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Abstract
Advances in Automatic Speech Recognition (ASR) over the last

decade opened new areas of speech-based automation such as in

Air-Traffic Control (ATC) environment. Currently, voice com-

munication and data links communications are the only way

of contact between pilots and Air-Traffic Controllers (ATCo),

where the former is the most widely used and the latter is a

non-spoken method mandatory for oceanic messages and lim-

ited for some domestic issues. ASR systems on ATCo environ-

ments inherit increasing complexity due to accents from non-

English speakers, cockpit noise, speaker-dependent biases and

small in-domain ATC databases for training. Hereby, we in-

troduce CleanSky EC-H2020 ATCO2, a project that aims to

develop an ASR-based platform to collect, organize and auto-

matically pre-process ATCo speech-data from air space. This

paper conveys an exploratory benchmark of several state-of-

the-art ASR models trained on more than 170 hours of ATCo

speech-data. We demonstrate that the cross-accent flaws due to

speakers’ accent is minimized due to the amount of data, mak-

ing the system feasible for ATC environments. The developed

ASR system achieves an averaged word error rate (WER) of

7.75% across four databases. An additional 35% relative im-

provement in WER is achieved on one test set when training a

TDNNF system with byte-pair encoding.

Index Terms: Speech Recognition, Air Traffic Control, Trans-

fer Learning, Deep Neural Networks, Lattice-Free MMI

1. Introduction

The communication methods between pilots and Air-Traffic

Controllers (ATCos) have remained almost unchanged for many

decades, where the ATCo’s main task is to transfer spoken guid-

ance to pilots during all flight phases (i.e. approach, landing

or taxi) and at the same time providing safety, reliability and

efficiency. This task has shown to be extremely stressful and

highly voice demanding because of the impact a small mistake

can make. Several attempts towards increasing the confidence

and reducing the workload of pilot-controller communication

have been pursued in the past, including experiments with Au-

tomatic Speech Recognition (ASR). Initially, due to budget and

scarcity of computing power, previous work targeted isolated

word recognition, or ’voice activity detection’ but currently

most of the works performs ASR on whole utterances. Military

applications were one of the first attempts involving engines for

command-related ASR; in fact, Beek et al. [1] contrast the main

ASR techniques with its relevance to military applications like

speaker verification, recognition of spoken codes, system con-

trol of aircraft and so on. They remarked that pilot-ATCo com-

munications have a very limited word set -vocabulary-, speaker-

dependent issues and environmental noises that need to be ad-

dressed to produce a sufficiently-reliable system. Initially, the

integration of ASR technologies in ATCo started in the late 80s’

with Hamel et al. report [2]; but lately, ASR technologies has

been successfully deployed on ATC training simulators. For

example, Matrouf et al. [3] proposed a user-friendly and ro-

bust system to train ATCos based on hierarchical frames and

history of dialogues -context-dependent-. Similarly, DLR [3],

MITRE [4] and more recently UPM-AENA [5] under the IN-

VOCA project proposed akin training systems.

One of the current limitations in developing highly-accurate

ASR engines for ATCo communications is the lack of available

databases; likewise, generate the transcriptions of such data is

extremely costly. As a matter of fact, typically a raw ATCo-

pilot voice communication recording of one hour -including

silences- requires between eight to ten man-hours of transcrip-

tion effort [6] (mainly as it requires highly trained participants,

often active, or retired ATCos). Afterwards, usually only 10

to 15 minutes speech segments of ATCo is obtained from 1h

recording (after removing silence segments). Hence, it would

take approximately one man-week work to get an hour of AT-

Cos without silences [5, 6].

Currently, several researchers [7] and the International Civil

Aviation Organization (ICAO) determined that the air-traffic is

expected to grow about 3 to 6 percent yearly at least until 2025.

