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While the characterization of food consumption level has been extensively studied in nutrition and psychology research,
advancements in passive smartphone sensing have not been fully utilized to complement mobile food diaries in characterizing
food consumption levels. In this study, a new dataset regarding the holistic food consumption behavior of 84 college students
in Mexico was collected using a mobile application combining passive smartphone sensing and self-reports. We show that
factors such as sociability and activity types and levels have an association to food consumption levels. Finally, we define and
assess a novel ubicomp task, by using machine learning techniques to infer self-perceived food consumption level (eating
as usual, overeating, undereating) with an accuracy of 87.81% in a 3-class classification task by using passive smartphone
sensing and self-report data. Furthermore, we show that an accuracy of 83.49% can be achieved for the same classification
task by using only smartphone sensing data and time of eating, which is an encouraging step towards building context-aware
mobile food diaries and making food diary based apps less tedious for users.
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1 INTRODUCTION
Many young adults show a tendency to adopt unhealthy eating practices during college years, when they
undergo significant lifestyle changes such as leaving home, meeting new friends, starting a career, and developing
relationships [82, 89]. Even though young adults are relatively healthy compared to other older populations,
unhealthy eating habits at this age could lead to adverse health outcomes such as cardiovascular diseases,
overweight conditions and obesity in the long term [11, 43, 82]. Due to these reasons, researchers in nutrition,
behavioral science, and psychology are extensively studying causes and contexts of food consumption, specially
among college students [53, 89, 136, 141]. Moreover, prior research in these domains have linked factors such as
social context [52], eating location [41], availability and types of food [117], and psychological aspects [51] to
food consumption behavior. With increasing smartphone coverage among young adults and the availability of a
plethora of mobile health (mHealth) applications [78], smartphones have become a ubiquitous tool that can help
young adults adhere to healthier food consumption practices [73].
The most common use case in mHealth apps is fitness tracking, where such apps keep track of daily activity

levels passively by providing insights to users in terms of step count, activity levels, and activity types [6]. "Food
and Nutrition" is another major category of mHealth applications [78], and many widely used commercial apps
such as MyFitnessPal [3], Lose It! [2], Apple Health [7], and Samsung Health [8] allow users to keep their food
intake as a mobile food diary, providing basic statistical insights so people can adhere to healthier eating patterns.
However, in their current state, these applications do not yet make full use of smartphone sensing capabilities
to provide additional insights (with the notable exception of the camera, which is used to photograph food),
even though food consumption level is directly related to many aspects that can be sensed passively such as
stress [70], mood [67, 90], activities [38, 124], and sociability [26, 80]. Even though attention has been given
to visually identifying food types via mobile apps [100], characterizing meal and snack eating behavior using
smartphone sensing and self-reports [24], and identifying eating and overeating events using wearable sensing
[143], relatively less research has been conducted to leverage smartphone sensing capabilities to obtain data from
people to analyze food consumption levels [75].
To our knowledge, while food intake recognition has been studied in ubicomp research [24], the specific

overeating phenomenon has not been studied using passive smartphone sensing and self-report datasets. Using
such a rich combination of data sources allows to analyze eating behavior of college students using knowledge
from nutrition and mobile sensing research by associating food consumption levels to aspects such as mobile app
usage, location, activity levels, sociability, and food types. This approach allows for comparisons with findings
about self-perceived food consumption levels in prior nutrition and behavioral science research (which validates
some of the observed trends), and also to provide novel insights regarding techniques to build mobile food
journaling systems that leverage passive sensing to identify behaviors of college students associated to overeating,
and to provide them with valuable insights and interventions regarding their food consumption. In this study, we
address the following research questions.

RQ1: What behaviors and contextual patterns around food consumption levels can be observed by analyzing
everyday eating episodes of a group of college students obtained via passive smartphone sensing and self-reports?
RQ2: Can self-percieved food consumption level be inferred using contextual data obtained through a mobile
application?

By addressing the above research questions, this paper makes the following contributions.

(1) We conducted a newmobile data collection campaign inMexico with 84 college students to capture their eating
behavior including food consumption levels (eating as usual, overeating, undereating). Studies of populations in
Latin America are not common in ubicomp research. During our study, we collected 3278 self-reports including
1911 meal reports and 1367 snack reports for two participant cohorts spanning 37 and 23 days, respectively. In
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addition to self-reported data, we collected passive sensing data related to eating context, physical activity levels,
and phone usage to characterize eating episodes in a holistic perspective.
(2) We defined and evaluated a novel ubicomp task by inferring eating more than usual ("overeating"), less than
usual ("undereating"), and "as usual" episodes using passive smartphone sensing and self-report data, with an
accuracy of 87.81% in a 3-class classification task. We also show that an inference accuracy of 83.61% can be
achieved for the same 3-class classification task even if food category-related features are not used in model
training. Moreover, we show that the same inference task can be done with an accuracy of 83.49% by only using
passive smartphone sensing features and time of eating. These results show that in the set of participants, food
consumption level was not only driven by food type or category as assumed in traditional food journals and
calorie based calculations, but also by other contextual factors associated to eating episodes. Moreover, results
from our study illustrates the potential of using passive smartphone sensing alone or together with mobile food
journals towards building context-aware food-related mobile systems.

2 DEFINING FOOD CONSUMPTION LEVEL
In prior research, food consumption level has had both objective interpretations (nutrition science-based) [28,
113, 137] and subjective ones (nutrition and psychology-based) [40, 98, 123, 125, 131, 137], and there is no unique
way to define it [49, 69]. The objective food consumption level attempts to capture the exact calorie consumption
during eating episodes from a purely nutritional standpoint. In lab studies, calorie intake is pre-calculated before
offering food to participants [28]. Under this objective interpretation, a person should eat only as much as is
necessary to offset her/his caloric demands, and overeating occurs if the food intake exceeds this amount [49].
Many currently available mobile food diaries such as MyFitnessPal [3], Samsung Health [8], and other research
studies [37] attempt to capture this attribute using self-reports by requesting the users to enter each food type
and the amount they eat. Even though the target here is to capture the objective calorie intake, there is by design
a subjective element because users self-report it, and it is known that people often fail to report volume/weight
of a dish accurately [137]. However, even if caloric intake is correctly reported and calculated, defining food
consumption level as overeating and undereating according to this approach is complicated according to Herman
et al. [49, 125], because it depends on a plethora of factors: (a) individual factors such as metabolic rates, activity
levels, age, gender, height, weight; and (b) measurement factors, i.e., the unit of calculation for overeating is
usually caloric deficit per day (nutritionists often do it at the day, week, or meal/snack episode level). This implies
that for the same person, eating the exact same amount of food on a more active day could be overeating on
a slow day. Hence, the process gets more complex as factors add on, and it could get particularly difficult and
inaccurate if overeating and undereating episodes are determined based on self-reports that reflect food types
and volumes. In addition, a recent study by Jung et al. [58] emphasized how currently available mobile food
logging systems can be troublesome to users because of the tedious manual data entry process, hence leading to
low adoption rates.

Contrary to the objective view of food consumption level, nutrition researchers have also widely used subjective
measures to capture food consumption levels of people by considering the psychology of food consumption
[59, 69, 97, 98, 117, 122, 123, 125, 126], also known as self-perceived food consumption level. This view is primarily
based on the idea that, when you ask people whether they overate or not, more often than not, the answer would
be based on an eating episode level, and the self-perceived amount of food they have eaten [49]. This measure
has often been used as a proxy to the actual amount of food people have eaten. Field et al. [40] showed that
self-perceived food consumption level can be similar to real food consumption levels, and these self-reports
are valid to determine bulimic episodes in adolescents. Moreover, Williamson et al. [137] examined the relation
between self-reported caloric intake (similar to self-reports regarding caloric intake in MyFitnessPal and Samsung
Health) and self-perceived overeating, concluding that there is a positive relationship between the two variables
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for all four groups of people they considered: (1) suffering from bulimia nervosa, (2) compulsive binge eaters,
(3) obese, and (4) not having any of the three previous conditions. Due to the above mentioned factors, many
prior studies have used self-perceived food consumption level as a proxy to the objective food consumption level,
although we are not aware of any study that establishes detailed guidelines of when self-reported subjective
overeating and objective overeating coincide or not. Furthermore, prior work in nutrition research suggests that
adverse behavioral and emotional effects of overeating arise not only after people eat an objective large amount
of food, but even when people simply think that they have overeaten (self-perceived overeating) compared to
their prior beliefs or current social context [69, 87, 88]. This is why many studies regarding psychology and
eating behavior consider self-perceived food consumption level to be an important attribute, specially when
considering eating as a holistic process to understand eating behavior [25, 56, 120].

