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Abstract: Voice communication is the main channel to exchange information between pilots and
Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech
recognition technology to automatically extract spoken key information such as call signs, commands,
and values, which can be used to reduce ATCos’ workload and increase performance and safety
in Air-Traffic Control (ATC)-related activities. Nevertheless, the collection of ATC speech data is
very demanding, expensive, and limited to the intrinsic speakers’ characteristics. As a solution,
this paper presents ATCO2, a project that aims to develop a unique platform to collect, organize,
and pre-process ATC data collected from air space. Initially, the data are gathered directly through
publicly accessible radio frequency channels with VHF receivers and LiveATC, which can be
considered as an “unlimited-source” of low-quality data. The ATCO2 project explores employing
context information such as radar and air surveillance data (collected with ADS-B and Mode S) from
the OpenSky Network (OSN) to correlate call signs automatically extracted from voice communication
with those available from ADS-B channels, to eventually increase the overall call sign detection rates.
More specifically, the timestamp and location of the spoken command (issued by the ATCo by voice)
are extracted, and a query is sent to the OSN server to retrieve the call sign tags in ICAO format for
the airplanes corresponding to the given area. Then, a word sequence provided by an automatic
speech recognition system is fed into a Natural Language Processing (NLP) based module together
with the set of call signs available from the ADS-B channels. The NLP module extracts the call sign,
command, and command arguments from the spoken utterance.

Keywords: air traffic control; air surveillance data; automatic speech recognition; call sign detection;
OpenSky Network; named entity recognition
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1. Introduction

Air traffic control is a very demanding task where one or several Air-Traffic Controllers (ATCos)
plan, send, and execute commands via voice communications, in order to ensure the safety of the
airplanes in a given space area. This article explains how ATCO2is using speech-to-text systems and
surveillance data to auto-transcribe ATC-related speech segments, i.e., voice communications between
ATCos and pilots. This project aims to: (i) develop and implement a strong hardware/software
pipeline for data collection of ATC segments with very high frequency receivers and (ii) explore and
implement current state-of-the-art techniques for automatic speech recognition and call sign detection,
which can lead to the development of new ATC systems to reduce ATCos’ workload and increase
safety in ATC management.

ATC communication currently relies on two approaches, voice communication and voiceless
communication through data links (also called CPDLCsystems). One example of a CPDLC system
is the Eurocontrol Link200+ [1], which was expected to be deployed in all European airports by
2016. The idea is to transfer certain commands and orders through a human-machine interface, thus
reducing the amount of spoken communication, but increasing the ATCos’ workload. The International
Civil Aviation Organization (ICAO) stated that “To minimize pilot head down time and potential
distractions during critical phases of flight, the controller should use voice to communicate with
aircraft operating below 10,000 ft above ground level”; hence, voice communications remains as the
main way to exchange information and commands near airports. Recent research projects [2] and the
ICAO have stated that air-traffic is expected to grow between three and six percent yearly at least
until 2025. The European Union (EU) with the aim of decreasing the ATCos’ workload has invested
resources into projects such as MALORCA (MAchine Learning Of speech Recognition models for
Controller Assistance, website: http://www.malorca-project.de/wp), AcListant (AcListant homepage:
www.AcListant.de), and ATCO2, which have demonstrated detailed results on reducing the ATCos’
workload [3], increasing the efficiency [4], and even offering better solutions in integrating contextual
information, also in real time [5].

In [6], the authors showed for the first time that including context knowledge in Automatic
Speech Recognition (ASR) systems significantly reduces Word Error Rates (WER) in an ATC task.
For instance, the WER was reduced by a factor of almost 10 times i.e., 2.8% to 0.3%. This improvement
is mostly due to an improved call sign recognition. In a follow-up project, AcListant and DLR focused
on integrating the Universität des Saarlandes (USAAR) speech recognizer into their arrival manager
(in order to improve the prediction of the landing sequence); while USAAR extended the features of
its context integrating the speech recognizer in the Düsseldorf approach. Later works showed that in
ideal conditions, it is possible to obtain 95 to 97% Call Sign Detection (CSD) rates when matching a
transcribed utterance (output from an ASR engine) with a list of possible call signs (either from radar
or the OpenSky Network server) in a given sector.

In fact, this was shown in MALORCA, where timestamped radar data are extracted for a given
area and matched with a given utterance. However, to achieve these performances, the speech data
have to be clean, and the target airport location needs to be well represented during the training
of the speech-to-text recognition system [3,4]. In MALORCA, the radar data and speech data are
provided directly by Air-Navigation Service Providers (ANSPs), which in most of the cases, is legally
and technically complicated process. Moreover, such data are not usually sufficient for building a
robust model due to the lack of generalization across different airports/countries and accents.

