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ABSTRACT

Presentation attack detection (PAD) is now considered critically
important for any face-recognition (FR) based access-control
system. Current deep-learning based PAD systems show excellent
performance when they are tested in intra-dataset scenarios. Under
cross-dataset evaluation the performance of these PAD systems
drops significantly. This lack of generalization is attributed
to domain-shift. Here, we propose a novel PAD method that
leverages the large variability present in FR datasets to induce
invariance to factors that cause domain-shift. Evaluation of the
proposed method on several datasets, including datasets collected
using mobile devices, shows performance improvements in
cross-dataset evaluations.1

Index Terms— mobile biometrics, presentation attack detec-
tion, cross-dataset evaluation, domain generalization

1. INTRODUCTION
The past couple of years have seen a surge in the use of face-
recognition (FR) technology on mobile platforms. This uptake has
been driven by mainly two factors, the extremely high recognition
accuracy achieved by modern, deep learning based face recog-
nition (FR) systems [1, 2, 3], and the convenience of using FR
over to other biometrics modalities. Nonetheless, state-of-the-art
FR systems remain highly vulnerable to presentation attacks (PA,
also referred to as spoof-attacks) [4]. In this work we consider
two kinds of PAs:
1. Print attack: where the attacker presents a printed photograph of
the intended victim to the camera of the FR system under attack,
and
2. Replay attack: where the biometric sensor (camera of the FR
system) is presented with a video of the intended victim being re-
played on a digital display such as the display of a tablet computer.
In this context, bona fide (BF) sample [5] refers to non-attack pre-
sentations. Countermeasures against PAs are called Presentation
attack detection (PAD) methods.

Various research groups working on PAD have publicly
shared face-PAD datasets [6, 7, 8], several collected using mobile-
devices. These datasets include protocols defining mutually
disjoint data subsets for training and evaluation of face-PAD
methods. After training using a dataset (the source dataset), two
scenarios are possible for evaluating a face-PAD system:
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Fig. 1: t-SNE [14] plot of the embeddings of a CNN-based PAD system
(DeepPixBiS [9]) for four datasets. Samples with the same color belong
to the same face-PAD dataset. Triangles are BF samples and circles
are PA samples. We observe that, within each class, samples from each
dataset are clustered. This may be attributed to the domain shift present
between face-PAD datasets.

1. intra-dataset evaluation: the evaluation set is taken from
the source dataset, or,

2. cross-dataset evaluation: the evaluation set is taken from
a different dataset (not the source dataset).

Current convolutional neural networks (CNN) based face PAD sys-
tems perform well in intra-dataset evaluation scenarios [9, 10, 11].
Typically, however, their performance degrades significantly when
tested in cross-dataset scenarios [9, 10, 11]. Such generalization
issues in machine learning models have been attributed to domain
shift (also called covariate shift, or dataset bias) present between
two datasets [12, 13].

The problem of domain-shift is illustrated in Figure 1. The
figure shows a t-distributed stochastic neighbor embedding (t-
SNE) plot [14] where feature-vectors extracted using a certain
face-PAD CNN have been projected onto two dimensions using a
specific multi-dimensional scaling method. Feature-vectors for BF
(triangles) and PA samples (circles) in four different datasets (each
identified by a different color) are shown in this plot. Considering
only the BF samples, we note that samples from different datasets
form distinct clusters. That is, BF samples of different datasets
produce feature-vectors with different distributions. (Similar
observations can be made for the PA samples of the different
datasets as well.) This exemplifies the problem of domain-shift.

In face-PAD datasets, domain-shift may be caused by a variety
of factors, including: the camera device, resolution of images,
distance of the subject to the camera, the instrument used to create
the attack, lighting conditions, and identity. These factors are
nuisance factors to a face PAD system. Ideally a PAD system
should be invariant to these factors when classifying face images.

