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Abstract—Machine learning-based (ML) systems are being largely deployed since the last decade in a myriad of scenarios impacting
several instances in our daily lives. With this vast sort of applications, aspects of fairness start to rise in the spotlight due to the social
impact that this can get in minorities. In this work aspects of fairness in biometrics are addressed. First, we introduce the first figure of
merit that is able to evaluate and compare fairness aspects between multiple biometric verification systems, the so-called Fairness
Discrepancy Rate (FDR). A use case with two synthetic biometric systems is introduced and demonstrates the potential of this figure of
merit in extreme cases of fair and unfair behavior. Second, a use case using face biometrics is presented where several systems are
evaluated compared with this new figure of merit using three public datasets exploring gender and race demographics.

Index Terms—Biometrics, Fairness, Face Recognition
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1 INTRODUCTION

THe pipeline from research to deployment of an ML-
based system can assume several shapes with different

steps. In abstract terms (and allow us to do such simplifi-
cation), such pipeline is composed of i-) Data Collection:
where the “state of the world” is reduced to a set of rows
and columns of data (e.g. face images, bank transactions,
medical data, etc...); ii-) Modelling: where the “model” is
supposed to summarize the patterns of the data and be
able to make generalizations (via supervised/unsupervised
learning, etc..); iii-) Benchmarking: where the model is eval-
uated with respect to some figure of merit (e.g. accuracy, f1-
score, etc..); iv-): Feedback where it is decided if the model
is “good” for deployment or not; if not, steps (i) and/or (ii)
needs to be redone; v-) Deployment: ML-System goes to
production1. During the benchmarking stage, it is common
to use reference databases. Such reference databases are
supposed to represent somehow operational conditions and
it is hypothesized that ML-based systems that presents high
accuracy, high f1 score, low false-positive rate, low false-
negative rate, etc in such benchmarks is a proxy to have the
same figures of merit in operational conditions. Once this is
achieved (by any criteria ML engineers decide), ML is “safe”
to be deployed.

Fairness issues arise from the analysis of these figures of
merit in specific demographics groups (e.g, gender, ethnic-
ity, race, revenue levels, or any covariate in general) and the
observation that operational conditions originally estimated
can’t be reproduced in those. The large scale deployment
of such systems in so many different scenarios raises the
debate about its fairness and its impact on our lives. For
instance, the book Weapons of Math Destruction [1] presents
several cases where unfair decision-making tools based on
ML impacted the life of city populations in a negative way
if, among other things, aspects of fairness are not taken into

1. Usually, feedbacks are also done after deployment, but let’s keep
this simplification as is because it is enough for our purposes.

(a) Score: -0.6445 (b) Score: -0.6307

(c) Score: -0.1596 (d) Score: -0.1679

Fig. 1: Inception Resnet v2 FR system: Genuine comparison
pairs extracted MOBIO Database. The decision threshold is:
τ = −0.5298. Hence, score ≥ τ , the comparison pair is
accepted; otherwise it is rejected.

account.
Decision-making tools based on biometrics, as part of

this Machine Learning wave, have been largely deployed in
the recent decade. For instance, it is present in our daily lives
for data protection (e.g to unlock mobile phones and/or
computers), law enforcement, airport e-gates, and among
other applications. This work addresses fairness aspects in
biometric systems and its contributions are twofold. First, it
is discussed the factors to consider a biometric verification
system as fair and we introduce the first figure of merit in
this field, the Fairness Discrepancy Rate. Second, a case of
study of this figure of merit is presented using face recogni-
tion as a biometric trait. We aim to make this reproducible:
all the source code, trained models, and scores are made
publicly available. Details on how to reproduce this work

ar
X

iv
:2

01
1.

02
39

5v
1 

 [
cs

.C
V

] 
 4

 N
ov

 2
02

0



2

can be found on the provided link2.

2 RELATED WORK

In this section, we present the related work by first dis-
cussing the efforts made by the Machine Learning commu-
nity to suppress demographic biases and then we move to
efforts made by the biometrics community.

2.1 Machine Learning Background
Many criteria to assess and address fairness in pattern recog-
nition problems have been proposed over the years, each
one phrasing the problem in different ways. The recent work
from [2] hypothesizes that most of these criteria described
in the machine learning literature boils down into three
major categories of conditional independence and they are:
Independence, Separation, and Sufficiency.

To illustrate these criteria, let’s consider X ∈ Rn a
random variable denoting the input data, D = {d1, d2...dn}
a random variable denoting a set of sensitive attributes (e.g.
gender, demographics, etc), Y ∈ {0, 1} (for simplicity) a
random variable denoting the target variable (representing a
binary classifier) and F : f(X,D) the trained predictor (that
can be possibly thresholded). The first non-discrimination
criteria, and the most simplistic one, is independence which
simply requires that the classifier F must be independent of
the sensitive attributes D, or F ⊥ D. This is also addressed
as demographic parity or statistical parity. For our the binary
classification case, this can be rewritten as:

P{F = 1|D = di} = P{F = 1|D = dj}∀{i, j} ∈ D. (1)

This criteria is largely used in ML in general to mitigate
biases either via regularization criterias [3], representation
learning criterias [4], [5], [6], or post-processing mechanisms
[7]. Assuming independence has some issues in addressing
fairness and this is largely discussed in [8] and more recently
in [2].