1.1. Motivation

ATCO2 aims to collect huge amounts of data to build a robust ASR system for ATC that will
generalize across different airports, speakers, and accents. The large non-transcribed audio database
will be gathered with VHF (Very High Frequency) receivers owned by a community of volunteers.
At this moment, the ATCO2 consortium is finishing the development of the receiver software, and three
different hardware setups are considered to be located in different regions in Europe (at the moment,

http://www.malorca-project.de/wp
www.AcListant.de
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Prague, Czechia, and Zurich and Sion, Switzerland). Meanwhile, spoken ATC communications
from LiveATC.net were collected and transcribed; LiveATC uses similar VHF receivers as the ones
that are intended for use. Currently, the call sign detection performance is approximately six times
worse than what MALORCA has demonstrated [7,8] (although the contextual information is so
far avoided). We attribute this to the low (signal-to-noise) ratio of the collected speech segments.
Nonetheless, we propose two ways to improve the performance: (i) either using more expensive
equipment (receiver and/or antenna); or (ii) employing air surveillance data from the OpenSky
Network (OSN) as contextual information in our recognizer. Despite the low quality of the recordings,
we aim to rely on OSN servers to correlate a given speech data segment with air-surveillance data,
which will improve the call sign detection system.

As mentioned in Section 1, one of the current limitations in developing highly accurate
speech-to-text systems and call sign detection systems for ATCo communications is the lack of
annotated data. Normally, between eight and ten man-hours of effort [9] (mainly because it requires
highly trained participants, often active or retired ATCos) are required to annotate one hour of raw
ATCo-pilot voice communication. Afterwards, nearly ten to fifteen minutes of ATCos voice activity are
obtained after silence removal; hence, approximately one man-week of work is required to get an hour
of ATCos without silence [9,10]. Therefore, it is of great interest to develop a robust speech-to-text
and speech-to-call sign system that is aided by context information (air-surveillance data), capable of
recognize spoken call signs independently of the accent, airport, or ATCo’s origin.

2. Methods and Materials

What can we do with surveillance data? Currently, we focus on CSD as this is the most valuable
information we can extract. The surveillance data can be plugged into the ASR decoder to re-rank the
generated word recognition hypotheses and then select the one that matches the call sign extracted
from the surveillance data. At the same time, we should be aware that not all airplanes are equipped
with ADS-B transponders; hence, smaller planes might not be present in the surveillance data, i.e., this
is not a binary problem, but instead, we will leverage the retrieved call sign list from OSN servers to
increase the chances of spotting the right call sign.

Retrieving surveillance data from the OpenSky Network: The recorded ATC utterances are
stored together with a timestamp. This timestamp can be used in combination with the receiver
(or airport) location to send a query to the OpenSky Network (OSN) database. The OSN collects
ADS-B and Mode S data from airplanes from many locations around the world. The query to the
database has two parameters: the time range and the search area. The time range is centered on the
timestamp, and the search area is centered on the receiver (or airport) location. The query returns
the ADS-B information from every plane that matches the criteria. The call signs contained in the
ADS-B information are present in the ICAO format, which is a three-character airline code, e.g.,
LUF(Lufthansa), followed by the call sign number, which consists of a digit combination and may
also contain an additional character combination, e.g., LUF189AF. This is the compressed form of a
call sign.

Verbalizing the compressed call sign: In ATC communications, this compressed form is
“spoken out” by using three different rules. The ICAO code is substituted by the airline call sign
(LUF → LUFTHANSA). The digits are read out one by one (in some cases, there are deviations),
and the characters are spelled out with the aid of the ICAO alphabet for radiotelephony:

LUF189AF→ LUFTHANSA ONE EIGHT NINE ALFA FOXTROT

Sticking to these rules, the compressed form can be expanded automatically to match the
utterances. The ICAO standard also allows the abbreviation of the the digit/character part to at
least the last 2 digits/characters (https://www.icao.int/Meetings/anconf12/Document%20Archive/
AN10_V2_cons%5B1%5D.pdf).

LUF189AF→ LUFTHANSA ALFA FOXTROT

LiveATC.net
https://www.icao.int/Meetings/anconf12/Document%20Archive/AN10_V2_cons%5B1%5D.pdf
https://www.icao.int/Meetings/anconf12/Document%20Archive/AN10_V2_cons%5B1%5D.pdf
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Nevertheless, some other non-standard abbreviations can exist in the data. Another relatively
frequent deviation from the standard is shortening the airline code-word, if the current ATC situation
is not ambiguous:

LUFTHANSA→ HANSA
SCANDINAVIAN→ SCAN
SCANWING→ SCAN
TRANSAVIA→ AVIA
RYANAIR→ RYAN
SPEEDBIRD→ BIRD

The initial contact should always be with the full call sign, and later, the ATCo may start using
the abbreviated version. Taking these variations into account improves the chances of matching the
form used in the actual utterance.