Several methods for inducing invariance to nuisance factors in
the learning process [15, 16, 17, 18, 19] have been proposed. How-
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ever, most works induce invariance to factors that are known a pri-
ori and are explicitly labeled. Identifying all the nuisance factors in
a given dataset and labeling them can prove difficult [20]. For ex-
ample, one of the nuisance factors in face PAD corresponds to the
lighting conditions but categorizing images with respect to lighting
conditions is a tedious, labor intensive, and subjective process.

In this work, we hypothesize that all factors present in an FR
dataset (which contains only BF samples) are nuisance factors in a
face PAD system. Among others, these include factors such as age,
pose, illumination conditions, and facial-makeup. By explicitly
modeling these factors in an unsupervised manner, we aim to in-
duce invariance to these factors in a face PAD system. While these
factors also exist in face PAD datasets, only a small variety of each
factor is represented in a face PAD dataset. For example, face PAD
datasets are usually collected with less than 10 camera devices, for
50 to 150 identities, and have limited variations in lighting condi-
tions. FR datasets, on the other hand, contain millions of face im-
ages with hundreds of thousands of identities which are adequately
varied [21]. Being such large and varied datasets, they can be used
to adequately model some nuisance factors of face-PAD systems.

To the best of our knowledge, this is the first work to take
advantage of FR datasets to improve generalization of face-PAD
systems in an unsupervised manner. Other works such as [10, 22]
use multi-task learning of both FR and PAD which requires the
face images to be labeled according to identities in both FR and
PAD datasets. However, identity labels are not strictly necessary
for PAD, and most PAD datasets do not include identity labels.
Moreover, these methods only use an FR dataset for initialization
of a multi-task network. That is, the FR part of the network is
first trained on a large FR dataset. The network is subsequently
trained on a smaller PAD dataset with a few identities for both
tasks of PAD and FR.

Previous works related to the proposed method are presented
in Section 2. The proposed method is detailed in Section 3.
Implementation details are outlined in Section 4. Experiments are
described in Section 5 and conclusions are made in Section 6.

2. RELATED WORK
One recent method that proposes to induce invariance to all nui-
sance factors in an unsupervised manner is unsupervised adver-
sarial invariance (UAI) [19]. In UAI, a neural network is trained
simultaneously for two tasks: the required primary task (classifi-
cation or regression), as well as reconstruction of the input. After
a few initial layers, the network splits into two branches, each
dedicated to optimizing one task. The initial layers produce two
embeddings: e1 and e2 which will be used in the two task-specific
branches. The reconstruction branch takes two inputs: e2, and ê1,
a noisy version of e1. The input to the branch responsible for the
primary task is only e1. Two adversarial losses are added which
make sure e1 and e2 do not contain duplicate information (see
[19]). For reconstruction, most factors of the data are needed to
correctly reconstruct the input. Since reconstruction is done using
e2 and ê1 (which is noisy), it is assumed that most factors of the
data will be represented by e2 to guarantee correct reconstruction
of input. Also, since by construction e1 and e2 do not contain
duplicate information, only factors crucial for the primary task
will be represented by e1. However, in this approach, if the dataset
contains a bias that may simplify the primary task, there is no
guarantee that it will not be represented in e1. In fact, e1 could

include the bias of the dataset. Moreover, in this method, the nui-
sance factors are modeled using the dataset for the primary task.
In case of face PAD, these datasets may not fully represent all the
possible nuisance factors. In [23], where the authors use UAI for
face PAD, no cross-dataset performance evaluation is reported.