The second criteria is separation where it explicitly ac-
knowledges that the target variable Y might be correlated
with D. This might be desirable in some scenarios. For
instance, a medical doctor might argue that a particular dis-
ease is more probable to be developed in one demographic
group than other and a “disease” prediction function F
must take this into account. This is summarized by the
following condition independence: F ⊥ D|Y . For our the
binary classification case, this is equivalent to these two
requirements:

P{F = 1|Y = 1, D = di} = P{F = 1|Y = 1, D = dj}
∀{i, j} ∈ D

(2)

and

P{F = 1|Y = 0, D = di} = P{F = 1|Y = 0, D = dj}
∀{i, j} ∈ D.

(3)

What separation requires is that all demographic groups
should experience the same true/false positive rates and the

2. https://gitlab.idiap.ch/bob/bob.paper.fdr

same true/false negative rates [2] in order to be fair. This is
addressed at training time for some classification tasks in
[8], [9].

The third criteria is sufficiency, which basically formal-
izes that the value of F includes the sensitive attribute D for
prediction. Hence, F is sufficient for D if Y ⊥ D|F , which
basically means that F doesn’t need to explicitly see D to
predict Y . In this case:

P{Y = 1|F = s,D = di} = P{Y = 1|F = s,D = dj}
∀{i, j} ∈ D.

(4)

Those three basic fairness criteria supports most of the
what was published in the Machine Learning literature
either explicitly or implicitly.

2.2 Fairness in Biometrics

In the biometrics literature, aspects of fairness are being
recently addressed for some biometric traits. For instance,
the Face Recognition Vendor Test (FRVT) has a special report
addressing demographic effects in face recognition3 where
several analysis observing, mostly, the effect of race and
gender are made using more then 100 COTS (Commercial
of The Shelf) systems.

This recent work from [10] describes some underlying
factors that biases COTS face recognition systems with
respect to race. For instance, it was observed that the “Other
Race Effect”, well known in humans, [11] can also be ob-
served in FR algorithms; FR systems developed in Asia
are more accurate with Asians than with Caucasians, and
vice-versa. Furthermore, it was observed that racial biases
are more frequently observed in low quality samples. Such
observation about image quality was also raised by the
FRVT report. Studying race, the work from [12] observed
consistently higher False Match Rates (FMR) with African
American cohorts compared with Caucasians using two
COTS systems. Furthermore, this work extended its analysis
with ICAO face checker4. It was observed that ICAO SDKs
work better for Caucasians than with African Americans.
The work from [13] made an extensive study analysing
several age cohorts using one COTS system. Among several
observations made, the most impacting one was the high
FMR and high False Non Match Rates (FNMR) in pairs of
images where age is lower than four years old.

Still on face biometrics, the work from [3] introduces the
Racial Faces in the Wild dataset. Such dataset is a subset
of the MSCeleb-1M [14] whose identities are organized in
four different races (Caucasians, Black, Indian and Chinese).
Using such data, and using the independence criteria, the
authors, at training time, regularized different deep neural
networks by minimizing the Mutual Information between
the face classifier and the demographic attributes.

Biases towards gender were also observed in the peri-
ocular region of the face. For instance, the work from [15]
demonstrates that several periocular recognition systems
performs better with male subjects than with female ones.

3. https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf
4. https://www.icao.int/Security/FAL/TRIP/Documents/TR - Por-

trait Quality v1.0.pdf
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Fig. 2: Example of a canonical fair biometric verification
system with three demographics (0, 1, 2) and six operational
thresholds (depicted with the dashed lines). Performance
measures in terms of FMR(τ) and FNMR(τ) can be found
in TABLE 1.

The NIST SRE5 is the most relevant benchmark for
speaker recognition and along last editions it consistently
evaluates error rates looking at gender cohorts.

To the best of our knowledge the works from biometric
literature that addresses somehow fairness, by either ana-
lyzing COTS systems or by proposing a strategy to mitigate
it, does so using different criteria. However, the trend seems
to achieve somehow the statistical parity (or independence),
even if this detail is not explicitly mentioned. Even if this is
the trend, a figure of merit to directly address it is nonexis-
tent. For instance, the work from [16] uses the Area Under
the ROC curve to assess the fairness of a biometric veri-
fication system under different demographic groups. ROC
curves measures the True and False Positive Rates (TPR and
FPR respectively) trade-offs. Although this seems sensible
to assess demographic discrepancies, it has a serious flaw; it
assumes that the verification decision threshold (let’s call
it τ ; we’ll formally define this further) is demographic-
specific. Hence, TPR(τ) and FPR(τ) is computed under
different decision thresholds depending of the demographic
and can give a false impression that a biometric verification
system is fair (this problem is further discussed in section 3).
Furthermore, this doesn’t represent operational conditions
where one single τ is set, and this operational point has
to be fair with respect to different demographics. This
problem can be observed also in several works that refers
to biometric verification; for instance, in [3], [10], [15], [17],
[18], [19].

Some works in the biometrics literature explicitly ad-
vocate that the value of τ should be demographic-specific,
such as in [20], [21]. Even the fairness figure of merit pro-
posed by [2, (sec.2, p.14)] (covering a general case of pattern
recognition) assumes one τ per demographic as well. Again,
in biometric verification, this is not practical for several
reasons. First, at test-time, it will involve a classification of
privacy-sensitive attributes (e.g gender, age,...), which might
not be legal or ethical in some applications. Second, it will
involve another classification task in the pipeline that might

5. https://sre.nist.gov/

TABLE 1: Canonical fair biometric verification system:
FNMR(τ), FMR(τ), and FDR(τ) per demographic (Demog.)
where the operational points are defined as τ = FMRx

*

x 101 102 103 104 105 106

Demog. FMR(τ)
0 0.080 0.008 0.001 0.000 0.000 0.000
1 0.082 0.008 0.001 0.000 0.000 0.000
2 0.080 0.008 0.000 0.000 0.000 0.000