Williamson et al. [137] captured overeating episodes by asking participants to report their perception onwhether
they overate or not (a binary choice). In a study by Ruddock and Hardman [98], self-perceived food consumption
level was examined using a three-level coding system (eating more-than/less-than/as usual). Moreover, Vartanian
et al. [125] used a five-point likert scale (1-5) in their study regarding food consumption levels where 1, 3, and 5
corresponded to "ate much less than I normally eat", "ate similar to the amount I normally eat", and "ate much
more than I normally eat" respectively. By normal or as usual, what these studies meant is in comparison to their
past behavior, and how they perceive societal norms regarding normal food intake. Following this literature, in
this paper we define self-perceived food consumption level as "eating more than (overeating condition), less than
(undereating condition), or roughly the same (as usual condition) amount of food during an eating episode, in relation
to the person’s own estimated consumption, beliefs, and norms". Hence, from here onwards in this paper, we use
the terms "food consumption level", "overeating", "eating as usual" or "undereating" to denote the self-perceived
and self-reported attributes.

3 RELATED WORK

3.1 Internal and Contextual Factors Affecting Overeating
If we consider food consumption level, prior research has shown several factors that affect it such as psychological
aspects, sociability, activity levels and types, and food types [49, 50, 59, 83, 111, 116, 135]. A recent review
study discussed the complex relationship between psychology and food intake, describing that stress and mood
affect food consumption behavior, and it can lead to both overeating or undereating depending on external or
psychological stressors [111]. A recent article explained that stress can lead to lack of appetite in the short term
(due to the high levels of hormone epinephrine secreted by adrenaline glands) that would lead to undereating
[1]. On the flip side, long term exposure to stress can cause people to overeat with the initial expectation of
overcoming stress and bad mood that is driven by hormonal activity (due to another hormone released from
the adrenaline gland called Cortisol which increases appetite). Many other studies confirm these findings; some
show that positive and calm affect, influenced by contextual factors (social gatherings, celebrations, partying) can
lead to overeating in the short term [28, 31, 83], while other studies show that longer term exposure to stress can
lead to eating disorders [33, 110]. Further explaining the relationship between human psychology and overeating,
Vartanian et. al. [126] described that many people perceive the eating amount to be highly driven by internal
factors such as hunger, feeling, and emotions rather than external factors such as social context. In another study,
Bongers et. al. [27] showed that overeating is not only driven by mood and negative affect, but also external
contextual factors. Studies also suggest that people who overeat do not self-perceive it at the moment, and usually
feel sometime after consuming the food [49]. This could be due to the rapid nature of food consumption, and the
time the body takes to generate the sensation of being full [15, 49, 101]. Considering this fact, we designed our
mobile surveys retrospectively rather than in-situ [104] as described in Section 5. In this study, we focus on using
a mobile food diary to identify short term food consumption levels with eating episode-level data.
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3.2 Mobile Health Apps to Analyze Eating Behavior
Nutrition researchers have carried out mobile food diary based studies to understand compliance among young
adults and children [10, 102], claiming that there is potential for young people to independently record their
food intake using photos. Most of the mobile food diary based studies rely on users taking and labeling pictures,
and manually entering calorie levels [75]. This is a tedious process that can disengage people due to boredom
[58]. Hence, studies say that the focus of modern food diaries has been to reduce the effort by users to enter
details, such that benefits of having such diaries outweigh the effort [12]. Following this, a direction pursued
by mobile sensing and computer vision researchers is to identify food categories and estimated calorie intake
with photos [29, 57, 66, 76]. However, most of these applications still lack in accuracy to be applicable in any
unrestricted setting. As Min et. al. studied in a survey [75], these studies have focused on food recognition and
use heterogeneous data sources such as social media and recipe datasets. In contrast, inferring food consumption
levels using contextual passive sensing data and self-reports is not a widely attempted task in food computing
research due to its challenging nature starting from obtaining a relevant data with accurate ground truth.

Even though mobile food diaries have been studied extensively as stand-alone applications, food intake is not
necessarily a stand-alone activity, and is associated to factors such as psychology, activity levels, social context,
and the general behavior of people as described in Section 3.1. Moreover, prior research highlights the importance
of building diaries that are not only aware of the food intake, but also the contextual, psychological, and social
modeling of the eating episode [32, 34, 79]. Hence, our focus is to find associations between perceived food
consumption levels and features from passive sensing and self-reports, using the intuition that representing
an eating episode by merely the food intake and type is not enough, but all the contextual and individual cues
captured via passive sensing features should be considered.

3.3 Mobile Sensing to Analyze Eating Behavior
The use of mobile sensing in food-related studies can be categorized into two main types: (1) detecting and
identifying eating events and time of eating using contextual sensing; and (2) after eating events are detected,
identifying food types and characterizing eating events by identifying associations with user context, food
consumption levels, and other attributes.

Detecting and identifying eating events has been primarily approached using wearable sensing and smartphone
sensing. Rahman et. al. [91] used wearable sensing to predict about-to-eat moments with a recall of 77%. Bedri
et. al. [20] studied a wearable system called EarBit to detect chewing moments, with 90.1% and 93% accuracies
in lab-settings and outside-lab-settings, respectively. Thomaz et. al.[118] used a wrist wearable to detect eating
episodes, reporting F1-scores of the range 70%-76% in two lab based experiments. In summary, these previous
works attempt to identify the time of eating.

When the time of eating is detected, the next step is to characterize eating events [77]. Madan et. al. [71] used
mobile phone sensing to understand food consumption of US university students for a period of nine months,
and concluded that healthy food consumption patterns are related to the health behavior of other people that
they associate with (sociability). Seto et. al.[107] used smartphone sensing to identify eating behavior using
self-reports and passive sensing, and concluded that the eating environment affects the eating patterns. Biel et.
al. [24] deployed a mobile sensing application to track eating behavior of 122 Swiss university students. They
gathered over 4440 eating events, and performed an eating occasion inference (meal vs. snack) task with an
accuracy of 84% using data such as location, time of the day, and time since the last food intake. Vu et. al. [129]
laid out a vision for wearable food intake monitoring systems, and emphasized the importance of identifying
overeating moments. Zhang et.al. [143] used a wrist wearable to detect overeating episodes based on the number
of feeding gestures. They worked with the assumption that the higher the number of feeding gestures, the higher
the calorie intake and objective food consumption level, and showed correlations in objective calorie consumption
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Fig. 1. Objective of the Study Fig. 2. Block Diagram of Data Collection

and the number of feeding gestures. In our study, we consider eating events as holistic [24, 25, 120], and attempt
to understand self-perceived food consumption level using passive smartphone sensing and self-reports. We show
that food consumption level is related not only to the type of food, but also the sociability, mood, stress, and other
behaviors, some of which can be captured or estimated using passive sensing features. As a summary, our study
differs from previous work in five aspects: (1) we use smartphone sensing combined with mobile food diaries; (2)
we collect a new mobile sensing and self-report dataset to study this phenomenon; (3) we consider eating as a
holistic event instead of just considering the type and amount of food; (4) we show that the self-perceived food
consumption level can be inferred using smartphone sensing and self-reports; and (5) we provide preliminary
evidence of using just passive smartphone sensing features and time of eating, as informative features for the
inference of food consumption level of college students.

