
A memory of motion for visual predictive control tasks

Antonio Paolillo1, Teguh Santoso Lembono1,2 and Sylvain Calinon1,2

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— This paper addresses the problem of efficiently
achieving visual predictive control tasks. To this end, a memory
of motion, containing a set of trajectories built off-line, is
used for leveraging precomputation and dealing with difficult
visual tasks. Standard regression techniques, such as k-nearest
neighbors and Gaussian process regression, are used to query
the memory and provide on-line a warm-start and a way point
to the control optimization process. The proposed technique
allows the control scheme to achieve high performance and, at
the same time, keep the computational time limited. Simulation
and experimental results, carried out with a 7-axis manipulator,
show the effectiveness of the approach.

I. INTRODUCTION

Image-based visual servoing (VS) is a well established
technique to control robots using visual information [1] [2].
Its classic formulation consists in the simple control law v =
−λL̂†(s − s∗), where v is the velocity of the camera, λ is
the control gain and L† is the pseudo-inverse of the image
Jacobian (or interaction matrix) L; the hat symbol denotes
an approximation. This control law ensures an exponential
convergence to zero of the visual error, i.e., the difference
between the measured and desired visual features (s and
s∗, respectively). Although the VS control law is easy to
implement and fast to execute, it has some limitations. For
large values of the error, the behavior can be unstable, and
for some configurations the Jacobian can become singular
causing dangerous commands [3]. Being purely reactive, VS
does not perform any sort of anticipatory behavior that would
improve the tracking performance. Furthermore, it cannot
easily include (visual or Cartesian) constraints, which are
very useful in real-life robotic experiments.

Planning techniques [4] can be employed to compute
trajectories that achieve the desired visual task while respect-
ing constraints. Alternatively, VS can be formulated as an
optimization process, allowing to easily include constraints.
In [5], VS is written as a quadratic program (QP) so that
it can account for the constrained whole-body motion of
humanoid robots. Similarly, a virtual VS written as a QP
is proposed in [6] to achieve manipulation tasks. Visual
planning and control can be solved together using a model to
predict the feature motion and the corresponding commands
over a preview window [7]. Indeed, the model predictive
control (MPC) technique can be applied to the VS case,
by obtaining the so-called visual predictive control (VPC)
framework [8] [9]. The main drawback of VPC is the

1Idiap Research Institute, Martigny, Switzerland. 2EPFL, Switzerland.
E-mail: {name.surname}@idiap.ch.

This work was supported by the European Commission’s H2020 Pro-
gramme (MEMMO project, http://www.memmo-project.eu/, grant 780684).

computation time. The flatness property [10] [11] can be used
to reduce the problem complexity, but it is not applicable to
all kinds of dynamics.

In this work, we propose to use a dataset of pre-processed
solutions to improve VPC performance (recalled in Sect. II).
To this end, an initialization and a way point is inferred on-
line from the dataset. Section III reports the literature on
methods used to exploit stored data; the proposed approach
is detailed in Sect. IV. Simulation and experiments, showing
the effectiveness of the approach, are presented in Sect. V.
Section VI concludes the paper and discusses future work.

II. BACKGROUND

The VPC paradigm [8] [9] aims at solving planning and
control simultaneously. To this end, it computes a control
sequence over a preview window by solving the optimization

V ∗ = arg min
V ∈C

`(V ), (1)

where the cost function is defined as

`(V ) =

k+Np−1∑
j=k+1

(sd,j − sm,j)
>Q (sd,j − sm,j) + v>j Rvj

+ (sd,k+Np
− sm,k+Np

)>Q
(
sd,k+Np

− sm,k+Np

)
, (2)

and the optimization variable consists in the sequence of
control actions to take along the preview window

V =
(
vk, . . . ,vk+Nc

, . . . ,vk+Np−1
)>
. (3)

In (2) and (3), Np is the number of iterations defining
the size of the preview window, while Nc is the control
horizon defined such that from k +Nc + 1 to k +Np − 1
the control is constant and equal to vk+Nc