FNMR(τ)
0 0.0 0.0 0.027 0.038 0.186 0.457
1 0.0 0.001 0.041 0.040 0.191 0.459
2 0.0 0.0 0.044 0.041 0.175 0.434

FDR(τ) 0.999 0.999 0.999 0.998 0.992 0.987

*τ is set using an independent zeroth-effort impostor score distribution

with scores from all demographics. It can be seen as a development set.

be error-prone and subject to biases as well.
FRVT goes in the right direction with respect to the

aforementioned threshold problem by discussing the impact
of demographics in terms of FMR(τ) and FNMR(τ) for
one decision threshold only. Such a decision threshold is
picked from an independent zero-effort score distribution,
where the demographic doesn’t play a role. This is the most
sensible evaluation if the goal is to assess fairness in op-
erational conditions. However, FRVT discussess the impact
of FMR(τ) and FNMR(τ) separately. Hence, the trade-off
between them is not considered. Furthermore, only one
decision threshold is analysed. This limits the perception of
fairness under different operational points. In [22] a similar
direction was taken where risk distributions among the
different demographic groups were equalized via different
approximation methods, introducing then threshold invari-
ant classifiers. However, no analysis in terms FMR(τ) and
FNMR(τ) was carried out.

Our work tries to fill these evaluation gaps for biometric
verification systems, by: (i) - taking into consideration the
above mentioned threshold problems (ii) - considering the
FMR(τ) and FNMR(τ) trade-off in the fairness assessment,
and (iii) - taking into account different operation points
(decision thresholds).

3 FAIRNESS DISCREPANCY RATE: A FIGURE OF
MERIT TO ASSESS FAIRNESS IN BIOMETRIC VERIFI-
CATION

Biometric verification is the task of verifying if a given
sample is from a claimed identity or not. This decision is
made based on a scoring function s(e, p) and a decision
threshold τ , where e is the claimed identity, p is a probe
sample (test sample). If s(e, p) ≥ τ it is said that e and
p are from the same identity. Conversely, if s(e, p) < τ it
is said that e and p are not from the same identity. There
are two possible types of errors that biometric verification
system can make and they are the False Match Rate (FMR)
and False Non Match Rate (FNMR). Worth noting that these
two errors are functions of a decision threshold τ , which its
impact is discussed further.

The value of τ plays a decisive role in these two errors
and it is usually set targeting an specific FMR value in a
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Fig. 3: Example of a canonical UNfair biometric verification
system with three demographics (0, 1, 2) and six operational
points (depicted with the dashed lines). Performance mea-
sures in terms of FMR(τ) and FNMR(τ) can be found in
TABLE 2.

reference impostor score distribution set6. Some examples of
such operational points are: τ = FMR10 corresponds to the τ
where FMR reaches 0.1 (or 10%) in the impostor distribution
scores; τ = FMR1000 corresponds to the τ where FMR
reaches 0.001 (or 0.1%) in the impostor distribution scores;
τ = FMR106 corresponds to the τ where FMR reaches 10−6

(or 0.001%) in the impostor distribution scores7.
Given a test set, “good” biometric recognition systems

should present FMRx(τ) around the operational point given
by x and the lowest value as possible for FNMR(τ). Fur-
thermore, for a “good” biometric system to be considered
fair, it should present FMRx(τ) around the operational point
x for all observed demographic groups and approximately
“same” FNMR(τ) for all observed demographic groups. The
impact of the decision thresholds is illustrated in Figure
1. In this example we chose two comparison scores from
male and female subjects of the MOBIO dataset using one
of our tested Deep Convolutional Neural Network (DCNN)
(see section 4 for further details). Those genuine pairs were
cherry-picked by looking at the score values that are around
the average genuine scores for each demographic group. τ
in this case is equals to −0.5298. It can be noticed that both
comparisons using female subjects are rejected using this
operational point and the two male subjects are accepted.

Lets put this in terms of separation criteria discussed
before (see equations 2 and 3) and define fairness more
formally first observing FMR(τ) and then FNMR(τ). Given
a set of demographic groups D = {d1, d2, ..., dn}, and
τ = FMRx

8, a biometric verification system is considered
fair with respect to FMR if the following premisse holds:

Premisse 1. FMRdi(τ) ≥ FMRdj (τ)− ε ∀di, dj ∈ D.

6. Impostor score distribution is made of s(e, p) values where e and
p are not from the same identity

7. Examples on how this is set in practice can be seen in this report
https://pages.nist.gov/frvt/reports/11/frvt 11 report.pdf section 1.1

8. τ is set using an independent zeroth-effort impostor score distri-
bution with scores from all demographics

TABLE 2: Canonical UNfair biometric verification system:
FNMR(τ), FMR(τ), and FDR(τ) per demographic (Demog.)
where the operational points are defined as τ = FMRx

*

x 101 102 103 104 105 106

Demog. FMRtest(τ)
0 0.225 0.025 0.002 0.002 0.000 0.000
1 0.002 0.000 0.000 0.000 0.000 0.000
2 0.006 0.000 0.000 0.000 0.000 0.000

FNMRtest(τ)
0 0.0 0.000 0.000 0.000 0.000 0.000
1 0.0 0.006 0.087 0.247 0.459 0.648
2 0.002 0.570 0.857 0.944 0.981 0.991

FDR(τ) 0.886 0.702 0.570 0.528 0.509 0.5045
*τ is set using an independent zeroth-effort impostor score distribution

with scores from all demographics. It can be seen as a development set.

