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Abstract
Optical microscopy, an invaluable tool in biology and medicine to observe and quantify

cellular function, organ development, or disease mechanisms, requires constant trade-offs

between spatial, temporal, and spectral resolution, invasiveness, acquisition time, and post-

processing effort. Deep learning technologies have enabled multiple applications that are

transforming our day-to-day routines, including the way we approach microscopy. Yet despite

the ever-increasing computational power, it is often the lack of labeled training data that is

the limiting factor for wide adoption in this domain. Annotating data is often a lengthy and

expensive task, since it involves tedious work, generally by skilled experts.

In this thesis, I explored “weakly supervised” learning methods targeted at a variety of applica-

tions to enhance microscopy images and extract physical information from a single image.

The specificity of these “weakly supervised” methods is the fact that they use very little prior

information about the image in order to keep the effort to annotate training data as low as

possible. Specifically, I reduced the dimensionality of the learning problem by targeting the

experiment towards estimating the parameters of a spatially-variant Point Spread Function

(PSF) model using a Convolutional Neural Network (CNN), which does not require instrument-

or object-specific calibration. Using such a model permitted to simulate realistically accu-

rate training data that could be generalized, once the model was trained, to real microscopy

images. I extensively benchmarked different network architectures, training datasets and

simulation modalities towards the optimal PSF prediction performance and robustness to

image degradation.

Starting from the estimated PSF model parameters, I developed a variety of applications, such

as a semi-blind spatially-variant deconvolution method for image deblurring and enhance-

ment, a robust and fast microscopy auto-focus, a method for the estimation of the object

surface from a single 2D image, and a method for the estimation of the object velocity in a

fluid, all of them with minimal need for a priori knowledge about the optical setup.
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Résumé
La microscopie optique, un précieux outil en biologie et en médecine pour observer et quanti-

fier les fonctions cellulaires, le développement des organes ou les mécanismes des maladies,

requiert de nombreux compromis en terme de résolution spatiale, temporelle et spectrale,

ainsi qu’en terme d’invasivité, de temps d’acquisition et de difficulté à traiter le signal.

Les technologies d’apprentissage profond (“Deep Learning”) ont depuis peu permis de nom-

breuses applications qui transforment nos routines journalières, y compris la façon dont on

se sert de la microscopie. Cependant, malgré une puissance de calcul toujours plus perfor-

mante, le facteur limitant leur adoption dans ce domaine est souvent le manque de données

d’entraînement annotées. En effet, l’annotation des données est souvent une tâche longue et

onéreuses, car il s’agit de travail fastidieux qui nécessite des experts confirmés.

Dans cette thèse, j’ai exploré des méthodes d’apprentissage “faiblement supervisées” qui

touchent une quantité de différentes applications afin d’améliorer les images en microscopies,

et d’en extraire des informations physiques. La particularité de ces méthodes “faiblement

supervisées” est qu’elles ne nécessitent que peu d’information préalable sur l’image afin de

réduire considérablement l’effort d’annotation. Spécifiquement, j’ai réduit la dimensionnal-

ité du problème d’apprentissage en reciblant le problème vers l’estimation de paramètres

d’une fonction d’étalement du point (PSF) qui varie en dans l’espace en utilisant un réseau

de neurones convolutionnel (CNN) qui ne nécessie aucune calibration spécifique à l’objet

ou à l’instrument. Utiliser un tel modèle permet de simuler de manière réaliste des données

d’entraînement qui peuvent ensuite être généralisées, une fois le modèle entraîné, à de vraies

images de microscopie. J’ai comparé en détail différentes architectures de réseau convolu-

tionnel, différents jeux de données d’entraînement et plusieurs modalités de simulation afin

d’obtenir une prédiction de la PSF la plus exacte possible et la plus robuste aux dégradations

du signal.

A partir de ces paramètres du modèle de la PSF, j’ai développé de nombreuses applications,

comme une méthode de déconvolution “semi-aveugle” et variante dans l’espace afin de

déflouter et améliorer la qualité de l’image, un logiciel d’auto-focus robuste et rapide pour la

microscopie, une méthode d’estimation de la surface tridimensionnelle d’un objet à partir

d’une image plane, et une méthode d’estimation de la vitesse et de la trajectoire d’objets dans

un liquide, tout cela avec uniquement une quantité minime d’informations préalables au

sujet de l’objet et du système optique.

iii





Contents
Abstract (English/Français) i

I Introduction and Methods 1

1 Introduction 3

1.1 Biomicroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Deep Learning for microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The data issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Learning from large training datasets . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Learning from other domains . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Learning from simulated data sets . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Learning from the input image itself . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Deep neural networks for PSF estimation 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Object and image formation model . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Parametric degradation models . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 PSF parameter estimation in image patches (shift-invariant image forma-

tion model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.6 Spatially-variant PSF parameter mapping . . . . . . . . . . . . . . . . . . 21

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Characterization of the CNN regression performance . . . . . . . . . . . 24

2.3.3 Robustness of PSF regression against input degradation . . . . . . . . . . 26

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Characterization of the CNN regression performance . . . . . . . . . . . 27

2.4.2 Robustness analysis against input degradation . . . . . . . . . . . . . . . 29

v



Contents

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Applications 31

3 Depth estimation 33

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Blind spatially-variant deconvolution 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 DeepFocus: a Few-shot Microscope Slide Auto-Focus 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Characterization of regression invariance to image diversity . . . . . . . . . . . . 48

5.5 Characterization of information measure of the scoring function . . . . . . . . . 49

5.6 Characterization of the Autofocus (AF) error as a function of the number of

acquisitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Implementation and U-Net extension . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Flow motion estimation 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.2 Image formation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.3 Estimation of the displacement vector field . . . . . . . . . . . . . . . . . 56

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion and outlooks 61

Bibliography 63

Glossary 73

Publications 75

Curriculum Vitae 76

vi



Part IIntroduction and Methods

1





1 Introduction

1.1 Biomicroscopy

Optical microscopy is a powerful tool to comprehend biological systems, enabling researchers

and physicians to acquire qualitative and quantitative data about cellular function, organ

development, or diseases. However, light traveling through any imaging system undergoes

diffraction, which leads to image blur [1]. This represents an intrinsic limit and the determining

factor for the resolution of an optical instrument, and thus limits visual access to details.

Indeed, the optical system only collects a fraction of the light emitted by any one point on

the object, and cannot focus the light into a perfect image. Instead, the light spreads into a

three-dimensional diffraction pattern. Image formation can be modeled as the convolution

of the original object with a PSF, which is the image of an infinitely small point source in the

object space and sums up the optical aberrations [2]. For thin, yet not flat, samples, the PSF

remains shift-invariant within small areas of the 2D image, but the three-dimensional depth

of the imaged object produces a local blur.

Using a PSF corresponding to the blur in a deconvolution algorithm can be used to both

restore details in the image [3] and estimate its depth, which usually requires careful camera

calibration [4], acquisition of focal depth stacks ([5], [6]), or coherent imaging, such as digital

holographic microscopy [7], to numerically refocus the image. PSF estimation can be achieved

by many techniques [8], but most of them are either dependent on a tedious calibration step,

such as the experimental measurement of the PSF, or are sensitive to noise or image variability

[9]. Blind Deconvolution (BD) techniques are deconvolution methods aimed at improving the

image without prior knowledge of the PSF, the object or other optical parameters.

1.2 Deep Learning for microscopy

Machine learning techniques have improved, in a considerable number of fields, our ability

to classify images [10], detect objects [11], describe content [12], and estimate image quality

[13] (see Fig. 1.1). CNNs, in particular, are built for learning new optimal representations of
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Chapter 1. Introduction

Figure 1.1: Deep learning methods overview.

image data and perform self-regulating feature extraction [14] and appear well adapted to

determining the degradation kernel directly from the image texture. Our approach is similar to

that of [15] but with PSF models that are tailored to the specificities of microscopy, a concept

that we initially introduced in [16] and that has since been used by other groups such as [17]. In

particular, we considered a more generic physical model that can accommodate large-support

PSFs. CNNs were also used in a end-to-end manner to enhance details in biological images

by performing supervised interpolation [18]–[20] or to emulate confocal stacks of sparse 3D

structures from widefield images [21].

1.3 The data issue

The following section was published in “Free annotated data for deep learning in microscopy?

A hitchhiker’s guide”, Photoniques 104, EDP Sciences, 2020.

Optical microscopy, despite being an invaluable tool in biology and medicine to observe and

quantify cellular function, organ development, or disease mechanisms, requires constant

trade-offs between spatial, temporal, and spectral resolution, invasiveness, acquisition time,

and post-processing effort. As for other imaging fields, learning-based techniques are having a

major impact in microscopy, where their potential to improve resolution, reduce invasiveness,

or increase the speed of microscopy acquisitions has recently been demonstrated [22]. These

techniques, in particular the ones that involve deep neural networks (DNNs), have benefited

from the shift of intensive computing tasks to graphics processing units (GPUs) that has taken

place over the last decade. Yet despite the ever-increasing computational power, it is often

the lack of labeled training data that is the limiting factor for wide adoption. Annotating

data is often a lengthy and expensive task, since it involves tedious work, generally by skilled

experts. Annotation can be especially challenging in the case of three-dimensional images,

common in microscopy, despite the development tools dedicated to this task [23], [24]. While

the acquisition and annotation of volumetric data is common in some medical settings and
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1.3. The data issue

for certain modalities because of their wide use for healthcare applications (e.g. magnetic

resonance imaging (MRI), annotated by trained radiologists), bio-microscopy applications

often lack similarly large and high-quality annotated volumetric datasets.

For many applications in biology, the time burden, cost, or physical feasibility of acquiring and

annotating datasets for deep learning models de novo is simply out of the question. Can this

requirement for annotated data be relaxed? Is it possible to borrow the knowledge gathered

from datasets in other application fields, such as e-commerce or computer gaming, and

leverage it for bio-microscopy? Specifically, could annotated datasets be generated from

realistic synthetic models of tridimensional objects? Or could more abstract prior knowledge

about the data be used to enhance the resolution? Here, we aim to provide an overview of

some solutions that have emerged to tackle the problem of gathering sufficient annotated

data to train learning-based methods in bio-microscopy. We have grouped the approaches

in four broad categories: developing manual annotation strategies, learning from annotated

images from other domains, building annotations from simulations, and using self-annotated

data. This quest for annotated data is summarized in Fig. 1.2.

1.3.1 Learning from large training datasets

Image segmentation is a common computer vision task in which each pixel of an image

is assigned a label corresponding to the object it belongs to. In microscopy, it is used, for

example, to delineate, identify, and count cells. Learning-based segmentation methods require

a training data set composed of images together with masks that correspond to the objects

and their coordinates in the images. This annotation is usually performed manually and can

be tedious. Other fields have integrated the task of annotating images into security forms on

the web (to exclude robots from accessing content) or into entertaining game puzzles, such as

to entice the public to provide quality annotations. Sullivan et al. have proposed to annotate

microscopy data by a similar approach, as part of a multiplayer computer game named Eve

Online [25]. Using the publicly available data set from the Cell Atlas of the Human Protein Atlas

(HPA), they obtained, over one year, nearly 33 million classifications of subcellular localization

patterns of immunostained proteins in 20 different organelles and cellular structures. The

results were successfully used as a training dataset for a segmentation DNN.

1.3.2 Learning from other domains

Training a machine learning algorithm by re-using computer vision data sets that were origi-

nally intended for other tasks is at the core of transfer learning. This approach can overcome

the lack of annotated data in one field (such as microscopy) if annotated data exists in a

different field. A wide variety of annotated image datasets are available, such as ImageNet

[10], MS-COCO [26] or Places [27], which contain foremost scenes depicting everyday objects

and situations. In addition to allowing access to a large number of examples, learning from

natural-scene images can help avoid learning on images that contain unwanted aberrations,

5



Chapter 1. Introduction

Figure 1.2: The quest for less painful annotation: overview of questions and methods. The
illustrations were made by AS and adapted from the original papers.
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1.3. The data issue

such as blur and low-light noise commonly found in microscopy images. It becomes essential

when developing methods that aim at removing aberrations, for example when using a DNN

pipeline for deconvolution or denoising of microscopy images, since the ground truth of

natural-scene photographs is more readily accessible that fine structures that challenge the

resolution limits of the most powerful microscopes [28].

In most cases of transfer learning, pre-trained models are used as feature extractors [29], as

the input of an unsupervised classifier such as support vector machines (SVM), or are fine-

tuned with job-specific training data. However, there are some applications where transfer

learning can be used without fine-tuning, specifically, when the feature space can be mapped

identically in both domains. For image deconvolution and depth estimation, a description of

the PSF is a pre-requisite and accurately determining PSF parameters is therefore essential.

Recently, we formulated the problem of retrieving the physical PSF parameters of an optical

microscope as a regression task for which we trained a DNN. Interestingly, when learning from

data that consist of textured images, even if they are different from the end-use application

(and possibly unrelated to microscopy), the trained model remains just as accurate as when it

is trained on microscopy images [30]. The ability to train on generic data also helps prevent

over-fitting the trained model to a specialized and narrow data set, which would make the

model less suitable to be used in other situations. It also suggests the possibility of generalizing

the trained network to other data types, provided that the new data and the data used for

training share a common feature space.

1.3.3 Learning from simulated data sets

Generating annotated data from simulations is another effective approach to produce large

and reliable training data sets. In some computer vision applications, such as autonomous

car driving, data from simulated computer graphics 3D environments have been effectively

used to train segmentation methods. Examples of such datasets include the Flying chairs

dataset, or the GTA5 dataset derived from a computer game. Generally, the accuracy of DNN

trained only on simulated data is poor, due to the extreme complexity of natural scenes that

can hardly be reproduced with simple simulations.

In microscopy, image complexity remains fairly low in some modalities such as single-molecule

localization microscopy (SMLM), where features consist of dots. The image processing task, for

which DNN have been used, consists in converting images of random subsets of activated flu-

orophores, obtained over many consecutive diffraction-limited frames, into a high-precision

point cloud. Data simulation of a realistic diffraction-limited ground truth is achievable, for

example, by filtering the expected (punctate) objects by the optical PSF and take into account

a realistic noise model [31]. Such approaches have allowed recent DNN methods such as

DeepStorm3D [32] to recover densely overlapping PSFs of many emitting molecules over a

large axial range and output a list of their 3D positions. The corresponding training data set

were created by simulating a large number of images using randomly generated 3D patterns
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Chapter 1. Introduction

and the phase mask that governs the PSFs modelled on the physical implementation of the

microscope. In order for the simulations to work as a sole training data, one possible way is

to restrict the parameter space (i.e. the output of the network) by closely modeling the data

generation model to the optics or choose a subset of plausible physical parameters ([30], [32]).

1.3.4 Learning from the input image itself

DNNs are also used for image enhancement such as deblurring (going from a blurry image to

a sharper image), denoising (going from a noisy to a clean image), and for super-resolution

(going from a low-resolution image to a higher-resolution image). These networks are tradi-

tionally trained on pairs of clean and distorted images. In microscopy, where the raw images

often already reach the physical limits due to diffraction, a higher-resolution ground-truth

image is simply not accessible. To cope with this problem, it is sometimes possible to use

approaches that exploit particular features of the data, such as its isotropy or the availability

of complementary imaging modalities.

Weigert et al. [18] proposed a pipeline aimed at restoring images using semi-synthetic training

data. Specifically, it restores the axial resolution of volumetric images lost due to the axial

elongation of the optical PSF and the low axial sampling rate. By assuming that similar

features are to be expected regardless of sample orientation, the method leverages the fact

that these features can be much better resolved in lateral views than in depth, hence the

training to improve depth-resolution is done based on the latter images. Nevertheless, for

many other applications, access to higher quality images or synthetic data is not available.