Consequently, it has been seen a huge investment of the Euro-

pean Union (EU) to address the ATCos workload and develop-

ment of ASR engines for field pilot-ATCos communication and

not only for training purposes. Two recent projects financed

by the EU on the scope of ASR for ATCo communications are

MALORCA1 and ATCO22. MALORCA project (together with

AcListant3) demonstrated that ASR tools can reduce ATCos

workload [8] and increase the efficiency [9]. MALORCA also

addressed the lack of transcribed air traffic speech data using

semi-supervised training to decrease Word Error Rates (WER)

and command error rates [10, 11]. We set as baseline word er-

ror rates the results from [10, 11] for two proposed train/test

sets. ATCO2 ongoing project aims at developing a unique plat-

form to collect, organize and pre-process air-traffic speech data

from air space. ATCO2 considers the real-time pilot-ATCos

voice communication available either directly through publicly

accessible radio frequency channels (such as LiveATC [12]),

or indirectly from air-navigation service providers. One of the

current challenges of ASR engines for ATCo communications

is the changing ATCos accent and vocabularies across different

1MAchine Learning Of speech Recognition models for Controller
Assistance, http://www.malorca-project.de/wp/

2AuTomatic COllection and processing of voice data from Air-
Traffic COmmunications, https://www.atco2.org/

3Active Listening Assistant, www.AcListant.de

http://arxiv.org/abs/2006.10304v1
http://www.malorca-project.de/wp/


airports; hence, ATCO2 will develop a robust methodology ca-

pable of minimize their impact on the system. In this work, we

present the first results -or a benchmark- based on six ATC in-

domain databases which, to the authors’ knowledge, is the first

time that such quantity of command-related databases (span-

ning more than 170 hours) have been used during the training

phase. Firstly, we explore transfer learning from a Deep Neural

Network (DNN) system trained on an Out-Of-Domain (OOD)

corpus, then we contrast the results with the state-of-the-art

ASR chain recipes (from Kaldi’s toolkit [13]) such as TDNNF

and CNN+TDNNF. Also, we concluded that there is a huge op-

portunity for byte-pair encoding (BPE) algorithms (used as a

new representation in lexicon instead of word-based units) due

to the ATCo speech-data structure i.e. the ATCo communica-

tions follows a simple vocabulary where the most spoken words

are numbers. The BPE algorithms do not restrict the ’units’ (in

LMs, words) length and those units are not attached only to one

word.

Even though obtaining a full ATCo-pilot communication

system goes far beyond of only ASR tasks, we plan to con-

vey in the following sections a benchmark of experiments go-

ing from transfer learning (from an OOD corpus) and adaptation

with partial or complete in-domain command-related databases

to BPE algorithms and end-to-end TDNNF models. Section 2

defines the corpus and data preparation used for our benchmark

experiments. Section 3 reviews the lexicon and language mod-

elling. The acoustic modelling and experimental setup is pre-

sented in Section 4. Then, Section 5 reviews and discusses the

main obtained results. Finally, Section 6 concludes the paper

and proposes the roadmap that ASR systems for ATCo commu-

nications should be heading.

2. Data Preparation

Diverse studies conclude that almost 80% of all pilot radio mes-

sages contain at least one error and 30% of the incidents are

accounted by miss-communications (and up to 50% in the ter-

minal manoeuvring area) [14]; therefore, ASR systems stand

as a viable solution. Kleinert et al. [10] mention that a new

technology for Air-Traffic Management (ATM) such as ASR

on pilot-ATCos communication, needs to be user-friendly, com-

fortable and reliable enough while keeping an affordable initial

cost. Accordingly, ASR systems cannot afford to be trained

and tested ’on-the-fly’ in real operational environment, but we

are required to build the best possible system before its deploy-

ment. With this intention, we use the state-of-the-art ASR en-

gines that are based on DNN like Time-Delay Neural Networks

(TDNN) and Convolutional Neural Network (CNN). These

models are known as ’data-hungry’ algorithms, because state-

of-the-art ASR systems need to be trained on large amount of

data to achieve and acceptable operational performance. Sadly,

it can be concluded that currently in the ATM world there is

a lack of such databases. One of our main contribution is to

solve this problem employing partly-in-domain or ’command-

related’ databases, retaining similar phraseology and structure

but with different speakers accents; thus, helping the algorithms

to achieve lower WERs.

