
A COMPARISON OF METHODS FOR OOV-WORD RECOGNITION ON A NEW PUBLIC
DATASET

Rudolf A. Braun, Srikanth Madikeri, Petr Motlicek
{rbraun,srikanth.madikeri,petr.motlicek}@idiap.ch

Idiap Research Institute, Martigny, Switzerland

ABSTRACT

A common problem for automatic speech recognition systems is how
to recognize words that they did not see during training. Currently
there is no established method of evaluating different techniques for
tackling this problem.
We propose using the CommonVoice dataset to create test sets for
multiple languages which have a high out-of-vocabulary (OOV) ra-
tio relative to a training set and release a new tool for calculating
relevant performance metrics. We then evaluate, within the context
of a hybrid ASR system, how much better subword models are at
recognizing OOVs, and how much benefit one can get from incor-
porating OOV-word information into an existing system by modify-
ing WFSTs. Additionally, we propose a new method for modifying
a subword-based language model so as to better recognize OOV-
words. We showcase very large improvements in OOV-word recog-
nition and make both the data and code available.

Index Terms— speech recognition, OOV-word recognition,
speech dataset, finite-state transducers

1 Introduction
All languages are constantly evolving and therefore all ASR systems
suffer from failing to detect words that were not in their training set
(out-of-vocabulary, OOV, words). We focus on weighted finite-state
transducer (WFST) based ASR systems with distinct acoustic and
language models [1]. In these systems both the language model and
lexicon are fixed and encoded as a WFST, this means words that were
not part of these systems at training time are impossible to recognize.
This has lead to various approaches to modify the WFSTs so that the
ASR system can recognize words it had previously no knowledge
of [2, 3, 4, 5, 6, 7]. A complication is that typically the lexicon and
language model WFSTs will be composed together to create a static
decoding graph that can be used repeatedly during decoding. This
is a problem because, depending on the use-case, it means we don’t
have access to the lexicon WFST (L) or the language model WFST
(G), and must try and alter the full decoding graph, the HCLG, which
is harder.

One workaround is to use a subword-based model, as they can
theoretically create any word by outputting a sequence of shorter
subword tokens [8, 9, 10]. Another approach is for the language
model to contain a [unk] (unknown) token, which has as the pronun-
ciation a phone LM trained on a lexicon of words with low counts,
and then to try recover a word from the recognized phone sequence
aligned with the [unk] token [11, 12].

Doing graph composition on a client’s device can be difficult
as it can take a significant amount of time and memory to perform.

Thanks to Phil Garner for the helpful discussions

Therefore it is usually preferred to deploy ASR systems with an al-
ready composed decoding graph. If one is willing to redo compo-
sition but does not want to retrain the language model modifying
the L and G directly is an option. Alternatively, one can avoid hav-
ing to create the static decoding graph by doing on-the-fly compo-
sition, also known as dynamic composition, which is done at run-
time [13, 14, 15, 16]. Keeping the G, for example, separate makes
it easier to bias the model towards certain words or add new ones to
it [2, 3, 4]. However, this approach causes a decrease in decoding
speed.

Finally, one can try and modify the static decoding graph
(HCLG) [5, 6, 7]. Because of composition and optimization (e.g.
determinisation, minimisation, weight-pushing) the initially sepa-
rated knowledge sources (the lexicon, language model, etc.) are
now entangled, making it harder to modify or add new words and
pronunciations than when working with the separated L and G.

Many existing papers focusing on OOV recognition used private
datasets, which makes results not comparable [2, 5, 8, 11]. Or to
create OOVs they keep the top ten thousand (or some other number
that is significantly smaller than a real ASR system would use) in the
vocabulary and use the rest as OOV words [4, 5, 10, 8]. This evalua-
tion method is problematic because it would overestimate the benefit
of using subword-based models as relatively frequent words are not
included in the top ten-thousand but the various inflections of them
will be seen often during LM training by the subword-based model.
This will make it artificially easy to then recover the OOV-word as
the subword sequence needed will have a relatively high probability.
For the same reason (these artificial OOV-words actually being com-
mon when considering inflections) grapheme2phoneme tools will re-
turn more accurate pronunciations than would happen with realistic
OOV-words.

