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Abstract

To adapt the speaker verification (SV) system to a target do-
main with limited data, this paper investigates the transfer learn-
ing of the model pre-trained on the source domain data. To
that end, layer-by-layer adaptation with transfer learning from
the initial and final layers of the pre-trained model is investi-
gated. We show that the model adapted from the initial layers
outperforms the model adapted from the final layers. Based
on this evidence, and inspired by the works in image recogni-
tion field, we hypothesize that low-level convolutional neural
network (CNN) layers characterize domain-specific component
while high-level CNN layers are domain-independent and have
more discriminative power. For adapting these domain-specific
components, angular margin softmax (AMSoftmax) applied on
the CNN-based implementation of the x-vector architecture. In
addition, to reduce the problem of over-fitting on the limited
target data, transfer learning on the batch norm layers is inves-
tigated. Mean shift and covariance estimation of batch norm
allows to map the represented components of the target domain
to the source domain. Using TDNN and E-TDNN versions of
the x-vectors as baseline models, the adapted models on the de-
velopment set of NIST SRE 2018 outperformed the baselines
with relative improvements of 11.0 and 13.8 %, respectively.
Index Terms: Speaker recognition, speaker verification, super-
vised adaptation, batch norm, transfer learning

1. Introduction
In recent years, deep neural networks (DNNs) have been suc-
cessfully applied to several machine learning fields including
computer vision, speech recognition, or natural language pro-
cessing [1, 2, 3]. Similar to the mentioned fields, DNN-based
models were investigated for text-independent SV tasks [4, 5].
Domain compensation is one of the recent challenges in the
speaker recognition field. In the recent NIST SRE challenges,
one of the main interests was a language mismatch. To alle-
viate the language mismatch problem, several domain adapta-
tion techniques were recently proposed [6, 7, 8, 9, 10]. In [6],
an adversarial method for unsupervised discriminative domain
adaptation was proposed. For reducing the domain mismatch
in i-vector and x-vector SV systems, semi-supervised nuisance
attribute network (SNAN) was introduced in [7]. Instead of
computing the domain variability from the dataset means, max-
imum mean discrepancy (MMD) was used as part of the loss
function. [11], addressing the face recognition, has shown that
high-level CNN layers are potentially domain-independent and
can be used for extracting the embedding and modeling the
target identities. On the other hand, low-level CNN layers
represent domain-specific components and adaptation of these
domain-specific units (DSUs) allows mapping of these compo-
nents from the target to the source domain.

This paper investigates the domain adaptation problem, em-
ploying the pre-trained model on source data and adapted to the
target domain using limited resources. Specifically, layer-by-
layer adaptation is explored with the transfer learning from the
initial and final layers of the pre-trained models. Experimen-
tal results suggest that DSUs from the initial layers were more
informative for mapping the represented components from the
target to the source domain. For supervised adaptation using
limited amount of data in target domain, instead of applying
transfer learning on all the weights, adaptation of batch norm
layers to the target domain is applied. This simple yet power-
ful domain adaptation method showed significant improvement
in image processing field [12, 11, 13]. Two parameters of the
batch norm (β and γ) shift the mean of the represented features
and estimate the covariance of the data to map the limited target
domain to the source domain. CNN-based implementation of x-
vector architecture with angular margin softmax (AMSoftmax)
loss is investigated to adapt DSUs. Employment of AMSoftmax
loss increases the discriminability of the extracted features [14].
Two versions of x-vector implementation, with five [5] or ten
[15] frame-level layers, are applied before the statistical pool-
ing layer (denoted as TDNN and E-TDNN, respectively). An
augmented version of CMN2 part of the evaluation set of NIST
SRE 2018 was used as adaptation set. The adapted models on
the CMN2 part of the development set of NIST SRE 2018 out-
performed the non-adapted models relatively by 11.0 and 13.8
%, respectively in equal error-rate.

The rest of this paper is organized as follows: Employment
of AMSoftmax on x-vector architectures is described in Sec-
tion 2. Domain adaptation using batch norm transfer learning is
investigated in Section 3. The experimental setup and analysis
of results are given in Section 4. Finally the paper is concluded
in Section 5.

