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Abstract

Characters do not convey meaning, but se-
quences of characters do. We propose an un-
supervised distributional method to learn the
abstract meaning-bearing units in a sequence
of characters. Rather than segmenting the se-
quence, this model discovers continuous repre-
sentations of the objects in the sequence, us-
ing a recently proposed architecture for ob-
ject discovery in images called Slot Attention.
We train our model on different languages and
evaluate the quality of the obtained represen-
tations with probing classifiers. Our experi-
ments show promising results in the ability of
our units to capture meaning at a higher level
of abstraction.

1 Introduction

What we perceive from a complex high-
dimensional scene builds on its constituent objects.
Our mind is able to identify not only the objects,
but also their properties such as shape and material.
Similarly, what we infer from a piece of text relies
on the word-like units comprising it. Linguists call
this notion morphemes, the smallest meaningful
units in a language.

We aim at finding meaning bearing units from
a sequence of characters without supervision. Our
goal is to learn a set of abstract continuous represen-
tations of text. This set of units could be beneficial
for possible downstream tasks, such as dependency
parsing.

Our work is closely related to unsupervised
morphology learning and subword discovery ap-
proaches, although it differs from them fundamen-
tally. In unsupervised morphology learning, the
task is to identify the morphemes of a word. Creutz
and Lagus (2002, 2007) proposed Morfessor vari-
ants based on probabilistic machine learning meth-
ods. Moreover, Narasimhan et al. (2015) took a
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Bayesian approach for modeling the relation be-
tween a word and its morphological parent. More
recently, Eskander et al. (2020) used Adaptor Gram-
mars for learning the morphology. In contrast to
this line of research, we learn a set of continuous
representations of text which are not explicitly tied
to the text string. Additionally, we employ recent
deep learning architectures for our purpose which
is quite different from their classical approaches.

Furthermore, there is an emerging interest in
unsupervised object discovery in image domain
(Greff et al., 2019; Eslami et al., 2016; Burgess
et al., 2019). Recently, Locatello et al. (2020) pro-
posed Slot Attention module, an attention based
algorithm for representing objects in a scene. Their
so-called slots act as object variables which can
bind to any object in the image. Motivated by their
simple and efficient method, we are, to the best of
our knowledge, the first to adapt Slot Attention in
the text domain.

We propose a model to encode the sequence into
slots, where each slot represents one meaningful
unit in the character sequence. As our unsuper-
vised objective, a decoder conditions on the set of
slots to reconstruct the original input. We use the
Transformer architecture (Vaswani et al., 2017) as
our starting point for this sequence to sequence
model, adding a Slot Attention module as a hidden
representation in between the Transformer encoder
and decoder, as depicted in Figure 1.

We design our model so that it can handle com-
mon textual sequences with an unknown number
of entities. For this purpose, we add a L regular-
izing layer on top of the Slot Attention module to
prune out extra slots and retain only the necessary
ones. In particular, since the input sequences have
variable lengths, we consider an adequate number
of slots to support the longest sequence, and we
prune out the extra slots for shorter sequences.

In addition, as the number of possible n-grams



in text is finite and the slot vectors have infinite
capacity due to their continuous values, the model
tends to learn arbitrary mappings between n-grams
and slots instead of meaningful relations. We alle-
viate this problem by adding constant noise to slot
vectors, which limits how much information can
be transmitted through a single slot.

Lastly, we evaluate what the slots have learned
by employing probing classification tasks. We pre-
dict the corresponding Byte-Pair-Encoding (Sen-
nrich et al., 2016) tokens of the sequence from its
slots. Additionally, we examine the slots’ ability
to predict the Morfessor outputs. Our experiments
show promising results in the ability of slots to cap-
ture meaning at a higher level of abstraction than
characters.