The inter-session variability (ISV) technique proposed
in [24, 25] explicitly models within-class variations (nuisance
factors) in Gaussian Mixture Model (GMM)-based biometric
recognition systems [26, 27]. Assuming that samples from all
classes (identities in FR) have the same nuisance factors and that
these factors are contained in a linear subspace of GMM mean
supervector space, a training mechanism is proposed to explicitly
model these nuisance factors in the GMM mean supervector
space. Once these factors are modeled, given a face image and its
GMM-based mean supervector, its nuisance factors are estimated
and their effect is removed from the mean supervector. This
obtained mean supervector is used for classification instead of the
original mean supervector. While this method has been success-
fully applied on FR, it is limited to GMM-based systems which
use hand-crafted features. Since then, many deep learning based
FR algorithms have outperformed GMM-based methods [1, 2, 3].

3. PROPOSED METHOD
Many nuisance factors can cause domain shifts in face PAD
datasets. In this work, we assume that all nuisance factors present
in BF face images are also present in PA face images. For ex-
ample, factors such as identities, lighting conditions, and camera
devices can be different in both BF and PA samples between
datasets. Here, we propose a method to explicitly model these
common nuisance factors using an FR dataset. We assume that
these factors are well represented in an FR dataset which contains
millions of BF face images. By explicitly modeling these factors,
we can induce invariance to these factors in a PAD system.

More specifically, assume that each face image I is generated
through a function f and some noise, ε:

I=f(y,z1,z2)+ε (1)

where y is the variable that we want to predict – whether I is a
PA, z1 and z2 are multivariate latent variables. The variable z1
represents all the nuisance factors present in BF samples that are
present in PA samples as well, whereas z2 represents all other
nuisance factors that are exclusive to PAs. The variable z1 may
encapsulate information about gender, pose, identities, lighting
condition, camera characteristics, and so on. The variable z2 may
contain information about the presentation attack instrument (PAI).
In this work, we will not model z2 or try to induce invariance to
z2. However, if some factors present in z2 are known and labeled,
it is possible to induce invariance to these factors using traditional
invariance induction methods such as [16].

For simplicity, assume that f can be modeled as the sum of
two other functions:

f(y,z1,z2)=g(z1)+h(y,z2) (2)

where the functions g and h each produce an image given their
respective latent variables as input. The final image is the sum of
these two images plus some noise. Given an image I, we assume
that z1 may be estimated through some function, e:

z1=e(I) (3)



and that the function g is also known. This allows us to reconstruct
a face image using only z1:

Iz1 =g(z1)=g(e(I)) (4)

Then, given a BF or PA face image, we can approximate the
output of h as:

Iy,z2 =h(y,z2)uI−Iz1 (5)

Since Iy,z2 , the reconstruction-error image, is not influenced by
the nuisance factors related to z1, it can be used instead of I to
train a PAD system.
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Fig. 2: Diagram of the proposed method. The upper part depicts the tradi-
tional approach of training a PAD system, where the original face images
are used to train a CNN PAD system. In the proposed method, shown in
the lower part of the figure, the autoencoder is first trained to reconstruct
faces, using a large FR dataset. Then the reconstruction-error images com-
puted from the output of this autoencoder are used to train the (CNN) PAD
system. The autoencoder is not updated when the PAD-CNN is trained.
The CNN is trained on reconstruction-error images of a PAD dataset.

Functions e and g can be modeled in an unsupervised manner
using an information maximizing variational autoencoder (Info-
VAE) [28]. The encoder and decoder parts of the autoencoder
approximate e and g, respectively. Info-VAEs are able to learn
meaningful and disentangled representations of samples where
each dimension in the learned representation can represent one
factor present in the data [28]. Info-VAEs learn these representa-
tions by imposing a prior distribution on their latent variables. By
training an Info-VAE to reconstruct face images using only BF
samples of an FR dataset, the autoencoder will model z1 as its
latent variable. The trained autoencoder, when tested against BF
and PA face images of a PAD dataset, will reconstruct face images
only in terms of factors that it has modeled. In other words, the
encoder, e, encodes any face image to its learned factors, z1, and
the decoder reconstructs the face image using only those factors.
The diagram of the proposed method is shown in Figure 2. The
proposed method adds a pre-processing step using a pre-trained
autoencoder to the PAD system compared to traditional methods.
Instead of using original face images as input to a PAD system, we
use the reconstruction error image of the autoencoder. Some ex-
amples of reconstruction error images are shown in Figure 3. We
may observe that reconstruction error images look more similar to
each other compared to the original images; The reconstruction er-
ror images are similar to each other in terms of color, contrast and
so on. This is due to the removal of some of the nuisance factors.