; Q and R are
two matrices used to weight the error and penalize the
control effort, respectively. In the preview window, i.e. for
j ∈ [k + 1, k +Np], the problem is subject to

sd,j = s∗ − εj and sm,j = sm,j−1 + Ts L̂j vj , (4)

with ε the difference between the measured and the first
previewed feature, constant over the preview window. Ts is
the sampling time. Constraints on the optimization variable

Vmin ≤ V ≤ Vmax (5)

account for actuation limits, the ones on the visual features

smin ≤ sm ≤ smax, (6)
sm ≤ s ∨ sm ≥ s, (7)

achieve visibility constraints: (6) forces the features to stay
in an area, e.g., to prevent from leaving the image plane, (7)



allows to avoid occlusions or spots on the lens. The ensemble
of (5)-(7) compose the set of non-linear constraints C in (1).

Following the MPC rationale, at each iteration k, VPC
measures the visual features sk, predicts the motion over
the preview window using the model in (4), minimizes the
cost function (2) and finally computes the commands V ∗.
Only the first control of this sequence is applied to the real
system which moves, providing a new set of features. Then,
the loop starts again. To achieve a satisfactory behavior, the
control is usually kept constant over the preview window
(Nc = 1), while Np is tuned as a trade-off between a long
(better tracking performance) and a short preview window
(lower computational cost). More constraints (e.g., on camera
position) can be added. In (4) a local model of the visual
features is used, but a global model of the camera motion
can also be considered. More details can be found in [8] [9].

Solving (1) with the constraints (5)-(7) is a non-convex
optimization problem. As such, the solution depends on the
solver initialization. If it is far from the global optimum,
the convergence can be slow, or get stuck in local minima
providing unsatisfactory results. Thus, it is important to pro-
vide the solver with a warm-start, i.e., an initial commands
sequence already close to the optimal solution. To avoid the
constraints, the warm-start can guide the motion away from
the target momentarily. However, providing only warm-starts
may not be sufficient. In fact, a solver with short time horizon
might consider the warm-start to be sub-optimal and modify
it to move towards the goal and, as a consequence, get stuck
at the local optima at the constraints. One possible solution
is to consider a long preview window and set the cost only at
the end of the horizon, but this is computationally expensive.
A better idea would be to adjust the cost function with a
proper way point as sub-target to follow.

We propose to use a memory of motion, i.e., a dataset
of precomputed trajectories, to infer both a warm-start and a
way point during the on-line VPC execution. In this way, we
leverage precomputation to shorten the VPC preview window
while maintaining high performance.

III. STATE-OF-THE-ART

Leveraging information stored in a memory to control or
plan robotic motions has been the object of a lively research.
In [12], a library of trajectories is queried by k-nearest
neighbor (k-NN) to infer the control action to take during
the experiment. A similar method [13] selects from the
library a control which is then refined by differential dynamic
programming. As an alternative to plan from scratch, the
framework in [14] starts the planner from a trajectory learned
from experiences. In [15] Gaussian process regression (GPR)
is used to adapt the motion, stored as dynamic motion prim-
itives, to the actual situation perceived by the robot. The line
of works [16], [17] considers a robot motion database built
from human demonstrations. This gives the controller a guess
of the motion to make, possibly modified by the presence of
obstacles. Demonstrations and optimization techniques are
used in [18] to handle constraints in a visual planner.

To improve the convergence of planning or control frame-
works written as optimization problems, the memory can be
used to provide the solvers with a warm-start. In [19], a
memory is iteratively built, expanding a probabilistic road
map (PRM) using a local planner. A neural network (NN) is
trained, in parallel, with the current trajectories stored in the
PRM and used to give the local planner a warm-start to better
connect the map. The final NN is then used to infer the warm-
start for the on-line controller. In the context of a trajectory
optimizer, the initialization is computed by applying k-NN
and locally weighted regression to a set of pre-optimized
trajectories [20]. In [21] a k-NN infers from a memory of
motion the warm-starts for a planner. The same kind of
problem is addressed in [22] with different techniques, i.e.
k-NN, GPR and Bayesian Gaussian mixture regression, that
allows to also cope with multi-modal solutions.