To summarize, our contributions are as follows:

* We propose a model for learning meaning-
bearing units from a sequence of characters
by effectively adapting Slot Attention method
(section 3)

* We show that slots are able to capture mean-
ingful information by probing their ability to
predict predefined meaningful units (section
4)

2 Related Work

2.1 Unsupervised morphology learning

This long-lasting task is to identify the constituent
morphemes of a word. Morphemes are important
on their own because of the linguistic inspiration
behind them. In addition, discovering them will
help to mitigate the Out Of Vocabulary (OOV) prob-
lem which is especially beneficial in agglutinative
languages, such as Finnish and Turkish. More-
over, by modeling language at morpheme level
we expect to improve the performance of possible
downstream tasks (Can and Manandhar, 2014). For
instance, Ataman et al. (2020) improved translation
quality by modeling word formation as latent vari-
ables which mimic morphological inflections. It
should be taken into consideration that words may
undergo changes while inflecting to different forms,
e.g., study+ed— studied. Therefore, some works
simplified the problem to segmenting the word into
morpheme-like units (e.g., studied— studi+ed).
Many approaches have been proposed for discov-
ering the underlying morphemes or morpheme-like
units. Morfessor variants are based on probabilis-
tic machine learning methods (MDL, ML, MAP)

for morphological segmentation (Creutz and La-
gus, 2002; Creutz, 2003; Creutz and Lagus, 2005,
2007; Virpioja et al., 2013). Some researchers take
a Bayesian approach for modeling word forma-
tion (Poon et al., 2009; Narasimhan et al., 2015;
Bergmanis and Goldwater, 2017; Luo et al., 2017).
Adaptor Grammars were another approach for mod-
eling morphological inflections (Sirts and Goldwa-
ter, 2013; Eskander et al., 2016, 2019, 2020). In
addition, Xu et al. (2018, 2020) built their models
upon the notion of paradigms, set of morphological
categories that can be applied to a set of words.
Furthermore, Soricut and Och (2015) consider af-
fixation as common shifts in the embedding space
and extract morphemes by refining the set of pos-
sible candidates. Cao and Rei (2016) proposed to
learn word embeddings by applying a bi-directional
RNN over the character sequence and weighting
each representation by attention. They hypothe-
sized that morpheme boundaries will attract most
of the attention weights. To the best of our knowl-
edge, this is the only work which uses neural net-
works to learn morphology.

Our work differs from the previous work in mor-
phology learning in two manners. First, we use
recent Deep Learning techniques for learning the
meaningful units. Second, instead of explicitly dis-
covering morphemes, we learn continuous compact
representations of the input which could then be
processed to extract the morphemes. In addition,
our model learns its representations by considering
the context of the words in a sentence. In contrast,
most of the morphology learning techniques use
external word embedding information for integrat-
ing semantics in their models (Narasimhan et al.,
2015; Soricut and Och, 2015; Cao and Rei, 2016).

2.2 Subword discovery algorithms

Another relevant area to our work is subword dis-
covery algorithms. This set of algorithms have
become a standard component of NLP models in
recent years. They have been mostly developed to
alleviate the out of vocabulary problem while pro-
cessing language. Byte-Pair-Encoding (bpe) (Sen-
nrich et al., 2016) is an iterative algorithm which
merges the two consecutive tokens with the highest
frequency in every step until it reaches the desired
vocabulary size. Another similar algorithm, word-
piece (Schuster and Nakajima, 2012), merges the
two tokens based on maximizing the score of a
language model. In contrast, Unigram language



model (Kudo, 2018) prunes a predefined vocabu-
lary by finding the least important token in terms of
maximizing a unigram language model’s score. In
contrary to these methods which mostly use statis-
tical information of the data, our model is trained
over complete sentences to learn a sophisticated
representation. Moreover, as we stated previously,
we learn abstract continuous units which are not
explicitly mapped to subwords.

2.3 Unsupervised object discovery

There is a recent line of research in image domain
for discovering objects in a scene without explicit
supervision and building an object-centric repre-
sentation of them. Most of these work are built
around the compositionality of the scenes (Greff
etal., 2016, 2019; Burgess et al., 2019; Engelcke
et al., 2020; Locatello et al., 2020). Specifically,
the scene could be represented as a composition
of objects. Greff et al. (2019) and Burgess et al.
(2019) used a VAE architecture for segmenting and
learning objects representations in an image. En-
gelcke et al. (2020) further learnt to generate scenes
by capturing relationships between scene compo-
nents. Finally, Locatello et al. (2020) proposed Slot
Attention module where each slot could bind to any
object in the scene.

