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ABSTRACT

Heart auscultation is a widely used technique for diagnosing cardiac
abnormalities. In that context, capturing of phonocardiogram (PCG)
signals and automatically monitoring of the heart by identifying S1
and S2 complexes is an emerging field. One of the first steps in-
volved for identifying S1–S2 complexes is detection of the loca-
tions of these events in the PCG signals. Methods proposed in liter-
ature, to detect these events in the PCG signal, have largely focused
on exploiting the dominant low frequency characteristics of the S1–
S2 complexes through frequency–domain processing. In this pa-
per, we propose a purely time–domain processing based method that
employs a heavily decaying low pass filter (referred to as zero fre-
quency filter) to suppress extraneous factors and detect S1–S2 lo-
cations. We demonstrate the potential of the proposed approach
through investigations on two publicly available data sets, namely
the PASCAL heart sounds challenge 2011 (PHSC–2011) and Phys-
ioNet CinC. The method is also evaluated through an analysis with
wearable sensors in the presence and absence of speech activity.

Index Terms— Phonocardiogram, S1–S2 detection, zero fre-
quency filter, modified ZFF

1. INTRODUCTION

Auscultation of the heart deals with listening to the internal heart
sounds and thus drawing conclusions towards the condition of the
heart. The process of defining patterns of cardiac functionality from
heart sounds requires rigorous training and expertise of practition-
ers. For several potentially fatal heart diseases, such as natural and
prosthetic heart valve dysfunction, or even for the cases of heart fail-
ure, heart sound auscultation is one of the most reliable, cheap and
successful measures for primitive screening and diagnosis [1]. How-
ever, the process is subjective and hence the observations may vary
depending on several factors.

Phonocardiogram (PCG) signals are recorded sound wave repre-
sentations of human heart activity, which are typically characterized
by S1(lub) and S2(dub) events. The human heart beats and produces
these two sounds under normal condition [2]. S1 sound results from
the closure of atrioventricular valves at the beginning of ventricular
systole. The sound comprises of components resulting from the clo-
sure of the mitral valve and the tricuspid valve. S2 sound appears
at the end of ventricular systole, denoting a transition to diastole. It
comprises of components resulting from the closure of aortic valve
and the pulmonary valve. The PCG and ECG signals are related in
such a way that the S1 event follows the R–peak. Abnormality in the
function of the heart may appear as low–frequency noise, like mur-
murs, within the S1 and S2 (called systole) or between S2 and S1
(called diastole) duration [3]. Segmentation of these events is there-

fore an essential front–end step in the analysis of PCG, and towards
developing automatic diagnostic tools for cardiac ailments.

Detection of the onset of S1 and S2 events is one of the major
challenges in heart sound analysis. Heart sound segmentation algo-
rithms mentioned in literature are broadly classified into two main
approaches: those aided with an ECG reference to synchronize the
segmentation, and those without this information. In ECG reference
based approach, the QRS complexes and T–waves are detected ini-
tially in order to locate S1 and S2 segments, respectively [4]. For
noisy ECG signals where T–waves are not clearly visible, identifica-
tion of S2 is performed using an unsupervised classifier [5].

The present approach to the problem is independent of the avail-
ability of the ECG signal, as most of other previously proposed ap-
proaches are. Such methods are further classified into supervised
and unsupervised methods. Several segmentation methods rely on
thresholds to identify events using a transformed or filtered repre-
sentation of PCG signals [6]. A method based on wavelet transform
uses energy based features along with the timing information and
simplicity features derived from the approximation coefficients [7].
The simplicity features are obtained as entropy values of the normal-
ized eigen components of the correlation matrix of segments within
the signal. Another method utilizes the autocorrelation (AC) func-
tion over energy envelope of PCG signals, derived from the approxi-
mation and detail coefficients obtained using wavelet analysis, to de-
marcate cardiac activity events [8]. A method uses Shannon energy
obtained from the low frequency signal derived using approximation
coefficients of fast wavelet transform, to segment and classify PCG
signals [9].