To overcome this limitation, Krull et al. [33] developed a self-supervised training method for

denoising based on the assumption that the noise is independent from pixel to pixel and that

the true intensity of a pixel can be predicted from the local image context since it is not locally

independent. The method involves a noise model whose probability distribution is learned

from the training data and a network is trained to discriminate the underlying image from the

noise. As a training set, a very small dataset of noisy images of the same type can be used. This

method is virtually equivalent to training a DNN for every specific noise distribution.

A similar training scheme was also used in [20], [21], where the authors trained a generative

adversarial network (GAN)-based DNN to transform an acquired low-resolution image into a

high-resolution image using matched pairs of experimentally acquired images after registra-

tion and alignment. In [21], these pairs came from images of the same object using a confocal

microscope and a super-resolved stimulated emission depletion (STED) microscope. In [20],

the authors used a similar DNN to generate images that look as if they had been taken from

another focal plane by training from images acquired at different heights in the sample. For

both applications, the authors caution that the network must be (re)-trained for each specific

image modality or experimental setup, as the methods do not produce ideal results otherwise.

The application of such methods therefore remains somewhat limited to cases where the

type of images and microscope settings are known beforehand and where a high number of

8



1.4. Roadmap

similar images can be acquired, which could be particularly relevant for time-lapse imaging,

high-resolution 3D stacks, or imaging of histological samples prepared under controlled and

standardized conditions.

1.4 Roadmap

Deep learning technologies have enabled multiple applications that are transforming our

day-to-day routines, including the way we approach microscopy. While limitations such as

network capacity (can networks learn to predict from the wide variety of data types common

in microscopy?), generalization (can a network trained on one type of data be used to handle

other types of data?), and overfitting (is the network limited to predicting only what it has

already seen?) are some pressing issues that the field is facing, the lack of good quality training

data is likely the single most important aspect that affects accuracy and effectiveness of

tasks such as enhancement, classification or segmentation. The most promising methods

to overcome the scarcity of training data appear to leverage prior knowledge of the physical

objects and image formation process [18], [32], [30], or of the noise distribution [33].

Even if we are still a long way from a blind pipeline that will enhance, classify or segment

biological data without tedious annotation work, good knowledge of the problem and as-

sumptions about the data allow scientist to already reap the benefits of deep learning tools

by crafting adapted training sets without having to produce or wait for the availability of

large annotated sets. In this thesis, we are looking for promising methods to circumvent this

problem and trade for accuracy the knowledge of the optical path, as defined by the PSF.

We call these methods “weakly supervised” or “semi-blind”, because they take advantage of

information about the data (with a specific calibration step or a modeling step), but they do

not require explicitly an experimental ground truth.

1.4.1 Problem statement

We aim to solve several problems. First, given only an observed degraded image y(s), we want

to estimate the PSF model h̃a(s)(r ) closest to the effective PSF of the imaging system h(s,r )

for any point s without requiring additional information on the microscope or any further

calibration images acquired with that microscope. Specifically, we want to infer the model

parameters a(s), first locally, then globally. Then, we want to infer the local depth z(r ) along

the axis of the object at any position r in the plane perpendicular to the optical axis, thereby

allowing us to build x3D(r , z(r )). Next, given the local PSF parameters a(s) and the blurred

image y(s), we want to recover an estimate of the non-degraded image x(r ). Then, we want

to integrate and calibrate a0(s) (the focus parameter) in an autofocus software. Finally, we

want to find a transformation of the PSF model that could encode the tridimensional flow of

particles in a fluid.

9



Chapter 1. Introduction

1.4.2 Method overview

For each of the problems, we summarize the following main steps:

1. Shift-invariant PSF parameter estimation given an image patch (see Chapter 2)

(a) Select a parametric degradation model for ha (r ) allowing the generation of PSF/parameters

pairs.

(b) Gather a training library of microscopy images, degrade each image via a spatially-

invariant convolution with its corresponding PSF, corrupt it with synthetic noise.

(c) Train a CNN that takes a degraded image patch as input and returns the corre-

sponding degradation model parameters, via regression.

(d) Given a full microscopy image as input, locally extract a patch, then regress the

PSF parameters using the steps above.

(e) Repeat in all regions of the image.

(f) Combine the estimated PSF parameters to generate the map a(s) of the local PSF

model parameters.

2. Application 1: estimate depth from focus using PSF engineering (see Chapter 3))

(a) Given an image acquired with a PSF-engineered optical system y(s) [34]), deduce

the depth map z(r ) from the local parameters a(s).

(b) Generate x3D(r , z(r )).

3. Application 2: spatially-variant blind deconvolution (see Chapter 4)

(a) Given an input image and the map of estimated local PSF parameters, generate

local PSFs h̃a(s)(r ).

(b) Use the generated PSFs in a Total Variation regularized Richardson-Lucy (TV-RL)

deconvolution algorithm to recover an estimate for x(r ).

4. Application 3: auto-focus using the focus parameter of the PSF model (see Chapter 5).

(a) Given an image acquired y(s), deduce the focus map z(r ) from the local parameters

a(s0).

(b) Build a µManager plugin to iterate through the stack and refine the position z

where a(s0) is minimal.

5. Application 4: flow estimations of particles in a fluid (see Chapter 6).

(a) Build a more advanced PSF model with parameters a that could encode three-

dimensional speeds and starting positions.

(b) With a single image acquired with a long exposure time, deduce the speed and

starting position of moving particles in a fluid.

In the following chapters, we provide details on each of these steps, illustrated in Fig. 1.3.
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1.4. Roadmap

Figure 1.3: Outline of the thesis. Part I is focused on the PSF estimation process, while the Part
II focuses on different applications.
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2 Deep neural networks for PSF estima-
tion

This chapter was published in A. Shajkofci and M. Liebling, “Spatially-Variant CNN-Based

Point Spread Function Estimation for Blind Deconvolution and Depth Estimation in Optical

Microscopy,” IEEE Transactions on Image Processing, vol. 29, pp. 5848–5861, 2020.

A.S. designed the model and the framework, conceived and carried out the experiments, A.S

wrote the manuscript with support from M.L, M.L supervised the project.

2.1 Introduction

Researchers and physicians intensively use optical microscopes to observe and quantify

cellular function, organ development, or disease mechanisms. Despite the availability of many

volumetric imaging methods (in particular, optical sectioning methods), single-shot wide-field

microscopy remains an important tool to image small and relatively shallow objects. However,

non-flat areas, which are out of focus, lead to unsharp regions in the image, making localization

and visual interpretation difficult. Image formation in a microscope can be modeled by light

diffraction, which causes sharp point-like objects to appear blurry [1]. Because the optical

system only collects a fraction of the light emanating from a point on the object, it cannot

focus the light into a perfect point and, instead, spreads the light into a three-dimensional

diffraction pattern described by the Point Spread Function (PSF). As the image is formed by

superposing the contribution of all points in the object, knowledge of the local diffraction

pattern, which sums up the optical system and its aberrations, can be used to estimate a

sharper image [2].

For thin, yet not flat samples, image formation can be modeled as a superposition of 2D PSFs.

These are shaped both by the optical system and the three-dimensional depth of the object.

Knowledge of the local PSF could therefore both be used to recover the image and estimate

its depth, which usually requires careful camera calibration and ad-hoc focus estimation [4],

acquisition of focal depth stacks ([5], [6]), or coherent imaging, such as digital holographic

microscopy [7], to numerically refocus the image. Using an adequate PSF, i.e. one that
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corresponds to the blur, in a deconvolution algorithm can restore details in the image [3]. PSF

estimation can be achieved by many techniques [8], but most of them are either dependent on

a tedious calibration step, such as the experimental measurement of the PSF, or are sensitive to

noise or image variability. Blind Deconvolution (BD) techniques are methods able to recover

features in the image without prior knowledge of the PSF.

Here, we aim at estimating the local PSF only from the acquired image and use it to reverse

the local degradation due to the optical system. Furthermore, we aim at estimating the depth

of any location on the surface of a thin object with respect to the focal plane. We rely on a

model-based approach that retrieves the PSF given a degraded image patch via a machine

learning approach.

Machine learning technologies have improved our ability to classify images [10], detect objects

[11], describe content [12], and estimate image quality [13]. Convolutional Neural Networks

(CNNs), in particular, have the ability to learn correlations between an image input and a

defined outcome and appear well adapted to determining the degradation kernel directly

from the image texture. A similar reasoning led to recent results by Zhu et al. [35], Sun et

al. [15], Gong et al. [36] and Nah et al. [37], where the direction and amplitude of motion

blur was determined by a CNN classifier from images blurred with a Gaussian kernel. Our

approach is similar to that of [15] but with PSF models that are tailored to the specificities

of microscopy, a concept that we initially introduced in [16] and that has since been used by

other groups such as [17]. In particular, we considered a more generic physical model that can

accommodate large-support PSFs. CNNs were also used in a end-to-end manner to enhance

details in biological images by performing supervised interpolation [18]–[20] or to emulate

confocal stacks of sparse 3D structures from widefield images [21].

In this paper, we propose a method to:

1. Find the spatially-variant PSF of the degraded image of a thin, non-flat object directly

from the image texture without any instrument-specific calibration step. The PSF

determination technique is derived from the one we proposed in [16], which recovers

local Zernike moments of the PSF. We focus here on improving the degradation model

and quantitatively assess the robustness of the method.

2. Deconvolve the image in a blind and spatially-variant manner, using a regularized

Richardson-Lucy algorithm with an overlap-add approach.

3. Extract the depth of a three-dimensional surface from a single two-dimensional image

using combinations of Zernike moments.

This technique allows us to enhance the acquired image and recover the three-dimensional

structure of a two-dimensional manifold in a 3D space using a single 2D image as an input.

This paper is organized as follows. In Section 2.2, we present the method, comprising the

image formation model, the degradation model, the data set generation process, the different

neural networks to be trained, the PSF mapping, the deconvolution algorithm, and the depth

from focus algorithm. Then, in Section 2.3, we characterize the regression performance of the
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CNN for different modalities, as well as the gain in resolution from the deconvolution, and

the precision of depth detection. We then discuss our findings in Section 2.4 and conclude in

Section 2.5.

2.2 Methods

2.2.1 Object and image formation model

We consider a two-dimensional manifold in 3D-space with local intensity x(r ), e.g. an infinitely

thin sample suspended in a gel, which can be parameterized by the lateral coordinates r =
(r1,r2) and axial coordinate z(r ). We express the resulting three-dimensional object as:

x3D (r ,r3) = x(r )δ(r3 − z(r )), (2.1)

where (r ,r3) = (r1,r2,r3) are coordinates in 3D object space. We further consider an optical

imaging system with camera coordinates s = (s1, s2) and axial position s3, characterized by a

spatially-varying point spread function h3D(s, s3,r ,r3) (see Fig. 2.1). For a fixed axial camera

position s3, the measured intensity by a pixel at position s is given by the convolution (Fig. 2.1

(a)) [38]:

y3D(s, s3) =
Ñ

x3D(r ,r3)h3D(s, s3,r ,r3)dr dr3, (2.2)

where we assumed, to simplify the notation, that the magnification is 1. When the microscope

is focused at the origin (s3 = 0) we define the 2D image y(s) = y3D(s, s3)
∣∣

s3=0, which can be

obtained via the expression:

y(s) =
Ñ

x(r )δ(r3 − z(r ))h3D(s, s3 = 0,r ,r3)dr dr3 (2.3)

=
Ï

x(r )h3D(s, s3 = 0,r ,r3 = z(r ))dr (2.4)

=
Ï

x(r )h(s,r )dr , (2.5)

where h(s,r ) = h3D(s, s3 = 0,r ,r3 = z(r )) is a 2D point spread function that incorporates both

the local (3D) variations of the optical system and the variable depth of the thin sample. We

further assume that h(s,r ) can be approximated by a parametric function h̃a(s)(r ), where the

N parameters a(s) = (a1(s) a2(s) · · · aN (s)) can vary for every 2D location s of the image

(Fig. 2.1 (b)).

2.2.2 Parametric degradation models

There are many methods for estimating the PSF of a degraded image. Such methods can be

categorized into two classes: direct PSF estimation or parametric modeling. In works such as

those by Grossmann et al. [4], the PSFs are estimated directly from the image (e.g. using edge

detection and a regression model [39], a Maximum a Posteriori (MAP) prediction [40]), or via a

camera calibration using images of a defined and known pattern [41] [42]. Levin et al. [43]
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Figure 2.1: Object and image formation model. (a) General thick 3D object case, (b) Approxi-
mate manifold case.

showed that a MAP approach to recover the blur kernel is well constrained, but that the MAP

global optimum for the recovered image is a blurred image because the strong constraints

do not always generalize to unexpected or noisy types of data [44], which are common in

microscopy images. Full pixel-wise PSFs can also be estimated using dictionary learning [45],

or CNNs [46]. However, this latter kind of estimation is not well constrained and can generate

over-fitting artifacts.

In contrast, parametric modeling of the PSF allows to reduce the dimensionality of the opti-

mization problem and to attach a physical meaning to the parameters, such as the relative

distance from the focal point, or optical aberrations such as astigmatism. There are many

mathematical models to represent the PSF of a microscope. They can take into account both

physical characteristics of the objectives (for example numerical aperture, correction types,

etc.) and of the experimental conditions (focal distance and immersion medium) [47]. In

many cases, the model parameters correspond to physical design conditions, such as optical

distances, aperture diameters, or foci. A simple PSF model can be obtained from the Fraun-

hofer diffraction theory to calculate the diffraction of a circular aperture [48]. The Gibson &

Lanni model accounts for the immersion medium, the cover-slip, the sample layers, different

medium numerical apertures, and the properties of the objective [1]. Despite their theoret-

ical relevance, in practice, numerical values for these parameters may not be available, as

detailed information about all experimental and design conditions may be lacking. Even if
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the parameters are accessible, they may be missing if they were not recorded along with the

image.

Since we aim to recover the PSF from the image itself, with minimal knowledge of the imaging

conditions, we focused on models specified by only a small number of parameters or whose

complexity can be adjusted progressively by considering approximations with a subset of

the complete set of parameters. Specifically, we considered PSF models based on Zernike

polynomials, which are used to describe the wavefront function of lenses such as the eye [49],

as well as anisotropic Gaussian models.

Zernike polynomial decomposition of the pupil function

Optical abnormalities, such as de-focus, astigmatism, or spherical aberrations, can be mod-

eled with a superposition of Zernike polynomials Zn(ξ) in the expansion of the microscope

objective’s pupil function Wa(s) [50]:

Wa(s)(ξ) =
N∑

n=1
Zn(ξ, an(s)), (2.6)

where ξ denotes the two-vector of spatial coordinates in the pupil plane perpendicular to

the optical axis, N the maximal order of considered aberrations, and an(s) the parameter

corresponding to each Zernike term Zn . In our experiments, Z1 describes the de-focus term,

Z2 describes the power of the astigmatism (cylinder), and Z3 describes the astigmatism angle

(axis). The pupil function can ultimately be converted into a PSF [51]:

h̃a(s)(r ) ∝
∣∣∣F {

Wa(s)

( r

λ

)}∣∣∣2
, (2.7)

with F the Fourier transform and λ the wavelength of the light.