2.1. Command-related databases

One concern that has delayed the development of a unified ASR

framework for ATM globally -or at least at country level- is

the vast accent’s variability between ATCos from non-English

speaking countries. Often, ATCos working in the same coun-

Table 1: Out-of-domain and command-related databases used

for transfer-learning (pre-training) and adaptation of TDNNF

and CNN+TDNNF models.

Command-related databases

Database Hours Accents Ref

MALORCA 13 German and Czech [10, 11]

LDC ATCC 72.5 American English [15]

HIWIRE 28.3 French, Greek,

Italian and Spanish

[16]

ATCOSIM 10.67 German, Swiss

German & French

[17]

UWB ATCC 20.6 Czech [18]

AIRBUS 45 French [19]

Out-of-domain databases

Librispeech 960 Diverse English [20]

Commonvoice 500 English subset [21]

try but at different airports may have different accents (e.g.

Switzerland). There is also a large variability in dictionary used

across airports, as different call-signs, commands, or param-

eters (e.g. waypoints) can be used. Therefore, an unadapted

ASR system will provide significantly worse performance due

to unseen accents, Out-Of-Vocabulary (OOV) words, different

recording procedures, paramenters, etc.

In order to address this issue, Table 1 presents six databases

that have -or at least posses- close similarities to ATCo’s speech

data, accounting to nearly 180 hours (train and test sets). In

fact, the phraseology and vocabularies are shared across the

databases but the speakers’ accent is domain-dependent. As part

of our ASR benchmark for ATC, we also measured the impact

of transfer learning of DNN models trained on out-of-domain

databases (i.e. Librispeech and Commonvoice presented in Ta-

ble 1).

Another pilot-ATCos communication concern are the errors

due to OOV words and phonetic di-similarities (e.g. ”hold in

position” and ”holding position”, or, ”climb to two thousand”

and ”climb two two thousand”). Hence, the ICAO has created

a standard phraseology to reduce these errors during the com-

munications. Similarly, Helmke et al. [22] propose a new on-

tology to transcribe these ATCo-pilots communications, which

will harmonize the integration into the ASR systems indepen-

dently from the country of origin.

2.2. Out-of-domain databases

As part of the proposed benchmark, we measured the impact

of transfer learning to address the lack of in-domain databases.

The idea is to pre-train models with well-known out-of-domain

databases such as Librispeech [20] (960 hours) and Common-

voice [21] (500 hours English subset) and then adapt the pre-

trained models using in-domain data. The final out-of-domain

train set contains nearly 1500 hours of speech data (see Table 1).

2.3. Databases split

In order to measure whether the amount of data and various

English accents (including variety of non-English words) of

the databases influence the training process, we merged six

command-related databases in three training sets as shown in

Table 2. In case of ATCOSIM, we split the database (by speak-



Table 2: ATC in-domain training and test sets.

Train data-sets

Name Hours Description

Train1 38.7 Atcosim (train) + Malorca (Vi-

enna+Prague) + UWB ATCC

Train2 137.7 Airbus + ATCC USA + Hiwire

Tr1+Tr2 176.4 Train1 + Train2

OOD set ∼1500 Out-of-domain set: Librispeech

+ Commonvoice

Test data-sets

Atcosim 2.5 20% of Atcosim train set

Prague 2.2 From Malorca set

Vienna 1.9 From Malorca set

Airbus 1 From Airbus set

ers) in a 80/20 ratio (i.e. we used 80% of data as train/validation

and the remaining 20% as test set). In case of MALORCA

database, it comprises two ATC approaches (collected from two

ANSPs), Vienna and Prague; the initial datasets (Table 1) were

already split following Table 2. As reviewed in Section 5 the

performance of our methodology and developed acoustic mod-

els is evaluated on four different test sets, where features such

as ATCo accent, spoken commands, airport origin and quantity

of training data are varied.