4 STUDY DESIGN

4.1 Study Objective and Hypothesis
The primary objectives of this study are to investigate links between food consumption level and features derived
using passive sensing, and to leverage such links to automatically infer food consumption level, as summarized
in Figure 1. Prior literature has shown that passive sensing features can be used to infer psychological and
contextual aspects such as stress [70, 106], mood [67], activity types [6, 8, 24], sociability [13, 23, 46, 47], and food
types [24, 77, 107]. In addition, a plethora of prior nutrition and behavioral science studies have linked the above
aspects to food consumption levels [49, 50, 74, 126] as discussed in Section 3. Knowing that smartphone sensing
features have shown correlations to certain attributes, which have also been connected to food consumption
levels as shown in Figure 1, our objective is to leverage these relationships studied in prior literature to use
passive sensing for inference of food consumption levels. In other words, as passive sensing features have been
linked to aspects such as stress, mood, activity, sociability, and food; and as these aspects have been linked in
nutrition literature to food consumption levels like overeating; our hypothesis is that mobile sensing features
could be used to infer self-percieved food consumption levels.

4.2 Mobile Application
We used a native android mobile application called i-Log to collect data from volunteers [142]. The app was
developed at the University of Trento with Java, and data were initially stored in a SQLite database in the
smartphone. Moreover, the system uses Google Firebase as a notification broker to send push notifications. When
the phone is connected to a WiFi network and the phone has sufficient battery capacity, anonymized data were
uploaded to Cassandra DB database in secure servers, hence freeing up the internal storage. The app has three
main components: (a) push notification system to prompt users to complete questionnaires; (b) mobile surveys to
record self-reports; and (c) passive smartphone sensing component to log sensor data.
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4.3 Push Notification System
Given the nature of our study, we decided to use retrospective questionnaires to obtain self-reports from users. A
notification strategy is important to get ground truth at the correct time, and we did not want users to report
food intake in-situ, as the feeling of overeating is often experienced by users after a certain time from eating as
described in Section 3.1. Hence, with the expectation of users retrospectively reporting their last food intake,
we sent notifications to users 3 times per day, prompting them to fill in the food intake questionnaire. Push
notifications were sent during the time slots 10.00 to 11.00 am, 3.00 to 4.00 pm, and 9.00 to 10.00 pm, that were
chosen after considering the eating behavior of participants (note that lunch and dinner times in Mexico are later
than those in the USA or most of Europe). Further, our expectation was not to collect data regarding all food
intakes, but to collect as accurate data as possible regarding the 3 eating periods.

4.4 Food IntakeQuestionnaires
When users click a notification, the app opens and they are asked to indicate whether they wish to report a meal
or a snack. The 9-item questionnaire was prepared with user experience in mind such that it can be filled within
1-2 minutes. Initially, we asked people about the number of eating episodes they had within the last 4 hours.
Then we asked users to focus on their last food intake and answer 8 more questions that collected data including
how long ago the eating episode had occurred (1-30 minutes ago, 30-60 minutes ago, etc.), food categories (meat,
fish, bread, cereals, dairy, etc.), social context of eating (alone, with a date, with a groups of friends, etc.), semantic
eating location (home, university restaurant, cafe, etc.), and concurrent activities (reading, socializing, watching
TV, etc.). Then, two more questions were asked regarding their state of mind including general mood/affect at the
time of eating (5-point scale from very negative to very positive) and stress level at the time of eating (5-point
scale from very stressed to very calm). These questions were adapted from existing literature used to determine
mood and stress level [67, 90]. Moreover, similar to Vartanian et al. [125], the app asked users to indicate their
food consumption level as: (1) significantly less food than usual, (2) slightly less food than usual, (3) about the
same as usual, (4) slightly more food than usual, and (5) significantly more food than usual. For our analysis, we
define options 1 and 2 as "undereating", option 3 as "as usual", and options 4 and 5 as "overeating" in accordance
with the definition we laid out in Section 2. Finally, even though participants answered end-of-day questionnaires,
we did not include it in the analysis presented here.

4.5 Passive Smartphone Sensing
The average amount of time users take to provide self-reports is 6-8 minutes per day. To have a fine grained
understanding about behavioral routines connected to eating, the app had passive smartphone sensing capabilities
to collect data regarding users throughout the day. (a) App Usage - We collected data regarding app usage
once every 5 seconds. Prior research has indicated that app usage behavior could be associated to user context
[109, 138] and internal states [39, 144]; (b) Accelerometer - Prior research has shown that accelerometer data
can be used to derive daily activity levels of people [65, 119]. Some studies have also associated these activity
levels to well-being-related aspects [90, 106]. The app collected data from accelerometer with a frequency of
20Hz; (c) Battery Events - Whether the phone is plugged into a charging port, and to what kind of a port it
is connected to (usb, alternative current, unknown) provide cues regarding the context of users including the
availability of charging facilities nearby and also the general phone usage behavior [16]. Moreover we collected
battery level throughout the day at every 1% change in battery level, and each time charging status changed; (d)
Screen Events - The app logged details regarding the status of the screen including when the screen is turned
on or off [9, 16]. These details can be used to estimate the amount of time the phone screen is on around eating
events. This is an important attribute when examining eating behavior because prior work has discussed the
adverse consequences of excessive phone usage around eating episodes [4, 112, 115]; (e) Location - This has

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 26. Publication date: March 2021.



26:8 • Meegahapola et al.

Table 1. Summary of Phases Including Workshop Participation and Number of Recruited Volunteers

Phase # of Days # of Participants # of Recruited Volunteers Population
I 37 32 29 (90.6%) University 1
II 23 90 55 (61.1%) University 2
Total 60 122 84 (68.9%) -

been used in many studies to quantify daily movement [17, 140]. The app logged location of users with both GPS
and phone network based on the availability of sensors once every 10 minutes.

5 DATA COLLECTION AND PRE-PROCESSING

5.1 Participant Recruitment, Study Approach, and Ethical Considerations
This study considered participants living in San Luis Potosi City in Mexico, which has 1.2 million inhabitants,
and is home of diverse student populations. We considered college students from two of the main (private and
public) universities in the city. People of this age group are tech savvy and the smartphone coverage among them
is high [78]. In addition, young adults are open to change their behavior, specifically in relation to their eating
and physical activity habits [94–96]. Considering all the above factors, a campaign was launched in June 2019 to
announce a mobile sensing data challenge. Two workshops were held in August and October 2019, where the
goals of the study were introduced to potential participants, describing how data collection would be carried out,
and how data would be used for research. After a basic screening process, interested participants voluntarily
filled out a consent form and entered the study filling an entry questionnaire (see Figure 2). Then, they installed
the app on their smartphones. The average age of study participants was 23.4 years (SD: 3.51), mean BMI was
24.14 (SD: 4.68), and the cohort had 44% males and 56% females. As an appreciation for participating in the study,
all of them were rewarded with a gift pack and a t-shirt. Participants had to meet certain criteria: (a) own an
android smartphone and (b) not having eating disorders like bulimia or anorexia.
The initial phase of the study was run from September 3 to October 9, 2019. The second phase ran between

November 19 and December 12, 2019. Hence we collected data for a total of 60 days from 84 university students.
We made sure that the data collection was done during a time period with no major examinations or university
level events that would alter the usual behavior of students. The data summary is described in Table 1. Phase I
involved students who study subjects not relevant to nutrition from University 1 (Universidad Autónoma de
San Luis Potosi), and Phase II was deployed in University 2 (Universidad Tangamanga) where participants were
nutrition science students. During the data collection campaign, we sent a total of 7898 notifications to users,
got 3895 responses (49.3% response rate), and 3278 of these responses corresponded to fully complete reports
including 1911 meal reports and 1367 snack reports. After the mobile data collection phase, we conducted 10
semi-structured interviews, 1 eight-person focus group, and 64 short questionnaires with open-ended questions.
The goal was to understand possible links between food consumption and the variables captured in the app,
including places, times, stress, and food types. All material was originally in Spanish, then translated to English
for this publication. A detailed description of the experimental procedures of the project was reviewed and
approved by the local institutional authorities at IPICYT. The institutional review included approval of a Data
Protection Impact Assessment document, a Privacy statement and Participant Consent forms, a Data Processing
agreement among project partners, and a Declaration of Commitment agreement.