Anisotropic Gaussian model

For many applications, Gaussian distributions are sufficiently accurate approximations of the

diffraction-limited PSF of wide field microscopes [52]. We extend the model by allowing for

anisotropy, which we require to describe astigmatic aberrations, or if the spatial resolution in

one lateral direction is different from that in the other. The detection method is in that case

similar to the one described in [15]. The PSF is then defined by the anisotropic zero-centered

normal probability density function:

h̃a(s)(r ) = 1p
2πa1(s)

exp

(
−1

2

r1
2

a1(s)

)
· 1p

2πa2(s)
exp

(
−1

2

r2
2

a2(s)

)
, (2.8)

where a1 and a2 are the variances of the Gaussian in the x and y axes, respectively.
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2.2.3 Problem statement

We aim to solve several problems. First, given only an observed degraded image y(s), we want

to estimate the PSF model h̃a(s)(r ) closest to the effective PSF of the imaging system h(s,r )

for any point s without requiring additional information on the microscope or any further

calibration images acquired with that microscope. Specifically, we want to infer the model

parameters a(s), first locally, then globally. Next, given the local PSF parameters a(s) and the

blurred image y(s), we want to recover an estimate of the non-degraded image x(r ). Finally,

we want to infer the local depth z(r ) along the axis of the object at any position r in the plane

perpendicular to the optical axis thereby allowing us to build x3D(r , z(r )).

2.2.4 Method overview

For each of the problems, we summarize the following main steps:

1. Shift-invariant PSF parameter estimation given an image patch (see Section 2.2.5)

(a) Select a parametric degradation model for ha (r ) allowing the generation of PSF/parameters

pairs.

(b) Gather a training library of microscopy images, degrade each image via a spatially-

invariant convolution with its corresponding PSF, corrupt it with synthetic noise.

(c) Train a CNN that takes a degraded image patch as input and returns the corre-

sponding degradation model parameters, via regression.

2. Local PSF estimation given a full degraded microscopy image (see Section 2.2.6)

(a) Given a full microscopy image as input, locally extract a patch, then regress the

PSF parameters using the steps above.

(b) Repeat in all regions of the image.

(c) Combine the estimated PSF parameters to generate the map a(s) of the local PSF

model parameters.

In the following subsections, we provide details on each of these steps.

2.2.5 PSF parameter estimation in image patches (shift-invariant image forma-
tion model)

Data set generation for CNN training

Given an image patch as input, we wish to estimate the degradation model parameters cor-

responding to the spatially-invariant PSF that degraded the patch. Since neural networks

are trained by adjusting their internal weights using backpropagation of the derivative of a
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loss function between the ground truth of the training data and the output of the network

[53], we establish a training set T (Fig. 2.2). For that purpose, we gather input images x(k).

Since reliable public image data sets have limited size, we augment the size of the training

sets by rotating each image by an angle of ±90◦, so we have K images, x(k), k = 0, ...,K −1.. We

induce a synthetic degradation by convolving the images with K generated PSFs ha(k) of model

parameters a(k) drawn from a normalized and scaled uniform distribution:

ψ(k)(s) = (ha(k) ∗x(k))(s). (2.9)

We also consider the two predominant sources of noise in digital image acquisition: the

stochastic nature of the quantum effects of the photoconversion process and the intrinsic

thermal and electronic fluctuations in the CCD camera [54]. The first source of noise comes

from physical constraints such as a low-power light source or short exposure time, while the

second is signal-independent. This motivates the noise model as a mixed Gaussian-Poisson

noise process. Therefore, we define noise with the two following components:

• A random variable np (s) ∼P (λ=ψ(k)(s)) following a Poisson distribution of probability

P {np (s) = i } = e−λλi /i !.

• A random variable b(s) ∼N (0,σ2) following a Gaussian distribution with zero-mean

and variance σ2.

The image noise model for data set generation is then:

ψ(k)
noisy(s) =βnp (s)+b(s), (2.10)

with β a number between 0 and 1 reflecting the quantum efficiency of the CCD [55]. Images

that did not comply with a minimal variance and white pixel ratio were tagged as invalid, i.e.

a(k)
0 = 1 (see Section 2.2.5).

We cropped the images ψ(k)
noisy(s) to a size Kψ×Lψ by randomly selecting the position of a

region of interest of that size. We then paired these image patches with their respective PSF

parameter vector a(k) in order to form the training set T = {(ψ(k)
noisy(s), a(k))}K−1

k=0 .

CNN training modalities

We considered several neural networks (whose architectures we further describe below) and

trained them to learn the PSF model parameters described in Section 2.2.2. The task of the

network is to estimate, only from the kth input image patch Ψ(k)(s), the parameters ã(k)(s)

that have been used by the PSF model to degrade that input image. Since there are cases where

the PSF estimation is not possible, e.g. where the sample lacks texture, such as in uniformly

black or grey areas, we added a boolean parameter a(k)
0 (whose values can be either 0 or 1),

which indicates the legitimacy of the sample. The total number of estimated parameters is

then N +1. We aim at minimizing the distance between the output of the network ã(k) and the

19



Chapter 2. Deep neural networks for PSF estimation
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Figure 2.2: Data set gathering (left) and CNN training (right) pipelines. From a large library
of sharp microscopy images, small patches are created, blurred with a PSF generated from
random parameters, and degraded with a Poisson-Gaussian noise mixture (see Section 2.2.5).
The resulting patches and the parameters are stored in the training set T , that is used for
training the CNN. Using backpropagation of the loss function, the CNN output is trained
towards the prediction of the PSF model parameters (Section 2.2.5).

ground-truth PSF parameters a(k). Therefore, in the training phase, we updated the weights of

the CNN using the modified Euclidean loss function:

E (k) = γ
(
a(k)

0 − ã(k)
0

)2 + 1−a(k)
0

2N

N∑
n=1

(a(k)
n − ã(k)

n )2, (2.11)

with γ a hyperparameter regulating the importance of the validity parameter, that we set to 1

in our further experiments.

We choose to rely on networks that showed good performance in the ImageNet competition,

which is a benchmark in object classification on hundreds of categories [56], [57]. Donahue et

al. [58] showed that deep convolutional representations can be applied to a variety of tasks

and detection of visual features, which drove our selection for estimating optical aberrations.

Hendrycks et al. [59] extensively discussed whether the networks were robust to changes in

input illumination, noise, and blur. While residual networks that use skip-connections such as

ResNet [60] appear to be more robust to input noise than primitive feedforward networks such

as AlexNet [10], their performance appears to be surpassed by newer multibranch models

such as ResNeXt [61] or Densenet [62]. In the context of our specific task, we compared the

performance (see Section 2.3.2) and the robustness to degradation (see Section 2.3.3) of several

of the above architectures.

After training, the networks can regress the spatially-invariant PSF parameters ã(k)(s) from a

single input image patchΨ(k)(s).
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Figure 2.3: Spatially-variant PSF parameter mapping using a sliding window over the acquired
image, as input of a convolutional neural network.

2.2.6 Spatially-variant PSF parameter mapping

Given a trained CNN that is able to recover the degradation parameters from a single image

patch, we now turn to the problem of locally estimating the parameters of the different

PSFs that degraded a larger input image. To achieve this, we use an overlapping sliding

window over the input image x(r ) with stride t that is fed into the locally invariant regression

CNN trained in Section 2.2.5 (see Fig. 2.3). We store the resulting parameters in the map

Ã = (ã(0) ã(1) ... ã(M)), where ã(m) is the output of the neural network for patch m and M

is the total number of patches. Using the PSF model, we generate from Ã a spatially-variant

map of local PSF kernels defined as H̃ = (h̃(0)(r ) h̃(1)(r ) · · · h̃(M)(r )).

The overlapping window over the input image yields a map of(b(Kx −Kψ)/tc+1
)× (b(Lx −Lψ)/tc+1

)
(2.12)

kernels, with Kx , Lx , and Kψ, Lψ being the width and height of the input image and the

window step size, respectively. For example, a 1024×1024 pixel input image using 128×128

pixel patches and t = 64 yields M = 13×13 spatially-dependent PSF kernels. We fill every

patch with a validity parameter a0 = 1 (i.e. invalid) with the content of the inverse Euclidean

distance-weighted average of the four-connected nearest neighbors using K-Nearest Neighbor

regression [63] in order to avoid boxing artifacts during the later deconvolution process.

2.3 Experiments

In this section we report our efforts to characterize the performance of our method as well

as its dependency to several hyper-parameters, such as the choice of the PSF model, the

neural network architecture, the training set size, or its content. We furthermore tested the

regression performance of the PSF parameter regression and its robustness to Signal-to-Noise

Ratio (SNR) degradation and the absence of texturing. Finally, we also assessed the quality of

deconvolved images and the accuracy of the estimated depths.
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Figure 2.4: Synthetic experiment involving variables and results of Eq. (4.2). Starting from a
ground truth image (x(r )), a local map of PSF (smooth interpolation between the 4 shown
PSFs) and local weight combinationϕ(s), we generated a blurred image y. The deconvolution
method (similar to [64] and [65]) starts from a map of locally estimated PSFs to deconvolve
and recombine into a single image xT (r ) and xT (r ) TV.

2.3.1 Infrastructure

Our PSF parameter estimation method depends on three main variables: the content and

size of training data sets, the PSF parametric model, and the neural network architecture. We

briefly describe the different options below.

Training, validation and test data sets for CNN regression performance

We gathered images from four different data sources:

1. [micr] microscopy images collected from [66], [67] and [68],

2. [nat] common images from the MIT Places365 data set [27] that gathers natural and

man-made photographs,

3. [poi] synthetic images of points on a black background (Fig. 2.5),

4. [syn] synthetic images of cells (Fig. 2.5).

The rationale for using natural and synthetic images is that these data sources are much more

abundant than microscopy images, often sharper and royalty free, making it possible to quickly

assemble a large dataset. We combined these data to generate six different data sets (Table

2.1) and prepared the library as described in Section 2.2.5. We randomly selected two times

10,000 images to form a validation set and a test dataset that the networks never use during the

training process. The validation dataset is used for selecting the best learning rate and early
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Table 2.1: Name and size of the different training, validation and test data sets as input of the
CNN.

Data set Ktr ai n Kval i d Ktest

syn 440,000 10,000 10,000
poi 330,000 10,000 10,000
micr 2,700,000 10,000 10,000
micrsm 270,000 10,000 10,000
nat 2,700,000 10,000 10,000
micr-syn-poi 3,470,000 10,000 10,000

(a) (b) (c) (d)

Figure 2.5: Examples of degraded input patches from different data sources: (a) synthetic cells
[syn], (b) synthetic points [poi], (c) microscopy images [micr], (d) natural images [nat]. The
images have been degraded by the Zernike-3 PSF model (see Table 2.2) and noise as described
in Section 2.2.5

.

stopping epoch for every training, while the testing set is used for performance assessment.

We added synthetic black images to every data set to avoid misdetection of non-textured parts

of the image and explicitly set a(k)
0 = 1 for these samples.

PSF models and parameters

We considered two different PSF model types: Zernike polynomials (Section 2.2.2) with N =
1,2, or 3 parameters, and Gaussian (Section 2.2.2), with either N = 1 or 2 parameters, as

described in Table 2.2.

Table 2.2: PSF models selected for data set generation (Section 2.2.5), with the number and
name of free parameters.

PSF model N Parameters

Zernike-1 (Z-1) 1 focus
Zernike-2 (Z-2) 2 cylinder, axis
Zernike-3 (Z-3) 3 focus, cylinder, axis

Gaussian-1 (G-1) 1 width
Gaussian-2 (G-2) 2 width x axis, width y axis
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CNN architectures and training modalities

We compared two residual neural networks architectures trained from scratch: 34-layer ResNet

[60] and 50-layer ResNeXt [61]. They were adapted for accepting normalized gray-scale input

image patches of size Wψ × Hψ = 128× 128 pixels. Additionally, we fine-tuned, using our

training dataset, the same network already trained on the ImageNet data set (available on the

PyTorch website). For the latter model, we re-scaled the input images to the network input

size using bilinear interpolation. We trained the models for 20 epochs with PyTorch 1.0 using

the Adam optimizer [69] and a learning rate between 0.001 and 0.01 defined by the validation

set performance.

2.3.2 Characterization of the CNN regression performance

We analyzed the performance of our system for regressing the PSF parameters. The metrics

we used to assess the performance of the network is the goodness-of-fit of the parameter

estimation compared to the ground truth. We quantified it in terms of the squared Pearson

correlation coefficient R2 averaged over all PSF parameters:

R2 = 1

N

N∑
n=0

(
1−

∑Ktest−1
k=0 (a(k)

n − ã(k)
n )2∑Ktest−1

k=0 (a(k)
n − ān)2

)
, (2.13)

with Ktest the number of samples in the test set. We calculated the correlation coefficient only

for samples that contained texture in the ground-truth (i.e. when a(k)
0 = 0) and discarded the

others.

Characterization of CNN regression performance when training and test data set types are

the same

We started by assessing the performance of the CNNs when the test set is made of the same

image type as the training set. Table 2.3 summarizes the performance of the regression of test

data for every combination of training data sets (Table 2.1), PSF models (Table 2.2) and CNN

architectures.

Variables: data set type, PSF model type, network architectures.

Fixed: the data set type is the same for training and testing.

Evaluation criterion: R2 between the degradation parameters used to generate the test

image and the parameters recovered by the CNN.

In most cases, the correlation coefficient is superior to 80%, which indicates a very good

degree of overall correlation. The worst cases are with models trained for Zernike-3, that

yield 0.61 < R2 < 0.96. We notice a few differences in the regression performances between

Gaussian and Zernike models. Indeed, images blurred with a Gaussian model tend to be better
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Table 2.3: Results of regression analyses (in terms of R2) for N = 10,000 test images in data sets
shown in Table 2.1 using the same data type for training, validation (model selection) and test.

ResNet-34

P
SF

m
o

d
el

s
[syn] [poi] [micr] [micrsm] [nat] [micr-syn-poi]

Z-1 0.99 0.99 0.98 0.73 0.98 0.68
Z-2 0.67 0.99 0.81 0.80 0.80 0.79
Z-3 0.95 0.98 0.78 0.58 0.84 0.88
G-1 0.99 0.99 0.98 0.92 0.92 0.99
G-2 0.99 0.99 0.99 0.97 0.91 0.99

ResNet-34-pretrained

P
SF

m
o

d
el

s

[syn] [poi] [micr] [micrsm] [nat] [micr-syn-poi]

Z-1 0.99 0.99 0.99 0.89 0.99 0.81
Z-2 0.93 0.97 0.92 0.81 0.94 0.90
Z-3 0.97 0.89 0.95 0.77 0.80 0.89
G-1 0.94 0.99 0.98 0.99 0.94 0.99
G-2 0.99 0.99 0.99 0.98 0.95 0.99

ResNext-50

P
SF

m
o

d
el

s

[syn] [poi] [micr] [micrsm] [nat] [micr-syn-poi]

Z-1 0.98 0.99 0.97 0.69 0.97 0.65
Z-2 0.69 0.98 0.85 0.74 0.90 0.85
Z-3 0.64 0.94 0.90 0.72 0.61 0.85
G-1 0.99 0.99 0.97 0.80 0.91 0.98
G-2 0.99 0.99 0.99 0.92 0.97 0.98

recognized by the neural network, with R2 > 0.90, than images blurred with a Zernike model

that fluctuates around 0.60 < R2 < 1.00. When looking at the performance of a smaller [micr]

training data set compared to the full [micr] data set, we notice that the performance of the

smaller data set is always worse or equal, no matter which CNN model or PSF model used.

Finally, we observe that the overall performance of ResNext-50 is lower than the performance

of both ResNets.

Characterization of CNN regression performance when the type of training and test data

set differ

We assessed the robustness of our regression method when the system is tested on image

types other than those it has been trained for.

Variables: data set types for both training and test sets.

Fixed: the network architecture (ResNet-34), the PSF model (Gaussian-2). The model is
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Chapter 2. Deep neural networks for PSF estimation

Table 2.4: Evaluation (in terms of R2) for N = 10,000 images input into a Resnet-34-pretrained
network trained for regression of the Gaussian-2 PSF model parameters with different training
set / test sets pairs. The learning rate and epoch were selected using results from a test set of
N = 10,000 separate images.