2. SV systems with AMSoftmax
Here, two SV systems using AMSoftmax are developed. The
systems are generally based on the x-vector implementation [5,
15].

The large margin softmax loss can be written as:
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where cos(θj) is the angle between j-th column of weights in
the output layer and the input of the last layer, s is the scaling
factor which causes convergence, and ψ(θyi) is an angle func-
tion defined as:

ψ(θyi) = cos(m1θyi +m2)−m3, (2)

where, m1, m2, and m3 are individual coefficients for angu-
lar softmax (ASoftmax), additive angular margin softmax (Arc-



Softmax) and additive margin softmax (AMSoftmax) losses, re-
spectively [14].

The experiments performed in this paper apply ArcSoftmax
and AMSoftmax with different margins. Based on the initial re-
sults, AMSoftmax outperformed the ArcSoftmax, hence we re-
port only the results from application of AMSoftmax. For reg-
ularization, L2 regularization was applied on each CNN layer.
The x-vectors obtained for each speech utterance are centered
and projected using LDA [16]. LDA dimension was tuned on
the development set. After the dimensionality reduction, the
x-vector representations are length-normalized [17] and classi-
fied by PLDA [18]. For score normalization, although adap-
tive S-norm [19] showed significant improvement in NIST SRE
2016 [20]. However, based on the result obtained on the de-
velopment set of NIST SRE 2018, S-norm was used as score
normalization method.

3. Domain adaptation using batch norm
transfer learning

To alleviate the over-fitting problem when applying limited
adaptation data, domain adaptation experiments are performed
using batch norm transfer learning. Both TDNN and E-TDNN
architectures were used for adaptation, where batch normaliza-
tion is applied after every CNN or dense layer. More particu-
larly, the batch normalization can be defined as:

h(x) = βi + γi.
g(Wix)− µi

σi
, (3)

where β is the batch normalization offset, γ is batch normaliza-
tion scale, W is the kernel of CNN layers, g is the non-linear
function which is applied to the convolution, usually ReLU, µ
and σ are the accumulated mean and standard deviation of the
current batch. In the back-propagation step, two variables γ
and β are updated. The E-TDNN architecture for adaptation of
DSUs is shown in Figure 1.

Algorithm 1: Training strategy given a pre-trained
CNN-based model θ, loss function L and the number
of layers to be adapted nlayers. θt is split between
the CNN kernel parameter W and the batch normal-
ization parameters including offset β and scale γ

Data: θ, L, nlayers
Result: θt
θt = θ[: nlayers]; // Domain Spec. Units
θs = θ[nlayers :]; // Domain Indep. Units
while has data do

batch = get batch() ;
∂L
∂θt

= forward backward(batch, θ, θt, L) ;
θt[β] = θt[β]− η ∂L∂θt [β] ;
θt[γ] = θt[γ]− η ∂L∂θt [γ] ;

end

With updating the β and γ parameters, the distribution of
the represented features from the target domain will be mapped
to the source domain.

4. Experimental setup and results
In this section, we describe the datasets and performance of the
SV systems. For adaptation, CMN2 part of the evaluation set
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Figure 1: E-TDNN architecture for training the embeddings ex-
tractor. DSUs are updated from the initial layers.

of NIST SRE 2018 was used. Performance of the adaptation on
the x-vector SV systems with TDNN or E-TDNN architectures
is investigated on CMN2 part of the development set of NIST
SRE 2018 and evaluation set of NIST SRE 2019 datasets. In
addition, we report the system fusion results on the evaluation
set of NIST SRE 2019.

4.1. Datasets

The majority of training data is in English comprising tele-
phone, microphone, and audio from video recordings. All wide-
band audio recordings are downsampled to 8 kHz. For training
the x-vector model, Switchboard dataset (SWBD)1, main NIST
dataset (SRE)2, and Voxceleb dataset (VCELEB)3 are used.
SWBD contains Switchboard 2 Phases 1, 2, and 3 as well as
Switchboard Cellular parts 1, and 2. In total, the SWBD dataset
contains about 28 k recordings from 2.6 k speakers. The SRE
dataset consists of NIST SREs corpora from 2004 to 2010 along
with Mixer 6, which gives in total about 63 k recordings from
4.4 k speakers. VCELEB contains data from Voxceleb 1, and 2.
Both datasets consist of videos from celebrity speakers. Vox-
celeb 1 consists of 153,516 utterances from 1,251 speakers and

1LDC2018E48
2Including LDC2009E10 and LDC2012E09
3http://www.robots.ox.ac.uk/ vgg/data/voxceleb



Voxceleb 2 consists of 1,128,246 utterances from 6,112 speak-
ers.