In contrast to this line of work in vision, our
approach is specifically designed for text. We use
additional components in our architecture to re-
solve the requirements of modeling textual data.
Furthermore, our model is trained and evaluated
on real text datasets, in contrast to these previous
models which have only been shown to be effective
on synthetic scenes.

3 Approach

In this section, we will discuss how we design our
model in order to capture meaningful units from a
sequence of characters. We will follow a top-down
approach to explain the general idea (3.2) and the
details of our solution.

3.1 Problem formulation

Given a sequence of characters X = x122... 2N,
we seek for a set of meaning-bearing units (slots)
M = {my,...,mg}, which could best represent
X in a higher level of abstraction. As an example,
consider the sequence "she played basketball”. We
expect our slots to represent the set of morphemes
of the sequence, namely {she, play, -ed, basket,

s he played baskethball
Transformer Decoder
she play ed basket ball
Lo Drop
she play ed basket ball
Slot Attention
Transformer Encoder
s he played basketball

Figure 1: The sketch of our model. First, the sequence
is encoded into slots. Then, the LoDrop layer is ap-
plied to prune out the unnecessary slots. Finally, the
slots are decoded to reconstruct the original sequence.

-ball}. This hypothesis comes from the linguistics
point of view, where morphemes are considered
the smallest meaningful units in a language.

3.2 General idea

We learn our representations through encoding the
input sequence into slots and then reconstructing
the original sequence from them. Particularly, we
use an auto-encoder structure where slots act as
the bottleneck between the encoder and decoder.
Figure 1 shows a sketch of our proposed model.
First, we encode the input character sequence by a
Transformer encoder (Vaswani et al., 2017). Then,
we apply Slot Attention module (Locatello et al.,
2020) over the encoded sequence to learn the slots.
Intuitively, Slot Attention will learn a soft cluster-
ing over the input where each cluster corresponds
to a meaningful unit in the sequence. We integrate a
L regularizing layer, i.e., Lo Drop layer, on top of
the slots to prune out the unnecessary ones. Since
the number of slots is fixed during the course of
training, this encourages the model to only use
as many slots as necessary, and thereby stops the
model from converging to trivial solutions, such as
passing each character through each slot for short
sequences. Finally, the Transformer decoder recon-
structs the input sequence autoregressively using
attention over the set of slots.

3.3 Encoder

We use Transformer encoder architecture for en-
coding our sequence (Vaswani et al., 2017). It



consists of subsequent layers of self-attention and
non-linearity for building a new representation of
the input sequence. Finally, we obtain representa-
tion X’ = z{zf ...y from our input sequence
X.

3.4 Slot Attention

After encoding the character sequence, we use Slot
Attention for discovering meaningful units of the
input. Slot Attention is a recent method for unsu-
pervised object representation learning (Locatello
et al., 2020). It learns a set of feature vectors (slots)
from the input representations by using an iterative
attention based algorithm.

Algorithm 1 shows the pseudo code of this
method. Abstractly, in every iteration, the fol-
lowing steps are taken. First, an attention map
is computed by slots acting as queries and inputs
as keys. Then, this map is normalized over slots
which enforces the slots to compete for represent-
ing every token of input. Afterwards, the slots’
updates are computed as the weighted mean over
attention weights and input values. Finally, slots
get updated through a recurrent GRU unit followed
by a residual MLP. This process iterates a fixed
number of times.

In (Locatello et al., 2020), the slots are initialized
randomly from a Normal distribution with shared
learnable parameters p and 0. We realized in our
experiments that in order to adapt the method to
the text domain, we should consider the following
changes. First, we consider a separate p per slot,
and secondly, we fix the o to a predefined value for
all the slots. Namely, the slots are initialized as

slot; ~ N(Mz’a Uconstant)~ (1)

In particular, we increase the model’s capacity by
assigning a separate u for each slot. This allows
the model to learn about different kinds of units,
such as ones that occur at different positions, or
ones that have different types of forms, but we do
not make any assumptions about what those differ-
ences might be. In initial experiments, we found
that this approach increased performance over ran-
domly sampling slots from a single distribution.
However, since these ;4 parameters are learnable,
we need to fix the number of slots before training
them.