Other approaches consider the possibility to reshape the
cost function to guide the solver towards an optimal solution.
For example, the interior point method [23] solves an in-
equality constrained problem by introducing the logarithmic
barrier function to the cost. In this way, the search for the
solution starts from the inner region of the feasible space
and then moves to the boundary region. In humanoid motion
planning [24], heuristic sub-goals are introduced in the early
stage of the optimization based on the zero-moment point
stability criterion. In [25], to avoid discontinuity, the contact
dynamics are smoothened such that virtual contact forces can
exist at a distance. In reinforcement learning, it is common to
modify the sparse reward function, that is difficult to achieve,
by providing intermediate rewards as way points [26].

To build our framework and successfully achieve VPC
tasks, we took inspiration from the different approaches
existing in the literature. In particular, we decided to exploit
the information contained in a memory of motion to infer:
(i) warm-start to well initialize our optimization solver; and
(ii) way point to be used in the cost in lieu of the final target.

IV. THE PROPOSED APPROACH

As recalled in Sect. II, VPC computes a control sequence
V ∗ by solving a minimization problem. To efficiently find an
optimal solution, the process has to converge fast and avoid
local minima. Thus, it is important to initialize the solver
with a warm-start Vini, and reshape the cost function using a
way point s̄ in place of the target s∗. This section explains
how to infer the warm-start and way point from a memory.

The memory of motion is a dataset D = {(xi,yi)} of
D samples. Each feature xi describes a particular visual
configuration and is composed of a set si of visual features,
the area ai and the orientation αi of the visual pattern1

xi =
(
s>i , ai, αi

)> ∈ Rn×1, (8)

where n = nf +2, nf is the dimension of the visual feedback
s. We consider ai and αi along with si in (8) to make
the samples distinguishable, not only in terms of the visual

1For example, if point features are used, the visual pattern is the polygon
having the visual features as vertexes.



Input: Nt, s
∗ Output: X , Y

X = { },Y = { }, nt = 0
while nt < Nt do

v0 = 0
s0 ← GENERATE INITIAL VISUAL FEATURES
L = 0, success = False
while ¬(sL → s∗) ∧ (success is True) do

vL,success← FIND SOLUTION(sL, s
∗,vL−1)

sL+1 ← UPDATE MODEL(sL,vL)
L = L+ 1

end while
if success is True then
nt = nt + 1
for j = 0, 1, . . . , L do
aj , αj ← COMPUTE AREA AND ANGLE(sj)
s̄j ← COMPUTE WAY POINT(sj)
xj = (s>j , aj , αj)

>,yj = (v>j , s̄
>
j )>

STORE xj and yj in X and Y
end for

end if
end while

Fig. 1. Algorithm generating the trajectories for the memory of motion.

appearance but also w.r.t. the corresponding camera poses.
The output variable yi contains the proper control action to
take and the way point to follow in function of xi. Since
the control is constant in the preview window (Nc = 1, see
Sect. II), it is enough to store the single command

yi =
(
v>i , s̄

>
i

)> ∈ Rp×1, (9)

where p = q + nf , with q the actuated degrees of freedom
of the camera. All the samples are collected in the matrices

X =

 x>1
...
x>D

 ∈ RD×n , Y =

 y>1
...
y>D

 ∈ RD×p. (10)

The whole process computing warm-start and way point con-
sists in off-line building and on-line querying the memory.

A. Building the memory of motion

The memory of motion is built by running VPC off-line for
different sets of initial visual features. The aim is to compute
successful trajectories able to achieve the visual task. To this
end, the same solver of the on-line executions is used to build
the memory. However, since the aim is to build ‘high-quality’
samples and there is no strict constraint on the execution time
(the memory is built off-line), the solver is set up with low
thresholds on the solution optimality, a high number of max
iterations allowed, and a large VPC preview window.