Automatic Speech Recognition system (ASR): This is an important module for detecting the call
sign. Briefly, it automatically generates a text from the incoming audio signal. The output can be
either the best transcript or a graph encoding alternative hypotheses. Inevitably, the output contains
some errors, and narrowing down the search space (employing a list of possible call signs in a given
space area retrieved from OSN servers) can improve the word error rate and also improve the call sign
detection.

Proposed pipeline: ATCO2 proposes a platform that will be able to retrieve the call sign from a
given utterance, timestamp, and location, as summarized in Figure 1. Initially, a speech utterance is
recorded and timestamped with a VHF receiver; then, a query to the OSN server is sent to retrieve
the call signs in that area and at that given time. Afterwards, a fusion block matches either the pilot
or ATCo speech segment (after voice activity detection and diarization) with the surveillance data
retrieved from OSN servers; moreover, in parallel, several commands are spawned from the command
hypotheses’ generator, which will help to narrow the search space and also will be used as a context
in the last block (at the moment, this functionality has not been tested yet). Finally, the last block is
represented by a Named Entity Recognition (NER) model based on a transformer (BERT [11]) for the
final call sign extraction.

Figure 1. ATCO2proposed workflow for matching air surveillance data and spoken Air-Traffic
Controller (ATCo)-pilot utterances gathered from the OpenSky Network API with speech data collected
by VHF receivers. Each source (i.e., speech and air surveillance) is pre-processed before matching,
e.g., speech data undergo voice activity detection and diarization. (i) Green blocks correspond to
technologies either already on the market or available from previous projects, e.g., Active Listening
Assistant (AcListant), MAchine Learning Of speech Recognition models for Controller Assistance
(MALORCA), Air-Navigation Service Providers (ANSPs), OSN, or earlier. (ii) Red blocks summarize
the task/technologies that ATCO2 is aiming to develop or improve.
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3. Speech Recognition, in More Detail

Currently, there are two main paradigms for speech recognition:
(a) A hybrid system with a separate acoustic model, pronunciation lexicon, and language model:

The scores from these models are “glued” together by the Hidden Markov Model (HMM) to generate
hypothesized text from the time series of the input speech signal. It is an older paradigm, which is on
one side more complicated, but which allows training the acoustic model and language separately
in parallel. For the “hybrid” system, we can collect or even synthesize the text data and pronunciation
of new words in advance, hoping that it will match the target domain of the recognizer. If a word is
missing from the lexicon, it cannot be produced in the recognizer output; thus, we have to “know” all
the words in advance.

(b) An end-to-end system (also called a “sequence-to-sequence” or “encoder-decoder” system):
Here, a sequence of input features (extracted from the speech signal) is transformed by a neural
network to produce a sequence of output symbols (typically sub-word units). Internally, the input
features are first encoded to a higher dimensional space of an “embedding” by the encoder neural
network. Then, the decoder neural network classifies these “intermediate features” into a sequence of
sub-word units (typically “byte pair encoding” units). The “end-to-end” systems learn mostly from the
audio data and their transcripts. Using extra “text” data can be done with a shallow fusion (weighted
AM+LM) between the acoustic system and a language model trained on the text data. If a word was
not present in the training data, it still might be okay as long as it can be composed from the sub-word
units.

4. Call Sign Detection Module

The Named Entity Recognition (NER) in the call sign detection module (1) is a sequence
labeling task. The named entity of interest is the call sign in the transcript. Since the call sign is
a part of an ATC command, which specifically addresses an individual plane, it is crucial to detect it
correctly to identify the target plane. For the labeling, the IOB format is used, which stands for Inside,
Outside, and Beginning. This results in the labels B-CALL, I-CALL, and O. The label B-CALL marks
the beginning of the call sign in the transcript, while I-CALL labels are used for words of the call sign
that are inside the named entity. All words that are outside of a call sign are marked with the O tag.
The correct labeling of the transcript below:

“K-L-M Two Seven Yankee call Amsterdam on one three four decimal three seven five”

Will therefore look as follows:

“B-CALL I-CALL I-CALL I-CALL I-CALL I-CALL O O O O O O O O”

The task of the NER module is to produce the correct label for each word in the transcript. Based on
the labels, the call sign (“KLM Two Seven Yankee”) can be isolated from the transcript. The module
itself is based on a transformer [12]. In contrast to classical RNN architectures, like Long Short-Term
Memory networks (LSTMs), the transformer architecture is highly parallelized and therefore allows
faster training on GPUs. In addition, there exist transformer models that are pre-trained on big text
corpora and only require being fine-tuned on the specific task. Fine-tuning for our NER task means
supervised training on labeled transcripts. In this work, we use BERT, a pre-trained bidirectional
encoder for the labeling task [11].