3. Lexicon and Language Modelling

3.1. Lexicon

The word-list for lexicon was assembled from the transcripts

of all the ATCo audio databases (i.e. Tr1+Tr2, see Table 2)

and from some other publicly available resources (i.e. lists

with names of airlines, airports, ICAO alphabet, etc.). The

pronunciations were synthesized with Phonetisaurus [23]. The

G2P (grapheme-to-phoneme) model was trained on Librispeech

lexicon, and we inherited its set of phonemes. Likewise, the

’spelled’ acronyms were auto-detected, and we create their pro-

nunciations separately.

3.2. Language Modelling

We train N-gram language models using SRI-LM [24] on the

transcripts of the training set Tr1+Tr2 (see Table 2). We use a

tri-gram for the initial decoding and a four-gram model for re-

scoring. In our results (Table 3) ’LM-3’ stands for the tri-gram

and ’LM-4’ for the four-gram model. For the BPE model we

additionally trained a six-gram, identified as ’LM-6’.

4. Acoustic Modelling and Experimental
Setup

All experiments are conducted using the Kaldi speech recogni-

tion toolkit [13]. We performed training on two frequently used

DNN-based acoustic models. On the one hand, we train Factor-

ized TDNN or TDNNF [25] with ∼1500 hours of OOD speech

(see Table 1) and then we adapt the resulting model with three

ATC command-related data-sets (see Subsection 4.1). On the

other hand, we perform flat-start CNN+TDNNF training with-

out any kind of transfer learning or adaptation; the idea behind

this is to measure quantitatively whether the amount/accent of

training data helps to reduce WERs. We use the standard chain

LF-MMI based Kaldi’s recipe for both architectures, which

includes 3-fold speed perturbation and one third frame sub-

sampling.

4.1. Conventional LF-MMI Training

Conventional LF-MMI training of TDNNF models still relies

on a HMM-GMM model to build both the alignments and lat-

tices needed during training. The HMM-GMM models are

trained with only the out-of-domain databases i.e. Librispeech +

Commonvoice. We prepare 100-dimensional i-vector features,

3-fold speed perturbation, and lattices for LF-MMI training su-

pervision. The TDNNF system trained on the out-of-domain

training set (∼1500 hours) is tagged as ’TDNNF-B’. To mea-

sure the impact of the amount of training data on performance

in the target domain, we train once with and once without trans-

fer learning on the three different ATC train sets presented in

Table 2. Models trained with transfer learning have ’TF’ in the

name (e.g. TDNN-TF-B). The systems without transfer learn-

ing simply are denoted according to their architectures (e.g.

TDNNF, CNN+TDNNF or TDNNF-BPE).

4.2. Byte-Pair Encoding

As part of the benchmark experiments, we use Byte-Pair Encod-

ing (BPE) [26] on the training transcripts to create a (subword)

vocabulary to use for language modeling. BPE is a compres-

sion algorithm which transforms whole words into ’units’ of

sub-strings, allowing the representation of an open vocabulary

where new words can be easily introduced in the lexicons and

LMs. There have been several studies using BPE for ASR sys-

tems [27, 28, 29], we believe there is an especially strong case

for it for ATC communications, as it relies mostly on simple

commands and call-signs (our ATC vocabulary is smaller than

10k), but at the same time contains a relatively high amount of

foreign proper nouns, which could be missing in a word-based

model. For BPE training we limited the number of merges to

2000 (resulting in 2000 sub-words), we used the original imple-

mentation from [26]. We use a character-based sub-word lexi-

con which means to get a pronunciation for a word we simply

split the word up into its characters, and then use these charac-

ters instead of phones. As mentioned previously, the LM is a

six-gram language model. After decoding, the words that end

with the separator symbol are joined with the next one, so that

we end up with words as the final output and on which we can

calculate the WER (comparable with word-based models).