The process building the memory of motion is presented
in the algorithm of Fig. 1. For Nt random initial conditions
s0, if the VPC solver succeeds to find a feasible solution (no
constraint is violated) and the task is achieved (s converge
to s∗ in the given time), then all the visual features from
s0 to sL are saved (L is the length of the trajectory). Thus,
∀ sj , j = 0, . . . , L, the following actions are executed:
• the area aj and angle αj of the corresponding visual

pattern sj are computed;

Input: sL, s∗, vL−1, nt X , Y Output: vL, success

if IS CLOSE(sL) is True ∧ nt > nth then
aL, αL ← COMPUTE AREA AND ANGLE(sL)
x̂ = (s>L , aL, αL)>

v̂, s̄← K-NN(X,Y , x̂)
vL,success← SOLVE VPC(sL, s̄, v̂)

else
vL,success← SOLVE VPC(sL, s

∗,vL−1)
end if
k = 0
while success is False ∧ k < 12 do

vdir ← SELECT DIRECTION(k)
vL,success← SOLVE VPC(sL, s

∗,vdir)
k = k + 1

end while
k = 0
while success is False ∧ k < 10 do

vrand ← SELECT RANDOM(k)
vL,success← SOLVE VPC(sL, s

∗,vrand)
k = k + 1

end while

Fig. 2. Algorithm trying to find a feasible VPC solution.

• the way point is computed as the visual features at ns
samples ahead (s̄j = sj+ns ); if j + ns > L, s̄j = s∗;

• the corresponding solution vj is selected.
With this information, the vectors xj and yj are obtained
and finally stored in X and Y . The initial value of the
visual features s0 is generated randomly at the start of the
memory building, while at the later stage it is biased toward
the distributions corresponding to the set of unsuccessful
initial conditions (estimated by Gaussian Mixture Model), so
that the solver attempts to solve the difficult cases when the
database has contained a sufficient number of samples. The
algorithm uses the function ‘FIND SOLUTION’ which tries to
find an optimal solution, employing the strategies detailed in
the algorithm of Fig. 2. It implements an iterative mechanism
by which the memory building process benefits from the
current status of the memory itself. Indeed, if there are
enough trajectories in the memory, and the features are close
to the constraints (in which case the function ‘IS CLOSE’
returns True), the solver is provided with a warm-start and
way point inferred by a k-NN algorithm (details in Sect. IV-
B). Otherwise, the algorithm tries to solve the VPC using the
previous solution vL−1 as warm-start. If the solver does not
manage to find a successful solution, two recovery strategies
are executed: the solver is warm-started with one of: (i) 12
pre-defined; or (ii) 10 random camera velocity directions. In
the presented algorithms, ‘∧’, and ‘¬’ denote the AND and
NOT logic operator, respectively. Once the memory is built,
it is ready to be queried on-line.

B. Querying the memory of motion

The aim of querying the memory of motion is to infer from
the dataset proper initial guess and way point for the on-line
VPC solver, given the current visual features configuration.
This means that we need to learn the map f : x→ y from D
so that an estimate ŷ can be computed for a novel feature x̂.



The map f is learned using standard regression techniques,
i.e. k-NN and GPR, as also proposed in [22]. In what follows,
we describe the adaptation required for the VPC application.

The k-NN algorithm is a simple non-parametric method
selecting the K closest samples in the dataset D, given a
new feature x̂. The distance between samples is computed
as Euclidean norm. The corresponding K closest outputs are
thus averaged to provide the estimated output

ŷ =
1

K

K∑
i=1

yi. (11)

In the case of GPR [27], the inference is computed by

ŷ = m+K(x̂,X)Λ(X,Y ), (12)

where Λ = K(x̂,X) (K(X,X) + ϕsI)
−1

(Y −m) can
be computed off-line, so that only a vector sum and a
matrix multiplication, fast to compute, are left for the on-
line estimation; I is the identity matrix2. In (12), K is the
covariance matrix which is built from the kernel function.
A popular choice, also used in this work, is the radial basis
function Kij = ϕ2

o exp
(
− 1

2 (xi − xj)
>Φ(xi − xj)