To increase the amount and diversity of the existing train-
ing data, SRE and SWBD datasets are augmented with additive
noise and reverberation. For reverberation and noise, RIR, and
MUSAN datasets are used, respectively4. The strategy for aug-
menting the data is similar to x-vector system [5].

As adapting the DSUs requires labeled data (i.e. super-
vised adaptation method), CMN2 part of the evaluation set of
NIST SRE 2018 is used. This set contains 188 unique speak-
ers with 13,451 segments. For increasing the variability of this
dataset, data augmentation is applied (similar to Section 2, how-
ever, for increasing the size of the data, we did not apply any
sub-sampling). The final size of the adaptation set is 67,255
segments.

4.2. Experimental Setup

After down-sampling the speech data to 8 kHz, 23-dimensional
MFCCs are extracted with 25 ms window from speech, with
10 ms frame-shift. Band-pass filtering is applied between 20
to 3700 Hz. Log of energy is added to the feature vector and the
extracted speech features are mean-normalized over a sliding
window of up to 3 seconds. Energy-based voice activity detec-
tion (VAD) is used to remove non-speech frames. For training
the x-vector, a chunk size of speech frames is chosen between
200 to 400 frames. For training the model from extracted fea-
tures, the Tensorflow code is applied5. In our network architec-
ture, instead of TDNN layers, CNN layers are employed. As
the number of parameters in TDNN architecture is smaller than
E-TDNN one, we did not apply dilation and the kernel size of
the first three layers is set with values of 5, 5, and 7, respec-
tively. However for E-TDNN architecture, similar to [15], di-
lation is set to 2, 3, and 4 in the third, fifth, and seventh layer,
respectively. For tuning the margin of AMSoftmax and Arc-
Softmax, some experiments were performed with 0.1, 0.15, and
0.2 margins. Based on the preliminary results, 0.15 margin in-
dicates the best performance. In extraction time, a chunk size of
100 seconds (10,000 frames) with a minimum size of 250 ms is
used, while for longer utterances, the average x-vector from in-
put chunks is extracted. In the PLDA back-end, the dimension
of LDA is set to 150.

As the VCELEB dataset contains more than 1.2 M utter-
ances, we did not apply data augmentation. The x-vector sys-
tem is trained on the combination of VCELEB and augmented
versions of SWBD and SRE datasets. First, we train the PLDA
classifier on augmented version of SRE. PLDA adaptation to
target domain is then performed using Bayesian maximum a
posteriori (MAP) estimation on test part of evaluation set of
SRE 2018. Nevertheless, we realized that training the LDA and
PLDA with in-domain data (i.e. using augmented version of the
evaluation set of SRE 2018) will provide better performance on
the development set of SRE 2018. The development set of SRE
2018 is used for initial evaluations, selecting the score normal-
ization method, and calibration.

For layer-by-layer adaptation, the last layer of the pre-
trained model is changed to the fully connected layer with out-
put size of the number of speakers in the adaptation set. For
regularization, dropout layer with 40% dropout rate is applied
before the final output layer. The development set of SRE 2018

4http://www.openslr.org
5Partially the code from https://github.com/mycrazycracy/tf-kaldi-

speaker was used in this implementation which internally uses Kaldi
speech recognition toolkit [21].

is used for selecting the score normalization method and cali-
bration.