5. Results and Discussion

The results (seen in Table 3) are split into four blocks. First,

a system (TDNNF-B) is trained on an OOD set consisting of

1500 hours. This is our base model to perform transfer learning.

Second, we use the TDNNF-B model to adapt to the different

ATC datasets (by training on them and using TDNNF-B as ini-

tialization) i.e. Train1, Train2 and Tr1+Tr2. Third, we compare

WERs for TDNNFs without transfer learning trained on each of

the three proposed training sets. Finally, we present results on a

CNN+TDNNF chain model and a TDNNF model trained with

BPE units (see BPE section for details on the setup). We kept

the same hyper-parameters across all the experiments in order

to make fair comparisons between models.

The base model performs poorly on the ATC data. This is

not surprising as Librispeech and Commonvoice are both read

speech with mostly clear audio. The ATC data is more noisy,



Table 3: DNN benchmarks with different training methodologies and amount of in-domain and out-of-domain training data. TDNNF-

B is our proposed base model trained on Librispeech and Commonvoice. TDNNF-TF-B uses TDNNF-B for initialization (acting as

transfer learned model) and then is adapted on the corresponding dataset seen in the table. TDNNF-BPE is a byte-pair encoding

system based on 2k sub-word units and a 6-gram language model developed using Tr1+Tr2 train set. CNN+TDNNF is composed of

six convolutional layers coupled with nine TDNNF layers at the top. These models as well as TDNNF are just trained on the displayed

dataset (in the same row).

System Train Set Params

Word Error Rates (WER) % - (test sets)

Vienna Prague Airbus Atcosim

LM-3 LM-4 LM-3 LM-4 LM-3 LM-4 LM-3 LM-4

TDNNF-B OOD set 23.1M 95.8 95.8 47.6 43.3 80.6 77.5 67.5 63.4

TDNNF-TF-B

Train1

20.8M

7.6 7.1 9.1 9.0 53.6 51.4 7.5 7.3

Train2 30.2 26.2 19.3 17.8 14.9 14.6 23.9 20.5

Tr1+Tr2 7.5 6.9 8.6 8.4 15.2 14.7 5.9 6.0

TDNNF

Train1

20.8M

8.1 7.5 8.9 8.7 67.8 66.7 8.5 8.1

Train2 33.2 30.2 20.1 18.8 14.6 14.5 23.4 19.6

Tr1+Tr2 7.1 6.6 8.1 7.9 14.6 14.4 5.3 5.2

CNN+TDNNF Tr1+Tr2 14.3M 7.1 6.7 8.1 7.9 15.1 14.7 5.0 5.1

LM-6 LM-6 LM-6 LM-6

TDNNF-BPE Tr1+Tr2 20.8M 7.6 5.1 15.1 7.2

the speakers talk much quicker, and the accents are stronger.

Despite the significant difference in domains, the pretraining

still helps when the target dataset is not too large, as can be

seen when comparing the first two rows of Table 3 (trained on

Train1, Train2) of the TDNNF-TF-B and the TDNNF models.

However, once the target domain dataset becomes large enough,

we do not see the benefit of pretraining (see the last row of the

TDNNF-TF-B and the TDNNF models).

The main purpose of the last block of experiments is to pro-

vide a broader cover of different DNN architectures and tech-

niques on our proposed ASR benchmark for air traffic commu-

nications. There is no clear winner. The CNN+TDNNF system

yielded a new baseline of 5% WER for Atcosim, showing a

relative improvement on WERs of 16.7% and 3.9% when com-

pared to TDNNF-TF-B and TDNNF. For the Vienna approach,

our best model was TDNNF trained on Tr1+Tr2 and scored with

a 4-gram LM; for Prague approach the best performing model

was TDNNF with 6-gram and lexicon based on BPE. Compared

to previous experiments on MALORCA [10, 11] our approach

yields 29.8% and 37.9% relative WER improvement for Vienna

and Prague.