4. IMPLEMENTATION DETAILS
The following face PAD datasets that have been used in this
study: OULU-NPU [7], Replay-Mobile [6], SWAN [29], and
WMCA [8]. Only print and replay attacks are considered from

Fig. 3: Examples of autoencoder reconstruction-error images. The
images in each three columns, from left to right, are original images,
reconstructed images by the autoencoder, and reconstruction error
images. The original image in top left is a BF sample and the rest of
original images are PAs. The reconstruction error images contain less
nuisance variations compared to the original images.

each dataset. For the experiments discussed in Section 5, all mod-
els have been trained on OULU-NPU and evaluated on all four
PAD datasets. The classification performance is reported in terms
of area-under-the-curve (AUC) of log-scale receiver operating
characteristic (ROC) curves. The ROC curves are computed with
false positive rate (APCER in [30]) along the x-axis (log-scale)
and true positive rate (1−BPCER in [30]) on the y-axis.2 The
proposed method is tested against the DeepPixBiS CNN architec-
ture [9]. The architecture for the encoder part of the autoencoder
is a DenseNet-161 [31] and the architecture of the decoder is a
slightly modified version of the face generator in [32]. The size of
z1, the latent variable of the autoencoder, is chosen to be 256 and
its prior is arbitrarily assumed to be a Gaussian distribution with
mean 0 and standard deviation of 3 (diagonal covariance matrix).
The autoencoder is trained using cleaned versions (gray-scale
images and images of statues were removed) of Microsoft Celeb
(MS-Celeb-1M) [21] and the Celeb-A [33] FR datasets jointly.

Fig. 4: Examples of the reconstructions of the autoencoder. Each
row, from top to bottom, shows the original image, reconstruction by
Info-VAE, and the histogram of the latent variables z1. Note that the
ranges are different for the four histograms shown here. From left to
right, the log-likelihood values of z1 given the prior distribution are:
−530, −638, −1616, −4897, and −343340.

The reconstructed images generated by the autoencoder resem-
ble low-pass filtered versions of the original images. Consequently,
the reconstruction-error images will mainly contain the high fre-
quency information of the original image. However, this approach
is different from directly extracting high frequency components of
the image based on a Gaussian-blur filter. To show the difference,
we also compare our method with a PAD system that is trained
on difference images between blurred images and original images.

2Note that since AUC of log-scale ROCs are reported, their values can be higher than 1.



This system will be called Blur Error in the experiments. In total,
we will compare four methods:
1. DeepPixBiS [9]: our baseline PAD CNN.
2. Blur Error (BE): similar to the baseline but the input image I is first
blurred using a Gaussian kernel, and the difference-image (I−Iblurred)
is used to train the baseline CNN.
3. Autoencoder Error (AE): like the baseline but the input images to Deep-
PixBiS are the reconstruction-error images of a pre-trained autoencoder.
4. Thresholded Autoencoder Error (TAE): similar to AE and is detailed
below.
In the TAE method, input (test) images that do not meet certain
quality criteria are rejected (not processed or scored) by the PAD
system. In preliminary experiments we observed that the autoen-
coder cannot adequately reconstruct certain face images, such as
very dark faces or faces with extremely non-frontal poses. Since
the prior distribution for z1 is known, we can use the likelihood
of each sample as a quality metric to reject unusual input images.
If the likelihood of a sample is too small, the autoencoder is not
able reconstruct the face image correctly since the decoder has not
seen z1 values outside of the prior distribution. Figure 4 shows
some face-image examples, the corresponding reconstructions
and log-likelihood values. In our experiments we have set the
threshold for the log-likelihood at −600 for rejecting samples.
This threshold has been selected based on manual inspection of
results in preliminary experiments. Overall, after thresholding the
face images and rejecting some frames in videos, between 5% to
19% of videos were rejected, depending on the test dataset.