Therefore, we create reproducible datasets for English and Ger-
man using CommonVoice[17] where the test set has a large number
of realistic OOVs. We release a new tool for calculating error rate
metrics, and propose a new metric called “OOV-CER” for measur-
ing OOV-word recognition performance independent of the perfor-
mance on in-vocabulary words. Using this setup we compare word
to subword-based models, check how well OOV recognition works
when using a phone LM as the pronunciation for [unk], and compare
how effective modifying the L, G and HCLG is. Finally, we propose
a new method for modifying the G of a subword-based model to im-
prove performance.
The data and relevant code to modify WFSTs (discussed later) can
be found here: github.com/idiap/icassp-oov-recognition.

2 Dataset
The goal is to create a test dataset with a high amount of realistic
OOV-words. The approach we use is to have a large vocabulary and



then choose utterances from the CommonVoice[17] dataset that con-
tain at least one OOV-word to create the test dataset. The training set
is created from the remainder, while excluding those utterances that
would lead to a speaker overlap between train and test. For English
we used the Librispeech[18] lexicon as the vocabulary, for German
we created one by taking the top two hundred thousand words from
a text corpus (Europarl). By using large vocabularies gotten from
large corpora we ensure that any OOVs will be realistic.
The training and test set size is 280 / 250 and 2.5 / 3 hours for
English / German respectively. The OOV ratio is 12.2 / 13.6%.
The distribution of the OOV-words is very flat. The English ones
tend to be modern words, the top three are “firefox”, “website” and
“nudism”. This is because the Librispeech corpus is based on old
books, so the vocabulary is old-fashioned. The German OOV-words
tend to be compounds words. The English task is harder as the
test set text is not only a different domain but also from a different
time-period than the vocabulary and text corpus used to train the LM.

3 Metrics
We measure the standard WER (word error rate) and CER (char-
acter error rate). Character error rate is a useful measure because
if a word has one character wrong that should be a less significant
error than if most are incorrect. Additionally, it is useful to know
how well OOV-words are recognized independent of performance
on in-vocabulary words because OOV-words are more important
than for example stop words (“the”, “a”, “and” etc.). This could
be done by measuring OOV recall (how many times a OOV-word
in the reference is predicted) but this, like WER, treats one or
five character mistakes equally. Therefore we developed a new
tool for calculating error metrics and propose a new metric called
‘OOV-CER’. The tool is called texterrors and is available at
github.com/RuABraun/texterrors.
It does character aware alignment of the reference and hypothesis by
incorporating the edit distance between words into the substitution
cost. The OOV-CER is calculated by getting the index of the OOV-
word in the reference, using it to index into the aligned hypothesis
and then calculating the edit distance between that word and the
reference word. To take into account that a model could output the
reference as two separate words, words in the aligned hypothesis
that neighbor the index (obtained from where the OOV-word is in
the aligned reference) and are aligned with nothing (are insertions)
will be pre- or appended to the word in the index.
As an example: The reference is ”words in sentence”, the hypothesis
is ”words in sent tense” and the word ”sentence” is the OOV-word
and is aligned to ”sent”. To calculate the OOV-CER we first join
”sent” and ”tense”, as the latter is an insertion and aligned next to
the OOV-word, and then calculate the CER between ”sentence” and
the joined word.

We don’t bother measuring OOV precision as a decrease in per-
formance will already be reflected by an increase in WER/CER. As
OOV-words are more important than most in-vocabulary words if the
OOV-CER goes down while the WER stays the same after applying
some modification to the model, we consider the model as improved.

4 Model biasing mechanisms
A very common use-case is to have some prior knowledge about
likely OOV-words, and to want to adjust the model so as to recognize
them. In this section, we first review three approaches and introduce

a new one. When we mention using a list of OOV-words, we mean
a list that has been extracted from the test set relative to our model
vocabulary. This is therefore the best case scenario as we know all
OOV-words that our model will be asked to recognize. The [unk]
symbol is a token that represents an unknown word, jnk is its default
pronunciation.