In addition, the intuition behind fixing the o is
to force the slots to compress the information in a
meaningful way. In other words, since the slots can

have any continuous value in the space of RPstots|
they tend to learn an arbitrary mapping from the
inputs to the slots while turning o to zero. Specifi-
cally, the slots have the capability to learn a map-
ping from character n-grams (which is a finite set)
to the infinite RPstots space without trying to find
the underlying meaning-bearing units. Therefore,
by imposing a constant noise on slots, we limit the
information passed through each slot. From the
information theoretic point of view, if we consider
slots as a communication channel between encoder
and decoding, adding noise reduces the their capac-
ity. We encounter this phenomena particularly in
text, because we have a large number of slots to
support the longest sequence in our data.

Lastly, we obtain the set of slots M as

M = {m; ... mg} = Slot Attention(X"’). (2)

3.5 LoDrop Layer

The number of slots for representing a sequence
varies among different sequences in the data. Thus,
we consider an upperbound over the number of
slots and prune extra slots during the course of
training. We accomplish this by utilizing Lo Drop
layer (Zhang et al., 2020).

This layer consists of binary-like gates g; for
every input m; that works as

LoDrop(m;) = gim;. 3)

The goal of sparsification is achieved when g;
equals to 0 and no information is passed from that
input. Each gate is a random variable sampled from
a hard-concrete distribution (Louizos et al., 2018).
Hard-concrete distribution assigns most of the prob-
ability mass to its endpoints (i.e., 0 and 1) and is
continuous over the [0, 1] interval. A hard-concrete
sample g; is obtained from stretching and rectify-
ing a sample from the BinaryConcrete distribution
(Maddison et al., 2017; Jang et al., 2017):

s; ~ BinaryConcrete(c;, 3) “)
8 =si(1+2€) —¢ )
¢; = min(1, max(0, s;)) (©)

where (5 and € are hyperparameters and «; is pre-
dicted as a function of the encoder output m;:

logay; = mw’ (7

where w is a learnable vector. This will allow the
model to dynamically decide which inputs to pass
and which ones to prune.



Algorithm 1 Slot Attention module (Locatello et al., 2020). ¢, k, v map the slots and inputs to a common

dimension D.

Require: inputs € RNV *Dinput  glots ~ N(u,diag(c)) € REXDslots

inputs = LayerNorm(inputs)
fori=1toT do

slots_prev = slots

slots = LayerNorm(slots)

attn = Softmax(% k:(inputs).q(slots)T, axis = ’slots’)

updates = WeightedMean(weights = attn + ¢ , values = v(inputs))
slots = GRU(states = slots_prev, input = updates )

slots += MLP(LayerNorm(slots))
end for
return slots

Finally, the £y penalty, which yields the ex-
pected number of open gates, is computed as

k

‘CO(M):Zl_p(gl:mathe) (8)
i=1

The probability of g; being exactly 0 is provided in
closed form in (Louizos et al., 2018)

€

Pl = Olai, 8,6) = (8 log - —

— log «;).
9)

We follow the same approach as Louizos et al.
(2018) at evaluation time and consider the expecta-
tion of each gate as its value.

g; = min(1, max(0, o(log ;) (1 + 2¢) —€)) (10)

We refer to the pruned slots after applying the
LoDrop layer as M' = m/, ... m/;. In contrast to
Zhang et al. (2020), we do not aggregate the pruned
out inputs at decoding time since the performance
gain in short sequences is negligible.

3.6 Decoder

Lastly, we regenerate the input sequence from the
set of slots by using a simple, shallow decoder. For
this purpose, we use a one-layer Transformer de-
coder (Vaswani et al., 2017) with a single attention
head over the slots. A simple decoder forces the
slots to learn representations with a simple rela-
tionship to the input, which we expect to be more
meaningful. In other words, we do not use a power-
ful decoder because it will be able to decode even
low quality representations of the input, which are
less meaningful.