Supervised methods utilize parameters such as homomorphic
envelogram, Hilbert and wavelet envelops, derived from a band–
limited PCG signal (mostly up to 1 kHz), for the purpose of train-
ing a hidden semi Markov model (HSMM) to segment PCG sig-
nals [6]. Another method introduces duration dependent HMMs
to refine the probabilistic approach to detect events in PCG [10].
Decision statistics (DS) derived from spectro–temporal features are
used along with duration constraints to identify peaks in PCG cor-
responding to S1 and S2 events [11]. A method uses eigen decom-
position method to achieve the spectral clustering of power spectral
density (SCPSD) for task of event detection [12]. The ensemble em-
pirical mode decomposition (EEMD) based method uses additional
features obtained from the kurtosis of the signal for segmentation
of PCG signals [13]. Atoms characterized by time delay and du-
ration, frequency, phase and amplitude values of segments within
a signal are hypothesized as events. Density function representing
these atoms obtained through a time–frequency decomposition of
PCG signals helps in clustering the events in PCG [14]. The char-
acteristic waveform and characteristic moment waveforms obtained
using multiscale moment analysis on Viola integral waveform are
employed for the purpose of segmentation of PCG [15]. A method



employs multi–layered perceptron (MLP) architecture over param-
eters derived using short time energy and auto–regression analysis,
to detect landmarks in pediatric PCG signals [16]. Another method
uses the Shannon energy obtained for the spectrum obtained using S-
transform, as a parameter for the radial basis function (SRBF) neural
networks to obtain PCG envelop [17].

Most of these methods use spectral tranforms, adaptive thresh-
olding, and complex filtering, clustering and learning steps, which
are difficult to implement in real–time scenario. The current work at-
tempts identification of events in PCG using a low–frequency signal
derived using a heavily decaying resonator. The proposed method is
motivated from the zero frequency filtering (ZFF) method, and ob-
tains a modified ZFF signal which highlights the characteristics of
S1 and S2 events. The proposed method is implemented within the
temporal domain, and exhibits a lower complexity and latency. The
method is tested for its performance on publicly available datasets,
and also on data acquired using a wearable device. The paper is
organized as follows: Sec. 2 discusses the ZFF method. Sec. 3 ex-
plains the motivation, and introduces the proposed method. Sec. 4
explains the experimental setup and the results obtained across dif-
ferent databases. Sec. 5 summarizes the paper.

2. RELEVANT BACKGROUND

The ZFF method filters a time domain signal with a heavily decaying
digital resonator centered at 0 Hz. The ZFF method originated in the
context of speech processing to identify location of significant exci-
tation, known as glottal closure instants (GCIs), within the vibrating
vocal fold source signal in speech [18]. The underlying motivation
of the method being that the spectral characteristics of a temporal
discontinuity is evenly spread across all bands, including very low
frequencies in the vicinity of 0 Hz. The contribution of the vocal
tract system response is significantly low at frequencies near 0 Hz.
The signal when filtered using the resonator, exhibits a polynomial
growth trend. The GCIs identified at the zero crossing locations in
the final output, once a trend removal operation is performed across
an appropriate duration.

The zero frequency filter is implemented as a cascaded res-
onators centered at 0 Hz. The resultant of the filter is given by
x[n] = s[n] + 2x[n − 1] − x[n − 2], and the equivalent transfer
function is given by,

H(z) =
1

1− 2z−1 + z−2
, (1)

where s[n] is the input to the resonator. The zero frequency filtering
is implemented as an integrator resulting in a trend of polynomial
growth with time in the filtered signal. Fig. 1 shows a segment of
speech signal, and the resultant signal obtained with the ZFF method
using different trend removal duration. Fig. 1(a) shows the speech
signal obtained from a voiced segment, and Fig. 1(b) shows the cor-
responding trend removed ZFF output y[n]. The polynomial trend
in the filtered signal x[n] in this case is removed using a local mean
removal operation across a duration comparable to the pitch period
(∼ T0) of the signal, given by

y[n] = x[n]− 1

2N + 1

n+N∑
k=n−N

x[k];