5.2 Pre-Processing the Dataset for Analysis
The goal of our analysis was to investigate eating episode level data. Hence, we chose each food intake self-report
as a data point in our dataset. To integrate sensor and survey data, we followed an approach suggested in prior
mobile sensing literature [24, 103, 106], where for each event of focus, in this case for each eating episode, passive

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 26. Publication date: March 2021.



One More Bite? Inferring Food Consumption Level of College Students Using Smartphone Sensing and Self-Reports • 26:9

sensing data would be aggregated using a defined time window. We selected a time window of one hour which
would mean that for each food intake event, we aggregate passive sensing data half an hour before and after the
event starting time. We chose this time window considering prior research regarding characterizing eating events
[24] and from a preliminary analysis regarding food consumption level (explained in Section 8). We started the
procedure by finding the adjusted eating time because self-reports were done retrospectively. As mentioned in
the previous section, we asked users "how long before they had the last meal". Using the answer for this question,
we adjusted the timestamp of each food intake report to estimate the actual time of the eating episode. As an
example, if the time of the self-report is 2pm, the answer for the question is 30-60 minutes ago (on average
30+60/2 = 45 minutes ago), the adjusted time of eating is estimated as 1.15pm (2pm - 45 minutes). Hence, using
the one-hour time window, each eating event would be considered as a one hour eating episode. If the adjusted
eating time is denoted by T , the time window would be the one hour from T − 30 minutes to T + 30 minutes.
Next, we describe how each data modality was processed to associate it with eating episodes.
Accelerometer: following an approach similar to [24], for each 10-minute slot of the day, we generated

features (aggregated sum of all values and sum of absolute values) using accelerometer value for axes x, y, and z.
Then, depending on the adjusted time of an eating event (T), we considered three 10-minute bins before that
eating episode (T-30 to T-20, T-20 to T-10, and T-10 to T), and three 10-minute bins after the start of the eating
episode (T to T+10, T+10 to T+20, and T+20 to T+30). This way of pre-processing led to creating 18 features using
accelerometer values. We use abbreviations to name the features generated using this methodology: (a) abs -
calculated using absolute values of the accelerometer data; (b) bef - feature is calculated considering data before
T, from T-30 to T; and (c) aft - feature is calculated considering data after T, from T to T+30.

Apps: we selected the ten most frequently used apps in the dataset. Then, during the hour associated with the
eating episode, we determined whether each of those apps were used or not, hence resulting binary values for
features in feature group App.
Location: using location traces, we calculated radius of gyration (a commonly used metric in mobile sensing

[17, 140]) within the hour of consideration associated to the eating episode. Moreover, for each user, we generated
stay regions throughout the whole day. Hence, using self-report labels (home, university, etc.), we generated
labels for passively sensed stay regions of users, and we call that feature as location in our analysis. Moreover, for
the location feature, we only used location degraded in precision for location privacy reasons (keeping only 4
decimal points).
Screen: using screen-on/off events in the dataset, we calculated the number of times the screen was turned on

during the time slot, similar to prior literature [9, 16].
Battery: Similar to [16], we calculated the average battery level and also whether any charging events were

detected during the time of eating episode. Battery and Screen events are used as proxies to smartphone usage
behavior [9, 16].

6 DESCRIPTIVE DATA ANALYSIS (RQ1)

6.1 Food Types and Food Consumption Level
Figure 3 shows how different types of foods (meals in the top row, and snacks in the bottom row) were reported.
When the number of meals is 1 (top-left), the figure shows three clear peaks at around 10am, 2pm, and 8pm that
correspond to breakfast, lunch, and dinner times, respectively. The peak for lunch is visible when the number of
meal events is 2, the dinner time peak is visible in the top-right figure. Moreover, when considering plots for
snack intakes (bottom row), the figures for "how_many" values of 2 and more than 2 are sparse, while in the plot
for "how_many" having 1, there are two peaks including one around noon, which is also a time period between
breakfast meal at 10am and lunch meal peak at 2pm.
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Table 2. Summary of the 56 features used in the analysis. Feature Group describes the type of features and ’Examples’ are
some feature names. The number in parenthesis next to categorical indicates the number of categories in categorical features.

Feature Group - # of Features Description Type Example Features
Activity (ACC) - 18 Features derived using accelerometer numerical accx , accx abs, acczbef
App Usage (APP) - 10 Features derived using app usage categorical(2) facebook, instagram, etc.
Food Category (FOOD) - 15 Features derived using category of food categorical(2) fats & oils, meat, eggs, fish

Battery Events (BAT) - 2 Charging status
Battery level of the phone

categorical(2)
numerical

charging status
battery level

Location (LOC) - 2 Radius of gyration calculated using location numerical(1) radius of gyration
Location of the person categorical(12) location

Temporal (TIME) - 2 Hour of the day and minute of the day numerical hours, minutes
Screen (SCR) - 1 Number of screen on/off events numerical screen events
Psychological (PSY) - 2 Derived using mood and stress self-reports categorical(5) mood, stress
Context (CON) - 3 Self-reported contextual details about eating categorical activity, social, location
Overeating (OVER) - 1 Self-reported food consumption level categorical(5) overeating

Fig. 3. Bar charts for food intake reports with hour of the day in the
x-axis and number of eating events in the y-axis. "how_many" is the
self-reported value from food intake questionnaire regarding how
many eating episodes have occured in the past four hours.

Fig. 4. Bar charts for ten different food categories. In
each subplot, the x axis indicates the three classes re-
garding food consumption level, and the y-axis indi-
cates the total numbers of reported cases.

In the dataset, the total number of meal episodes are distributed as 746 (55%) as usual , 319 (24%) undereating,
and 285 (21%) overeating. Hence, the number of undereating and overeating episodes are comparable. For snacks,
the numbers are distributed as 247 (49%) as usual, 190 (38%) undereating, and 63 (13%) overeating. Hence, the
percentage of overeating episodes during snacks is relatively low compared to undereating, which is reasonable
given that usual snacks are smaller in size. In addition, the percentage of undereating snack episodes is significantly
higher (1.5 times the percentage) than for undereating meal episodes. Moreover, Figure 6 shows that a higher
number of overeating events are found closer to lunch and dinner meal peaks.

As shown in Figure 4, when considering food categories and consumption levels, overeating was associated 93
times (35.4%) when "fats and oils" were present in the food as compared to undereating, which was reported only
21 times (7%). Food type "meat and sausages" was also associated to overeating almost twice the number of times
as compared to undereating. For the food type "soft drinks or sugary juices", overeating episode reports (46%)
were almost equal to the number of "as usual" episodes (39%). Moreover, for prepared dishes, the relation among
"as usual", "overeating", and "undereating" was 3:3:1, which suggests that participants were highly likely to have
reported "overeating" or "as usual" when eating prepared dishes, that are typically found in restaurants, bars, or
cafes. These results match prior literature that links overeating to eating out in restaurants where food is often
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Fig. 5. Heatmap for hourly food con-
sumption episodes considering snack
intake. "hours elapsed" denotes the #
of hours from the start of the day.

Fig. 6. Heatmap for hourly food con-
sumption episodes considering meal
intake. "hours elapsed" denotes the #
of hours from the start of the day.

Fig. 7. Bar chart representing the number
of eating events related to different social
contexts and associated food consumption
levels.

more palatable [72]. Moreover, our results are consistent with prior research that also suggests people reported
overeating in the presence of fats and oils, sugary drinks, and meat [55, 132].