4.3. System Performance and Results

As mentioned above, all SV systems are evaluated on the
CMN2 part of the development set of NIST SRE 2018. The
same set is used for calibration and score fusion.6 To investi-
gate the effect of adapting the DSUs, first, we adapt all the W ,
β, and γ parameters. Under this condition, just adapting the first
layer slightly improved the performance, while adapting more
layers caused over-fitting on the small adaptation set. In addi-
tion, process of adaptation from the first layers outperformed
the adaptation from the last layers. This observation satisfied
the hypothesis that low-level CNN layers can be considered as
domain-specific representations. The result of layer-by-layer
adaptation from the initial, or from the final layer is shown in
Table 1. Based on the observed results, initial layers are more
informative for domain adaptation. However, because of using
the limited adaptation set, increasing the number of adaptation
layers causes over-fitting on the adaptation data.

Table 1: Investigation of layer-by-layer adaptation from the ini-
tial and final layers of TDNN architecture on the CMN2 part
of development set of NIST SRE 2018 without score normal-
ization and in-domain PLDA. Numbers with beg or end (e.g.,
2 beg and 2 end) are combination of training parameters from
the first and the last 2 layers, respectively. Transfer learning
is done with updating the parameters of the mentioned layers.
EER: Equal Error Rate, min C: minimum Decision Cost Func-
tion.

Adapt Set TDNN
EER (%) min C

baseline 6.9 0.418
1 beg 6.4 0.428
2 beg 12.9 0.750
3 beg 12.0 0.784
1 end 6.9 0.511
2 end 7.5 0.513
3 end 8.5 0.550

To alleviate the problem of over-fitting on limited adapta-
tion data, we performed experiments for adapting the β and γ
parameters individually and at the same time. Under this con-
dition, with mean shift and scaling the covariance of the batch
norm layers, the target domain mapped to the source domain.
Based on these results, we hypothesize that language mismatch
between source and target domains is more complex to be mod-
eled in one single input layer, however for adapting with lan-
guage mismatch, deeper input layers are more informative than
the final layers. In addition, mean shift and covariance estima-
tion of batch norm layers will help to adapt the target domain
with limited amount of data. Individual adaptation of β and γ
parameters are shown in Table 2. The result of combined adap-
tation of β and γ parameters on TDNN and E-TDNN architec-
tures are shown in Table 3.

For TDNN SV systems, individual adaptation of β and γ
parameters relatively outperformed the baselines with 7.6 and
7.0 %, respectively in equal error-rate. Adapting the β and γ
parameters from the first three initial layers showed the best
performance. Similar pattern was observed for E-TDNN SV
systems.

6Fusion and calibration were performed using the Bosaris toolkit.



Table 2: Individual layer-by-layer adaptation of β and γ pa-
rameters of batch norms. Results of TDNN and E-TDNN ar-
chitectures on the CMN2 part of development set of NIST SRE
2018 without score normalization and in domain PLDA. Num-
bers with beg (e.g., 4 beg) are combination of batch norm pa-
rameters (β or γ for individual parameter adaptation) from the
first 4 layers. Transfer learning was done with updating the
parameters of the mentioned layers.

Adapt Set TDNN/E-TDNN
adapting β adapting γ

EER (%) min C EER (%) min C

baseline 6.97/6.91 0.418/0.47 6.97/6.91 0.421/0.47
1 beg 6.63/6.58 0.417/0.463 6.8/6.78 0.464/0.453
2 beg 6.61/6.46 0.417/0.444 6.71/6.62 0.457/0.444
3 beg 6.44/6.42 0.412/0.439 6.48/6.45 0.418/0.441
4 beg 6.45/6.44 0.414/0.441 6.73/6.60 0.450/0.441
5 beg 6.53/6.51 0.416/0.453 6.81/6.79 0.460/0.451
6 beg 6.63/6.57 0.426/0.473 6.86/6.83 0.482/0.471
7 beg -/6.58 -/0.469 -/6.59 -/0.474
8 beg -/6.60 -/0.473 -/6.56 -/0.483
9 beg -/6.59 -/0.476 -/6.55 -/0.481
10 beg -/6.61 -/0.484 -/6.73 -/0.491
11 beg -/6.67 -/0.493 -/5.97 -/0.472

Adapting the β parameters of the batch norm layers, shifts
the mean of the represented components of the target domain
to the source domain. γ parameters adaptation, scales the co-
variance of the represented components of the target domain to
the source domain. Adaptation of combination of these two pa-
rameters shows better performance. Here, adapting the β and
γ parameters from the first four initial layers showed the best
performance. For TDNN and E-TDNN x-vector SV systems,
the adapted models on the CMN2 part of the development set
of NIST SRE 2018 outperformed the baselines with relative im-
provements of 11.0 and 13.8 %, respectively in equal error-rate.