5. Results and Discussion

5.1. Building Our Speech Recognizer

In this section, we work with a “hybrid” speech recognizer. This is an HMM based recognizer
with the TDNN-F[13] acoustic model trained by the lattice-free MMIobjective [14]. We use the n-gram
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language model and the Librispeech [15] lexicon, which we extend with Phonetisaurus G2P [16] to get
the pronunciations of new words (e.g., “Lufthansa”).

The speech recognition acoustic model was trained on 195 hours, which comprised of seven
training databases, as shown in Table 1. This dataset was additionally augmented by adding noises
that matched the LiveATC audio channel, which doubled the size of the training data.

Table 1. Databases used for the speech recognition system.

Database Hours Accents Ref

AIRBUS 45 French [17]
HIWIRE 28.3 French, Greek, Italian, and Spanish [18]

LDCATCC 72.5 American English [19]
MALORCA 8 Austrian German [7,8]
N4 NATO 10 Canadian, German, Dutch, and British [20]
ATCOSIM 10.67 German, Swiss German, and French [21]

UWBATCC 20.6 Czech [22]

What turned out to be a difficult task was unifying the transcripts of these datasets:

• use the same ICAO alphabet and “number words”
• standardize the word-splitting: use “take off” “take-off’,’ or “takeoff”?
• ligature the multi-word airline designators in call signs: “air berlin”→ “air_berlin”

We also enriched the language model and lexicon with:

• the list of airline designators for call signs (partly manually updated):
https://en.wikipedia.org/wiki/List_of_airline_codes

• all “verbalized” call signs from the OpenSky Network flight list 2019/2020 collection:
https://zenodo.org/record/3901482#.X5cK9k_0m_4

• all possible runway numbers (verbalized)
• and all waypoints in Europe that we dumped from the project Traffic:

https://pypi.org/project/traffic/

For testing, we had existing test sets from the AIRBUS (our selection for the held-out set) and
MALORCA (Vienna training/test set) databases. In addition, we collected our own test sets, either by
downloading public data (LiveATC) or by recording the data (LKTB) with a better device and antenna
than LiveATC is currently using. The data were manually transcribed by a group of volunteers.

In Table 2, we see that the WER is reasonably low for AIRBUS and MALORCA (<10%). On the
other hand, our own collection from LiveATC has much worse WER of around 34%, while our own
collection from the LKTB airport is roughly half-way, at 24.7% WER. This performance gap is caused
by two factors. First, the LiveATC data are noisier than the AIRBUS, MALORCA, or LKTB data. This
also increases the error rate despite the noise augmentation we already used on the training data.
Second, the LiveATC and LKTB data come mainly from different airports than those that are present in
the training data for the ASR system. Thus, some lexical elements are different: call signs, waypoints,
runways, and local names. Similarly, the speakers and their accents can be different. This “new airport”
gap can be seen by comparing LKTB with AIRBUS or MALORCA. Part of this gap can be compensated
by boosting a carefully selected list of words completed with a list of call signs from surveillance data.

https://en.wikipedia.org/wiki/List_of_airline_codes
https://zenodo.org/record/3901482#.X5cK9k_0m_4
https://pypi.org/project/traffic/
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Table 2. Performance of our current speech-to-text systems for both the hybrid and end-to-end
approach. Measured in Word Error Rate (WER).

Test Set
WER%

Hybrid End-to-End

AIRBUS 8.1 10.2
MALORCA 5.0 7.2

LiveATC Set 1 34.5 44.8
LiveATC Set 2 33.0 40.4

LKTB 24.7 32.6

5.2. Boosting the Call Signs in Speech Recognition

If we know in advance which call signs are likely to be said, we can take advantage of that and
“suggest” that the recognizer produce them in its output. It is important to recall that in a “hybrid”
speech recognition system, there are two principal ways of using the “list of possible call signs”:

(a) A priori: The speech recognizer uses the HCLG recognition network. This represents the
search space in which the recognizer operates. In this search graph, we can give score discounts to
certain words or even phrases. This increases the chance that the correct call sign appears in the
recognized text or in the “lattice” of alternative hypotheses.