Such premisse can be written with the following equa-
tion:

A(τ) = max(|FMRdi(τ)−FMRdj (τ)|) ≤ ε ∀di, dj ∈ D, (5)

where ε is a relaxation constraint.
Conversely, in terms of FNMR, a biometric verification

system is considered fair if the following premisse holds:

Premisse 2. FNMRdi(τ) ≥ FNMRdj (τ) ∀di, dj ∈ D.

Such premisse can be written with the following equa-
tion:

B(τ) = max(|FNMRdi(τ)− FNMRdj (τ)|) ≤ ε ∀di, dj ∈ D.
(6)

Since 5 and 6 are functions of τ , both can be summarized
in one figure of merit, that we refer as Fairness Discrepancy
Rate (FDR) which is defined as:

FDR(τ) = 1− (αA(τ) + (1− α)B(τ)), (7)

where α is a hyper-parameter that defines the weight
of A(τ) in the figure of merit (the importance of False
Matches).

The values that FDR can take varies from 0 (the most un-
fair behavior possible) to 1 (the most fair behavior possible).
As with equations 5 and 6 FDR can be possibly thresholded
with a slack variable ε and an overall threshold defining
what is fair and what is not can be defined as:{

fair if FDR(τ) ≥ 1− ε
unfair otherwise

(8)

The role of ε is discussed further in this section.
The following subsection presents one example of a

desired fair biometric recognition system and one example
of an undesired unfair biometric verification system that
illustrates how FDR evaluates these two systems.

3.1 Fairness Discrepancy Rate using synthetic data
Figure 2 shows a canonical fictional example of a fair bio-
metric recognition system. Each box plot shows the score
distributions, from both, zeroth effort impostors (in red) and
genuines (in blue) of three abstract demographics (labeled as
0, 1 and 2). It is possible to observe that the score distribution
from the three demographics are systematically aligned in
all quartiles, which indicates that Premisses 1 and 2 can hold
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for both FMR and FNMR for any given τ . In this experiment
τ = FMRx(τ) where x varies from 10 to 106. Conversely,
on the other side of the spectrum, an example of unfair
biometric verification system is presented in the Figure 3. As
it can be noticed, the score distributions from both, zeroth
effort impostors and genuines, are not as aligned as in the
previous example (see Figure 2). Intuitively, one can argue
that it is difficult to have a single threshold τ that holds
Premisses 1 and 2.

Let’s now test FDR using these two theoretical systems9.
Table 1 presents FNMR(τ), FMR(τ) and FDR(τ) for dif-
ferent values of τ of the fair synthetic biometric system
presented in Figure 2. In this experiment τ = FMRx(τ)
where x varies from 10 to 106. It is possible to observe
that FDR(τ) is stable and higher than 0.99 for all values
of x, which indicates a fair behavior with respect to these
abstract demographics. To analyse the other side of the spec-
trum, Table 2 presents FNMR(τ), FMR(τ) and FDR(τ) for
different values of τ of the unfair synthetic biometric system
presented in Figure 3. The values of τ are set in the same
way as in the previous experiment. It is possible observe that
FDR(τ) is consistently higher for the fair biometric system
than with the unfair one, which indicates a consistency in
this figure of merit in the evaluation of fairness. On the
other hand, Figure 4 shows the ROC curves of these two
synthetic examples and the three demographics. It can be
noticed that all 6 ROC curves are perfectly aligned in the
top corner of the figure, showing perfect recognition rates.
In fact Area Under the ROC is equals to 1 for every single
demographic for both fair/unfair synthetic verification sys-
tems. This example clearly gives the false impression that
the unfair synthetic verification system is fair, which is not
as we could spot with the FDR.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4
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Fair Biom. Systems
Unfair Biom. Systems

Fig. 4: ROC curves for the canonical fair and unfair synthetic
verification systems. It can be observed that analysing this
curves gives a false impression that the unfair synthetic
verification system is fair.

FDR can also be plotted as function of x (or τ ) so two
biometric systems can be compared in a more intuitive
way. Figure 5 presents how two biometric systems can be

9. This example is available in the following link:
https://github.com/tiagofrepereira2012/fdr/

compared under this figure of metric. It can be observed
that FDR is stable for all values of x for the fair biometric
system. For the unfair biometric system it can be noticed
that FDR substantially decreases once x increases (when
less false-matches are allowed). Another way to establish a
comparison between two systems with respect to its fairness
is by analysing the Area Under FDR. For a given range
of τ (estimated by using x) the Area Under FDR can be
calculated by simply integrating the FDR(τ) over x. The
value of x can be scaled from 0 to 1, so Area Under FDR is
bounded from 0 to 1. However, by scaling it, the range of x
has to be reported. Hence, only Area Under FDR whose
range of x matches can be fairly compared as presented
in Table 3. Using this figure of merit it is also possible to
observe that the system that it is intuitively considered as
fair (see Figure 2) it presents higher Area Under FDR than
the one it was intuitively considered as unfair (see Figure 3).

TABLE 3: Area Under the Fairness Discrepancy Rate for x
varying from 101 to 106.

Fair Unfair
Area under FDR 0.999 0.777

101 102 103 104 105 106

10x

0.0

0.2

0.4

0.6

0.8

1.0

FD
R(

)

Fair Biom. System
Unfair Biom. System

Fig. 5: FDR as a function of x from two synthetic biometric
systems from Figures 2 and 3.