3.7 Training Objective

All components of our model are fully differen-
tiable and hence, we can train it end-to-end. We
use Gumble trick for sampling BinaryConcrete vari-
bles (Maddison et al., 2017; Jang et al., 2017). We
train our model with the following objective:

E(X> = Lreconstruction + A L:O(M)

— log p(X[M') + A Lo(M)

which consists of the reconstruction loss from the
decoder and the L penalty for the open slots. Hy-
perparameter A, the sparsification rate, controls the
ratio between the two losses. In practice we find
that in order to impose enough sparsity in the slots,
we should slightly increase A during the course of
training using scheduling techniques.

4 Experiments

In this section we will explain our experimental
setup and results. We evaluate our unsupervised
model both qualitatively and quantitatively. First,
we probe the slots’ vectors ability to capture mean-
ingful information by two classification tasks (4.2).
Afterwards, we visualize some of the attention
maps to show what the slots are corresponding
to (4.3).

4.1 Experimental Setup
4.1.1 Languages and Data

We apply our model to languages from different
morphological typologies. We select English, Ger-
man and Czech from fusional family and Finnish
and Estonian from agglutinative typology. For En-
glish we use the raw Wikitext2 dataset provided by
Merity et al. (2017). For the rest of languages



we use Multilingual Wikipedia Corpus (MWC)
(Kawakami et al., 2017). We lowercased the text
and retained the characters which occur more than
25 times in the corpus following Kawakami et al.
(2017). We replace the remaining characters with
an unknown placeholder.

4.1.2 Training Settings

We use standard Transformer architecture (Vaswani
et al., 2017) with model dimension 256. The en-
coder consists of 2 layers with 4 self-attention
heads and the decoder consist of 1 layer with 1
self-attention head and 1 attention head over the
slots. We feed in the sentences with less than 128
characters to our model and consider the number
of slots as 64 (half of the input length). In addition,
we take the dimension of slots as 128.

We scheduled A parameter in the training loss to
start with low value 2 x 107° and then double it ev-
ery 10 epochs. We control this parameter in a way
that the final number of open slots roughly equals
the average number of BPE tokens in a sequence.
We used Adam optimizer (Kingma and Welling,
2013) for training our models with learning rate
1074,

4.2 Probing Analysis
4.2.1 Probing tasks

In order to evaluate what the slots have learned
quantitatively, we define two probing tasks. As
we are expecting the slots to represent meaningful
entities in text, we evaluate their representations on
carrying frequency-based information in addition
to linguistic information. For the frequency-based
information, we measure how well the slots match
to the corresponding BPE tokens in the sequence.
BPE is an iterative method which merges the most
frequent consecutive tokens at every step. More-
over, we consider Morfessor (Virpioja et al., 2013)
as a linguistically inspired method for discovering
the morpheme segments and measure how well the
slots correspond to the outputs of the Morfessor
tool.

4.2.2 Probing Classifier

We train a probing classifier for mapping a slot’s
vector to the output space, namely,

f(m}) : RPsiots — RS (11)

where S is the number of BPE (or Morfessor) to-
kens. We apply the classifier with shared parame-
ters over each of our slots and obtain a sef of pre-

dictions, i.e., {f(m)), f(m}),..., f(ml)}. As
we are dealing with a set, we should find a one-to-
one matching between the classifier’s predictions
and output tokens. Therefore, we use Hungarian
matching algorithm (Kuhn, 1955) for finding the
best match in terms of minimizing the classification
loss. Consider the best matching as 7; — j, which
matches the 7;th slot with the jth output (i.e., ;).
We then compute the loss as

K
L= "1(f(mi),y)). (12)
j=1

where [ is the cross-entropy between the two terms.

As the input to the classifier, we consider the
complete set of slots after applying the Lo Drop
layer but before any pruning. Slots whose Lo Drop
gate is closed are simply input as zero vectors. This
gives us a fixed number of vectors. Because the
two sides of matching should have the same size to
obtain a one-to-one match, we add an extra target
labels (i.e., empty) for matching the slots which
should be pruned. Due to the fact that many slots
are pruned out, considering a measure like accu-
racy could be misleading. Since a classifier which
outputs empty label will achieve very high accuracy.
Therefore, we build a confusion matrix as follows.
We consider all non-empty labels as positive and
the empty ones as negative, and we report preci-
sion, recall and F1 measure, to better reflect what
the slots have learned.