Test data sets

Tr
ai

n
in

g
d

at
a

se
ts [syn] [poi] [micr] [micrsm] [nat] [micr-syn-poi]

[syn] 1 0.93 0.76 0.83 0.81 0.85
[poi] 0 1 0 0 0 0

[micr] 0.97 0.97 0.99 0.99 0.99 0.99
[micrsm] 0.97 0.95 0.95 0.98 0.89 0.97

[nat] 0.99 0.80 0.96 0.93 0.96 0.96
[micr-syn-poi] 1 0.99 0.99 0.99 0.94 0.99

already trained and selected using an independent validation dataset.

Evaluation criterion: R2 between the degradation parameters used to generate the test

input and the parameters recovered by the CNN.

Table 2.4 gathers the regression performance obtained using a Gaussian-2 PSF model and the

ResNet-34 network, with training and testing data sets of different types. The regression is

robust to different train and test data set types (R2 < 0.90) except when the CNN is trained

with [poi] and, to a lesser extent, with [syn]. Surprisingly, networks trained on natural ([nat])

images perform as well as networks trained on microscopy images.

2.3.3 Robustness of PSF regression against input degradation

Degradations on the input images are unavoidable in biological environments. Indeed, mi-

croscopes are often used for a variety of sample types and preparations and are calibrated

by different people. Settings such as illumination brightness, exposure time, and contrast

frequently change or are operator-dependent. Furthermore, as described in Section 2.2.5,

low light and electronics induce noise in the acquired image. Since we aim at training a

regression network that is not specific to any defined acquisition condition, we characterized

the robustness of the neural network to extrinsic modifications of the image quality.

The list of handled degradations is the following:

• global illumination level,

• non-uniform illumination (e.g. caused by poorly adjusted Köhler illumination),

• zero-mean Gaussian noise,

• signal-dependent Poisson noise,
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• mixed Gaussian-Poisson noise.

Variables: degradation strength, degradation type, three different CNNs, two different

PSF models (G-1, Z-1).

Fixed: the CNNs are already trained with [micr-syn-poi] and selected using an indepen-

dent test dataset. The test data set is common to all modalities.

Evaluation criterion: R2 between the degradation parameters that were used to generate

the test image and the parameters recovered by the CNN.

Fig. 2.6 summarizes the performance of the CNN networks as a function of degradation

strength. All networks are robust to partial or full brightness changes in the input image. The

addition of Gaussian noise to the input results in a slow and linear decay in performance,

whereas the application of Poisson noise to the data decrease the performance much faster as

the noise strength increases. Using CNNs trained for regression of Zernike polynomial PSF

model parameters, the regression performance is decaying linearly as a function of the amount

of noise we apply in the input picture. For Gaussian models, the parameter estimation usually

breaks with less noise than with the Zernike polynomial model. Without any degradation,

networks regressing Zernike polynomials are less accurate than networks for Gaussian PSF

models, but they appear to be more robust when the input is noisy. Indeed, with a very

strong (strength of 0.5 in Fig. 2.6) Gaussian and Poisson noise, Zernike-1 CNNs dropped from

R2 = 0.95 to R2 = 0.85, as opposed to the Gaussian-1 CNNs, which dropped from R2 = 0.99

to less than R2 = 0.60. Surprisingly, contrary to the findings in a recent benchmark [59],

we found that CNNs based on ResNeXt performed worse than their ResNet counterparts.

Finally, we trained new models without adding synthetic noise to the training dataset (see Eq.

(2.10)). Performance of these networks was the same as their counterparts for the illumination

degradations, but dropped to R2 = 0 when the test images contained even only moderate

Poisson and Gaussian noise.

2.4 Discussion

Hereafter, we discuss the results of the experiments described in Section 2.3.

2.4.1 Characterization of the CNN regression performance

Many regression accuracies are above R2 = 0.90 in Table 2.3, which shows that our neural net-

works can accurately regress PSF model parameters (in particular, when images are textured).

The recovered parameters can be used to generate synthetic PSFs that are similar to the ones

that degraded the image.

Our network is most accurate when applied to images of the same type as the ones used for

training and the performance scales with the size of the training set. Therefore, the more data
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Chapter 2. Deep neural networks for PSF estimation

Figure 2.6: Regression performance of CNNs architectures trained on [micr] and evaluated on
the [micr] test set with various types of degradation and variable strength. The regression per-
formance is shown in terms of R2 using N = 10,000 images. We trained as well a CNN without
adding noise in the training set (blue). All three networks exhibit the same performance for
the illumination degradation (top right).
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we gather, the more precise and robust the predictions are. However, adding synthetic training

data to augment a natural images data set does not increase the efficacy of PSF estimations.

The network fails to predict the PSF parameters if the network is trained with a very narrow

type of data and more variety increases generalization potential. Nevertheless, when learning

from a data set of images containing texture, even if different from the test set type, the model

remains as accurate as when training the data set using microscopy images. This suggests

that one could avoid the need to gather costly microscopy ground-truth data, or that it might

be possible to learn from images of other microscope types (e.g. confocal microscopes) and

use the trained models with wide field microscopy images. Furthermore, the high correlation

score (R2 > 0.8) obtained for [micr] test images using networks trained with [nat] suggests that

the networks did not undergo overfitting and were able to generalize on other data types.

In comparison to ResNet-34, ResNeXt-50 requires a larger number of images to be accurate

since the regression accuracy drops drastically (from R2 = 0.97 to R2 = 0.79) using a smaller

data set. It is consistent with the general idea that the amount of training data must scale with

the depth of the network to be able to generalize well.

Networks trained for Gaussian PSFs estimate parameters with a better accuracy than networks

trained to find Zernike polynomials parameters. This could be explained by the fact that

although the Zernike polynomial parameters are independent when describing the pupil

function, they can compensate each other when forming the PSF (which is obtained by a

non-linear operation on the pupil function, see Eq. (2.7)).

Using an NVIDIA GeForce GTX 1080 GPU, the estimation of the PSF parameters of a 1024×1024

px image with 64 PSFs takes around 5.9±0.1ms, which is in the same scale as the usual camera

exposure time. This suggests that real-time applications in a microscope could be feasible.

While transfer learning (i.e. networks trained with ImageNet for image detection prior to

training) does not help to improve the final accuracy of the regression task because the

network was already able to learn from the original data set in a reasonable amount of time,

training networks by starting from pre-trained models tends to speed up convergence during

learning.

2.4.2 Robustness analysis against input degradation

We noticed that all our models are invariant to changes in illumination, certainly due to

inherent normalization steps in the CNN architecture, and are overall robust to small to

medium amounts of noise. However, when the signal-to-noise ratio strongly decreases, the

correlation coefficient tends to decrease as well.

Additionally, we observed that, in comparison to ResNet, CNNs based on ResNeXt perform

generally worse when noise is applied. This result contradicts observations reported in a recent

benchmark [59], where ResNext is more robust than ResNet to Gaussian noise. However, this

publication scores the network’s accuracy for a classification task into image type categories,
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which is a different application than our regression of aberrations and might explain the

discrepancy.

We found the synthetic degradations we added in the training set (Eq. (2.10)) to be a necessary

step to achieve robustness to noise. Indeed, the performance dropped when this step was

omitted.

2.5 Conclusion

In this work, we have shown that CNNs, in particular residual networks, can be used to

extract local blur characteristics from microscopy images in the form of parameters of a PSF

model with only minimal knowledge about the optical setup. Our system is robust to signal

perturbations and does not need to be trained specifically on images of the target imaging

system. This flexibility allows the user to perform, without taking measurements beyond the

images of interest, a wide range of tasks in microscopy image processing. We will investigate

in the following chapters possible applications in biomicroscopy that can be inferred from the

estimation PSF parameters with minimal a priori knowledge of the optical setup.
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3 Depth estimation

This chapter was published in A. Shajkofci and M. Liebling, “Spatially-Variant CNN-Based

Point Spread Function Estimation for Blind Deconvolution and Depth Estimation in Optical

Microscopy,” IEEE Transactions on Image Processing, vol. 29, pp. 5848–5861, 2020.

A.S.conceived and carried out the experiments, A.S wrote the manuscript with support from

M.L, M.L supervised the project.

3.1 Methods

The spatially-variant PSF parameter mappings obtained in Section 2.2.6 yield local parameters,

such as the blur, that are a function of the distance of the object to the focal plane. However,

due to the symmetry of the PSF in depth, this function is ambiguous about the sign of the

distance map z(s) (above or below the focal plane). That is why we now aim at estimating

the depth map z(s) for every lateral pixel s of the 2D manifold in 3D space using our trained

neural network and one single image as input. To achieve this, we use a local combination of

Zernike polynomial coefficients a(s). The de-focus coefficient a1(s) is linked to the distance

of the object to the focal plane, but there is no information about whether the object is in the

front or behind the focal point. To address this limitation, we took inspiration from several

methods to retrieve the relative position of a particle by encoding it in the shape of its PSF

(either via use of astigmatic lenses ([34], [70]) or by use of a deformable mirror to generate

more precise and complex PSF shapes [71]).

We used two cylindrical lenses of focal length−400µm and 400µm, separated by 3.4cm thereby

giving a combined focal length of f = 6000mm and placed them in the infinity space of a

microscope to generate an imaging system with an astigmatic PSF (Fig. 3.1). We used the

networks trained in Section 2.2.5 using 2D-Zernike models to infer the depth map z(s) from

the 2D image y(s) of the tridimensional surface x3D(r , z(r )). We defined a distance metric by

multiplying the output focus parameter and the normalized and zero-centered astigmatism
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direction:

z(s) = a1(s)

(
2a3(s)

π
−1

)
, (3.1)

with a1(s) the spatially local de-focus Zernike coefficient, and a3(s) ∈ (0,π) the spatially local

Zernike coefficient encoding the direction of astigmatism.

3.2 Results

The PSF parameter describing the local blur that we obtained from the image in Section 2.2.6

lacks information about the relative direction of the object from the focal plane. To infer the

local axial distance map z(s) in the sample, we applied the method described in Section 4

using the astigmatism created by a cylindrical lens. As an imaging sample, we used a grid of

200µm×200µm squares which we laser-printed on a transparent plastic foil. We placed the

grid towards the focal plane and tilted it by 3◦, 6◦, or 10◦, so that the in-focus position was in

the middle of the field of view (Fig. 3.1 (a)). With a field of view of 655µm×655µm, such a

rotation yielded depth ranges of 48.2µm, 94.7µm, or 159.9µm, respectively.

We were able to retrieve the local Zernike coefficient parameters of focus (a1), cylinder (a2),

and axis (a3). We inferred the depth map z(s) using Eq. (3.1) for N = 30 acquired images in

total (see Fig. 3.1 (e)).

Variables: input images of surfaces with a varying tilt angle from the focal plane.

Fixed: the network architecture (ResNet-34-pretrained for regression of Zernike parame-

ters with astigmatism). CNNs are already trained, the test data set is fixed.

Evaluation criterion: `1-error between the actual axial position of the surface and the

position extracted from the image.

Using a CNN ResNet-34 trained with [micr], we obtained a correlation coefficient (R2) between

the average slope and a line fit of more than 0.96. From this line fit we calibrated the system to

spatial units so that we could build a depth map. The method was accurate with an absolute

average `1-error of 1.81±1.39µm in depth (corresponding to a 1.61±1.23% of the relative

depth boundaries), obtained by comparing the error between the known position of the object

in depth and the calibrated distance. Results in Table 3.1 reveal that the relative error increases

as the maximum depth of the object increases. Depth estimation is thus more precise around

the focal plane.

3.3 Discussion

We showed that the focus parameter of the PSF models is a function of the distance between

the sample and the focal plane, and that the sign of the axial distance could be recovered
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Figure 3.1: Depth estimation of a plane using controlled astigmatic aberrations by use of
cylindrical lenses. (a) Optical system with using cylindrical lenses in the infinite tube space to
induce astigmatism. (b) Image of a grid taken from the camera, with highlighted parts of the
surface above and below the focal plane. (c),(d) Output of the CNN using (b) as input. The
resolution of the map is M = 31×31 different PSFs. (e) Weighted combination of (c) and (d) to
form the depth map. (f) Projection of the depth of the surface over the y axis and comparison
to the ground truth data.
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Table 3.1: Analysis of the precision of the depth recovery of a plane using controlled astigmatic
aberrations by use of cylindrical lenses. The test images are acquisitions of N = 30 printed
grids tilted 3◦, 6◦ and 10◦. The network is a ResNet-34 trained on data set [micr].

Tilt angle R2 Absolute error Relative error

10◦ 0.967 3.50±2.62µm 2.18±1.64%
6◦ 0.988 1.31±1.15µm 1.38±1.21%
3◦ 0.989 0.61±0.41µm 1.26±0.85%

from higher Zernike coefficients when using engineered PSFs. Furthermore, we found that

the depth function at any point in the image could be obtained from an affine function that

combines two Zernike coefficients.

We recovered the relative depth of both sides of the printed grid in real microscopy acquisitions,

which extends the idea of PSF engineering introduced in [70] for point-like structures, to work

for fully textured images. Using a textured plane image, we have been able to recover the depth

to up to 160µm. However, this accuracy decreases when the imaged objects lack texture. Using

other shapes of engineered PSFs (e.g. quadripoles [71]) could potentially lead to improved

depth accuracy.

Since use of an engineered PSF degrades the image, simultaneous depth retrieval and high-

resolution might best be carried out by splitting the acquisition line (e.g. with a beam splitter)

to record the image on one side and a PSF engineered image on the other.

Depth retrieval is also possible using the parameters of a Gaussian-2 PSF model, but the

precision is improved using the PSF model based on Zernike polynomials.
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This chapter was adapted from A. Shajkofci and M. Liebling, “Semi-blind spatially-variant

deconvolution in optical microscopy with local point spread function estimation by use of

convolutional neural networks,” in IEEE ICIP, 2018, pp. 3818–3822 and A. Shajkofci and M.

Liebling, “Spatially-Variant CNN-Based Point Spread Function Estimation for Blind Deconvo-

lution and Depth Estimation in Optical Microscopy,” IEEE Transactions on Image Processing,

vol. 29, pp. 5848–5861, 2020.

A.S. designed the model and the framework, conceived and carried out the experiments, A.S

wrote the manuscript with support from M.L, M.L supervised the project.

4.1 Introduction

Optical microscopy is a powerful tool to comprehend biological systems, enabling researchers

and physicians to acquire qualitative and quantitative data about cellular function, organ

development, or diseases. However, light traveling through any imaging system undergoes

diffraction, which leads to image blur [1]. This represents an intrinsic limit and the determining

factor for the resolution of an optical instrument, and thus limits visual access to details.

Indeed, the optical system only collects a fraction of the light emitted by any one point on

the object, and cannot focus the light into a perfect image. Instead, the light spreads into a

three-dimensional diffraction pattern. Image formation can be modeled as the convolution of

the original object with a PSF, which sums up the optical aberrations [2]. For thin, yet not flat,

samples, the PSF remains shift-invariant within small areas of the 2D image, but the three-

dimensional depth of the imaged object produces a local blur. Using a PSF corresponding to

the blur in a deconvolution algorithm can be used to restore details in the image [3].

Deconvolution techniques can be categorized into three classes: (1) Non-blind methods,

(2) entirely blind methods, and (3) parametric semi-blind algorithms. Non-blind methods

require knowledge of the PSF [45]. One of the main difficulties in practice is to determine the

original PSF that characterizes the actual optical system without discovering it empirically by
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acquiring a 3D image of a fluorescent bead, which is a tedious and time-consuming calibration

step. The two latter classes fall into blind deconvolution (BD) techniques, which improve the

image without prior knowledge of the PSF, the object or other optical parameters. Entirely

blind algorithms, such as [64] are based the optimization of a penalty function or a maximum

a posteriori (MAP) estimation of the latent image or kernel [43]. However, these methods

typically use strong constraints such as sharpness along the object edges and do not always

generalize to unexpected or noisy types of data [44], which are common in microscopy images.