3.2 The role of alpha

The hyper-parameter α in equation 7 has a crucial role in
the computation of FDR(τ). As previously mentioned, it
controls the weight of False Matches in the FDR compu-
tation. Such value is a business/application decision. For
instance, a bank that deploys a biometric verification system
in an ATM might prefer to favor fairness towards False Non-
Matches and, for this reason, α can assume low values. On
the other hand, in a border control scenario, where false
matches are more critical, decision-makers might decide to
favor fairness towards False-Matches. Hence, α should be
high.

Figure 6 shows the α trade-off between the two synthetic
systems; the fair ones are represented by the solid lines and
the unfair by the dashed lines. It is possible to observe that
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the fair system presents a FDR(τ) ∼ 0.99 no matter the
value of α. For the unfair system, FDR(τ) presents a stepper
decay once α decreases. In the limit (when α = 0) the unfair
biometric system is completely unfair (FDR(τ) ∼ 0). This
also can be seen via the Area Under FDR. As can be noticed
in Table 4, for the unfair biometric system, the Area Under
FDR decreases once α decreases.

101 102 103 104 105 106

10x

0.0

0.2

0.4

0.6

0.8

1.0

FD
R(

)

Fig. 6: FDR(τ)|α for different values of α (see equation 7).
Solid lines represent the FDR(τ)|α for the synthetic fair
verification system. Dashed lines represent the FDR(τ)|α for
the synthetic unfair verification system.

TABLE 4: Area Under the FDR for different values of α for
x varying from 101 to 106.

Fair Unfair
α = 0 0.99 0.38
α = 0.25 0.99 0.51
α = 0.5 0.99 0.63
α = 0.75 0.99 0.76
α = 1 0.99 0.89

3.3 The role of epsilon

Another hyper-parameter in this figure of merit is the values
that ε can assume. As mentioned in equation 8, this value
is supposed to define what is fair and what is not with
respect to FDR(τ). To the best of our knowledge, there’s
no reference value that we can rely on. In some very specific
cases, there are some guidelines. For instance, as mentioned
in [2, (sec 2, p.19)], the U.S Equal Employment Opportunity
Commission10 states that a disparate behavior between two
groups occurs if the probability of selection between them
differ from more than 20%. We can reasonably agree that
setting that to have ε ∼ 0.20 in equation 8 is not realistic for
a biometric verification system.

In this work we will not draw a line to define what’s
fair and what’s not for biometric verification systems. As
mentioned before, there’s no legal or technical basis for such,
and the ones that do exists are not suitable for biometrics.

10. https://www.eeoc.gov/laws/guidance/employment-tests-and-
selection-procedures

Instead, we’ll use both, FDR and Area Under FDR to com-
pare different biometric verification systems and define the
relative fairness between them.

Fig. 7: MEDS II database: distribution of gender by race
(extracted from [23])

4 FACE VERIFICATION USE CASE

In this section, a case of study of the Fairness Discrepancy
Rate is presented using different face verification systems.
To approach this four face verification systems are used.
The first system, is the Facenet by David Sandberg [24].
This is the closest open-source implementation of the model
proposed in [25], where neither training data or source code
were made available. For this evaluation we have used
the 20170512-110547 model (Inception-ResNet v1), trained
on the MS-Celeb-1M dataset. The second system is also a
DCNN based on the Inception-Resnet v2 architecture [26].
This DCCN was trained also using MS-Celeb-1M dataset
using a joint loss function combining the cross-entropy loss
and center loss. More details on how this DCNN was trained
can be found in [27, p.147]. For these two biometric systems,
comparisons between samples are made with the embed-
dings of each DCNN using the cosine similarity metric.
Given the embeddings e and p for enrollment and probing
respectively, the similarity s is given by Equation 9.

s(e, p) = 1− e · p
‖e‖2 · ‖p‖2

(9)

The third face recognition system is a baseline that came
before the DCNNs era: Gabor Graph matching [28]. Finally,
the fourth face verification system a Commercial Of The
Shelf System (COTS) developed by RankONE 11.

4.1 Dataset setup
There are several databases publicly available in the litera-
ture with privacy-sensible attributes where face verification
tests can be made using those attributes. The most recent
ones available are based on images from celebrities scraped
from the web, such as Racial Faces in the Wild (RFW)
[3], Balanced Faces in the Wild [17] and, IARPA Janus
Benchmark C (IJB-C) [29]. Although all the aforementioned
datasets contain meta-information where we can do our
fairness assessment, they are not captured in controlled

11. https://www.rankone.io version 1.22.1
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conditions and this might interfere with our fairness as-
sessment using FDR. Since this is the first work with this
figure of merit, we’ve focused on three datasets where
capture conditions are relatively well-controlled and whose
demographic attributes are available. The selected datasets
are: MEDS II dataset [23], MORPH dataset [30] and MOBIO
dataset [31].

Fig. 8: MORPH database: subject example (extracted from
[30])

The MEDS II database was developed by NIST to sup-
port and assists their biometrics evaluation program. It is
composed by 518 identities from both men/women (labeled
as M and F) and five different race annotations and they
are Asian, Black, American Indian, Unknown and White
(labeled as A, B, I, U and W). Unfortunately, the distribution
of gender and race is extremely unbalanced as it can be
observed in Figure 7. Furthermore, only 256 subjects has
more than one image sample (obviously it is not possible
to do a biometric evaluation with one sample per subject).
For this reason, we’ve performed our evaluation in a subset
of this dataset, which is composed only by 194 subjects
composed by White and Black men only. More details on
how this evaluation protocol is organized can be found in its
webpage12. Its evaluation protocol is published in a python
package; hence, future researchers will be able to reproduce
exactly the same tests executed in this work.