4.1 UNK with non-jnk pronunciation
This method does not actually require any knowledge of possible
OOV-words in advance. Rather than having jnk be the pronun-
ciation of the [unk] token, one can replace it with a phone LM
trained on the phones from a lexicon of (possible OOV-) words. The
LM is inserted in WFST form. Our implementation uses kaldi’s
utils/lang/make unk lm.sh. This allows for an almost ar-
bitrary phone sequence to be recognized.
In figure 1 one can see a simple L. If we wanted to insert just one
pronunciation for [unk] we would delete the existing arc from state
0 to 3, then add an arc for each phone in the pronunciation starting
from state 0 and ending at state 3. One of these would have [unk]
as the output label. To add a phone LM we take an existing WFST
over phones P, and connect state 0 in the L to the start state of P with
[unk] as the output label, then connect all final states of P to state
3. The connecting arcs will have input disambiguation symbols to
ensure the L is still determinisable.
After decoding one then aligns the best-path output lattice to find
which phones match to [unk], runs phoneme2grapheme (trained
separately), rescores the alternatives with a character LM and gets
the best path to get the recovered word. When the training data for
the phone LM comes from the lexicon of OOV-words we call this
method ’biased unk lm’. To simulate the case when we don’t know
what words are OOV we get phones from a lexicon of words with
low counts (relative to the text corpus used to train the LM) and call
it ‘unk lm’.

Fig. 1. Simple example of a lexicon WFST (the L).

4.2 Replacing UNK in L and G
This approach assumes one has access to the L and G WFSTs. Using
a lexicon of all OOV-words, we add the words and corresponding
pronunciations into the L. This is easy to do as the L is unoptimized
and we can just add the pronunciations as a sequence of arcs with
one of them having the word as the output label. It assumes the
new words do not contain any new phones. Then we iterate over
the states of the G and replace all arcs with [unk] with multiple
arcs keeping the same start and end state, each with one of the OOV-
words we want to add as the input and output label. Each arc inherits
the [unk] weight plus a penalty of 2.3 (equivalent to multiplying the
probability by 0.1). The penalty is because [unk] has a relatively
high probability, and we empirically found this to help. This method
is called ‘mod L,G’.

https://github.com/RuABraun/texterrors


4.3 Replacing UNK in HCLG
To replace the jnk:[unk] arcs in the HCLG we need an HCL, as
the input labels of the HCLG are transition-ids and the states repre-
sent different HMM states. We can create an HCL from the lexicon
of OOV-words and then do the replacement. For the sake of simplic-
ity our method requires that the HMM topology only has one state.
Doing the replace operation makes an additional assumption which
constrains the sort of models we can use: By default our models use
biphone context dependency, now imagine we inserted the HCL of
a word who’s pronunciation started with some phone p, the issue is
that the input label associated with p should be different depending
on what arc came before (i.e. what phone came before) the one we
are replacing in the HCLG. But we can’t know that at the time of
the HCL creation. We get around this problem by using a mono-
phone model. While techniques exist to modify the HCLG of con-
text dependent models [5][7] they are quite complex and we want
to test whether using context dependency is even necessary. Due
to our LM being trained with the limit-unk-history option
of pocolm, [unk] can only appear at the end of an ngram, so we can
just insert the HCL once, and point all arcs matching [unk] to it. The
outgoing arcs have the same probability for all histories, as there are
no saved histories for [unk]. This means the HCLG barely changes
in size after the operation. As in ‘mod L G’ we add in a penalty of
2.3. This method is called ‘mod HCLG’.

4.4 Modifying subword G
Trying to modify a word-based model so as to incorporate prior
knowledge and better recognize certain (possibly OOV) words is
a common focus. However we are not aware of any efforts to try
the same with a subword-based model. Since subword-based mod-
els can outperform word-based models when there are many OOVs
(see section 6), we decided to try incorporate prior knowledge to im-
prove performance even more. We do this by modifying the G (this
assumes the G is available separately). We tokenize each OOV-word,
and then check if that sequence of subwords exists in the G starting
from the backoff state. If it does, we lower the cost (cost because
weights are the negative log of the probability) slightly, if it does not
we add the necessary arcs with a low cost. The final arc goes to the
unigram state of the last subword. This method is called ‘mod G’.

0
fire

fox

runs

fox

Fig. 2. Illustrative example of how ‘mod G’ will modify the G by
adding new arcs (dashed lines are new arcs) with low costs to in-
crease the odds of recognising certain words. The 0 state is the start
state.

In figure 2 a simplified G for illustrative purposes. The 0 state
is the start state from which all unigram arcs start. By adding a
new (represented by a dashed line) arc ‘fox’ with a low cost (high
probability) from the ‘fire’ unigram state we lower the total cost of
recognizing the subwords ‘fire’ and ‘fox’, thereby making it easier
for the model to recognize the OOV-word ‘firefox’. The alternative,

going from the unigram state ‘fire’ back to state 0 along the backoff
arc and then to the unigram state ‘fox’, would result in a higher total
cost for the subword sequence. We also add a back-off arc going to
the unigram state ‘fox’, rather than back to the start state, so that the
language model knows that the previous subword was ‘fox’ which
improves performance.