N + 1 ≤ n ≤ L−N, (2)

where L is the net length of the signal x[n], and 2N+1 is the length
of the trend removal window. A detailed description of the steps
involved in implementation of the ZFF method is given in [18].
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Fig. 1. ZFF and modified ZFF signals obtained from speech signal.
(a) Speech signal. (b) ZFF signal (2N +1 ∼ T0). (c) Modified ZFF
signal (2N + 1 ∼ T0/8).

3. PROPOSED METHOD

The section presents the motivation in adopting the ZFF method
for detection of events in PCG signals. The section also discusses
changes in the ZFF method leading to a modified output. A step by
step description of the algorithm proposed is also presented.

3.1. Motivation

When the trend removal window duration is T0 ≤ 2N + 1 ≤ 2T0,
T0 being the fundamental period of input s[n], the resultant y[n] ex-
hibits a negative to positive zero crossing at the location of disconti-
nuity. The signal y[n] therefore is periodic with T0. A modification
in the trend removal window duration results in a shift in the filter re-
sponse, leading to a shift in the period of y[n], as shown in Fig. 1(c),
for a duration 2N+1 < f0/2. The filtered signal appears modulated
by the instantaneous energy of the original signal. The other com-
ponents and interferences in s[n] are absent in the signal obtained
by modified ZFF. The log–magnitude response (log|Y (ω)|) of the
ZFF signal obtained for different trend removal duration are shown
in Fig. 2. The dominant characteristics in log|Y2(ω)| in Fig. 2(b)
appear shifted to relatively higher frequency bands, as compared to
log|Y1(ω)| in Fig. 2(a) where it is concentrated around the f0 of
the segment. Log|Y1(ω)| represents the spectral characteristics of
a ZFF signal, obtained using a trend removal duration comparable
to the fundamental period of the signal, whereas log|Y2(ω)| corre-
sponds to a signal obtained with a smaller trend removal duration.
The shift in the dominant signal characteristics is inversely propor-
tional to the duration of the trend removal operation with respect to
the fundamental period.

The modified ZFF signal serves as motivation for the identifi-
cation of events in PCG signal. The ZFF and modified ZFF signals
decay sharply beyond their range of spectral dominance. This be-
haviour gives the resultant signal an ability to mitigate the effect of
interference while preserving information around a narrow band of
interest. The amplitude modulations of the modified ZFF signal re-
lates to the amplitude information of the narrowband component in
the signal and its harmonics. A carefully estimated duration of the



Fig. 2. Spectrogram obtained for ZFF signals employing different
trend removal duration. (a) 2N+1 comparable to a pitch period. (b)
2N + 1 lesser than half pitch period.

trend removal operation can thus lead to a filtered signal with de-
sired narrowband characteristics. Information content of the events
in PCG signals has been reported to appear bandlimited within a nar-
row range of frequencies and thus can be efficiently and robustly cap-
tured using the modified ZFF signal. The following sections discuss
the method proposed, and the results obtained on different databases.

3.2. Detection of events in PCG signals

The significant proportion of frequency response of the S1 and S2
events has been reported to exist below 150 Hz, however, the signal
is periodic with a larger duration (∼ 60–100 cycles a minute). A
modification in ZFF method is made to shift the desired response to
a spectral range of interest, between 100–200 Hz in the case of event
detection within PCG signals. The modified ZFF is predominantly a
monocomponent signal and hence it is easy to track the modulations
in it. The present work uses a window duration 2N + 1 = 20 ms,
chosen heuristically, for the resulting signal response appear in the
desired range. Following are the steps of the algorithm, proposed to
detect S1 and S2 locations in PCG signals.