The MORPH dataset is relatively old, but is getting some
traction recently ( [10], [12]) mostly because its richness
with respect to sensitive attributes. It is composed by 55,000
samples from 13,000 subjects from men and women and five
race clusters (called ancestry) and they are the following:
African, European, Asian, Hispanic and Others. Figure 8
present some samples from this database. More details on
how this evaluation protocol is organized can be found in
its webpage13, whose organization is similar with the one
made with the previous dataset.

The MOBIO dataset is a video database containing bi-
modal data (face/speaker). It is composed by 152 people
(split in the two genders male and female), mostly Euro-
peans, split in 5 sessions (few weeks time lapse between
sessions). The database was recorded using two types of
mobile devices: mobile phones (NOKIA N93i) and laptop
computers(standard 2008 MacBook). In this paper we only
use the mobile phone data. As with other datasets, its
evaluation protocol is also published as a python package14.

12. https://gitlab.idiap.ch/bob/bob.db.meds
13. https://gitlab.idiap.ch/bob/bob.db.morph
14. https://gitlab.idiap.ch/bob/bob.db.mobio

TABLE 5: MEDS II - Inception Resnet v2: FNMR(τ),
FMR(τ), and FDR(τ) per demographic (Demog.) in the test
set. These figures of merit are fragmented by the race of the
samples used for enrollment and the race of the samples
used for probe (“(e-p)” in the table.)*.

x 10 102 103 104 105

Demog (e-p) FMRx(τ)
White - White 0.095 0.005 0.001 0 0
White - Black 0.029 0 0 0 0
Black - White 0.028 0 0 0 0
Black - Black 0.235 0.028 0.003 0 0

FNMRx(τ)
White - White 0 0.016 0.082 0.115 0.148

Black - Black 0 0.007 0.020 0.067 0.101
FDR(τ) 0.930 0.984 0.968 0.976 0.976

*In this example τ = FMRdev
x where dev is the development-set.

FMR(τ), FNMR(τ) and FDR(τ) are reported using the test-set

4.2 Experiments

In this section we discuss how fair the four of-the-shelf
face verification systems are using the Fairness Discrepancy
Rate. Each one of the following subsections discusses each
database in isolation. In each one of the experiments both
False Matches and False Non Matches has the same weight
therefore, α is equal to 0.5. As aforementioned, we’ll not set
a value for ε, instead, we’ll use both, FDR and Area Under
FDR to compare different biometric verification systems and
define the relative fairness between them.

4.3 MEDS II database (Fairness with respect to race)
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Fig. 9: MEDS II: Fairness Discrepancy Rate of different face
verification systems for different decision thresholds

Table 5 presents the FMR(τ), FNMR(τ) and FDR(τ) in
the test set for the Inception Resnet v2 system. For the sake
of brevity, only this system is presented in this extensive
manner. Please, check the supplementary material to have
information about the other systems. In this experiment,
τ was set at different operational points in the impostor
score distribution from an independent set (development
set in this case). It is worth noting that such impostor score
distribution contains samples from all races; which is the
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closest scenario from reality, where one single threshold has
to be fair to all demographic groups.

Both FMRx(τ) and FNMRx(τ) tables are fragmented by
demographics (race in this case). Hence, in Table 5, “White
- White” means biometric references from White subjects
compared with probe samples from White subjects, and so
on.

In terms of FMRx(τ) it is possible to observe that for
x = 10 and x = 102 (FMR10(τ) or FMR102(τ)) the face
verification system tends to have more false alarms for
comparison between biometric references and probes from
Black subjects. In terms of FNMRx(τ), it is possible to notice
that such a system tends to reject more White subjects than
Black for x ≥ 102. Figure 9 presents the FDR plot of the
four different biometric systems covering the same decision
thresholds showed in Table 5. It is possible to see that the
Gabor Graph baselines are less fair compared with Facenet,
Inception Resnet v2, and the COTS. Furthermore, Facenet
is only fairer than Inception Resnet v2 for one decision
threshold (x = 103). The COTS is fairer than all systems
for all decision thresholds. To have a full picture about
the fairness of such systems, Table 6 presents the Area
Under FDR (x varying from 10 to 105) of every biometric
verification system. It is possible to observe that the COTS
indeed is fairer than the other evaluated systems.

TABLE 6: MEDS II: Area Under the Fairness Discrepancy
Rate for x varying from 101 to 105.

FDR AUC
Inception-Resnet-v2 0.958

Facenet 0.940
Gabor Graph 0.934

COTS 0.97
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Fig. 10: Morph: Fairness Discrepancy Rate of different face
verification systems for different decision thresholds

4.4 MORPH database (Fairness with respect to race)
Table 7 presents the FMR(τ), FNMR(τ) and FDR(τ) in the
test set (Male subjects only) for the Inception Resnet v2
verification system. As with the last section, for the sake of
brevity only this system will be presented in this extensive

TABLE 7: MORPH - Inception Resnet v2: FNMR(τ),
FMR(τ), and FDR(τ) per demographic (Demog.) in the test
set. These figures of merit are fragmented by the race of the
samples used for enrollment and the race of the samples
used for probe (“(e-p)” in the table.)*

x 10 102 103 104 105 106

Demog. (e-p) FMRx(τ)
Asian - Asian 0.587 0.231 0.017 0 0 0
Asian - Black 0.018 0 0 0 0 0
Asian - Hisp. 0.113 0.004 0 0 0 0

Asian - White 0.007 0 0 0 0 0
Black - Asian 0.025 0 0 0 0 0
Black - Black 0.184 0.017 0.001 0 0 0
Black - Hisp. 0.020 0 0 0 0 0