We further investigated why the BPE model does signifi-

cantly better on the Prague test set, and found that the differ-

ence in performance is entirely explained by reduced deletions

(five times more deletions of TDNNF and CNN+TDNNF than

TDNNF-BPE system). The word-based model is obviously not

able to recognize out-of-vocabulary words, which is the pri-

mary reason for the deletion errors. We checked OOV rates,

and found that on the Prague, Vienna, Airbus and Atcosim test

sets they are 3.3%, 1.1%, 0.0% and 0.1%. This shows that the

BPE system is capable of recognizing OOVs and thereby im-

proving performance, although it does come at a cost (since the

BPE models also perform significantly worse on some test sets).

Further investigation is required to understand the differences in

performance between word and sub-word (BPE) based systems.

For instance, we noticed that the BPE model does better on for-

eign words (even when the word-based model includes these

words in its lexicon), which we attribute to the character-based

lexicon generalizing better to foreign languages which are not

closely related to English.

The Atcosim baseline WER is presented in [30]. They

achieved 8.5% absolute WER when performing n-best list re-

ranking using syntactic knowledge. In our case, we obtain first

63.4% WER with TDNNF-B and an improvement to 8.1% ab-

solute WER when training only on Train1 set. An additional

10% relative WER improvement can be obtained if employ-

ing transfer learning (i.e. TDNNF-TF-B + Train1), reaching

7.3% absolute WER. As on previous test sets, an increasing

amount of training data helped the models to generalize bet-

ter; consequently, we achieved an additional 28% relative WER

improvement when training TDNNF on Tr1+Tr2. Finally, with

the intention to explore different DNN architectures we were

able to further reduce the absolute WER to 5.0% when using a

CNN+TDNNF system trained on Tr1+Tr2, accounting to 3.8%

relative improvement from TDNNF.

6. Conclusions

The main intention of this work is to introduce state-of-the-art

DNN architectures to the area of ASR for air-traffic commu-

nications. We performed a benchmark with different DNN ar-

chitectures, amount of training data and transfer learning across

the presented experiments in order to reasonably compare their

performance. To the author’s knowledge, this is the first paper

employing six air-traffic command-related databases spanning

more than 176 hours of speech data that are strongly related

in both, phraseology and structure to ATCos-pilots communi-

cations, therefore dealing with the burden of lack of databases

that many previous studies have quoted. Specifically, we have

shown that using in-domain ATC databases, even if not from the

same country/airport, the system is capable to yield a 29.8% and

37.9% relative WER improvement for Vienna and Prague ap-

proaches. Also, we reported new baselines for Vienna, Prague

and Atcosim test sets. Finally, one of the main outcomes of

this research was the results on byte-pair encoding with Prague

approach, reaching 5.0% WER. We advise that future research

should be focused in this way of AM, LM and lexicon model-

ing.
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training of end-to-end attention models for speech recogni-
tion,” CoRR, vol. abs/1805.03294, 2018. [Online]. Available:
http://arxiv.org/abs/1805.03294

[29] Z. Zeng, Y. Khassanov, V. T. Pham, H. Xu, C. E. Siong, and H. Li,
“On the end-to-end solution to mandarin-english code-switching
speech recognition,” in INTERSPEECH, 2019.

[30] H. Holone et al., “N-best list re-ranking using syntactic score: A
solution for improving speech recognition accuracy in air traffic
control,” in 2016 16th International Conference on Control, Au-

tomation and Systems (ICCAS). IEEE, 2016, pp. 1309–1314.

https://www.liveatc.net/
https://catalog.ldc.upenn.edu/LDC94S14A
http://arxiv.org/abs/1805.03294

	1  Introduction
	2  Data Preparation
	2.1  Command-related databases
	2.2  Out-of-domain databases
	2.3  Databases split

	3  Lexicon and Language Modelling
	3.1  Lexicon
	3.2  Language Modelling

	4  Acoustic Modelling and Experimental Setup
	4.1  Conventional LF-MMI Training
	4.2  Byte-Pair Encoding

	5  Results and Discussion
	6  Conclusions
	7  Acknowledgements
	8  References