(b) Ex-post: This is done after the recognizer has created “lattices” of alternative hypotheses.
The positive part is that operating with lattices is less computationally intensive than decoding.
On the other hand, there is no way we can detect the correct call sign if its word-sequence is not
present in the lattice.

For now, let us focus on a priori boosting, as it has higher potential to improve the detection of
call signs in the audio at an earlier stage. As mentioned before, the decoder explores the paths that
exist in the HCLG graph. The score discounts can be given by creating a boosting graph B, which is
right-composed with HCLG as (HCLG o B). The boosting graph B has to accept any word sequence
generated from HCLG, plus it contains a sub-graph obtained from a list of boosted phrases. After a few
initial experiments, we decided to give a score discount −1.0 to every word in the boosted phrase;
plus, the first word got a tunable additional discount to better anchor the phrase during the decoding.

So far, we have applied this to “LiveATC Set 1” and “LiveATC Set 2”. We boosted the recognition
network HCLG once per test set, which is rather non-specific. Nevertheless, we already obtained some
WER improvement (Table 3), which tells us that we are on the right path.

Table 3. Boosting of call sign lists from surveillance data.

Test Set
WER%

Non-Boosted Boosted

LiveATC Set 1 34.5 33.6
LiveATC Set 2 33.0 30.8

The next step is to try to use boosting with the call sign list coming from a shorter “time window”.
If that were done with (HCLG o B), it would require many compositions (one composition takes 5 min,
and it requires >1 GB of RAM and about 100 MB of disk space). Therefore, either we need to find a
faster way to boost the recognition network, or we will have to start using the ex-post boosting on
the lattices.

5.3. Call Sign Identification

The NER module was trained on the first 20,000 samples of the training data of the AIRBUS
dataset. Testing was done with the best performing model after 10 epochs training. The model was
tested on two different test sets. The first test set consisted of the last 4000 samples of the training data
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of the AIRBUS dataset (these samples were not used during training) and on the whole LiveATC Set 1.
The results are shown in Table 4.

Table 4. Current performance of the named entity recognition module.

Test Set F1 Precision Recall

AIRBUS 0.953 0.978 0.934
LiveATC Set 1 0.738 0.897 0.638

The F1 score represents the harmonic mean of precision and recall and is a measurement of the
accuracy reached on the datasets. The F1 score ranges from zero to the highest possible value of one,
representing maximum accuracy. The precision value measures how many of the call signs’ labeled
sequences are actual call signs. For the call sign identification, recall is more important than precision,
because it is a measure for how many call signs are actually identified as such. In other words, a low
recall means that some call signs are not identified at all, and the corresponding command cannot be
assigned to a plane. The results show that the model performs better on the AIRBUS dataset, which is
due to the fact that the transcript of this dataset contains mainly full call signs. Because of the noisy
LiveATC data, parts of the call signs are often not understood and therefore missing in the transcript.
Because the model is trained on mainly full-length call signs, the recall value on the LiveATC Set 1
drops significantly. To overcome this problem, we are working on feeding relevant call signs from the
OSN database as additional input for the model.

6. Conclusions

This article introduces ATCO2 and its main objectives such as speech-to-text and call sign detection
for air-traffic spoken communications; where we show that speech recognition can be done on ATC
communications gathered through VHF receivers. Additionally, we compare the two most common
methods for building speech recognizers currently, which are hybrid and end-to-end based systems.
If it is clear that the hybrid systems outperform the proposed end-to-end approach, we believe that
end-to-end systems bring different advantages, which can be further exploited in the future. Our
method of boosting the speech-to-text system with call signs retrieved from the OpenSky Network was
tested successfully; still, further research to increase the speed of the boosting and narrowing it to less
“utterances” or even boosting per-utterance is needed. To the authors’ knowledge, this is the first study
employing seven air-traffic command-related databases spanning more than 195 h of speech data
that are strongly related in both phraseology and structure to ATCo-pilot communications. Further,
a huge work on the standardization and normalization of these seven databases was done; which
helped to accomplish the proposed goals. We showed that our speech recognition models are able
to generalize across ATC spoken communications from different countries, English accents, airports,
and speakers. In fact, we achieved competitive results in both of our crafted test sets from LiveATC
when performing a boosting with a list of call signs retrieved from OSN servers; for Test Sets 1 and
2, we achieved, respectively, 33.6% and 30.8% WER. Finally, our call sign detection module based on
transformers yielded 0.95 and 0.73 for the F1 scores for Airbusand LiveATC Test Set 1, respectively.
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