5 Experimental setup
For both languages for the word-based models we train a trigram
language model using pocolm, and prune to 3.5 million ngrams. The
subword based model uses a five gram pruned to the same number.
We use BPE to choose the set of subword tokens and allow 5000
merges. The lexicon of the subword-based model is character based
(this performed better than using g2p on the subword tokens). For
English the LM training data is the Librispeech text corpus and the
we use the 200k lexicon that is part of the corpus, we create pronun-
ciations for OOV words using Phonetisauras[19]. For German we
use the Europarl corpus, the vocabulary is the top 200k words, we
used espeak-ng for creating the pronunciations.
For training the acoustic model and doing decoding we use kaldi[20].
We follow the standard procedure of getting alignments via HMM-
GMM training and then training a TDNNF[21] model with LF-
MMI[22] and ivectors. We use biphone context dependency unless
indicated otherwise.

6 Results & Discussion
6.1 No prior knowledge
The first case we consider is when no knowledge about poten-
tial OOV-words is available. We want to test the assumption that
subword-based models do better than word-based, and how well
word recovery performs when using the ’unk lm’ method. As men-
tioned previously when using the ’unk lm’ method we train once
on a lexicon of words with low counts, and once on the lexicon of
OOV-words, the latter is ’biased unk lm’. By comparing the two we
can test how important it is for the phone LM to be trained on phone
sequences that equal the ones seen at test time. The results can be
seen in table 1.

WER CER OOV-CER

English

word 36.3 19.7 54.1
word, unk lm 35.9 18.6 51.8

word, biased unk lm 35.4 18.7 52.0
BPE 37.2 19.1 52.1

German

word 29.9 10.2 44.4
word, unk lm 26.9 9.2 37.2

word, biased unk lm 25.6 8.8 34.7
BPE 25.2 8.2 36.0

Table 1. Comparison of word- and subword-based models and OOV
recovery using a phone LM when no prior information about OOV-
words is known.

Comparing word to subword-based models there is no improve-
ment for English but a significant one for German. These results
make sense as the types of OOV-words differ between the two lan-
guages. In German a lot of the OOV-words are compounds words,
these words can be created by a sequence of subwords which them-
selves are valid words in the German language and are therefore
more likely to be present in ngrams of the ngram language model.
In general subword-based LMs benefit from the fact that, unless a



character in a word is very unusual, every word in the training set
will be used for training (in segmented form), whereas word LMs
will convert all words not part of the vocabulary to [unk].
In the English dataset the OOV-words tend to be completely novel.
This means the subword LM is very unlikely to have seen the se-
quence of subwords, and since there is no natural way to split the
OOV-words (because they are not compound words) it is likely that
the subwords needed to create the OOV-word will be short (which
makes it harder for the language model to make estimates, consider
the extreme case of a word being split up into individual charac-
ters to understand why), and that no or few n-grams contain these
subwords, leading to the language model assigning the subword se-
quence a low probability.
With the ‘unk lm’ method one can see an insignificant benefit for En-
glish and a noticeable one for German. We decided to test whether
the issue was the phone based lexicon for English, and therefore
trained a model that used characters as pronunciations. This meant
we did not need to do any sort of g2p to get pronunciations for words
not in the librespeech lexicon, or do p2g when doing OOV recovery
to convert a recognized phone sequence back to letters. We just need
to find the characters aligned to [unk] in the decoded lattice. We
trained the char LM that is the pronunciation of [unk] on the OOV-
word character lexicon. Table 2 shows the results.

WER CER OOV-CER

English

word 36.3 19.7 54.1
word, unk lm 35.9 18.6 51.8

word, biased unk lm 35.4 18.7 52.0
word char 37.0 19.4 53.3

word char unk lm 36.0 18.8 50.4

Table 2. Comparing OOV recovery with a phone LM to using a
model with a character based lexicon, where recovering the word is
trivial

The character based model doing OOV recovery does slightly
better at recognizing OOV-words, but the WER is still close enough
to the phone based baseline model that it is questionable whether the
effort is worth it as this is the best case performance since the char-
acter LM (used as pronunciation for [unk]) was trained on the OOV-
word character lexicon. These results show that without having some
prior knowledge about the OOV-words the model will encounter, it
is very difficult for a hybrid based ASR system to deal with them. In
languages with a significant amount of compound words one can use
the just described methods to mitigate the amount of errors caused
by OOV-words, but the improvement is moderate.