Also, many BD techniques are computationally expensive, especially for larger convolution

kernels, and assume spatially invariant PSFs. Finally, parametric or semi-blind algorithms are

blind methods that are constrained by knowledge about the transfer function distribution,

such as a diffraction model or a prior on the shape of the PSF ([5], [72]). Parametric models

allow reducing the complexity of the optimization problem, increasing the overall robustness,

and avoiding issues such as over-fitting. However, it remains hard to estimate the parameters

from experimental data. We will focus on this third class of deconvolution methods, by

addressing the central problem of how to best infer the parameters without measuring any of

them experimentally.

Machine learning recently improved the ability to classify images [10], detect objects, or

describe content [12]. Convolutional Neural Networks (CNNs) [73], in particular, are built

for learning new optimal representations of image data and perform self-regulating feature

extraction [14]. Because of their ability to learn correlations between high- and low-resolution

training samples, CNNs appear well adapted to our problem of determining the blur kernel. A

similar reasoning led to recent results in [15] and [37], where the direction and amplitude of

motion blur was determined by a CNN classifier from images blurred with a Gaussian kernel.

Here we present a spatially-variant BD technique aimed at microscopy of thin, yet non-

flat objects. Our method combines local determination of the PSF and spatially-variant

deconvolution using a regularized Richardson-Lucy (RL) algorithm [65]. To find the PSF in a

computationally tractable way, we train a CNN to perform regression of model parameters on

synthetically blurred image patches. The novel aspects of our approach are:

1. Our method does not require the experimental measurement of a PSF, only synthetic

training data is necessary.

2. Compared to non-parametric BD, the problem complexity remains low and therefore is

more easily amenable to optimization.

3. Parameters with a physical meaning are inferred from the image itself.

4. The algorithm is computationally efficient, resulting in a near real-time kernel regression

and mapping at the expense of a much longer, yet straightforward, training phase.
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4.2 Methods

Given the degraded image and a local map of PSF parameters, we restore the input using

Total Variation regularized Richardson-Lucy (TV-RL) deconvolution. Richardson-Lucy (RL)

is an iterative maximum-likelihood approach and assumes that the noise follows a Poisson

distribution [74], which is well adapted for microscopy. The method is subject to noise

amplification, which can, however, be counterbalanced by a regularization term that penalizes

the l1 norm of the gradient of the signal ([75], [65]). Here, we assume that the PSF is spatially

invariant in small parts of the image. Spatially-variant convolution techniques have been

extensively reviewed by Denis et al. [76]. Hirsch et al. [64] have shown that the local invariance

assumption can be improved by filtering the input with every local PSF and then reconstructing

the image using interpolation. We extend this method by its inclusion in the TV-RL algorithm.

Rather than interpolating deconvolved images, the overlap-add filtering method, as described

in [64], [77], interpolates the PSF for each point in the image space. The idea for such method is:

(i) to cover the image with overlapping patches using smooth interpolation, (ii) to deconvolve

each patch with a different PSF, (iii) to add the patches to obtain a single large image. The

equivalent for convolution can be written as:

x(r ) =
M∑

m=0
(h̃(m) ∗ (ϕ(m) ¯ y))(r ), (4.1)

where ϕ(m)(s) is the masking operator of the mth patch. We illustrated the masking and

deconvolution steps in Fig. 2.4. Since the RL algorithm tends to exacerbate edges and small

variations such as noise, we use Total Variation (TV) regularization to obtain a smooth solution

while preserving the borders [65]. The image at each RL iteration becomes:

xi+1(r ) =
M∑

m=0

[
(h̃(m) ∗ (ϕ(m) · y))(r )

(h̃(m) ∗x(m)
i )(r )

∗ h̃(m)(−·)
]

· x(m)
i (r )

1−λT V div

(
Ox(m)

i (r )

|Ox(m)
i (r )|

) , (4.2)

with y(s) the blurry image, xi (r ) the deconvolved image at iteration i = 1, ..., I , x(m)
i (r ) the

Ky ×Ly deconvolved patch at iteration i , M the number of patches (and different PSFs) in one

image x, h̃(m) the Kh ×Lh PSF for patch m and λT V the TV regularization factor. Ox j
i (r ) is the

finite difference operator, which approximates the spatial gradient.

4.3 Results

We next wanted to verify that the parameters recovered by the CNN were producing PSFs

that are sufficiently accurate to be usable to enhance the details in the image, despite not

being specifically measured. To this end, we devised a deconvolution experiment to com-

pare images deconvolved by our method with those obtained by other blind deconvolution

techniques. As test input, we used 256×256 pixels image patches from the [micr] data set

(see Section 2.2.5). Using Eq. (2.10), we degraded each quadrant of the input image with

a specific, randomly-generated 127×127 pixels PSFs using parameters a(s) drawn from a
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uniform random distribution allowing us to systematically explore the parameter space. We

subsequently inferred a PSFs map via the CNN from the blurry image as described in Section

2.2.6. Finally, we deconvolved the image by applying the method described in Section 3. In the

experiment, we set ϕ(m) as a bilinear interpolating function and, similarly to [65], λT V = 0.1.

Since using FFT-based calculations implies that the PSF is circulant, we took into account field

extension to prevent spatial aliasing. We fixed the number I of RL iterations to 20.

We assessed the reconstruction quality by computing the SNR and Structural Similarity (SSIM)

[78]. We compared the deconvolution results to spatially-invariant blind deconvolution

techniques [79], [80] and [81], and the spatially-variant method from [82]. In the latter cases,

we used the estimated PSF in the TV-RL algorithm with the same number of iterations and

λT V . Since the estimation of a full PSF by these methods would take more than 20 minutes

per sample, we constrained the support of the PSF to 31×31 pixels. We computed the scores

by taking the difference between the “ground truth" SNR and SSIM of images deconvolved

using the PSFs actually used to degrade the images, and the deconvolution results using PSFs

regressed with the CNN or other BD techniques. Theses values are therefore reported as∆SNR

and ∆SSIM.

Finally, in order to recover details lost due to the aberrations of actual microscope objectives

(such as out-of-focus blur and astigmatism), we acquired different fixed samples (HeLa cells

actin (Alexa Fluor 635) and HeLa cells anti-α-catenin (Alexa Fluor 488) with a 10×/0.3 air

objective, Convallaria majalis bulb autofluorescence with a 20×/0.7 air objective) both in

focus and slightly out of focus. Then, starting from a 256×256 patch of the out-of-focus picture

only, we sought to retrieve a sharper picture containing the details of the in-focus picture. We

compared qualitatively the in-focus image, the out-of-focus image, our method with four PSFs

detected with a 128×128 stride, [79], [82], and the imaged obtained via a “sharpen” high-pass

filter.

Variables: network architecture, two different PSF models (Z-1 and G-1) for the degrada-

tion and detection parts.

Fixed: CNNs are already trained, the test data set [micr] is fixed.

Evaluation criterion: difference of SNR and SSIM between the ground truth image and

the deconvolved image.

Results in Table 4.1 indicate an average improvement of both SNR (1.88 dB) and SSIM (0.09) of

our spatially variant BD. In comparison to spatially-invariant BD and other spatially-variant

BD techniques improves the image by 1.55 dB SNR and 0.08 SSIM. Deconvolution results

are equivalent when the degradation and detection models are mismatched. The qualitative

results shown in Fig. 4.1 highlight the stability of our method, which improves the degraded

image to a detail level similar or better than the one of the in-focus image. Using the algorithm

of Kotera et al. [79], the blurry features are well recovered, but the images have less detail.

Furthermore, this algorithm converges to an aberrated image (Fig. 4.1 (b)) when the image
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  In-focus          Out-of-focus             CNN                  Kotera                 Whyte                  HPF 

(b)

(c)

(a)

Figure 4.1: We acquired different fixed samples ((a) HeLa cells actin (Alexa Fluor 635) and (b)
HeLa cells anti-α-catenin (Alexa Fluor 488) with a 10×/0.3 air objective, (c) Convallaria majalis
bulb autofluorescence with a 20×/0.7 air objective) both in-focus and slightly out-of-focus.
Then, starting from a out-of-focus 256×256 patch only, we seek to retrieve a sharper picture
containing the details of the in-focus picture. We compared qualitative results of (from left
to right), the in-focus image, the out-of-focus image, the proposed method (CNN) with four
PSFs detected with a 128×128 stride, [79], [82], and a "sharpen” high-pass filter. Arrow edges
indicate regions with features of particular interest.

contains long filaments. The method from Whyte et al. [82] enhances the contrast of the blurry

image, however, it creates hallucinations near edges, which were not part of the original image.

Finally, the high-pass filter, as expected, enhances both high-frequency features and noise.

4.4 Discussion

Using the spatially-variant PSF map inferred from the PSF output, we have been able to

reconstruct details in a degraded image without any prior information on the image content

or the optical system. Given that our method does not require adjusting parameters or

experimentally measuring a PSF (which is labor intensive), it leads to results faster than

non-blind deconvolution methods.

We noticed that, because we use a constrained PSF model, our deconvolution method does

not suffer from drawbacks sometimes associated to other deconvolution and super-resolution

methods. For example, techniques based on MAP optimization sometimes converge to exotic

forms of PSFs that are not consistent with the physics of optics, causing image deformation

or loss of features [83]. We could illustrate this by the example in Fig.4.1 (b) for the method

from Kotera et al. [79], which diverges when directed filaments are shown to the algorithm
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4.4. Discussion

and creates artifacts.

Similarly, the use of denoising CNNs for image enhancement can lead to phantom details

that could falsify underlying biological features, or discard high-frequency features that are

mistaken for noise [84]. When using constrained PSF models such as the ones we use, decon-

volution algorithms such as RL will still produce a reasonable image even if the predicted PSF

is not exactly matching the PSF corresponding to the blur. This is likely due to the inherent

constraint of a model with a small number of parameters that enforces the shape of the PSF.

The outcome is a higher average SNR and SSIM of the reconstruction using our method com-

pared to other BD algorithms. Another advantage of using constrained PSF models is that they

can model PSFs with very large supports (sizes). Classical BD only allows for a smaller support,

as using more pixels creates higher complexity. Nevertheless, our models are currently unlikely

suitable for some types of degradation, where BD methods were successfully applied, such as

for compensating for motion blur with rotation [85].

Deconvolution results are equivalently efficient both in terms of SNR and SSIM when the

degradation and detection models are not similar (e.g. degradation using a Gaussian PSF and

estimation of the PSF using a Zernike model). This particular point is relevant since it confirms

the robustness of the image enhancement process when there is a mismatch between the

degradation PSF that we want to model (i.e. the optical system PSF) and the model itself.

Finally, we observed that methods [82], [80] and [81], due to their multiscale optimization

approach, were considerably slower than the one we propose, taking up to 4 minutes to deblur

a 256×256 image, whereas our method takes less than 3 seconds using the same machine to

both estimate the PSF and perform TV-RL. The difference in run times can be explained by our

GPU implementation, but as well because of the inherent nature of traditional optimization

algorithms that alternate kernel and image estimation, which limits the parallelizability of the

calculations.
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5 DeepFocus: a Few-shot Microscope
Slide Auto-Focus

This chapter was adapted from A. Shajkofci and M. Liebling, “DeepFocus: A Few-Shot Micro-

scope Slide Auto-Focus Using a Sample Invariant CNN-Based Sharpness Function,” in 2020

IEEE 17th International Symposium on Biomedical Imaging (ISBI), Apr. 2020, pp. 164–168.

A.S. designed the model and the framework, conceived and carried out the experiments, wrote

and published the software. Parts of the graphical interface of the micro-manager plugin was

written by Cevahir Köprülü, an EPFL student. A.S wrote the manuscript with support from

M.L, M.L supervised the project.

5.1 Introduction

Modern microscopy techniques rely on many components that are remotely controllable.

This allows implementing control loops that limit the need for human-supervised operation.

Auto-focusing systems, in particular, are used extensively in the acquisition of timelapses in

developmental or cellular biology or to automatically image slides in a slide scanner. In the

former application, imaged specimens tend to drift from the focal plane over time because

of specimen growth, flow of the medium, or motion caused by temperature changes. In the

latter case, variability in the mounting of the slides requires per-slide adjustment.

Autofocus (AF) systems seek to determine the optimal shift by which to adjust the axial position

to maximize image sharpness. AF solutions can be hardware-based (e.g. laser-based sensing

of the sample drift [87] or phase detection by an auxiliary sensor [88]) or image-based, which

does not require any modification of the optical path of the microscope as a focus score is

retrieved from the image itself [89].

We can classify image-based AF algorithms into two categories. The first comprises AF meth-

ods that use iterative minimization of a one-dimensional objective function, the focus score,

to move the object to the point at which it is sharpest. Because the output of the function is

not predictable and depends on the sample, the AF has to acquire tens to hundreds of images

at different axial positions in order to converge to a non-local optimum [89]. A high number of

45



Chapter 5. DeepFocus: a Few-shot Microscope Slide Auto-Focus

Figure 5.1: The object may be outside of the DOF and appear blurry. Here we quantified the
blur b(z) using DeepFocus and an high-pass filter (HPF) for two different images. Using HPF,
b(z) changes shape and slope when different objects are presented under the microscope, and
there is a lack of depth information for |z| > 150µm. Using DeepFocus, the slopes for both
images are similar in shape and retain information about depth in the whole [−300;300]µm
region.

image acquisitions can be damaging for the sample, especially in fluorescence microscopy

[90].

Additionally, existing objective functions only give a meaningful result in the neighborhood

of the focal plane, and lose information (i.e. the gradient of the curve is zero) farther away

from the focal plane. Furthermore, depending on the software implementation and the

imaging modality, the acquisition of hundreds of images can take up to several minutes. The

second category comprises single shot AF techniques (that need only one or a few images).

Thanks to end-to-end CNNs, they take an image as input and directly deduce the optimal

shift to be in focus ([91]–[93]). The drawback of these direct methods is that a long and

computationally-intensive CNN training with a microscope objective-specific training data

set, must be repeated whenever the optical system changes. Furthermore, these methods are

not directly available in open microscope control software, such as µManager [94].

In this paper, we propose a local, CNN-based focus scoring function that remains nearly

invariant when imaging different types of samples or modalities on any given microscope.

We developed a correlation-based AF algorithm that takes advantage of the broad shape and

unimodal minimum of this function, which helps to speed up convergence and remaining

effective even when the imaged object is far from the focal (several times the depth-of-field

(DOF), see Fig. 5.1). Since our CNN method does not require a microscope-specific data set

for training besides a single stack of an arbitrary object, it is plug-and-play.

This paper is organized as follows. In Section 2.2, we present the blurriness scoring function,

the calibration process, and the AF algorithm. In Section 2.3, we experimentally verify the

scoring function’s assumed invariance to a variety of samples and characterize performance

with respect to the number of images and in comparison to common AF scoring functions,

using both simulated and experimentally acquired data. We discuss our findings and conclude
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5.2. Problem statement

in Section 2.4.

5.2 Problem statement

We consider a specimen, modeled as 2D manifold in 3D space (such as a thin microscopy

slide), that we wish to image with a widefield microscope in bright field, fluorescence, or phase

contrast. The entire specimen or some regions in the field-of-view (FOV) can be out of focus

and outside of the DOF (see Fig. 5.1). We assume the microscope has a motorized stage for

adjusting the focus. We aim at finding the optimal axial shift ∆z by which to adjust the sample

position such that it is in focus. We seek a solution that (i) does not require a manually selected

reference image to be matched (such that the method can be used both for maintaining focus

in live timelapses but also for imaging collections of fixed samples) (ii) requires a minimal

number of images (to limit photodamage) (iii) shall not require imaging calibration specimens

(PSF measurement beads, etc.) or large-scale, microscope-specific training.