1. Obtain the ZFF signal x[n] from the PCG signal s[n] using
the filter given in Eqn. 1.

2. Obtain the modified ZFF signal y[n] by removing the trend in
x[n] using a window duration of 20 ms.

3. Obtain the slope e[n] of y[n] at the positive to negative zero
crossing (PNZ) locations. The slope values are higher at the
S1 and S2 event locations because of the modulations in y[n].

4. Compute the Hilbert envelope yHE [n] from the signal y[n].

5. Determine the peaks in yHE [n], and weigh by the corre-
sponding value in e[n] to get yw[n]. A threshold of 0.25 of
maximum strength of peaks in yw[n] is used to determine
peak locations corresponding to S1 and S2.

The value of threshold is chosen empirically, as the peaks corre-
sponding to cardiac events exhibit higher energy than this thresh-
old, as compared to other spurious peaks. Fig. 3 shows an example
of the proposed analysis, illustrating the steps involved in the pro-
posed method to identify event locations in PCG. Figs. 3(a) and 3(b)
shows a noisy PCG signal segment s[n] obtained from the PASCAL–
CHSC 2011 database [19], and the corresponding modified ZFF sig-
nal y1[n] obtained using a window duration of 20 ms. The envelope
of the y1[n] signal appears modulated by the energy of PCG sig-
nal, mostly at significant events. This behavior is highlighted by the
Hilbert envelope (y1HE [n]) of y1 as shown in Fig. 3(c). A peak
identification method is employed to identify the peaks in y1HE [n].
Lesser dominant peaks, present at several other locations in y1HE [n]
apart from the S1 and S2 locations, can be eliminated by using
the slope e[n] at the PNZ locations in y1HE [n], given in Fig. 3(d).
Weighing of the y1HE [n] signal with e[n] helps locating the cardiac
events, even in the presence of noise.
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Fig. 3. PCG signal analysis using the proposed method. (a) Noisy
PCG signal. (b) Modified ZFF signal. (c) Hilbert envelope of modi-
fied ZFF signal. (d) Gradient of modified ZFF signal.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Databases and evaluation measures

The proposed method is evaluated on two datasets. The PASCAL
Heart Sound Challenge (PHSC11) dataset has been compiled and
labeled for a challenge on localization and classification of heart
sounds [19]. The signals are acquired at a sampling frequency
of 44.1 kHz and 4 kHz, respectively, in two different sets having
176 and 656 auscultations with normal heart beats, murmurs and
extra systoles. Another dataset is the PhysioNet/CinC Challenge
2016, which includes PCG recordings of healthy subjects and patho-
logical patients, with a total of 3153 heart sound recordings [20].
The recordings are divided into normal (2488) and abnormal (665)
classes. The datasets contain clean, as well as noisy PCG signals.
Previously proposed methods chose to evaluate only on a selected
set of data and the criteria of selection is not explained. As a con-
sequence, a direct comparison among these methods is a non–trivial
task.

The average duration of S1 and S2 segments are about 100 ms
with a dispersion of ±35 ms [11]. Any event detected within a du-
ration of 100 ms from the beginning of S1 and S2 is considered as



a correct detection [6]. The performance measures used to evaluate
the proposed algorithms are sensitivity (Se) and positive predictivity
(+P ). These parameters are derived as follows:

Se =
TP

TP + FN
; +P =

TP

TP + FP
;

where TP refers to true positives, FN refers to false negatives and FP
refers to false positives. The labels provided within the databases are
identified as ground truth.