6.2 Sociability and Food Consumption Level
We considered 8 contexts of sociability in our analysis. 3 social contexts correspond to groups (with family
and friends, family members, friends or colleagues), 3 contexts correspond to eating with another person (with
one family member, boyfriend/girlfriend/partner, one friend/colleague), and the remaining 2 contexts (alone,
alone in a crowd) correspond to eating alone. Figure 7 shows the distribution of food consumption episodes
across different social contexts, and it indicates that all group eating episodes had a higher number of overeating
cases (substantially for family; slightly for the other two) compared to undereating episodes. On the other hand,
when eating alone, 230 reports indicated undereating, and in the social context "alone in a crowd of strangers",
the percentage of undereating episodes (61.4%) is higher than the "as usual" percentage (25.3%). In summary,
these results suggest that when participants were in groups, they had more overeating episodes as compared to
undereating episodes. In eating behavior research, this phenomenon has been called social facilitation [49, 50].
These results match prior research that discusses eating as a holistic social event and how people tend to eat more
food than they usually eat when they are in more social contexts [28, 49, 50, 74]. On the other hand, when alone,
the number of undereating episodes rose significantly. Further, when participants were with another person
(partner, family member, friend), more undereating episodes were reported compared to overeating in all cases.
This could be because of the effect called impression management, that deals with lowering food intake to please
one’s companions [49, 50]. Moreover, apart from face-to-face sociability, widespread mobile adoption have made
people sociable on the online sphere as well. Some studies have examined the differences and similarities of online
and real world sociability of people in different countries [92]. In our dataset, apps such as facebook, whatsapp,
and instagram showed different usage levels around the three food consumption levels (e.g. usage of social
apps such as facebook and instagram have shown a higher frequency closer to overeating reports as opposed to
undereating reports). These observations conform with prior literature that have indicated associations between
social media use and food consumption [86, 121, 130].

6.3 Mood, Stress, and Food Consumption Level
According to Figure 9, when the mood was negative or very negative, people tended to report undereating. This
result is puzzling, although some literature in nutrition and psychology has suggested that loss of appetite has
been indeed reported when people go through short-term episodes of negative moods [1, 105]. The number of
reported overeating episodes increases when going from neutral to positive mood. Our analysis shows that out
of all the overeating reports with a very positive emotion (124 reports), the majority (47.58%) has reported home
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Fig. 8. Bar chart representing reported
concurrent activities done while eating.

Fig. 9. Mood while eating and count of
reported instances.

Fig. 10. Stress while eating and count of
reported instances.

as the eating location. As a whole, the number of reports with negative or slightly negative mood (183 reports)
is low as compared to positive and very positive mood (952 reports). As shown in Figure 10, a similar overall
trend can be seen for the reported stress level too. This similarity is reflected in the high and positive Pearson
correlation coefficient (0.77, p < 10−5) between mood and stress [22].

6.4 Concurrent Activities and Food Consumption Level
Figure 8 shows the types of concurrent activities done while eating as reported by the participants. "Nothing
Else" category was reported 514 times, and it had the lowest percentage of overeating reports (8.2%) out of all
the different concurrent activities. As literature suggests, this might be because when participants are fully
focused on the eating event, they are mostly aware of their food consumption level [95]. Moreover, results
suggest that participants reported more overeating episodes as compared to undereating, when they socialized
while eating, which is consistent with prior research that suggested social eating as an instance when people
overeat [28, 83]. Furthermore, using mobile phone while eating also corresponds to more overeating episodes
compared to undereating. Watching TV had about the same numbers for overeating and undereating. This result
is consistent with a recent study that explored the relationship between screen time (mobile or TV) and unhealthy
diets [112]. Moreover, another recent study suggested that distracted eating can lead to overeating [95], which
indeed happens when eating while using the phone or watching TV. This is also why studying screen time and
app usage are important when analyzing overeating episodes with a holistic approach. Moreover, activities such
as commuting, cooking, and reading had higher percentages of undereating as compared to both overeating and
as usual. Recent reports regarding commuting and overeating suggest that long commutes could significantly
influence overeating behavior [5, 54].

7 STATISTICAL ANALYSIS (RQ1)

7.1 Pearson and Point-Biserial Correlation for Self-Report Features
We conducted Pearson [114] (for mood, stress, and social context) and Point-biserial [21] correlation analysis
(for food types and food categories, because they are binary values) to understand feature relationships between
self-report features and food consumption level, and some results are summarized in Table 3. Mood, Stress, and
Sociability showed correlation values above +0.29 indicating close to moderate relationships. This is once again
conforming to prior nutrition studies such as [49, 50, 74, 126], that linked psychological aspects and sociability
to food consumption level. On the other hand, we observed a correlation value of +0.22355, that is a weak
positive linear relationship for food type and food consumption level. In our analysis, for feature food type, a
feature value of 1 was used for meals (usually bigger in size, and had higher number of overeating episodes
compared to undereating) and 0 was used for snacks (usually smaller in size, and had far fewer overeating events,
higher number of undereating episodes). Hence, it means that meal intakes have correlated positively with food
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Table 3. Pearson and Point-Biserial correlation analysis for some self-report features and food consumption level.

Features Value Features Value
food consumption level 1 (+) food meat sausages .31827 (+)
mood .35927 (+) food fats oils .32637 (+)
stress .29719 (+) food starches lugumes .30412 (+)
food type .22355 (+) food softdrinks sugery juice .25710 (+)
social context .29165 (+) food prepared dishes .24144 (+)

Table 4. Comparative statistics of 20 features across classes "overeating" and "undereating" (OverUnder) and "overeating"
and "as usual" (OverUsual): t-statistic, p-value (* if p>0.01, ** if p>0.1, *** if p>0.5), and Cohen’s-d with 95% confidence
intervals. Features are sorted based on the decreasing order of t-statistics.

OverUnder OverUsual
Feature Group t-statistic Cohen’s-d [95% CI] Feature Group t-statistic Cohen’s-d [95% CI]
social context CON 12.35076 0.85354, [0.71099, 0.99609] social context CON 5.76663 0.53366, [0.34955, 0.71777]
fats or oils FOOD 10.02969 0.65577, [0.51561, 0.79594] microsoft launcher APP 5.01027 0.39534, [0.21242, 0.57827]
meat or sausages FOOD 9.45595 0.63970, [0.49970, 0.77970] mood PSY 4.64106 0.41359, [0.23053, 0.59665]
mood PSY 8.76104 0.61134, [0.47163, 0.75106] prepared dishes FOOD 4.36667 0.36789, [0.18515, 0.55062]
starches or legumes FOOD 8.71631 0.59054, [0.45103, 0.73006] fats or oils FOOD 4.35349 0.38456, [0.20172, 0.56741]
stress PSY 8.30656 0.57668, [0.43470, 0.71606] softdrinks or sugery juices FOOD 3.96672 0.33864, [0.15610, 0.52119]
softdrinks or sugery juices FOOD 7.42293 0.49218, [0.35353, 0.63083] stress PSY 3.94471 0.35331, [0.17067, 0.53594]
prepared dishes FOOD 6.87340 0.45509, [0.31673, 0.59345] location CON 3.84508 0.33838, [0.15584, 0.52092]
vegetables FOOD 6.62784 0.44431, [0.30603, 0.58259] minutes elapsed TIME 3.57003 0.33825, [0.15572, 0.52079]
concurrent activity CON 5.58480 0.39475, [0.25680, 0.53269] hours elapsed TIME 3.52190 0.33338, [0.15087, 0.51589]
microsoft launcher APP 5.58480 0.34018, [0.20257, 0.47780] screen on count SCR 2.52200* 0.22040, [0.03847, 0.40232]
acc z abs bef ACC 4.41168 0.30777, [0.17033, 0.44521] meat or sausages FOOD 2.09344* 0.19240, [0.01058, 0.37422]
acc z abs ACC 4.37907 0.30347, [0.16605, 0.44089] facebook APP 1.99841* 0.17961, [-0.00216, 0.36139]
facebook APP 3.20637 0.21770, [0.08065, 0.35476] acc z bef ACC 1.84707* 0.17348, [-0.00828, 0.35523]
acc z abs aft ACC 3.14326 0.21902, [0.08196, 0.35607] salty foods FOOD 1.67583* 0.14556, [-0.03612, 0.32723]
location CON 2.86509 0.19687, [0.05988, 0.33385] starches or legumes FOOD 1.63866** 0.15024, [-0.03144, 0.33193]
minutes elapsed TIME 1.94971* 0.13457, [-0.00224, 0.27139] acc z ACC 1.61030** 0.15039, [-0.03130, 0.33208]
whatsapp APP 1.88304* 0.12936, [-0.00744, 0.26616] acc z abs bef ACC 1.51921** 0.14886, [-0.03283, 0.33054]
hours elapsed TIME 1.81924* 0.25618, [0.11897, 0.39338] acc y ACC 1.40647** 0.12889, [-0.05274, 0.31052]
instagram APP 1.31946** 0.08977, [-0.04696, 0.22650] acc y aft ACC 1.39948** 0.12972, [-0.05191, 0.31135]