5.3 Method description

The principle behind our proposed algorithm is to measure a blurriness score b(zi ) for a

few (M) images acquired at different focus positions zi , i = 1, . . . , M , resulting in a set of

pairs {(zi ,b(zi ))|i = 1, . . . , M } and to determine the necessary focal shift ∆z such that {(zi −
∆z,b(zi ))|i = 1, . . . , M } matches a microscope objective-specific, sample-invariant, depth-

blurriness response curve bcalib(z) using cross-correlation. The curve invariance assumption

has been similarly used by the model-based curve fitting approach of [95].

For this approach to work, we need a focus estimation function that is invariant to the sample

shape or texture (sample-invariance) but co-variant with the sample’s axial position and

sufficiently informative beyond the immediate vicinity of the focal plane. To this end, we

chose an estimator of the local optical properties of the microscope objective [16]. Briefly,

it relies on a trained CNN to regress the parameters of a Zernike polynomial PSF model

[50], given a blurry image patch as an input. Here, we use the estimated Zernike coefficient

corresponding to focus as a blurriness score, which provides, given an image as input, a local

blurriness score b[x, y, z] for the indicated position depth z.

The trained CNN [16] does not require re-training when used on different microscopes or

different microscope objectives and produces a curve whose shape (up to an axial scaling)

is invariant to the sample (an aspect that we verify experimentally in Section 5.4). In order

to determine the axial scaling, which is instrument-dependent, we require a calibration step

consisting in the acquisition of a full stack of an arbitrary planar and textured object. This

yields a blurriness map bcalib(z) that we center with its minimum at the origin.

We now describe our proposed AF, which follows the structure illustrated in Fig. 5.2 and is

summarized in the steps:
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Image 
acquisition

DeepFocus CNN 

Local 
focus score

ROI
information 

Minimize
correlation

error

Calibration 

Convexity no

yes

Move stage
to new point

Move stage
to optimal position

new point selected by GSS

Stack
acquisition 

Figure 5.2: Flowchart of the AF algorithm (see Section 5.3).

1. Fit bcalib to a Moffat distribution [96] and extract its full width at half maximum (FWHM).

Set M = 3, let z1 be the initial focal plane position, and initialize a Golden Section Search

(GSS) algorithm with the interval [z2, z3] = [z1 −2FWHM, z1 +2FWHM]. Acquire images at

z = z1, z2, z3 and compute, using the CNN, the blurriness scores b[z1],b[z2],b[z3].

2. Check the convexity of b[zi ], i = 1, . . . , M by fitting b[zi ] to a quadratic polynomial. If the R2

of the polynomial fit is higher than the R2 of a linear fit, go to Step 6. Otherwise go to Step 3.

3. Increment M += 1. Update the GSS triplet to obtain and move to a new axial position zM .

4. Acquire an image at the current axial position zM .

5. Compute, using the CNN, the blurriness score b[zM ] and go to Step 2.

6. Compute using cross-correlation the local optimal shift ∆z(x, y) minimizing the squared

distance:

∆z(x, y) = argmin
∆z

M∑
i=1

(
b[x, y, zi ]−bcalib(zi −∆z)

)2.

7. Move the sample by ∆z, averaged for the Region of Interest (ROI) in the (x, y) plane.

5.4 Characterization of regression invariance to image diversity

Since our AF algorithm relies on the invariance of bcalib(z) to the type of imaged sample, we

investigated whether our proposed CNN indeed satisfied this condition and whether other

(existing) focus metrics could be substituted.

We gathered Nsynth = 1000 images from the evaluation dataset of [16] and blurred them with

Gaussian PSFs mimicking a 10×, NA 0.3 objective for M = 132 points in the depth range

−120µm ≤ z ≤ 120µm. In addition, we acquired Nexp = 1000 stacks of fixed rat brain slices

tagged with three fluorescent stains using a widefield transmission light microscope with a
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5.5. Characterization of information measure of the scoring function

Table 5.1: Using the same experimental conditions as Fig. 5.3, we quantified the scoring
function performance in terms of Standard Deviation (SD) in a 100µm range (lower is better)
and conditional entropy between the focus score and the distance (lower is better) in the whole
240µm range. Using experimental acquisitions, DeepFocus outdo all other tested functions in
terms of SD. Additionally, our method has for both modalities the lower conditional entropy
and thus is more informative.

Focus score function σsynth Hsynth σexp Hexp

DeepFocus 0.03 1.59 0.03 5.17
HPF 0.06 6.38 0.08 44.31

Tenengrad [97] 0.10 4.17 0.06 21.77
LAPV 0.03 14.29 0.04 38.28

EWC [98] 0.01 3.47 0.16 8.21
SML 0.04 7.74 0.06 16.89

WS [99] 0.07 5.57 0.19 11.30

10×, NA 0.3 objective in a depth range of −60µm ≤ z ≤ 60µm. We then computed bcalib(z)

using DeepFocus and other methods, including HPF, LAPV, SML [100], Tenengrad [97], EWC

[98], and WS [99], which cover a broad range of focus measures, as reviewed in [89], [101]–[103].

In Table 5.1, we reported the average SD of bcalib(z) over all input images. Using the experi-

mental dataset, our method had an average SD of σ= 0.03 (normalization scale with 1 and 0

the blurriest and sharpest values, respectively). We noticed, as illustrated in Fig. 5.3 (a) and

(b), that DeepFocus’ SD increased when |z| increases (i.e when the acquired pictures contain a

medium-to-high blur). A low SD implies that bcalib(z) is similar with different types of imaged

specimens. Other methods had a SD of 0.04 <σ< 0.19, and hence confirmed the variance of

these focus metrics with image diversity.

5.5 Characterization of information measure of the scoring func-

tion

We next investigated how robustly our proposed DeepFocus measure can report (de)focus

information as the distance from focus is increased up to 10 times the DOF. We observed

(Fig. 5.3) that focus metrics other than ours were unable to give any information about z from

bcalib(z) whenever |z| is higher than 60µm, as they reach a value that does no longer vary as the

position is increased further. Since the gradient in such plateau regions is small, minimization

algorithms could not converge quickly. To quantify these visual observations regarding the

uncertainty of recovering z from any given bcalib(z), we computed the conditional entropy:

H(B|Z) =− ∑
bcalib∈B,z∈Z

p(bcalib|z) log

(
p(bcalib|z)∑

zi
p(bcalib|zi )

)
,

where B and Z are random variables representing the calibration blurriness score and the axial

distances, B and Z their support sets, and p(bcalib|z) the probability of a score bcalib, given
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(a) Synthetic data: DeepFocus (b) Real: DeepFocus

(c) Synthetic data: Tenengrad [97] (d) Real: Tenengrad [97]

(e) Synthetic data: SML [100] (f) Real: SML [100]

(g) Synthetic data: WS [99] (h) Synthetic data: WS [99]

Figure 5.3: Comparison of the output of different sharpness scoring functions as a function
of z, centered at the origin. We used as input synthetically blurred images (left) and stacks of
fluorescent rat brain tissue with a 10×, NA 0.3 objective (right). Using DeepFocus, the SD of
bcalib(z) around the focal plane is lower than with the other scoring functions. Additionally,
scoring functions other than DeepFocus do not infer depth information (bcalib(z) = 1 for all z)
when |z| > 50µm.

the distance z. A high conditional entropy value implies a high uncertainty of detecting the

right z position for a given bcalib. The results, compiled in Table 5.1, reveal that DeepFocus

had a conditional entropy of Hsynth = 1.59, a value smaller than that obtained when using any
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5.6. Characterization of the AF error as a function of the number of acquisitions

Figure 5.4: Comparison of the AF error using 3 different AF scoring functions for 100 samples.
We quantified the distance between the theoretical focus plane position and the AF output as
a function of the number of AF iterations which represent additional input images. DeepFocus
yields an error of 0.27±0.18µm with 4 iterations. With 8 iterations or more, the others methods
are on par or more accurate than ours.

of the other scoring functions instead. In the case of experimental acquisitions, we observed

again an improvement in terms of entropy (Hexp = 5.17), where other methods have values

in the range 8.21 < Hexp < 44.31. We further determined the threshold distance after which

no distance information can be inferred from the image, i.e when the image is too blurry to

make the AF converge. DeepFocus retained depth information for a range of 120 µm with a

10×, NA = 0.3 objective, which is equivalent, using the diffraction-limited DOF formula, to 11

times the DOF (10.7µm). In comparison, metrics like WS and SML achieved ranges of only 4

and 7 times the DOF, respectively.

5.6 Characterization of the AF error as a function of the number of

acquisitions

We finally investigated how accurately DeepFocus could retrieve the focal distance as a func-

tion of the number of images acquired. We used 100 blurred images from the generated dataset

in Section 5.4 with a known in-focus position and computed its distance to the output position

of the AF. We also compared our method to other autofocus scoring functions (for which we

used a bounded Brent’s method as optimizer). The results are summarized in Fig. 5.4.

We observed that our proposed AF converged rapidly (3 iterations), while the two other focus

functions needed more than twice as many images to reach a similar focus accuracy. Using

8 iterations or more, we did not notice a better accuracy with our method compared to

Tenengrad or HPF.

In our experiments, we showed that the variance of bcalib over multiple images was usually

lower using DeepFocus than when using other focus scoring functions, especially near the

focal plane. Our explanation would be that the CNNs, already known to be translation-

invariant [104], have been trained specifically for the recognition of the PSF parameters
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Figure 5.5: Schematical explanation of DeepFocus computational relationship between the
µManager plugin and the Python/PyTorch server.

without discrimination on the input image type and position. By contrast, crafted features

such as HPFs are computed from content-based calculations and differ from one image to

another. When the image is acquired at a large distance from the focal plane, we noticed a

loss of spatial features in the acquired image, due to the large FWHM of the PSF that degraded

it. However, we have been able to retrieve depth information from the image up to 2.5 times

farther away from the focal plane than with other methods. That could be mostly explained by

the fact that DeepFocus computes features from a 128×128 px window, while Gradient-based

methods use a much smaller window, such as 3×3 or 5×5.

5.7 Implementation and U-Net extension

We implemented the software in Python with a Java interface for µManager using a client-

server architecture. Communication between the µManager client and the PyTorch server was

achieved using gRPC and a common proto-file for inputs and outputs. More importantly, we

developed the algorithm with a newer neural network model, adapted from U-Net [105], but

with residual connections between the encoding layers. Using this network, the PSF parameter

map could be computed in a single pass without a moving window. This method achieved the

same accuracy, but with a better spatial resolution and up to 40 times better speeds.

5.8 Conclusion

In summary, we developed an AF method based on a combination of an CNN scoring function

and optimization algorithms that are relying on the invariance of the scoring function. We

showed that DeepFocus was robust to changes amongst samples, which enables the retrieval

of the optimal axial shift using a correlation-based optimization process that needs as few as

3 images to converge. Our method is currently limited to imaging thin samples and further

work will investigate the procedure for thicker objects. We implemented the calibration step

and AF algorithm as two plugins for the µManager microscopy acquisition engine [94]. They
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are available at https://github.com/idiap/deepfocus.
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6 Flow motion estimation

6.1 Introduction

Life is all about movement. From the microscale to the macroscale, organisms undergo growth,

nutrients flow or diffuse in their environment. Quantification of the displacement in time

of particles, organelles, or organisms can be done using optical flow [106]. Optical flow is

a method aimed at determining the distribution of apparent velocities of any movement

in an image. In medicine, and more specifically in cardiac imaging, optical flow proved

to be correlated with the flow patterns measured using computational dynamics [107]. In

photograhy, deep neural networks (DNNs) recently allowed for the prediction of 3D optical

flow in a computationally-efficient way and with a good accuracy [15], [36], [37].

Optical flow is usually computed using two image frames at different time points. In mi-

croscopy, the physical scales are orders of magnitude smaller than in photography, especially

in the axial direction due to the very small depth of field. For optical flow to be applied suc-

cessfully, the two reference images must be taken in a short interval of time. High-speed

cameras are still uncommon in microscope stations and fast movement happening during the

exposure time causes motion blur.

Here we present a method for estimating the movement of out-of-plane particles in a fluid,

from a single optical microscopy wide-field image with a long exposure time. We take advan-

tage of the motion blur by estimating the parameters of a spatially-variant PSF for every point

in the image. Since the PSF has been modeled to take into account the displacement in both

axial and lateral directions, we are able to extract from the input image a three-dimensional

vector field of the motion.

This chapter is organized as follows. In Section 6.2, we present the method, comprising the

image formation model and the estimation of the displacement vector field. Then, in Section

6.3, we characterize the performance of the method by firstly simulating random movements

in the images, then by simulating a flow of particles in a cylindrical pipe. Finally, we acquired

microscopy images of movings beads in a fluidic device and compared the results obtained
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with our method with the physical fluid velocity. We then discuss our findings and conclude

in Section 6.4.

6.2 Methods

6.2.1 Problem statement

We consider imaging a slice i (s, s3 = z0) = i (s) of a specimen (s being its lateral coordi-

nates), where a flow of particles occurs with a tridimensional displacement vector field

v(s) = (v1(s) v2(s) v3(s)). We consider as well the time step ∆t , during which the pixel

at position s moves following a v(s) displacement vector. From the input image i acquired

using a wide-field light microscope with an exposure time∆t , we aim to predict, after adequate

scaling, the 3D vector field v .

6.2.2 Image formation model

We model the acquired image i as the convolution of the object o with a PSF h, integrated over

time. We then define that the convolution of a moving object with a PSF is equivalent to the

convolution of a fixed object with the projection over time of the PSF, as follows:

i (s) =
∫ ∆t

0

Ñ
o(r , t )h3D(s, s3 = z0,r )dr d t (6.1)

=
∫ ∆t

0

Ñ
o(r +v (r )t ,0)h3D(s, z0,r )dr d t

=
Ñ

o(r ,0)

(∫ ∆t

0
h3D(s, z0,r −v (r )t )d t

)
dr

=
Ï

o(r ,0)htime-projected(s, z0,r )dr

= h ∗o(s),

with s(t ) the spatial coordinates of a pixel at time t , and h3D(t ) the depth-dependent PSF of

the optical system. h is therefore the (2D) spatially-variant optical PSF projected over time

and takes into account the movement of the object during the time interval ∆t .

We need a displacement estimation function that is invariant to the sample shape or texture

but co-variant with the sample’s axial position. To that end, we chose an estimator of the local

optical properties of the microscope objective that we integrate over time. We chose for h3D a

Zernike polynomial-based PSF model [16], [50].

6.2.3 Estimation of the displacement vector field

Similarly to [30], we want to train a CNN that extracts the displacement vector v (s) from the

input image i (s). We create a training set of K = 400′000 images taken from [27] that are blurred
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by spatially-variable PSFs. To do so, we first define for every k-th image, N non-overlapping

2D masks mn
k (s), with n = 0, ..., N −1. Then, we define, for every mask, a PSF hv n

k
generated

using the parameters vk drawn from a uniform distribution ([−1,1] for the lateral component

of v and [0,1] for the axial component of v) and zk (s), which is the axial position where the

object o is in focus. We get the final K training images by multiplying the masked input image

by the PSFs in the Fourier domain:

ik (s) =βbp

(
λ=F−1

[
N−1∑
n=0

F (hv n
k

)F (mn ∗ ik )

]
(s), s

)
+bg (s), (6.2)

with β a number between 0 and 1 reflecting the camera quantum efficiency, bp (λ, s) a random

variable following a Poisson distribution, and bg (s) a random variable following a zero-mean

half-normal distribution. Since there are cases where the PSF estimation is not possible, e.g.

where the sample lacks texture, such as in uniformly black or grey areas, we added a boolean

parameter wk (s) (whose values can be either 0 or 1), which indicates the “legitimacy” of the

sample (i.e is this image textured enough to yield useful information?).