In Table 4, score normalization and in-domain PLDA adap-
tation results are reported. Using smaller in-domain dataset
is one of the main reasons for observing the current perfor-
mance with respect to the top reported systems in NIST SRE
2019 challenge. TDNN-AM and E-TDNN-AM are the systems
when AMSoftmax is applied on the TDNN and E-TDNN ar-
chitectures. TDNN-AM-BNAD and E-TDNN-AM-BNAD are
the results of the proposed batch norm adaptation on top of
TDNN and E-TDNN systems, respectively. Based on the ob-
served results except min C for E-TDNN-AM-BNAD, the pro-
posed batch norm adaptation technique significantly improved
the performance of the SV systems. With normalized scores
and in-domain PLDA, for the CMN2 part of development set
of NIST SRE 2018 dataset, in terms of equal error-rate (EER),
for the TDNN and E-TDNN SV systems the adaptation mod-
els improved relatively by 9.8 and 7.0 %, respectively. Similar
pattern was observed for the evaluation set of NIST SRE 2019.
In this set, in terms of equal error-rate, for the TDNN and E-
TDNN SV systems, the adaptation models improved relatively
by 9.4 and 8.9 %, respectively. Observing the similar pattern
for both sets shows the generalizability of the proposed adapta-
tion method.. E-TDNN-AM-BNAD gives the best performance
across the individual SV systems. Each SV system is calibrated
before the final score fusion. For score fusion, logistic regres-
sion was used. For the evaluation set of SRE 2019, the fused
score is reported.

Table 3: Combined layer-by-layer adaptation of β and γ pa-
rameters of TDNN and E-TDNN architectures on the CMN2
part of development set of NIST SRE 2018 without score nor-
malization and in domain PLDA. Numbers with beg (e.g., 4 beg)
are combination of batch norm parameters (β and γ) from the
first 4 layers. Transfer learning was done with updating the
parameters of the mentioned layers.

Adapt Set TDNN/E-TDNN
EER (%) min C

baseline 6.97/6.91 0.418/0.47
1 beg 6.63/6.43 0.408/0.473
2 beg 6.56/6.46 0.417/0.444
3 beg 6.25/6.29 0.396/0.439
4 beg 6.18/5.95 0.381/0.425
5 beg 6.54/6.16 0.404/0.437
6 beg 6.54/6.25 0.408/0.453
7 beg -/6.22 -/0.467
8 beg -/6.08 -/0.483
9 beg -/6.15 -/0.487
10 beg -/6.20 -/0.500
11 beg -/5.97 -/0.455

Table 4: Results on the CMN2 part of development set of NIST
SRE 2018 and evaluation set of NIST SRE 2019 datasets for
all systems presented with in-domain PLDA as provided by the
NIST toolkit.

System SRE18 Dev/SRE19 Evaluation Set
EER (%) min C

TDNN-AM 5.88/5.17 0.355/0.444
TDNN-AM-BNAD 5.30/4.68 0.333/0.432
E-TDNN-AM 5.25/4.81 0.319/0.428
E-TDNN-AM-BNAD 4.88/4.38 0.317/0.420

Fusion 4.42/3.96 0.251/0.367

5. Conclusions

As a supervised model for domain adaptation with limited data,
in this paper, we investigated the layer-by-layer adaptation from
the initial and final layers of the pre-trained model. We observed
that low-level CNN layers are more domain-specific features.
In addition, for reducing the over-fitting problem, we investi-
gated the adaptation using transfer learning of batch norm pa-
rameters. Based on the observed results, we hypothesize that
language mismatch is more complex to be modeled in one sin-
gle input layer, however for modeling the language mismatch,
deeper input layers are more informative than the final layers.
In addition, mean shift and covariance estimation will help to
adapt the target domain with limited amount of data.
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