Our probing classifier consists of two fully con-
nected layers with ReLU activation function in be-
tween the two layers. The hidden dimension of the
classifier is the same as the slots” dimension which
is 128. We fix the BPE vocabulary size to 5000
for all languages. We consider the set of morphs
(i.e., Morfessor outputs) on the training data as our
target labels.

4.2.3 Probing Results

Similar to Oord et al. (2018), we compare our
trained slots against a random baseline in which
we initialize our model randomly. In particular, we
take the untrained slot vectors and train the probing
classifier on top of them to serve as our baseline.
Table 1 shows the results of the probing tasks
over the baseline (random) and the unsupervised
learned slots (slot-attn) on different languages. As
the results show, the trained slots can achieve much
higher performance in both tasks in comparison to
the random baselines. Our model achieves high



BPE Morfessor
language Model  precision recall F1 precision recall F1
English

random 0.74 0.10 0.17 0.72  0.14 0.23

slot-attn 098 0.59 0.72 098 0.64 0.76
Finnish

random 094 0.09 0.17 0.8 026 0.38

slot-attn 095 0.65 0.76 097 052 0.68
German

random 091 0.08 0.16 0.76 022 033

slot-attn 099 0.66 0.78 0.99 051 0.67
Czech

random 094 0.08 0.16 0.75 024 035

slot-attn 098 0.63 0.75 098 052 0.67
Estonian

random 0.71  0.09 0.17 0.72 023 033

slot-attn 096 0.73 0.82 0.99 0.60 0.74

Table 1: Probing classification results on different languages.

precision in predicting the non-empty labels. How-
ever, its performance is weaker on the recall side,
which is probably due to the imbalance between
empty and non-empty labels in the training set. Par-
ticularly, the empty labels build around 66% of the
data which highly biases the model towards predict-
ing them. This imbalance shows its effect mainly
on the random baselines and results in predicting
the empty label for almost all of the samples. This
behavior leads to high precision but very low recall.
Therefore, the gap between the learned slots and
the random ones is especially obvious on the recall
side, where the learned slots guide the classifier to
predict non-empty labels.

The numbers verify that our proposed model is
effectively integrating frequency-based and linguis-
tic information into the slots.

4.3 Visualization

We visualize the attention maps for generating ev-
ery output in Figure 2. In particular, we show the
attention of decoder over slots for generating every
output character. Although we do not impose any
sparsity in the decoder’s attention weights, the at-
tention maps are quite sparse. In addition, the slots
are attended contiguously during the generation.
In the early steps of training that the sparsity
ratio (\) is small, each slot tends to represent a
bigram of characters (2a) and later on, trigrams
(2b). These observations confirm the necessity of

the Lo Drop layer for converging to better units. As
the ratio increases the number of active slots reduce
and they become more specialized in representing
a contiguous meaning-bearing segments of input.
For instance, the word cooking in 2c is represented
by two slots cook and ing.

5 Conclusions

In this paper, we designed a model for learning
meaningful representations of text in unsupervised
fashion. We used auto-encoder architecture for
encoding the sequence into continuous slots and
decoding them to reconstruct the original sequence.
We enforced the slots to act as a bottleneck in trans-
ferring information between the encoder and the
decoder by adding a constant noise to their vectors.
Additionally, in order to generalize our model to
common text datasets, we added a Lg regularizing
layer on top of the slots to only retain the necessary
ones. We evaluated our model by probing the final
slot vectors to predict predefined BPE and Morfes-
sor tokens. In comparison to a random baseline,
our representations effectively capture meaning in
both experiments.

In future, we plan to employ our representations
in possible downstream tasks such as dependency
parsing. We anticipate that these meaningful units
could be beneficial in improving the performance
of these tasks.



(a) epoch 5

(b) epoch 50

(c) epoch 125

Figure 2: Attention of decoder over slots for generating every output during the course of training. The target
output sequence is the red colour associated with lobsters only appears after cooking.”.
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