consumption level of the participants. Food categories such as meat and sausages, food starches and legumes,
fats and oils have values above +0.3 indicating weak positive linear relationships with food consumption levels.
Similar findings were previously reported in some nutrition studies [55, 132] where they reported overeating in
the presence of categories of foods such as fats and oils and meat and sausages.

7.2 Statistical Analysis of Dataset Features
Table 4 (left) shows statistics such as t-statistic [60], p-value [44], and Cohen’s-d (effect size) with 95% confidence
interval (CI) [63] for all the features in the dataset for two groups: Overeating and Underating (OverUnder).
Hence, the objective is to identify features that would allow to discriminate between "overeating" (n = 348) and
"undereating" (n = 509) episodes. Table 4 (right) shows the same set of statistics considering the two groups
Overeating and As Usual (OverUsual). The objective here is to identify discriminating features for two groups
"overeating" (n = 348) and "as usual" (n = 993) episodes, which are closer in range to each other. In both tables,
the features are ordered by the descending order of t-statistics. Moreover, since p-values are not sufficiently
informative [64, 139], we additionally calculated Cohen’s-d [93] to help understand the statistical significance of
the features. To interpret Cohen’s-d, we used a commonly used rule-of-thumb: small effect size = 0.2, medium
effect size = 0.5 and large effect size = 0.8. Moreover, we calculated 95% confidence interval for Cohen’s-d. The
higher the Cohen’s-d value, the stronger the possibility of discriminating the two groups using the considered
feature. If the confidence interval does not include zero, confidence interval of the effect size depicts the reliability
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of the effect size. If the confidence interval is on positive side, the feature could be promising for discrimination
among the groups. Moreover, the narrower the confidence interval, the higher the reliability of the calculated
effect size.
In Table 4 (left), social context is the feature with the highest t-statistic, and it has a large effect size too.

Hence, it shows that social context during an eating episode is the most discriminating feature with regard to
OverUnder. In Table 4 (right), social is also the feature with the highest t-statistic, which suggests that it is the
most discriminating feature for OverUsual. Moreover, the t-statistic and effect size for this feature have dropped
from 12.35 and 0.85 to 5.76 and 0.53 from OverUnder to OverUsual. This suggests that the social feature has a
higher discriminating capability for OverUnder as opposed to OverUsual. Another feature from the feature group
CON that appeared in both tables is location. However, location had a higher t-statistic in OverUsual as compared
to OverUnder. The effect size too increased from 0.19 (small effect) to 0.33 between OverUnder and OverUsual,
hence making location a better feature to discriminate "overeating" and "as usual" episodes. The feature about
concurrent activity has a t-statistic of 5.58 and a medium effect size for OverUnder. However, it is not among the
top 20 discriminating features for OverUsual.
When considering food types, "fats or oils" was the feature from the FOOD feature group with the highest

t-statistic and effect size for OverUnder. However a place down in OverUsual, whereas prepared dishes had a
t-statistic of 4.36 and less than medium affect size. Even features such as "meat or sausages", "softdrinks or sugery
juices", and "starches and legumes" switched positions in the two tables showing that features that affect the
discrimination of the three food consumption level classes can differ in relevance. However, "starches or legumes"
and "salty foods" contain zero in the corresponding confidence interval for OverUsual, suggesting that they
might not be reliable features to distinguish between these two classes. Another feature "vegetables" appeared in
OverUnder with a medium effect size, but disappeared from the Table for OverUsual. In both tables, mood and
stress showed differences across groups. The effect sizes were 0.61 (resp. 0.57) in OverUnder, and 0.41 (resp. 0.35)
in OverUsual. This result again tallies with previous findings in nutrition and behavioral psychology research as
discussed in Section 3.

If we consider app usage, "facebook" and "microsoft launcher" are discriminant of the two classes in OverUnder
with high t-statistics and small, medium effect sizes, respectively. Even though "whatsapp" and "instagram"
appear in OverUnder, negative values in the confidence interval suggest that those are not reliable features for
discrimination. When considering activity level derived from accelerometer, OverUnder contains three important
features from z-axis, that have slightly high t-statistics and small-to-medium effect sizes. However, in OverUsual,
these features have gotten smaller effects sizes with negative values in confidence intervals. Interestingly, minutes
elapsed and hours elapsed features from the group TIME have moved from low t-statistics and unreliably low
effect sizes in OverUnder to higher t-statistics and at least small effect sizes in OverUsual. This suggests that the
time of the day at which food intake has been reported would be important in deciding between "overeating" and
"as usual" episodes, but not between "overeating" and "undereating" episodes. Moreover, screen events feature
showed medium effect size and high t-statistics in OverUsual. It also supports findings from prior literature that
screen time is an important variable in determining "overeating" and unhealthy dieting habits [112]. Further,
features related to battery events (BAT) and radius of gyration (derived using location data) did not seem to be
significant enough features to discriminate food consumption levels of consideration in either table.

8 FOOD CONSUMPTION LEVEL INFERENCE (RQ2)

8.1 Three-class Food Consumption Level Inference
The three-class inference task uses different subsets of features in the training set, and calculates classification
accuracy, precision, and recall. The target classes were overeating, undereating, and as usual. We used python with
scikitlearn and keras in this phase, and we conducted experiments using several model types (in the decreasing
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order of accuracies for inference task G5): random forest, naive bayes, gradient boosting, neural networks,
XGboost, AdaBoost, and support vector classifiers. However, considering space limitations and aspects such as
interpretability and model personalization, we present inference results for two models as follows:
(a) Random forest classifier (RF) with ntree values between 50 - 500: we got the highest accuracy values for
inference tasks using RFs. More importantly, RFs models output the feature importance values used in inference,
hence enabling us to understand and interpret the results.
(b) Neural network (NN) with 3-4 layers with relu activations, dropout for regularization, and binary cross
entropy loss function (number of layers, number of nodes in intermediate layer/s changed depending on the
feature group and the input dimensions; hyper-parameter tuning was done for each feature group with the goal
of obtaining the best model for the task): NNs provided with reasonable accuracies, and allow transfer learning
without much sophistication [81]. Hence, we present results for NNs here because we use them for transfer
learning to personalize models in Section 8.3.
We followed leave k-participants out strategy (k = 15) for all the experiments when preparing the dataset,

where training and testing splits did not have data from the same user, hence avoiding this possible source
of bias in the evaluation procedure. Moreover, when preparing the dataset, we made sure that the classes are
balanced by up-sampling the minority classes and down-sampling majority class to get a balanced dataset of
2400 records. The baseline for experiments is 33.3% since the classes were balanced in all inference tasks. We
conducted experiments for individual feature groups and meaningful feature group combinations:

Self Reports without FOOD (G1): This corresponds to self-reports that would not be available in a traditional
mobile food diary, such as reports regarding eating context (sociability, concurrent activities), psychological
state (mood, stress) together with the time of eating. The objective is to show that even without capturing the
types and amounts of food, it is still possible to infer food consumption level. An envisaged application scenario
of this inference is where the mobile health app simply captures these few self-reports instead of all the food
consumption details, hence making the user experience better in terms of lower burden of manual data input.
Self Reports (G2): This corresponds to all the self-reported features including food types and categories. In
addition to features in G1, this also captures the types of food consumed by participants. This inference would
reaffirm the relationship shown in Figure 1 with regard to the association between food consumption level and
aspects such as mood, stress, sociability, activities, and food.
Passive Smartphone Sensing with TIME (G3): This feature group combination contained a single self-reported
variable (time of eating), and a set of passively sensed features without any user input, such as accelerometer,
app usage, location, screen usage, and battery events. Importantly, this group reflects an envisaged mobile health
application usage scenario where participants only report that they ate, hence capturing the time of eating,
without typing all the details about the food types and amounts, sociability, concurrent activities, hence making
it less tedious. In addition, prior work has examined the use of passive mobile sensing features to determine the
time of eating [20, 91, 118], which is a separate open research question. Hence, this feature group combination
denotes a envisaged use case that depends on near-passive sensing.
All Feature Groups without FOOD (G4): This contained all feature groups except for FOOD. Hence, this set
of feature would require the same set of user involvement/effort as in G1. As we are following a holistic approach
regarding food consumption, the goal here is to evaluate whether only knowing about the contextual factors and
sensing data without knowing the food types and amounts could characterize the food consumption levels.
All Features (G5): This used all the available features to demonstrate the potential of a future mobile food
diary that is driven by passive smartphone sensing in addition to traditional self-reports. This feature group
captures food related details, contextual and socio-psychological attributes, and passive sensing data.
All Features w/ PCA (G6): Out of the 3 commonly used multi-modal fusion techniques: (a) data, (b) feature,
and (c) decision) [35, 108], all inference tasks in this study except for G6 used feature-level fusion, that feeds a
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Table 5. Three-class food consumption inference (overeating, undereating, as usual) accuracy, precision, and recall obtained
with a random forest classifier (RF) and a neural network (NN) using different feature group combinations.

Feature Group Name (# of Features) RF NN

Accuracy Precision Recall Accuracy Precision Recall
Baseline 33.33% - - 33.33% - -
SCR (1) 40.26% 42.65% 40.97% 31.35% 33.46% 15.91%
APP (10) 47.52% 51.29% 46.74% 45.21% 48.68% 44.05%
PSY (2) 50.82% 52.36% 50.59% 44.88% 51.81% 44.54%
LOC (2) 56.43% 56.31% 56.68% 32.34% 29.63% 33.94%
CON (3) 62.37% 62.27% 62.37% 45.87% 55.08% 45.70%
BAT (2) 63.03% 61.58% 62.69% 50.03% 40.36% 51.64%
FOOD (15) 65.34% 66.11% 65.38% 60.72% 60.83% 60.78%
TIME (2) 67.65% 67.14% 67.01% 56.30% 56.04% 56.14%
ACC (18) 76.89% 83.89% 69.76% 47.52% 47.01% 57.89%
G1: CON + PSY + TIME (7) 81.19% 81.45% 80.91% 62.19% 62.39% 62.11%
G2: CON + PSY + TIME + FOOD (22) 82.50% 82.61% 83.56% 66.68% 67.29% 67.25%
G3: ACC + APP + LOC + SCR + BAT + TIME (35) 83.49% 83.19% 82.84% 73.26% 73.33% 72.20%
G4: ACC + APP + LOC + SCR + BAT + CON + PSY + TIME (40) 83.61% 83.99% 83.57% 79.20% 79.26% 79.17%
G5: All Features (55) 87.81% 87.97% 88.37% 82.17% 82.19% 82.95%
G6: All Features w/ PCA (principle components=4) (4) 83.53% 83.46% 83.54% 76.67% 76.94% 76.53%

processed feature map into a classifier. In G6, we examined feature extraction and dimensionality reduction with
principal component analysis (PCA), that fuses the features before feeding them into the classifier.

Results of the experiments (Table 5) show that RFs perform better than NNs across all feature groups and
evaluation measures. Hence, in this section, only the results from RFs are discussed. Table 5 shows that individual
feature groups such as ACC (accelerometer data), TIME (time of the day), FOOD (types of food consumed – similar
to a traditional food diary), BAT (battery events), and CON (context when consuming food) have accuracies above
60%, while the highest accuracy of 76.89% corresponded to ACC feature group. This suggests that activity levels
derived from the smartphone can be used to distinguish food consumption levels, to some degree. This is justifiable
because prior work in nutrition and behavioral sciences have discussed the relation between food consumption
levels and activity levels [49, 135]. G2 provides an idea regarding accuracies that can be obtained with currently
available mobile food diaries that fully rely on participant self-reports. Accuracy, precision, and recall had values
in the range 81% to 83% suggesting that self-reports are able to classify the three food consumption levels.

G3 shows that it has an even higher accuracy when compared to G1 or G2. Given that most prior research in
nutrition has relied on self-reports regarding food categories and volumes to analyze food consumption behavior,
this result shows that it is worth looking into passive smartphone sensing for cues regarding food consumption
levels, given that there are many aspects such as app use, screen time, sociability that relate to the way people
consume food in modern societies. Moreover, this result aligns with the hypothesis we presented in Section 4.1
and Figure 1 with regard to the possibility of inferring food consumption levels primarily using mobile sensing
features.

G4, with an accuracy of 83.61% shows the benefit of considering eating as a holistic event as compared to just
food categories and volumes. This accuracy, which is above the accuracy obtained with G2, again shows the
importance of the holistic view of eating. Finally, by combining all the feature groups in G5, the model achieved
an accuracy of 87.81%, precision of 87.97%, with a recall of 88.37%, all of which are encouraging. In addition, for
G6, we got the best results with 4 principle components, an accuracy of 83.53%, which is higher than G1 and
G2, although it is still lower than the corresponding feature level fusion (G5) that used the same set of features.
These result suggests that passive smartphone sensing can be of great value when incorporated to mobile food
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Fig. 11. Feature Importance generated using the RF for G5 Inference

diaries that are currently based only on self-reports. Further, these results also highlight the potential that passive
smartphone sensing has as part of mobile applications for food monitoring with less intrusive usage scenarios.
In Figure 11, we plot the importance of features in classifying food consumption levels using RFs for G5

inference, hence containing all the features. Results indicate that social, mood, and concurrent activity are the
self-reported features that were among the top 10 features. In addition, passive smartphone sensing features
such as battery level, acc z bef, acc x abs, radius of gyration, acc y abs bef, and acc y abs were among the top
10 features in terms of feature importance. This indicates that activity levels and phone battery level around
food intake events are useful as part of a rich model. It is also important to note that even though food category
related features had high t-statistics and effect sizes in Table 4, Figure 11 shows that those features did not have
comparatively high feature importance values in the RF.

8.2 Statistical Analysis Regarding Incorrect Inferences
Given that we have shown the capability of inferring food consumption levels using passive smartphone sensing
and self-reports, in this section, we seek to understand which of the features have affected the most in getting
incorrect inferences. To do that, we prepared three datasets using "All Features" (G5) with leave k-participants out
strategy (k = 15) for Training and Testing splits: (1) Training - the dataset used for training models; (2) Testing-
Correct - the dataset for which models provided correct inferences in testing; (3) Testing-Incorrect - the dataset
for which models provided incorrect inferences in testing. We repeated the food consumption level inferences for
five iterations, and for each iteration, we obtained different versions of the above mentioned three-fold datasets
that are of different sizes. For each iteration, we calculated the t-statistic, p-value, and Cohen’s-d for the following
dataset pairs, and averaged the results: (T1) "Testing-Correct vs. Testing-Incorrect" - the objective is to identify
features that are different across these two datasets using their feature distributions. If the difference is higher
(captured with t-statistic and Cohen’s-d), that feature could hint at the reasons for the model to incorrectly
classify each of the dataset instance; (T2) "Training vs. Testing-Correct" - we expect the features from training
set and testing-correct to be in the same distribution as testing instances were correctly classified using the
RF model, hence potentially leading to low Cohen’s-d values; and (T3) "Training vs. Testing-Incorrect" - The
classifier inferred these instances incorrectly, possibly due to deviations between the testing and training feature
distributions. Hence, the expectation is for these differences to have higher Cohen’s-d values. The results are
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Table 6. Comparative statistics of features across groups: t-statistic (T), p-value (P), and Cohen’s-d (C) with 95% confidence
intervals (* if confidence interval include zero). Features are sorted based on the decreasing order of t-statistics.