5. EXPERIMENTS

Fig. 5: Performance evaluation of the proposed method. The higher
the value the better is the performance of the system. The dataset that
the model was tested on is shown on the horizontal-axis.

Results of evaluating the various networks on different datasets
are shown in Figure 5. The various datasets are shown on the
horizontal-axis. As the OULU-NPU dataset has been used to train
the networks, results for this dataset correspond to the intra-dataset
evaluations. The best performing method is the DeepPixBiS base-
line in intra-dataset evaluations. The performance of the BE
method is slightly lower than that of DeepPixBiS, and the per-
formance of the proposed AE and TAE methods are even worse.
However, we argue that the baseline methods are overfitting on
the OULU-NPU dataset in intra-dataset evaluations as their perfor-
mance degrades significantly in the cross-dataset scenarios, that
is, when the test dataset is not OULU-NPU. Overall, we can see
that the TAE method performs slightly better than the AE method
in all cross-dataset evaluations. For the SWAN and the WMCA
datasets, both proposed methods (AE and TAE) perform signif-
icantly better than the baselines. For the Replay-Mobile dataset,
however, all methods show similar performance, and the proposed

Fig. 6: t-SNE plot of the embeddings of the AE system similar to
Figure 1.

AE method performs slightly worse compared to the baselines.
We have investigated the low performance of proposed AE

method in the case of Replay-Mobile. In this dataset, some face
images are either very dark or have very strong lateral illumination.
These samples are annotated with lighting condition of adverse
and lateral in the dataset. Most of the classification errors of the
AE method correspond to such samples. As discussed before, we
found this problem to be mainly due to bad reconstructions of the
autoencoder. In fact the TAE method, in which bad reconstruc-
tions were removed, had similar performance compared to the
baselines when evaluated on Replay-Mobile.

Figure 6 shows a 2D t-SNE plot for embeddings produced
by the AE method in a fashion similar to that used in Figure 1.
We observe in the plot that, unlike in Figure 1, embeddings
corresponding to samples of the BF class (triangles) from the
different datasets are mixed together. For the PA class (circles),
however, the embeddings still form fairly compact clusters by
dataset. One reason for this phenomenon may be the following.
In this work, we have not explicitly tried to suppress the effect
of z2, the latent variable representing the ensemble of nuisance
factors exclusive to PAs. Therefore, the factors influencing z2
may still cause the PA embeddings to form compact clusters.

6. CONCLUSIONS
We have presented a novel approach to improving generalization
of face PAD by taking advantage of large public FR datasets
which contain millions of BF face images from varied sources.
We hypothesize that all the factors (variability) present in face
images of an FR dataset are nuisance factors to PAD systems. By
explicitly modeling these factors using an Info-VAE (an autoen-
coder which learns meaningful and disentangled representations
of data), we induce invariance of these factors to a PAD system.
This is done by reconstructing face images with the pre-trained au-
toencoder and using the reconstruction-error image (the difference
between the original image and the reconstructed one) as input
to the face-PAD system. We assume here that the face image
reconstructed by the autoencoder only contains information about
the nuisance factors of PAD. When the baseline PAD system
is trained on the reconstruction-error images, the intra-dataset
performance degrades slightly, but the cross-dataset performance
improves significantly for two out of three test datasets. This
supports our hypothesis that the influence of some nuisance
factors on a face-PAD system can be lowered by incorporating
knowledge from an FR dataset. Furthermore, using the Info-VAE
allows us to systematically reject low quality samples, which also
contributes to the improved performance.
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