)
. The

hyperparameters Φ, ϕ0 and ϕs are computed by minimizing
the marginal log-likelihood. Finally, m is the mean function
acting as an offset in the estimation process. We consider the
constant vector m = (01×q, s

∗>)> that suggests to compute
zero velocity as warm-start and the final target as way point
when x̂ is in an area not sampled by the memory. GPR
is known to be effective with small data-set and is fast to
compute. These characteristics fit very well our task, since
the memory is built with trajectories lying on the image plane
(which is a limited area) and has to be queried fast to be
compatible with the on-line control requirements.

Finally, recalling that the control is constant in the preview
window, the warm-start is built from the first q entries of ŷ:

Vini = (ŷ1, . . . , ŷq)⊗ 11×(Np−1), (13)

where ‘⊗’ is the Kronecker product. The way point, instead,
is obtained from the remaining nf elements of ŷ:

s̄ = (ŷq+1, . . . , ŷq+nf
)>. (14)

Note that in the absence of constraints, the solution found
at the previous iteration is already a good warm-start for
the solver and there is no need to reshape the cost with a
way point. Thus, the memory-based strategy is activated only
when the visual features are “close” to one of the visibility
constraints, i.e., when the distance between any feature and
the border of the constraints is lower than a given threshold.

V. RESULTS

In this section we present the results carried out with the
proposed framework to efficiently achieve VPC tasks.

As visual features s, we considered four points (nf = 8).
The visual task consisted in making them match with four
corresponding desired points s∗. The image Jacobian in (4)

2Hereafter, I , 1 and 0 refer to the identity, all-ones and null matrix.
When not explicitly marked, the dimensions are inferred from the context.

Fig. 3. Simulations: visual features trajectories stored in the memory. For
visualization purposes, the samples are plotted with different shades; each
color corresponds to the motion of one single feature.

has been approximated using the points depth at the target,
known in advance. The approach has been implemented in
Python. As optimization solver, we used the SLSQP method
available in the open source library SciPy [28]. Actuation and
visibility constraints were implemented as bounds and non-
linear inequality constraints. The OR logic operation in (7),
to be implemented, was converted into AND with a p-norm
formulation [29]. We choose K = 1 for our k-NN, that is
thus mainly used to select samples as they are in the memory;
we considered the GPy library [30] as GPR implementation.
As explained in Sect. II, VPC was set-up with Nc = 1 and
T = 1/30 s (since 30 Hz is the camera nominal framerate).

A. Simulations

For the simulations, we considered a hand-held camera
free to move in the Cartesian space (q = 6), with an image
resolution of 1024 × 1024 pixels. As visibility constraints,
we considered four convex and concave areas on the image
(u-v plane) simulating occlusions and spots on the lens.
As actuation constraints, we limited the linear and angular
velocity components of the camera to ±0.5 m/s and ±1 rad/s.
We set R = diag(100, 100, 1, 0.5, 0.5, 0.5) (decreasing to 0
towards the convergence) and Q = kQI with kQ = 10−3.

The memory of motion was generated following the pro-
cedure of Sect. IV-A. In particular, the solver was set-up with
an optimality precision of 10−9 and 100 maximum iterations.
VPC was set with Np = 10. The choice of these parameters
was driven by the need to store ‘high-quality’ samples, at the
cost of a high computational time that we were willing to pay
since the memory is built off-line. We generated Nt = 900
trajectories, for a total of D = 16010 samples. Fig. 3 shows
the visual features trajectories stored in the memory. The
visibility constraints are depicted as shadowed areas, while
the target s∗ are the red circles. For the on-line executions,
we relaxed the solver parameters with 10−3 as optimality
precision and 10 maximum iterations. This set-up, along
with a smaller Np, allowed faster computations. However,
thanks to the memory-based strategies presented in Sect. IV,
performances are not invalidated, but even improved.