6.2 With prior knowledge

It is a very common use-case to know that certain OOV-words will
need to be recognized by a model. We compare three different sce-
narios: When we have access to the L and G and are willing to redo
composition (’mod L,G’), when we don’t want to redo composition
and therefore modify the HCLG and are willing to accept the con-
straint of using a monophone model (’mod HCLG’), and when we
have a subword-based model and have access to the G and will do
composition again (’mod G’). In each case we assume we have a
list of OOV-words that we know the model will need to recognize,
see section 4 for details on how to incorporate that information. The
results are in table 3.

WER CER OOV-CER

English

word 36.3 19.7 54.1
word mod L,G 24.3 13.8 16.1

word mono 36.8 19.2 53.2
word mono mod HCLG 23.6 13.0 15.2

BPE 37.2 19.1 52.1
BPE mod G 29.4 15.8 33.4

German

word 29.9 10.2 44.4
word mod L,G 12.0 4.9 4.7

word mono 30.1 10.4 39.7
word mod HCLG 11.8 5.1 4.5

BPE 25.2 8.2 36.0
BPE mod G 14.8 5.5 11.1

Table 3. Comparison of the baseline to ’mod L,G’, a monophone
baseline and ’mod HCLG’, the BPE baseline and ’mod G’ which
modifies the subword-based model.

All methods lead to a very large performance improvement on
OOV-words. The fact that the monophone model is so competitive
with the biphone baseline supports the modern trend of not using
context dependent targets for the acoustic models[23][24], and sug-
gests that these targets are more robust to out-of-domain data (as
the OOV-CER is lower). The results also show that using the [unk]
probability is a legitimate approach for modeling OOV-words, which
makes sense since words that will end up OOV tend to have certain
characteristics like being nouns. Adding the penalty of 2.3 to the arcs
of each added word improved performance by roughly 10%. While
‘mod G‘ improves the performance of the subword-based model
significantly, the modifications for word-based models are better.
We believe this is because a lot of OOV-words will be represented
by several short subwords, and both their and the pronunciations of
the OOV-word (as realized by connecting the pronunciations of the
subwords) can be inaccurate, making it hard for the model to recog-
nize the exact sequence of subwords needed to create the OOV-word.

7 Conclusion
We used CommonVoice to create shareable datasets for evaluating
OOV-word recognition in English and German. Using a new tool
texterrors we developed for calculating error metrics, we con-
ducted experiments on OOV recognition performance across two
languages in two different scenarios: Without and with prior knowl-
edge. When no prior knowledge is available subword-based models
and OOV-word recovery, with a phone LM for [unk], improve re-
sults slightly. With prior knowledge we showed several methods to
dramatically reduce the error rate on OOV-words. The best approach
for dealing with a high OOV-ratio is to use a word-based, context in-
dependent model and a modified HCLG. We have shared the data
and the code so that others can evaluate their own methods, compare
to an existing baseline and build upon our results.

8 Acknowledgements
The work was supported by the European Union’s Horizon 2020
Project No. 864702—ATCO2 (Automatic collection and process-
ing of voice data from air-traffic communications), which is a part of
the Clean Sky Joint Undertaking.The research is also partially based
upon the work supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Ac-
tivity (IARPA), via AFRL Contract FA8650-17-C-9116.



9 References
[1] Mehryar Mohri, Fernando Pereira, and Michael Riley, Speech

Recognition with Weighted Finite-State Transducers, pp. 559–
584, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[2] Petar Aleksic, Mohammadreza Ghodsi, Assaf Michaely, Cyril
Allauzen, Keith Hall, Brian Roark, David Rybach, and Pedro
Moreno, “Bringing contextual information to google speech
recognition,” in INTERSPEECH, 2015.

[3] Petar Aleksic, Cyril Allauzen, David Elson, Aleks Kracun,
Diego Melendo Casado, and Pedro J. Moreno, “Improved
recognition of contact names in voice commands,” in ICASSP,
2015.

[4] J. Novak, N. Minematsu, and K. Hirose, “Dynamic grammars
with lookahead composition for wfst-based speech recogni-
tion,” in INTERSPEECH, 2012.