Black - White 0.007 0 0 0 0 0
Hisp. - Asian 0.12 0.006 0.001 0.001 0 0
Hisp. - Black 0.017 0 0 0 0 0
Hisp. - Hisp. 0.202 0.018 0.001 0 0 0

Hisp. - White 0.024 0.001 0 0 0 0
White - Asian 0.01 0 0 0 0 0
White - Black 0.007 0 0 0 0 0
White - Hisp. 0.024 0.001 0 0 0 0

White - White 0.066 0.003 0 0 0 0
FNMRx(τ)

Asian - Asian 0 0 0 0 0 0
Black - Black 0 0.001 0.002 0.01 0.038 0.106
Hisp. - Hisp. 0 0 0 0.025 0.076 0.19

White - White 0 0.002 0.015 0.074 0.202 0.355
FDR(τ) 0.7395 0.885 0.984 0.963 0.899 0.8225

*In this example τ = FMRdev
x where dev is the development-set.

FMR(τ), FNMR(τ) and FDR(τ) are reported using the test-set

manner. Please, check the supplementary material to have
information about the other systems. In this experiment τ
was set at different operational points in the impostor score
distribution from the development set.

Both FMRx(τ) and FNMRx(τ) tables are fragmented by
demographics (race in this case) in the same manner as
in the previous experiment. However in this one, we have
four demographic groups and they are the following: Asian,
Black, Hispanic, and White (samples labeled as “Others”
were left aside).

In terms of FMRx(τ) it is possible to observe that from
x = 10 to x = 102 (from FMR10(τ) to FMR102(τ)) the
face verification system tends to have more false alarms for
comparisons between biometric references and probes from
Hispanic and Asian subjects. Worth noting as well that for
x = 101, a significant amount of false alarms are observed
between Asian biometric references with Hispanic Probes
and vice-versa.

In terms of FNMRx(τ), it is possible to notice that such
a system tends to reject more White and Hispanic subjects
from x ≥ 104.

Figure 10 presents the FDR plot of the four different
biometric verification systems covering the same decision
thresholds showed in Table 7. It is possible to observe that
the Gabor Graph verification system is fairer than other
systems only for x = 101. Among the DCNN and the COTS
based systems, Facenet tends to be the fairest. To have a
full picture about these observations, Table 8 presents the
Area Under FDR (x varying from 10 to 106)15 of every
biometric verification system. Indeed, under this figure of
merit Facenet is the fairest one (under the observed decision

15. In this experiments we have enough scores to place a τ at 10−6
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thresholds). More surprisingly is that Gabor Graph is fairer
than Inception Resnet v2. Same trends are observed for the
Female demographics. This can be spotted in the supple-
mentary material.

TABLE 8: MORPH: Area Under the Fairness Discrepancy
Rate for x varying from 101 to 106.

FDR AUC
Inception Resnet v2 0.82

Facenet 0.87
Gabor Graph 0.85

COTS 0.81

4.5 MOBIO Database (Fairness with respect to gender)
Table 9 presents the FMR(τ), FNMR(τ) and FDR(τ) in
the test set for the Inception Resnet v2 system. As with
the last section, for the sake of brevity, only this system
will be presented in this extensive manner. Please, check
the supplementary material to have information about the
other systems. MOBIO dataset is composed basically by
Caucasians and for that reason, this experiment focus on
gender biases only. Hence, FMRx(τ) and FNMRx(τ) tables
are fragmented by gender in the same manner as in the
previous experiment. In this setup, τ is set at different
operational points in an independent zeroth-effort impostor
score distribution (from the development set).

TABLE 9: MOBIO - Inception Resnet v2: FNMR(τ), FMR(τ),
and FDR(τ) per gender in the test set. These figures of
merit are fragmented by the gender of the samples used
for enrollment and the race of the samples used for probe
(“(e-p)” in the table.)*.

x 10 102 103 104 105

Demog.(e-p) FMRx(τ)
Male-Male 0.067 0.002 0 0 0

Male-Female 0.014 0 0 0 0
Female-Male 0.011 0 0 0 0

Female-Female 0.28 0.029 0.004 0.001 0
FNMRx(τ)

Male-Male 0.001 0.003 0.015 0.039 0.106
Female-Female 0 0.01 0.045 0.09 0.21

FDR(τ) 0.893 0.983 0.983 0.974 0.948
*In this example τ = FMRdevx where dev is the development-set.

FMR(τ), FNMR(τ) and FDR(τ) are reported using the test-set

In terms of FMRx(τ) it is possible to notice that from
x = 10 to x = 102 (from FMR10(τ) or FMR102(τ)) the
face verification system tends to have more false alarms for
comparison between biometric references and probes from
female subjects. The biggest gap is for x = 101 where the
FMR(τ) between comparisons of male samples goes from
0.067 to 0.28 for comparison between female samples. In
terms of FNMRx(τ) such system also tends to reject more
Female subjects, the biggest gap for x = 105.

To have an overall picture about fairness, Figure 11
presents the FDR plot of the four different biometric systems
covering the same decision thresholds showed in Table 9.
We can observe that FDR(τ) for Gabor Graph decreases
smoothly from x = 10 to x = 105, behavior that can’t be
seen in Facenet, Inception Resnet v2, and the COTS where
FDR(τ) are below 0.95 for x = 10. This has an impact in

the computation of the Area Under FDR that we will see
further. As can be noticed in Table 10 (a), the Area Under
FDR of the Gabor Graph based system is higher than for
Inception Resnet v2, Facenet and the COTS.