The approach was first evaluated with a statistical analysis,



(a) Prev.-it. strategy: visual feature path (b) k-NN-based strategy: visual feature path (c) GPR-based strategy: visual feature path

(d) Prev.-it. strategy: velocity command (e) k-NN-based strategy: velocity command (f) GPR-based strategy: velocity command

Fig. 4. Simulations: comparison between prev.-it., k-NN and GPR-based strategies in terms of features motion (top) and velocity command (bottom).

comparing: VPC warm-started with the previous-iteration
solution (for brevity denoted “prev.-it.”) (i) using Np = 3 and
(ii) using Np = 30; using warm-start and way point provided
(iii) by k-NN and (iv) by GPR, both with Np = 3. The
memory-based strategies were activated at 20 pixels from
the occlusions and we set ns = 5. For GPR, data were sub-
sampled by a factor 20. The comparison is performed w.r.t.
the success rate r, the average of the solver convergence
time t̄c and the average of the cost ¯̀ divided by Np for
all (successful and unsuccessful) trajectories. Each execution
is considered successful if no constraint is violated (with a
tolerance of 15 pixels) and the visual task is achieved (s
converges to s∗ in the given time of 15 s). Each strategy
was tested using the same 100 random initial configuration.
The results, run on a laptop with an i7-1.80 GHz 4-cores
and 8 GiB RAM, are reported in Table I. The prev-it strategy
with Np = 3 allowed to obtain 80% of success rate (note that
among the test samples, many had an easy task execution).
In order to improve r, for the considered scenario, we had
to increase the preview window to Np = 30, but this also
increased the computation time. The proposed memory-based

TABLE I
SIMULATIONS: STATISTICS COMPARING DIFFERENT VPC STRATEGIES.

Strategy r (%) t̄c (s) ¯̀

Previous-iteration (Np = 3) 80 0.085 49.3
Previous-iteration (Np = 30) 83 0.550 52.9
k-NN-based 92 0.074 19.6
GPR-based 93 0.080 16.4

strategies allowed us to keep the preview window short, so
that both t̄c and ¯̀ have low values, and increase r at the
same time. This is due to the effect of warm-start and way
point which help the execution of the task.

The main reason of the prev.-it. strategy failures is that the
solution gets stuck at the visual occlusions. The memory-
based strategies reduces the occurrence of these situations.
As an example, in Fig. 4 we present the plots related to a
single task execution, where the big blue dot is the initial
value of the features, the smaller blue dots are the VPC
solutions at each iteration, whereas the red circles are the
target. The prev.-it. strategy stops at an occlusion border (see
Fig. 4a), as effect of conflicting gradients that produce zero
velocity commands (Fig. 4d). Instead, the memory-based
approaches manage to overcome the occlusion, as shown in
Figs 4b and 4c. In particular, the GPR solution, thanks to
its interpolation capabilities, produces a smoother behavior
w.r.t. our k-NN implementation (cf. Figs 4b-4e with 4c-4f ).

B. Robot experiments

For the experiments, we used the 7 degrees-of-freedom
robot arm Panda by Franka Emika, with an Intel RealSense
RGB-D sensor mounted at the end-effector. The sensor, used
as monocular camera, outputs images with a resolution of
640 × 480 pixels at a nominal framerate of 30 Hz. The
image processing, used to detect the point features, was
implemented using the open source library OpenCV [31]. A
calibration procedure computed the intrinsic camera param-
eters and the camera–end-effector displacement. The camera
velocity commands, computed by VPC, were transformed in



(a) (b) (c)

Fig. 5. Robot experiment: the prev.-it. strategy fails to avoid the occlusion.

the robot frame and sent to the robot Cartesian controller. As
task, the robot had to place an object inside a box where we
placed four known markers. Without knowing the box pose,
VPC was used to drive the robot over the box and, after
convergence, release the object. On the image we considered
two constraints to take into account the occlusion of the
object grasped by the robot, and emulate a spot in the center
of the lens as a blurred area. VPC was set with kQ =
10−6, R = diag(50, 50, 0.5, 0.25, 0.25, 0.25) (decreasing it
to 0.1R approaching the convergence), while the commands
bounds were set to ±0.01 m/s and ±0.03 rad/s.