[5] Cyril Allauzen and Michael Riley, “Rapid vocabulary addi-
tion to context-dependent decoder graphs,” in INTERSPEECH,
2015.

[6] Johan Schalkwyk, I. Hetherington, and Ezra Story, “Speech
recognition with dynamic grammars using finite-state trans-
ducers,” in INTERSPEECH, 2003.

[7] Anna Bulusheva, Alexander Zatvornitsky, and Maxim Ko-
renevsky, “An efficient method for vocabulary addition to wfst
graphs,” in TSD, 2016.

[8] Samuel Thomas, Kartik Audhkhasi, Zoltán Tüske, Yinghui
Huang, and Michael Picheny, “Detection and recovery of oovs
for improved english broadcast news captioning,” 2019, pp.
2973–2977.

[9] Y. He, B. Hutchinson, P. Baumann, M. Ostendorf, E. Fosler-
Lussier, and J. Pierrehumbert, “Subword-based modeling for
handling oov words in keyword spotting,” in ICASSP, 2014.

[10] Maximilian Bisani and Hermann Ney, “Open vocabulary
speech recognition with flat hybrid models,” 2005, pp. 725–
728.

[11] Issam Bazzi, Modelling Out-of-Vocabulary Words for Robust
Speech Recognition, Ph.D. thesis, 2002.

[12] Asadullah Tanel Alumäe, Ottokar Tilk, “Advanced rich tran-
scription system for estonian speech,” 2019.

[13] Cyril Allauzen, Michael Riley, and Johan Schalkwyk, “A gen-
eralized composition algorithm for weighted finite-state trans-
ducers,” in INTERSPEECH, 2009.

[14] Octavian Cheng, John Dines, and Mathew Magimai.-Doss, “A
generalized dynamic composition algorithm of weighted fi-
nite state transducers for large vocabulary speech recognition,”
Tech. Rep., IDIAP, 2006.

[15] Cyril Allauzen and Michael Riley, “Pre-initialized compo-
sition for large-vocabulary speech recognition,” in INTER-
SPEECH, 2013.

[16] J. Liu, Jiedan Zhu, Vishal Kathuria, and Fuchun Peng, “Effi-
cient dynamic wfst decoding for personalized language mod-
els,” ArXiv, vol. abs/1910.10670, 2019.

[17] Rosana Ardila, Megan Branson, Kelly Davis, Michael Hen-
retty, Michael Kohler, Josh Meyer, Reuben Morais, Lindsay
Saunders, Francis M. Tyers, and Gregor Weber, “Common
voice: A massively-multilingual speech corpus,” 2020.

[18] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in ICASSP, 2015.

[19] J. Novak, N. Minematsu, and K. Hirose, “Wfst-based
grapheme-to-phoneme conversion: Open source tools for
alignment, model-building and decoding,” in FSMNLP, 2012.

[20] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely, “The kaldi speech recognition
toolkit,” in IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. Dec. 2011, IEEE Signal Processing
Society, IEEE Catalog No.: CFP11SRW-USB.

[21] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan
Xu, Mahsa Yarmohammadi, and Sanjeev Khudanpur, “Semi-
orthogonal low-rank matrix factorization for deep neural net-
works,” in INTERSPEECH, 2018.

[22] D. Povey, Vijayaditya Peddinti, D. Galvez, Pegah Ghahremani,
Vimal Manohar, X. Na, Y. Wang, and S. Khudanpur, “Purely
sequence-trained neural networks for asr based on lattice-free
mmi,” in INTERSPEECH, 2016.

[23] Vineel Pratap, Awni Hannun, Qiantong Xu, Jeff Cai, Jacob
Kahn, Gabriel Synnaeve, Vitaliy Liptchinsky, and Ronan Col-
lobert, “Wav2letter++: A fast open-source speech recognition
system,” in ICASSP, 2019.

[24] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta So-
plin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya
Renduchintala, and Tsubasa Ochiai, “ESPnet: End-to-end
speech processing toolkit,” in INTERSPEECH, 2018.


	Introduction
	Dataset
	Metrics
	Model biasing mechanisms
	UNK with non-jnk pronunciation
	Replacing UNK in L and G
	Replacing UNK in HCLG
	Modifying subword G

	Experimental setup
	Results & Discussion
	No prior knowledge
	With prior knowledge

	Conclusion
	Acknowledgements
	References