We trained a U-Net CNN [105] with a ResNet encoder [60] pretrained on ImageNet [10], in order

to predict, with the image i (s) as input, the map of parameters (ṽ(s), z̃k (s), w̃k (s)) converted

using cylindrical coordinates . We assessed in [30] that such network is robust to unwanted

image degradations such as Poisson and Gaussian noise. We trained the network for 50 epochs

in PyTorch [108] with RAdam [109] optimizing the following loss function:

E (k) = γ (wk (s)− w̃k (s))2 + 1−wk (s)

U +1

[
U∑

u=1
(|vu(s)|− |ṽu(s)|)2 + (zk (s)− z̃k (s))2

]
, (6.3)

with U = 3 components in v , γ a hyperparameter regulating the importance of the validity

parameter w , that we set to 1 in our further experiments.

6.3 Experiments

We aim at defining the performance of the method using test data generated in the same way

as the training data, but with a separate data set of Ktest = 5000 images cropped at 224×224

pixel, preliminary acquired using a Leica DM 5500, a 10x/0.3 objective, and fixed fluorescent

samples (HeLa cells actin (Alexa Fluor 635) and HeLa cells anti-α-catenin (Alexa Fluor 488))

(see Section 4.3). Specifically, we took sharp and immobile images and blurred them with two

generated PSFs modeling different three-dimensional flow rates from a uniform distribution.

We then used the CNN trained in Section 6.2.3 to predict the flow vector ṽ (s), the axial position

z̃0(s), and the “validity” parameter wk (s). Since it is a regression problem, our metric was set

to be the squared Pearson correlation coefficient R2 averaged over all dimensions.

We then turned to a more realistic experiment. Indeed, we generated a second synthetic

testing dataset by simulating the flow in a cylinder where the camera and the focal plane are

perpendicular to the flow direction. Due to the small DOF in microscopy, the effect of the

cylinder curvature is negligible. The flow vector map v(s) is then similar to Fig. 6.2 (b). We
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Figure 6.1: Velocity vector estimation from a single motion blurred image from the dataset
acquired in Section 4.3 and two PSFs drawn from a random distribution. The network output
and the ground truth vectors are represented in the RGB spectrum with ṽ1(s) in the red
channel, ṽ2(s) in the green channel, and ṽ3(s) in the blue channel.

neglected as well the effects of the non-slip condition at the walls present in Poiseuille flow.

6.4 Results

Our experiments on simulated data confirm the network’s capability to regress a pixel-wise

motion vector from a single blurred image. Indeed, when it came to the task of estimating

two different motion vector in two zones in an image, the network achieved a regression

coefficient of R2 = 0.92 averaged over all pixels of N = 1000 images of 224×224 pixel (see

Fig. 6.1). Similarly, to retrieve the cylindrical flow profile in the second experiment, the

regression score was computed at R2 = 0.91 using the same conditions as before (see Fig. 6.3).

In all our experiments, the axial component was predicted with a systematically greater error

than the lateral components. That could be explained by the confusion between an object

with larger axial velocity, but started its motion right in focus, compared to an object with

a smaller axial velocity, but whose motion happens out-of-focus. Both situations yielded

similar-looking PSF since the generation of the PSF from the parameters v (s) and z̃0(s) is not

a perfectly bijective transformation.

During the training process, we noticed that the global accuracy was highly sensitive to the

training set data size. Indeed, the network showed signs of over-fitting when it was trained

with less than K = 100′000 images. In these experiments, we showed that parametric PSF

regression could not only predict the depth of a surface (see Chapter 3), but the same method,

with the right transformations and loss function, can predict the motion of this object from a

single image.
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Figure 6.2: (a) Simulation of a flow in a cylinder. (b) simulation of its expected flow profile as
captured by the camera. The flow vector v (s) has a greater lateral component in the bottom of
the image, and a larger axial component in the top of the image.

Figure 6.3: Velocity vector estimation from a single motion blurred image from the dataset
acquired in Section 4.3 and a gradient of PSF mimicking the conditions of Fig. 6.2. The network
output and the ground truth vectors are represented in the RGB spectrum with ṽ1(s) in the red
channel, ṽ2(s) in the green channel, and ṽ3(s) in the blue channel.
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In this thesis, we have shown that CNNs, in particular residual networks, can be used to extract

local blur characteristics from microscopy images in the form of parameters of a PSF model

with only minimal knowledge about the optical setup and more specifically without any kind of

PSF measurement, a step deemed specially tedious and time-consuming. Our PSF estimation

method is robust to signal perturbations and does not need to be trained specifically on

images of the target imaging system. This flexibility allows the user to perform, without taking

measurements beyond the images of interest, a wide range of tasks in microscopy image

processing, including deblurring, obtaining its tridimensional shape in a single shot, using

the focus parameter in a fast converging auto-focus software or retrieve the object velocity in

three dimensions.

The studies presented in this thesis gives evidence that algorithms already popular in pho-

tography can be applied in the environment of bio-microscopy. However, noise and optical

models must be defined appropriately to fit to the specific high-NA, low-light, high noise

environment of microscopy. More specifically, we set a framework, using a PSF and noise

model based on physical properties of the wide-field microscope, that prevents the algorithms

from diverging to hallucinations or to results that could not be physically explained.

The methods we developed have room for improvement by substituting the CNN by more

complex DNN architectures. For example, [110], [111] achieved significant improvements by

combining transformer networks, variational encoders, attention modules and a generative

adversarial network (GAN) loss that would most likely better extract information from some

textured parts of the image, while it would discard other parts or noise. However, more

complex models require much heavier computing infrastructure in terms of GPU clustering

and data management which are tasks that may not be readily available in a standard academic

environment.

Deconvolution, depth estimation, autofocus and flow estimation are four direct applications

that I discussed in this thesis, but there are plenty of other uses for PSF parameter regression

that the scientific community could work on. One example of such new application would
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be to combine multiple locally out-of-focus images into one all-in-focus image without any

kind of calibration procedure. Another example of extension would be to modify the flow

estimation pipeline such that the motion vector is recorded over time. From that we could

then deduce 3D trajectories in the case of a tracking experiment.

Finally, we showed that the integration of DNN features into classic optimization algorithms

(e.g. RL for deconvolution and Newton-like optimizers for the auto-focus) can benefit both

from the incredible accuracy and robustness of CNNs, and the dozens of years of mathematical

validation of classic algorithms. Combined with the input of multi-modal sensors, actuators

and real-time processing to integrate feedback loops based on complex features, this work is a

step into the world of intelligent microscopes that combine real-time hardware and software

to (semi-)blindly enhance, detect, and track biological samples.
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[33] A. Krull, T. Vičar, M. Prakash, M. Lalit, and F. Jug, “Probabilistic Noise2Void: Unsuper-

vised Content-Aware Denoising,” Front. Comput. Sci., vol. 2, 2020.

[34] H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimen-

sions: Use of cylindrical optics to encode particle position,” Biophys. J., vol. 67, no. 3,

pp. 1291–1300, 1994.

65



Bibliography

[35] X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating Spatially Varying Defocus

Blur From A Single Image,” IEEE Trans. on Image Process., vol. 22, no. 12, pp. 4879–

4891, 2013.

[36] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. V. D. Hengel, and Q. Shi, “From

Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous

Motion Blur,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Honolulu, HI: IEEE, 2017, pp. 3806–3815.

[37] S. Nah, T. H. Kim, and K. M. Lee, “Deep multi-scale convolutional neural network for

dynamic scene deblurring,” in IEEE CVPR, 2017.

[38] J. W. Goodman, “Chapter 6-1,” in Introduction To Fourier Optics, 2nd Revised edition,

Englewood, Colo: W.H.Freeman & Co Ltd, 2005, p. 129.

[39] B. Chalmond, “PSF estimation for image deblurring,” CVGIP, vol. 53, no. 4, pp. 364–

372, 1991.

[40] N. Joshi, R. Szeliski, and D. J. Kriegman, “PSF estimation using sharp edge prediction,”

in IEEE CVPR, 2008, pp. 1–8.

[41] A. Reuter, H.-P. Seidel, and I. Ihrke, “BlurTags: Spatially varying PSF estimation with

out-of-focus patterns,” in WSCG, 2012, p. 9.

[42] J. Brauers, C. Seiler, and T. Aach, “Direct PSF estimation using a random noise target,”

in SPIE Electronic Imaging, 2010, 75370B.

[43] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution

algorithms,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 33, no. 12, pp. 2354–2367,

2011.

[44] D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by

means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. A, vol. 12, no. 1, pp. 58–65,

1995.

[45] F. Soulez, “A “Learn 2D, Apply 3D" method for 3D deconvolution microscopy,” in

IEEE ISBI, 2014, pp. 1075–1078.

[46] J. Herbel, T. Kacprzak, A. Amara, A. Refregier, and A. Lucchi, “Fast point spread

function modeling with deep learning,” J. Cosmol. Astropart. Phys, vol. 2018, no. 07,

pp. 054–054, 2018.

[47] F. Aguet, D. Van De Ville, and M. Unser, “An accurate PSF model with few parameters

for axially shift-variant deconvolution,” in IEEE ISBI, 2008, pp. 157–160.

[48] G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cam-

bridge Philos. Soc., vol. 5, p. 283, 1835.

[49] D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces

with Zernike polynomials,” IEEE Trans Biomed Eng, vol. 48, no. 1, pp. 87–95, 2001.

[50] F. von Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten

form, der phasenkontrastmethode,” Physica, vol. 1, no. 7, pp. 689–704, 1934.

66



Bibliography

[51] J. W. Goodman, Introduction to Fourier Optics. Roberts and Company Publishers,

2005, 520 pp.

[52] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluores-

cence microscope point-spread function models,” Appl. Opt., vol. 46, no. 10, pp. 1819–

1829, 2007.

[53] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural

Networks: Tricks of the Trade, Springer, 2012, pp. 9–48.

[54] F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson–gaussian noise,”

IEEE Trans. Image Process., vol. 20, no. 3, pp. 696–708, 2011.

[55] E. N. Gilbert and H. O. Pollak, “Amplitude distribution of shot noise,” Bell System

Technical Journal, vol. 39, no. 2, pp. 333–350, 1960.

[56] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale

Hierarchical Image Database,” in IEEE CVPR, 2009, p. 8.

[57] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual

recognition challenge,” Int J Comput Vis, vol. 115, no. 3, pp. 211–252, 2015.

[58] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “DeCAF:

A Deep Convolutional Activation Feature for Generic Visual Recognition,” in ICML,

2014, pp. 647–655.

[59] D. Hendrycks and T. G. Dietterich, “Benchmarking neural network robustness to

common corruptions and surface variations,” in ICLR, 2019.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in IEEE CVPR, 2016, pp. 770–778.

[61] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual Transformations

for Deep Neural Networks,” in IEEE CVPR, 2017, pp. 5987–5995.

[62] G. Huang, Z. Liu, L. v d Maaten, and K. Q. Weinberger, “Densely Connected Convolu-

tional Networks,” in IEEE CVPR, 2017, pp. 2261–2269.

[63] K. Hechenbichler and K. Schliep, “Weighted k-nearest-neighbor techniques and

ordinal classification,” Ludwig-Maximilians-Universität München, Working Paper

399, 2004.

[64] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling, “Efficient filter flow for space-

variant multiframe blind deconvolution,” in IEEE CVPR, 2010, pp. 607–614.

[65] N. Dey, L. Blanc-Féraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zeru-

bia, “Richardson–Lucy algorithm with total variation regularization for 3D confocal

microscope deconvolution,” Microsc. Res. Tech., vol. 69, no. 4, pp. 260–266, 2006.

[66] M.-A. Bray, A. N. Fraser, T. P. Hasaka, and A. E. Carpenter, “Workflow and metrics for

image quality control in large-scale high-content screens,” J Biomol Screen, vol. 17,

no. 2, pp. 266–274, 2012.

67



Bibliography

[67] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-throughput mi-

croscopy image sets for validation,” Nature Methods, vol. 9, no. 7, p. 637, 2012.

[68] E. Williams, J. Moore, S. W. Li, G. Rustici, A. Tarkowska, A. Chessel, S. Leo, B. Antal,

R. K. Ferguson, U. Sarkans, A. Brazma, R. E. C. Salas, and J. R. Swedlow, “The image

data resource: A bioimage data integration and publication platform,” Nat Methods,

vol. 14, no. 8, pp. 775–781, 2017.

[69] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in ICLR, 2015.

[70] B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution

imaging by stochastic optical reconstruction microscopy,” Science, vol. 319, no. 5864,

pp. 810–813, 2008.

[71] A. Aristov, B. Lelandais, E. Rensen, and C. Zimmer, “ZOLA-3D allows flexible 3D

localization microscopy over an adjustable axial range,” Nat Commun, vol. 9, no. 1,

p. 2409, 2018.

[72] R. Morin, S. Bidon, A. Basarab, and D. Kouamé, “Semi-blind deconvolution for

resolution enhancement in ultrasound imaging,” in IEEE ICIP, 2013, pp. 1413–1417.

[73] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[74] W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt.

Soc. Am., vol. 62, no. 1, pp. 55–59, 1972.

[75] T. Chan and Chiu-Kwong Wong, “Total variation blind deconvolution,” IEEE Trans.

on Image Process., vol. 7, no. 3, pp. 370–375, 1998.

[76] L. Denis, E. Thiébaut, F. Soulez, J.-M. Becker, and R. Mourya, “Fast approximations

of shift-variant blur,” Int. J. Comput. Vis, vol. 115, no. 3, pp. 253–278, 2015.

[77] M. Temerinac Ott, O. Ronneberger, R. Nitschke, W. Driever, and H. Burkhardt, “Spa-

tially variant Lucy-Richardson deconvolution for multiview fusion of microscopical

3D images,” in IEEE ISBI, 2011, pp. 899–904.

[78] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image

quality assessment,” in IEEE ACSSC, vol. 2, 2004, pp. 1398–1402.

[79] J. Kotera, F. Šroubek, and P. Milanfar, “Blind deconvolution using alternating max-

imum a posteriori estimation with heavy-tailed priors,” in CAIP, Springer, 2013,

pp. 59–66.

[80] J. Dong, J. Pan, Z. Su, and M.-H. Yang, “Blind Image Deblurring with Outlier Han-

dling,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017,

pp. 2497–2505.

[81] M. Jin, S. Roth, and P. Favaro, “Normalized Blind Deconvolution,” presented at the

ECCV 2018, vol. 11211, Cham: Springer International Publishing, 2018, pp. 694–711.

[82] O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and partially saturated

images,” Int. J. Comput. Vis, vol. 110, no. 2, pp. 185–201, 2014.

68



Bibliography

[83] D. Perrone and P. Favaro, “Total Variation Blind Deconvolution: The Devil Is in the

Details,” in IEEE CVPR, 2014, pp. 2909–2916.

[84] D. Liu, B. Wen, X. Liu, Z. Wang, and T. Huang, “When Image Denoising Meets High-

Level Vision Tasks: A Deep Learning Approach,” in IJCAI, 2018, pp. 842–848.

[85] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a single

image,” ACM Trans. Graph., vol. 27, no. 3, p. 1, 2008.

[86] A. Shajkofci and M. Liebling, “DeepFocus: A Few-Shot Microscope Slide Auto-Focus

Using a Sample Invariant CNN-Based Sharpness Function,” in 2020 IEEE 17th Inter-

national Symposium on Biomedical Imaging (ISBI), 2020, pp. 164–168.

[87] Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam, “Laser autofocusing system

for high-resolution cell biological imaging,” J Microsc, vol. 221, no. 2, pp. 145–151,

2006.

[88] L. Silvestri, M. C. Müllenbroich, I. Costantini, A. P. Di Giovanna, L. Sacconi, and

F. S. Pavone, “RAPID: Real-time image-based autofocus for all wide-field optical

microscopy systems,” Bioengineering, BioRxiv, 2017.