The memory (450 trajectories for a total of 64339 samples)
was built with Np = 5, solver optimality tolerance of 10−9

and 50 maximum iterations. The iterative building and the
adaptive sampling were not used. To be conservative, the
spot considered in the memory was bigger than the one in
the experiments. Given the simulation results, we decided
to use the GPR-based strategy. Data were subsampled by
a factor 60, with ns = 30. The trigger signal to query the
memory was activated at 30 pixels from the occlusions.

For the on-line experiments, we set Np = 3, the solver
was given 10 maximum iterations and 10−6 as optimality
tolerance. With this setting, and for some initial robot-box
configuration, the previous iteration strategy was not capable
to achieve the task, as shown in the snapshots of Fig. 5.
While moving the visual features (blue dots, see Fig. 5a)
towards the target (red circle), the features met the blurred
spot (Fig. 5b) causing the loss of a feature and the consequent
failure of the task (Fig. 5c). The same experiment has been
carried out with the GPR-based approach, see Fig. 6 where
both robot and camera view are shown. Starting from the
same initial condition (Fig. 6a), at the proximity of the
constraint (Fig. 6b), the memory provides proper way point
(depicted as red crosses on the image plane) and warm-
start which allow to successfully achieve the desired task
(Fig. 6c). In Fig. 7 are shown the velocity commands sent to
the robot during the execution. The experiments are shown
in the accompanying video.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of efficiently
achieving visual predictive control tasks. Using a memory
of motion, we could exploit previous solutions to better
fulfill on-line tasks. Furthermore, leveraging pre-computation
contained in the memory, we could set a short VPC pre-
view window without invalidating the results. The algorithm
performances rely on the pre-computed dataset; we plan to

(a) (b) (c)

Fig. 6. Robot experiment using the memory of motion: VPC is able to
avoid the occlusion and achieve the desired task.

Fig. 7. Robot experiment using the memory of motion: velocity commands.

improve the quality of the memory using a global optimizer
or a planner. Furthermore, more sophisticated paradigm of
active learning can be employed to build a minimal memory,
containing less but more informative samples. In the pre-
sented work, the memory is queried using k-NN and GPR. As
shown with both simulations and experiments, these methods
were able to outperform the standard VPC scheme. However,
we believe that the performance could be even improved
by considering other kinds of regressors that can cope with
multimodality, as done in [22]. In the presented results we
show that the use of a memory of motion helps also to keep
the computation time limited. However, more effort will be
done in order to ensure full real-time performances. Finally,
further developments will be devoted to include the proposed
scheme within the optimization framework of more complex
systems such as humanoids.



REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic
approaches,” IEEE Robot. Autom. Mag., vol. 3, no. 4, pp. 82–90, 2006.

[2] ——, “Visual servo control, Part II: Advanced approaches,” IEEE
Robot. Autom. Mag., vol. 14, no. 1, pp. 109–118, 2007.

[3] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” in The Confluence
of Vision and Control, 1998, pp. 66–78.

[4] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE Trans. Robot. Autom., vol. 18, no. 4, pp. 534–549,
2002.

[5] D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette, “Visual
servoing in an optimization framework for the whole-body control of
humanoid robots,” IEEE Robot. and Autom. Lett., vol. 2, no. 2, pp.
608–615, 2017.

[6] A. Paolillo, K. Chappellet, A. Bolotnikova, and A. Kheddar, “Inter-
linked visual tracking and robotic manipulation of articulated objects,”
IEEE Robot. and Autom. Lett., vol. 3, no. 4, pp. 2746–2753, 2018.

