domain may be quite
expensive (and impossible for unseen attacks).

Here we have proposed a domain adaptation method, based on
domain guided pruning of CNNs. The proposed method requires
only BF presentations in the target domain. We present experi-
mental results on three target datasets: Replay-Mobile, SWAN,
and WMCA. These results lead to the following conclusions:
(a) When the CNN is pruned using the target dataset, the performance
of the pruned model increases on the target dataset. Specifically, the
pruned CNN performed significantly better than the baseline CNN, on
the WMCA dataset.
(b) Pruning did not degrade the performance of the model on the source
dataset.
These results give us confidence that the proposed pruning
method is applicable to intra-domain and cross-domain evaluation
scenarios.

We have also demonstrated that the proposed method can also
be implemented as a domain generalization method. This is done
by pruning the CNN using BF samples of an FR dataset before
evaluating the pruned CNN on unseen PAD datasets.
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“Deeply vulnerable: A study of the robustness of face recognition to
presentation attacks,” IET Biometrics, vol. 7, no. 1, pp. 15–26, 2017.

[5] Artur Costa-Pazo, Sushil Bhattacharjee, Esteban Vazquez-
Fernandez, and Sebastien Marcel, “The REPLAY-MOBILE Face
Presentation-Attack Database,” in Biometrics Special Interest
Group (BIOSIG), 2016 International Conference of The. 2016, pp.
1–7, IEEE.

[6] Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi Feng,
and Abdenour Hadid, “OULU-NPU: A mobile face presentation
attack database with real-world variations,” in Automatic Face
& Gesture Recognition (FG 2017), 2017 12th IEEE International
Conference On. 2017, pp. 612–618, IEEE.

[7] Anjith George, Zohreh Mostaani, David Geissenbuhler, Olegs
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[8] Anjith George and Sébastien Marcel, “Deep Pixel-wise Binary Su-
pervision for Face Presentation Attack Detection,” in International
Conference on Biometrics, 2019.

[9] A. Gretton, AJ. Smola, J. Huang, M. Schmittfull, KM. Borgwardt,
and B. Schölkopf, “Covariate shift and local learning by distribution
matching,” in Dataset Shift in Machine Learning, pp. 131–160.
Biologische Kybernetik, Cambridge, MA, USA, 2009.

[10] Mei Wang and Weihong Deng, “Deep visual domain adaptation:
A survey,” Neurocomputing, vol. 312, pp. 135–153, 2018.

[11] T. de Freitas Pereira, A. Anjos, and S. Marcel, “Heterogeneous Face
Recognition Using Domain Specific Units,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 7, pp. 1803–1816,
July 2019.

[12] Joel Shor, Dotan Emanuel, Oran Lang, Omry Tuval, Michael
Brenner, Julie Cattiau, Fernando Vieira, Maeve McNally, Taylor
Charbonneau, and Melissa Nollstadt, “Personalizing ASR for
Dysarthric and Accented Speech with Limited Data,” arXiv
preprint arXiv:1907.13511, 2019.

[13] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual Domain
Adaptation: A survey of recent advances,” IEEE Signal Processing
Magazine, vol. 32, no. 3, pp. 53–69, May 2015.

[14] H. Li, P. He, S. Wang, A. Rocha, X. Jiang, and A. C. Kot, “Learning
Generalized Deep Feature Representation for Face Anti-Spoofing,”
IEEE Transactions on Information Forensics and Security, vol. 13,
no. 10, pp. 2639–2652, Oct. 2018.

[15] H. Li, W. Li, H. Cao, S. Wang, F. Huang, and A. C. Kot,
“Unsupervised domain adaptation for face anti-spoofing,” IEEE
Transactions on Information Forensics and Security, vol. 13, no.
7, pp. 1794–1809, 2018.

[16] Xiaoguang Tu, Jian Zhao, Mei Xie, Guodong Du, Hengsheng
Zhang, Jianshu Li, Zheng Ma, and Jiashi Feng, “Learning
Generalizable and Identity-Discriminative Representations for Face
Anti-Spoofing,” arXiv preprint arXiv:1901.05602, 2019.

[17] Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C. Yuen, “Multi-
Adversarial Discriminative Deep Domain Generalization for Face
Presentation Attack Detection,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.
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Poiret, Sébastien Marcel, and Christoph Busch, “Smartphone
Multi-modal Biometric Authentication: Database and Evaluation,”
arXiv:1912.02487 [cs], Dec. 2019.

[30] “ISO/IEC DIS 30107-3. Information Technology – Biometric
presentation attack detection – Part 3: Testing and reporting,”
Standard, International Organization for Standardization, Geneva,
CH, Jan. 2016.


	 Introduction
	 Related Work
	 Domain Guided Pruning
	 Implementation Details
	 Experiments
	 Conclusions
	 References