[89] Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer microscopy: Select-

ing the optimal focus algorithm,” Microscopy Research and Technique, vol. 65, no. 3,

pp. 139–149, 2004.

[90] V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,”

Methods Cell Biol, vol. 114, pp. 545–560, 2013.

[91] L. Wei and E. Roberts, “Neural network control of focal position during time-lapse

microscopy of cells,” Sci Rep, vol. 8, no. 1, p. 7313, 2018.

[92] S. Jiang, J. Liao, Z. Bian, K. Guo, Y. Zhang, and G. Zheng, “Transform- and multi-

domain deep learning for single-frame rapid autofocusing in whole slide imaging,”

Biomed. Opt. Express, vol. 9, no. 4, p. 1601, 2018.

[93] H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for

single-shot autofocus microscopy,” Optica, vol. 6, no. 6, p. 794, 2019.

[94] A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control

of microscopes using µManager,” in Current Protocols in Molecular Biology, vol. 92,

Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010, pp. 1–17.

[95] S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins,

“Simple and robust image-based autofocusing for digital microscopy,” Opt. Express,

vol. 16, no. 12, p. 8670, 2008.

[96] A. F. J. Moffat, “A Theoretical Investigation of Focal Stellar Images in the Photo-

graphic Emulsion and Application to Photographic Photometry,” Astronomy and

Astrophysics, vol. 3, p. 455, 1969.

[97] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and their princi-

ples,” in IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion Proceedings, 2010, pp. 2432–2439.

69



Bibliography

[98] Hanghang Tong, Mingjing Li, Hongjiang Zhang, and Changshui Zhang, “Blur detec-

tion for digital images using wavelet transform,” Proceedings of the IEEE International

Conference on Multimedia and Expo (ICME), pp. 17–20, 2004.

[99] M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a

Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A, vol. 21, no. 12, pp. 2424–2430, 2004.

[100] S. K. Nayar and Y. Nakagawa, “Shape from focus: An effective approach for rough

surfaces,” in Proceedings of the IEEE International Conference on Robotics and Au-

tomation, 1990, 218–225 vol.2.

[101] J. H. Price and D. A. Gough, “Comparison of phase-contrast and fluorescence digital

autofocus for scanning microscopy,” Cytometry, vol. 16, no. 4, pp. 283–297, 1994.

[102] J. M. Mateos-Pérez, R. Redondo, R. Nava, J. C. Valdiviezo, G. Cristóbal, B. Escalante-

Ramírez, M. J. Ruiz-Serrano, J. Pascau, and M. Desco, “Comparative evaluation of

autofocus algorithms for a real-time system for automatic detection of Mycobac-

terium tuberculosis,” Cytometry, vol. 81A, no. 3, pp. 213–221, 2012.

[103] U. Ali and M. T. Mahmood, “Analysis of blur measure operators for single image blur

segmentation,” Applied Sciences, vol. 8, no. 5, p. 807, 2018.

[104] Y. LeCun, “Learning invariant feature hierarchies,” in Computer Vision – ECCV 2012.

Workshops and Demonstrations, A. Fusiello, V. Murino, and R. Cucchiara, Eds., 2012,

pp. 496–505.

[105] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomed-

ical Image Segmentation,” in Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,

Eds., vol. 9351, Cham: Springer International Publishing, 2015, pp. 234–241.

[106] T. Corpetti, D. Heitz, G. Arroyo, E. Mémin, and A. Santa-Cruz, “Fluid experimental

flow estimation based on an optical-flow scheme,” Exp Fluids, vol. 40, no. 1, pp. 80–

97, 2006.

[107] O. Brina, R. Ouared, O. Bonnefous, F. van Nijnatten, P. Bouillot, P. Bijlenga, K. Schaller,

K.-O. Lovblad, T. Grünhagen, D. Ruijters, and V. M. Pereira, “Intra-Aneurysmal Flow

Patterns: Illustrative Comparison among Digital Subtraction Angiography, Optical

Flow, and Computational Fluid Dynamics,” American Journal of Neuroradiology,

vol. 35, no. 12, pp. 2348–2353, 2014.

[108] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in 31st Conference on

Neural Information Processing Systems (NIPS 2017), 2017.

[109] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the Variance of the

Adaptive Learning Rate and Beyond,” in ICLR 2020, 2020.

[110] Z. Wan, B. Zhang, D. Chen, P. Zhang, D. Chen, J. Liao, and F. Wen, “Bringing Old

Photos Back to Life,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Seattle, WA, USA: IEEE, 2020, pp. 2744–2754.

70



Bibliography

[111] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning Texture Transformer Network

for Image Super-Resolution,” in 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020, pp. 5790–5799.

[112] V. Gardeux, F. P. A. David, A. Shajkofci, P. C. Schwalie, and B. Deplancke, “ASAP: A web-

based platform for the analysis and interactive visualization of single-cell RNA-seq

data,” Bioinformatics, vol. 33, no. 19, pp. 3123–3125, 2017.

[113] N. Hadadi, J. Hafner, A. Shajkofci, A. Zisaki, and V. Hatzimanikatis, “ATLAS of Bio-

chemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology

and Metabolic Engineering Studies,” ACS Synth. Biol., vol. 5, no. 10, pp. 1155–1166,

2016.

71





Glossary

AF Autofocus. vi, 45–48, 51, 52

BD Blind Deconvolution. 3, 14, 40, 43

CNN Convolutional Neural Network. i, v, 4, 10, 14–16, 18–25, 27–30, 34, 35, 39–43, 46–48, 51,

52, 54, 55, 57, 58

DNN deep neural network. i, 4, 5, 7, 8, 53, 57, 58

DOF depth-of-field. 46, 47, 49, 51

EWC Energy of Wavelet Coefficients. 48, 49

FOV field-of-view. 47

FWHM full width at half maximum. 47, 48, 52

GAN generative adversarial network. 8, 57

GPU graphics processing unit. i, 4

GSS Golden Section Search. 47, 48

HPF high-pass filter. 46, 48, 49, 51

LAPV Variance of Laplacian. 48, 49

MAP Maximum a Posteriori. 15, 16, 43

MRI magnetic resonance imaging. 5

PSF Point Spread Function. i, v, 3, 4, 7–10, 13–27, 29, 30, 33–36, 38–43, 47, 48, 51–55, 57

RL Richardson-Lucy. 38–40, 43, 58

73



Glossary

ROI Region of Interest. 48

SD Standard Deviation. 49, 50

SML Sum of Modified Laplacian. 48–51

SNR Signal-to-Noise Ratio. 22, 40, 41, 43

SSIM Structural Similarity. 40, 41, 43

STED stimulated emission depletion. 8

SVM support vector machines. 7

TV Total Variation. 39

TV-RL Total Variation regularized Richardson-Lucy. 10, 18, 38–41, 43

WS Wavelet Sparsity. 49–51

74



Publications

Published

A. Shajkofci and M. Liebling, “Spatially-Variant CNN-Based Point Spread Function Estimation

for Blind Deconvolution and Depth Estimation in Optical Microscopy,” IEEE Transactions on

Image Processing, vol. 29, pp. 5848–5861, 2020

A. Shajkofci and M. Liebling, “DeepFocus: A Few-Shot Microscope Slide Auto-Focus Using a

Sample Invariant CNN-Based Sharpness Function,” in 2020 IEEE 17th International Sympo-

sium on Biomedical Imaging (ISBI), Apr. 2020, pp. 164–168

Shajkofci A. & Liebling M., “Free annotated data for deep learning in microscopy? A hitchhiker’s

guide”, Photoniques (EOS) 104, EDP Sciences, 2020

A. Shajkofci and M. Liebling, “Semi-blind spatially-variant deconvolution in optical mi-

croscopy with local point spread function estimation by use of convolutional neural networks,”

in IEEE ICIP, 2018, pp. 3818–3822

V. Gardeux, F. P. A. David, A. Shajkofci, et al., “ASAP: A web-based platform for the analysis and

interactive visualization of single-cell RNA-seq data,” Bioinformatics, vol. 33, no. 19, pp. 3123–

3125, Oct. 1, 2017

N. Hadadi, J. Hafner, A. Shajkofci, et al., “ATLAS of Biochemistry: A Repository of All Possible

Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies,” ACS Synth.

Biol., vol. 5, no. 10, pp. 1155–1166, Oct. 21, 2016

In preparation

Shajkofci A. & Liebling M., “Assessing Flow in Light Microscopy with Deep Learning and

Applications in Cardiac Imaging”, IEEE International Symposium on Biomedical Imaging

(ISBI), 2021

75



Presentations

Shajkofci A., “DeepFocus: A Few-Shot Microscope Slide Auto-Focus Using a Sample Invariant

CNN-Based Sharpness Function”, IEEE International Symposium on Biomedical Imaging (ISBI),

2020

Shajkofci A., “DeepFocus: A Few-Shot Microscope Slide Auto-Focus Using a Sample Invariant

CNN-Based Sharpness Function”, Quantitative BioImaging Conference (QBI), 2020

Shajkofci A., “Semi-blind spatially-variant deconvolution and focus estimation in optical

microscopy by use of convolutional neural networks”, Quantitative BioImaging Conference

(QBI), 2019

Shajkofci A., “Semi-blind spatially-variant deconvolution in optical microscopy using convo-

lutional neural networks”, Swiss Machine Learning Days, 2018

Funding

This thesis has been funded by the Swiss National Science Foundation under Grant 206021_164022

and Grant 200020_179217, and Valais/Wallis Ambition.



ADRIAN SHAJKOFCI
Swiss  |  Champs du Bourg 28  |  1920 Martigny  |  079 412 36 98  |  
adrian.sh@mycable.ch

SCIENTIFIC SKILLS

- Background in maths, applied mathematics, physics, optics, statistics, cellular and 
molecular biology, genetics, biochemistry, neurosciences, biophysics, electronics.

- Proficiency in analog and digital signal processing for multidimensional data, 
sampling, filtering, statistical analysis.

- Excellent skills in data handling, dimensionality analysis and reduction, clustering, 
classification, regression using machine learning strategies.

- Good Skills in optimization, simulation, cost function design, data processing pipeline 
design, neural networks, deep learning, convolutional neural networks, 
autoencoders.

- Good skills in optics, microscope design, hardware and software.
- Good skills in embedded electronics, IoT integration.
- Good skills in graph theory, optimal pathway generation, connectivity and 

optimization.
- Good knowledge of bioinformatics, genetics, systems biology and systems chemistry.
- Basic biological lab and methods knowledge.
- Good planning skills and task management. Ease at taking decisions.
- Languages: native French speaker, English written and spoken, German read.

COMPUTER SCIENCE SKILLS

- Excellent proficiency in C++ / Python / SQL / PHP programming languages with focus 
on memory management, performance and scalability.

- Good knowledge of C / C# / Matlab / R / Java / HTML / CSS / Javascript programming 
languages.

- Knowledge of main web development frameworks (Vue.JS, Laravel, Django, React)
- Database design and optimization for MySQL, Oracle, Redis, HDF.
- Neural network architectures using Caffe, PyTorch, Tensorflow and DLib.
- Setup and administration of Linux / Windows Server servers, clusters and virtualized 

machines (ESXi, XenServer, Docker).
- Source code distribution and management systems.

PROFESSIONAL EXPERIENCE

Doctoral assistant, Computational Bioimaging Group, IDIAP 
Research Institute

2016-2020

[Martigny, Lausanne, Switzerland]
- Signal  processing for  digital  (microscopy)  images.  Development  of  convolutional

neural networks for spatial super-resolution (blind deconvolution), temporal super-
resolution  (blind  supervised  time-lapse  interpolation)  and  pipeline  parameter
optimization.

- Development of a robotics image acquisition platform aimed at reproducible research.
Architecture administrator, Laboratory of Computational 
Systems Biotechnology, EPFL

 2016-2018

[Lausanne, Switzerland]
- In silico enzymatic reactions and pathways as a service. Database distribution and server

API. Server load scaling. System architecture design and optimization for big data and



large-scale computing.

Software engineer, Laboratory of Computational Systems 
Biotechnology, EPFL

2014-2016

[Lausanne, Switzerland]
- Development  of  a  web-based software  suite  (C++ /  PHP /  SQL /  JS)  for  in  silico

enzymatic  pathways visualization,  search and comparison.  Visualization  of  results
using dynamic graphs & charts.

- Software development (C++/ SQL) of in silico enzymatic reactions and pathways 
generation.

Software engineer (Master’s thesis), Laboratory of Systems Biology and 
Genetics, EPFL                                                                                                                    2016
[Lausanne, Switzerland]

- Development of a web-based software suite (Java / JavaScript / R) for single-cell gene
expression  analysis.  Integration  of  multiple  normalization,  filtering,  dimensionality
reduction and clustering algorithms. Visualisation of the results in 2D and web-based
3D (WebGL).

Software engineer (internship), Saphetor SA, EPFL 
Innovation Park

2015

[Lausanne, Switzerland]
- Big data for patient-based human genome annotation. Genetic databases

integration in C++ / SQL.
Founder and CTO, Coronasense 2020-present

- Hardware and software development of an autonomous temperature sensor following
the COVID-19 outbreak.

- Sourcing and manufacturing management.

Founder and head software engineer, Darluok Server 2006-present

- Active  development  of  a  real-time  game  server  in  C++/SQL.  480'000  users  are
registered with more than 4000 simultaneous connections.

- Development of PHP/SQL frontend and backend.
- Creation of UNIX clusters and automation of maintenance operations.

Programmer Analyst (internship), C6 Intelligence 2010
[Basingstoke, United Kingdom]

- Name recognition algorithm development (PHP / Visual Basic).
Teaching Assistant in Computer Science (Prof. J. Sam), 
EPFL, Lausanne, Suisse

2013–2014

Teaching Assistant in Computer Science (Prof. J. 
Rougemont), EPFL, Lausanne, Suisse

2014-2015

Audio Engineering Society member (AES) 2014-present

Master’s degree (MSc) in Bioengineering, EPFL, Lausanne, 
Suisse

2014-2016

Bachelor’s degree (BSc) in Life Sciences and Engineering, 
EPFL, Lausanne, Suisse

2010-2013

Swiss Federal Scientific Maturity Diploma, Collège de 
l’Abbaye, St-Maurice, Suisse

2005-2010


	Abstract (English/Français)
	Contents
	I Introduction and Methods
	Introduction
	Biomicroscopy
	Deep Learning for microscopy
	The data issue
	Learning from large training datasets
	Learning from other domains
	Learning from simulated data sets
	Learning from the input image itself

	Roadmap
	Problem statement
	Method overview


	Deep neural networks for PSF estimation
	Introduction
	Methods
	Object and image formation model
	Parametric degradation models
	Problem statement
	Method overview
	psf parameter estimation in image patches (shift-invariant image formation model)
	Spatially-variant psf parameter mapping

	Experiments
	Infrastructure
	Characterization of the cnn regression performance
	Robustness of psf regression against input degradation

	Discussion
	Characterization of the cnn regression performance
	Robustness analysis against input degradation

	Conclusion


	II Applications
	Depth estimation
	Methods
	Results
	Discussion

	Blind spatially-variant deconvolution
	Introduction
	Methods
	Results
	Discussion

	DeepFocus: a Few-shot Microscope Slide Auto-Focus
	Introduction
	Problem statement
	Method description
	Characterization of regression invariance to image diversity
	Characterization of information measure of the scoring function
	Characterization of the af error as a function of the number of acquisitions
	Implementation and U-Net extension
	Conclusion

	Flow motion estimation
	Introduction
	Methods
	Problem statement
	Image formation model
	Estimation of the displacement vector field

	Experiments
	Results

	Conclusion and outlooks
	Bibliography
	Glossary
	Publications
	Curriculum Vitae