[7] M. Sauvée, P. Poignet, E. Dombre, and E. Courtial, “Image based
visual servoing through nonlinear model predictive control,” in IEEE
Conf. on Decision and Control, 2006, pp. 1776–1781.

[8] G. Allibert, E. Courtial, and F. Chaumette, “Predictive control for
constrained image-based visual servoing,” IEEE Trans. Robot., vol. 26,
no. 5, pp. 933–939, 2010.

[9] G. Allibert, E. Courtial, and F. Chaumette, Visual Servoing via
Nonlinear Predictive Control. Springer London, 2010, pp. 375–393.

[10] B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive
planning for aggressive target tracking while avoiding collisions and
occlusions,” IEEE Robot. and Autom. Lett., vol. 3, no. 4, pp. 3725–
3732, 2018.

[11] G. Allibert, E. Courtial, and Y. Touré, “Real-time visual predictive
controller for image-based trajectory tracking of a mobile robot,” IFAC
Proceedings Volumes, vol. 41, no. 2, pp. 11 244–11 249.

[12] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,”
in IEEE Int. Conf. on Robotics and Automation, 2006, pp. 3344–3349.

[13] C. Liu and C. G. Atkeson, “Standing balance control using a trajectory
library,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2009, pp. 3031–3036.

[14] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in IEEE Int. Conf. on Robotics
and Automation, 2012, pp. 3671–3678.

[15] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion
synthesis and adaptation using a trajectory database,” Robotics and
Autonomous Systems, vol. 60, no. 10, pp. 1327–1339, 2012.

[16] M. Saveriano and D. Lee, “Distance based dynamical system modu-
lation for reactive avoidance of moving obstacles,” in IEEE Int. Conf.
on Robotics and Automation, 2014, pp. 5618–5623.

[17] L. Huber, A. Billard, and J. Slotine, “Avoidance of convex and concave
obstacles with convergence ensured through contraction,” IEEE Robot.
and Autom. Lett., vol. 4, no. 2, pp. 1462–1469, 2019.

[18] T. Shen, S. Radmard, A. Chan, E. A. Croft, and G. Chesi, “Optimized
vision-based robot motion planning from multiple demonstrations,”
Autonomous Robots, vol. 42, no. 6, pp. 1117–1132, 2018.

[19] N. Mansard, A. Del Prete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” in IEEE Int. Conf. on Robotics and Automation,
2018, pp. 2986–2993.

[20] N. Jetchev and M. Toussaint, “Trajectory prediction: learning to map
situations to robot trajectories,” in Int. Conf. on Machine Learning,
2009, pp. 449–456.

[21] W. Merkt, V. Ivan, and S. Vijayakumar, “Leveraging precomputation
with problem encoding for warm-starting trajectory optimization in
complex environments,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2018, pp. 5877–5884.

[22] T. Santoso Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory
of motion for warm-starting trajectory optimization,” IEEE Robot. and
Autom. Lett., vol. 5, no. 2, pp. 2594–2601, 2020.

[23] I. Pólik and T. Terlaky, “Interior point methods for nonlinear opti-
mization,” in Nonlinear optimization. Springer, 2010, pp. 215–276.

[24] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 1–8, 2012.

[25] E. Todorov, “A convex, smooth and invertible contact model for tra-
jectory optimization,” in IEEE Int. Conf. on Robotics and Automation,
2011, pp. 1071–1076.

[26] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 1–14, 2018.

[27] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[28] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source
scientific tools for Python.” [Online]. Available: http://www.scipy.org/

[29] N. P. Hyun, P. A. Vela, and E. I. Verriest, “A new framework for
optimal path planning of rectangular robots using a weighted Lp

norm,” IEEE Robot. and Autom. Lett., vol. 2, no. 3, pp. 1460–1465,
2017.

[30] “GPy: A gaussian process framework in python.” [Online]. Available:
http://github.com/SheffieldML/GPy

[31] “Open source computer vision library.” [Online]. Available:
https://opencv.org/