4.2. Results

Tab. 1 shows the results obtained by the proposed method on
PHSC11 and CinC challenge data sets. All these mentioned methods
use different sets of data to report their performances. The perfor-
mance of the proposed method has been reported on all the records
(dataset A) for which annotations are available, in the PHSC11 data
set. The performance on Physionet CinC data has been obtained on a
set of 200 recordings where the ground truth has been derived using
HSMM [6]. A slightly low sensitivity on PhysioNet data set can be
attributed to noisy records, which leads to the presence of spurious
peaks. For the sake of completeness, we also report the contrastive
performance of different methods evaluated on their in–house data
sets collected in a lab setup. A direct comparison between those
results and our results cannot be made, however, it can be observed
that the proposed method performs in a comparable range of those
other methods.

Methods (Dataset) Se(%) +P (%)
SCPSD [12] (CinC) 98.9 ∼

wavelet and AC [8] (PHSC11) 89.2 98.6
Proposed method (PHSC11) 98.9 99.4

Proposed method (CinC) 96.8 99.3

smooth DS [11] (in–house DB) 99 98.6
duration HMM [10] (in–house DB) 98.8 98.6
HSMM with LR [6] (in–house DB) 95.3 96

SRBF [17] (in–house DB) 96 95

Table 1. A comparison of PCG segmentation methods.
‘in–house DB’ is database mostly collected by the authors them-
selves. (∼ : data not available)

4.3. Observations on wearable sensor data

Identification of S1–S2 events in PCG signal acquired using wear-
able sensors is a challenging task due to interferences introduced due
to the contact between skin and sensors as well as presence of exter-
nal sounds (e.g., speech). ZFF based analysis could help to alleviate
the interference by a significant factor. To demonstrate this aspect,
the proposed method is employed to detect events in PCG data ob-
tained using a wearable sensor. The wearable sensor SENSE [21],
which has been developed to record high quality cardiac activity
measurements, has been extended to acquire the thoracic sounds by
means of a device based on [22]. The sensor is able to acquire high
SNR ECG signals, even when the subjects are in motion. The PCG
signals are acquired at a sampling rate of 16 kHz and are aligned
with the ECG data. Fig. 4 shows the results of the proposed method
to identify events in the PCG signal acquired using the wearable sen-
sor, with and without the interference of speech signals.

Fig. 4(a) shows the PCG signal, and the corresponding ECG
signal, recorded in absence of speech. Fig. 4(b) shows the weighted
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Fig. 4. Hilbert envelope for ZFF signal obtained from wearable sen-
sors. (a) and (c) PCG signals along with ECG signals obtained from
the sensor SENSE, in absence and presence of speech, respectively.
(b) and (d) weighted Hilbert envelope of modified ZFF signals.

Hilbert envelope of the modified ZFF signal obtained using a trend
removal window of 5 ms duration. The peaks in the Hilbert envelope
highlight the location of S1 and S2 events in PCG signal. Figs. 4(c)
and 4(d) show the PCG, and the corresponding Hilbert envelope sig-
nal, recorded in the presence of speech. The effects of interference
of speech can be noted in Fig. 4(c), where the events are masked by
a high SNR interference. The filtered signal obtained using modified
ZFF is able to suppress the interference owing to its sharp response,
and the prominent peaks in Fig. 4(d) coincide with the R–peaks in
the reference ECG signal, and can be postulated as locations for car-
diac events.

5. SUMMARY AND FUTURE WORK

The proposed method to identify the S1 and S2 events in PCG sig-
nals combines the ZFF method with the Hilbert envelope operation.
The ZFF method employs a heavily decaying resonator centered at 0
Hz, which helps eliminate a significant proportion of interference by
suppressing other spectral components. Hilbert envelope of a mod-
ified ZFF signal proves a robust way to highlight the locations of
events in PCG. The proposed method yields promising results on
Physionet CinC and PHSC11 datasets, which include clean as well
as noisy recordings. The method has also been verified on signals
acquired using a wearable sensors, where it yields a good detection
performance even in the presence of noise/interference. Owing to its
robustness and low complexity in implementation [23], the method
can potentially be integrated into wearable sensors.
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