Worth noting that a fair behavior is not necessarily a
proxy for more accurate behavior. Table 11 presents the
FMRx(τ), FNMRx(τ), and FDR(τ) for the Gabor Graph face
verification system in the MOBIO database. It is possible to
observe that, although this system tends to be fairer than
Inception Resnet v2, Facenet and the COTS (for the range
of thresholds we selected), it presents very high FNMRx(τ)
and FMRx(τ) for no matter the selected threshold.

Another important point to highlight is that the Area
Under FDR depends on the range of decision thresholds
explored. For instance, in this experiment five decision
thresholds were explored: from x = 101 to x = 105. The
selection of x controls the proportions of False-Matches that
can be tolerated in the biometric verification system and the
values that x can assume is basically a business decision.
Let’s imagine now that the business decisions changed and
the values tolerated to be explored are from x = 102 to
x = 105. Table 10 (b) demonstrates the outcome of this
exercise by showing the Area Under FDR in this new range.
It can be noticed that under this new decision rule, the COTS
is the fairest one.
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Fig. 11: MOBIO: Fairness Discrepancy Rate of different face
verification systems for different decision thresholds

TABLE 10: MOBIO: Area Under the Fairness Discrepancy
Rate for: (a) x varying from 101 to 105 and (b) x varying
from 102 to 105.

FDR AUC (a) FDR AUC (b)
Inception-Resnet-v2 0.94 0.98

Facenet 0.94 0.98
Gabor Graph 0.97 0.94

COTS 0.95 0.99

4.6 Discussion
In this section, it was presented a case of study using the
proposed Fairness Discrepancy Rate to assess error discrep-
ancies with respect to different demographic groups using
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TABLE 11: MOBIO - Gabor Graph: FNMR(τ), FMR(τ), and
FDR(τ) per gender in the test set. These figures of merit
are fragmented by the gender of the samples used for
enrollment and the race of the samples used for probe (“(e-
p)” in the table.)*.

x 10 102 103 104 105

Demog.(e-p) FMRx(τ)
Male-Male 0.125 0.032 0.009 0 0

Male-Female 0.063 0.01 0.002 0 0
Female-Male 0.068 0.011 0 0 0

Female-Female 0.124 0.025 0.005 0.001 0
FNMRx(τ)

Male-Male 0.191 0.332 0.434 0.517 0.581
Female-Female 0.221 0.395 0.524 0.616 0.676

FDR(τ) 0.984 0.965 0.953 0.95 0.9525
*In this example τ = FMRdev

x where dev is the development-set.

FMR(τ), FNMR(τ) and FDR(τ) are reported using the test-set

several FR systems. Three open-source FR baselines and
one COTS system were used along with three databases
where gender and racial biases were studied. We could
notice that both FDR and Area Under FDR were able to
spot the race and gender biases in the tested databases.
With the FDR plots it was also possible to spot the range
of decision thresholds that one biometric system presents
the fairest behavior. Furthermore, with the Area Under FDR
it was possible to directly compare different face recognition
systems with respect to the discrepancies they present.

Another finding in these set of experiments was to spot
that the biometric system before the era of DCNNs (Gabor
Graph) also present unfair behavior. Actually, in most of the
experiments, this system was the least fair. Hence, it would
contradict a belief that Deep-Learning-based FR systems are
necessarily biased.

5 CONCLUSIONS

In this work, it was presented the Fairness Discrepancy
Rate (FDR) that is able to assess recognition discrepancies
with respect to different demographic groups using biomet-
ric verification systems. FDR tackles a threshold problem
which is the main issue on how fairness is addressed by the
majority of the biometrics community by truly assessing the
separation criteria with respect to both FMR and FNMR.
Most of the works in the biometrics community assess
fairness in verification systems by comparing DET curves,
and/or ROC curves of different demographic groups sep-
arately. This type of comparison assumes that decision
thresholds are demographic-specific, which is not feasible in
operational conditions and doesn’t proxy statistical separa-
tion. FDR addresses that by assessing demographic discrep-
ancies assuming single decision thresholds. Fair biometric
recognition systems are fair if a decision threshold τ is
“fair” for all demographic groups with respect to FMR(τ)
and FNMR(τ) and FDR proxies this behavior. Furthermore,
the FMR(τ) and FNMR(τ) trade-off with respect to fair
behavior can be set by addressing the value α in Equation
7. Finally, the Area Under FDR provides a general overview
of fairness under a range of decision thresholds and also
allows a quick comparison between different biometric ver-
ification systems with respect to that. Worth to emphasize

that FDR is a proxy to the separation criteria (mentioned in
2).

Two groups of experiments were carried out to evaluate
this new figure of merit. In the first one, a case of study using
synthetic data was presented and it was demonstrated how
FDR behaves in extreme cases of fair and unfair scenarios9.
In the second, a case of study using four different face
verification systems and three databases was carried out.
With the developed tools was possible to observe that
all evaluated face verification systems present gender and
racial biases either observing FMR either observing FNMR
for different values of τ . Furthermore, it was possible to
quickly compare different face recognition systems with
respect to their demographic discrepancies. Worth noting
that neither FDR nor Area Under FDR are direct proxies for
how “accurate” a biometric verification system is. Possible
error rates have to be analyzed in parallel in order to have a
full picture of accuracy vs fairness.

For reproducibility purposes of the work, all the source
code, trained models, and recognition scores are made pub-
licly available.

We hope that these tools are useful for the biometrics
community to assess fairness and we advocate for some
standardization. Hence, fairness can be easily assessed as
any other figure of merit, such as FMR and/or FNMR.
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