T1: Testing-Correct vs. Testing-Incorrect T2: Training vs. Testing-Correct T3: Training vs. Testing-Incorrect
Feature T P C Feature T P C Feature T P C

Pa
ss
iv
e
Se
ns
in
g charging false 2.1036 0.0362 0.5762 screen on count 2.09259 0.0366 0.1621 google quick search 2.5010 0.0126 0.4885

charging true 2.0236 0.0439 0.3574 acc x abs aft 2.07056 0.0386 0.1359* charging true 1.3348 0.1807 0.2582*
youtube 1.5775 0.1157 0.3192 app spotify 1.6195 0.1056 0.1271* location 1.3265 0.1849 0.1947*
acc x abs 1.5193 0.1297 0.3174 app z abs bef 1.4221 0.1552 0.1037* acc x aft 1.3035 0.1928 0.1887*
app x bef 1.4541 0.1470 0.3088 acc z 1.3731 0.1700 0.0988* screen on count 1.1436 0.2530 0.1726*

Fo
od

Re
po

rt
s food cakes 1.9318 0.0543 0.3431 food cakes 1.8611 0.0629 0.1265* food fish seafood 1.3427 0.1796 0.2341*

food nuts seeds 1.2331 0.2184 0.1726* food prepared dish 1.7289 0.0840 0.1174* food cakes 1.3338 0.1825 0.2223*
food fish seafood 1.1611 0.2465 0.2052* food other soft drinks 1.4794 0.1392 0.1081* food nuts seeds 1.1879 0.2351 0.1530*
food fats oils 0.8363 0.4036 0.1332* food meat sausages 1.0385 0.2994 0.0733* food fats oils 0.6915 0.4894 0.1034*
food dairy 0.7685 0.4427 0.1147* food dairy 0.8286 0.4074 0.0596* food other soft drinks 0.6844 0.4938 0.1018*

Se
lf-
Re

po
rt
s social context 0.5656 0.5717 0.0402* concurrent activity 1.2816 0.2003 0.1932* mood 0.7131 0.4762 0.1133*

stress 0.5189 0.6039 0.0372* mood 0.7942 0.4273 0.1317* social context 1.8927 0.0594 0.3238*
mood 0.4242 0.6714 0.0301* stress 0.6212 0.5343 0.0894* stress 0.2641 0.7918 0.0410*

presented in Figure 12, that shows a plot of Cohen’s-d value of all features, in the descending order, for the
three dataset combinations. Table 6 summarizes features with highest t-statistics and Cohen’s-d values for the
three dataset combinations from different feature categories such as passive sensing, food reports, and other
self-reports.

T2 showed the lowest set of Cohen’s-d values as given in Figure 12. This is intuitively expected as the features
in Training and Testing-Correct might have similar distributions. In T3, the Cohen’s-d values are much higher
than T2. This could be because the distribution of training features and testing-incorrect features are slightly
different. In Table 6, the passive sensing features that had the highest t-statistics and Cohen’s-d for this dataset
combination are google quick search (APP), charging true (BAT), location (LOC), acc x aft (ACC), and screen
on count (SCR). Out of these features, the usage of google quick search app had a Cohen’s-d closer to medium
effect size. Moreover, all these features except for screen events were not included in the top 20 features in
Table 4. Furthermore, in T1, the highest Cohen’s-d values were obtained for charging false (BAT), charging true
(BAT), youtube (APP), acc x abs (ACC), and acc x bef (ACC), none of which are in Table 4, suggesting that these
features (when considered alone) were less informative in discerning food consumption levels, and similarly,
these features had larger distribution differences between correct and incorrect inferences. This also suggests that
classification models might not have learned to properly classify food consumption levels using these features.
Moreover, for all the iterations, incorrect inferences were prevalent for all the users in all testing sets. Hence, if
incorrect inferences were calculated based on per user level in the test set, the percentages ranged from 9% - 29%
for feature combination G5. This provides an indication that the incorrect inferences were not because of users
who were having highly deviated behaviors, and also that the model has generalized reasonably well to the data
from all participants.

8.3 Model Personalization
In Table 5, we presented inference results without any personalization by only considering eating event-level
features, and by not considering any temporal features. In this section, we attempt to personalize inferences by
considering aspects regarding inference models (model-wise) and by including additional temporal features to
the dataset (data-wise), with the expectation of increasing the accuracy of food consumption level inference.
Finally, we show results for NN models because they allow transfer learning transfer learning in a relatively
straightforward manner.
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Fig. 12. Cohen’s-d value for features across different dataset groups. Note
that the set of features shown in Table 6 are a subset of features shown
here, categorized based on feature types.

Fig. 13. Accuracies for different feature group
combinations among GEN and PERS.

8.3.1 Transfer Learning for Model Personalization. In a prior study, LiKamwa et al. [67] have shown that general
models are sufficient when users do not provide enough data for personalized model training. However, when the
training dataset size increases, e.g., when collecting data for more days, the personalized models outperformed
general models for inferences. In our dataset, we have limited data from individuals, hence restricting the
possibility of training separate personal models for all users. Hence, we trained models on general data, and then
follow a transfer learning approach to retrain the model with individual data. In our dataset, 11 users reported
more than 50 food intake reports. For this task, we used the training procedures and feature group combinations
presented in Section 8.1. The two model types we used were:
(1) GEN: the model is trained on data from all users. However, as we described in the training procedure in

Section 8.1, we do not use data from the same individual in training and testing splits. Hence, this model has
been trained on a dataset in which the specific user’s data is not included. When testing, we used 30% split of
user’s data.
(2) PERS: We retrained the already trained model using a split (70%) from user’s personal data, and test it on

the unused 30% split of personal data.
We carried out experiments for the 11 users having more than 50 food reports, and included the average results

in Figure 13 by repeating experiments for five iterations. Results show that for all feature group combinations,
PERS outperformed the GEN with accuracies of the range 0.95% (G3) – 4.08% (G5).

8.3.2 Using Temporal Features for Model Personalization. The inferences done in previous sections did not
consider food intake events to be linked to each other, as we considered all the food intake events to be mutually
exclusive from even past food intake events of the same person. Adding temporal features could possibly increase
accuracy. Hence, we introduce four new features: (1) previous food consumption level (prev_level) - capturing
the previous food consumption level reported by the individual; and (2) three ratios to the dataset that capture
the temporal evolution of reported food consumption levels of an individual participant. The ratios are: (2a)
overeating ratio (oer): the total number of overeating episodes reported in the past, divided by the total number
of episodes up to that time; (2b) undereating ratio (uer): the total number of undereating episodes reported in the
past, divided by the total number of episodes by that time; (2c) as-usual ratio (aur): the total number of as-usual
episodes reported in the past, divided by the total number of as-usual episodes by that time. Hence, these three
ratios capture the participants’ reporting history.
Moreover, when calculating the ratios, we examined two temporal windows: (1) Last ten food intakes (L10),

which captures the recent food consumption levels; and (2) All previous food intakes (ALL), which captures the
overall history of an individual. We assessed the efficacy of these features using the following two tasks:
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Table 7. Summary of theQualitative Analysis.

Topic Insight & Quotes
Stress Stress can play a key role with regard to eating behaviors. Stress has caused undereating or overeating in participants.

“[...] we really eat according to how we feel at that moment.” (Female 30 yo)
“[..] when I’m stressed I tend to skip meals and end up eating later more food than I should including grease food.” (Female 24 yo)

Food
types

Food types and portions eaten by volunteers varied significantly. Variability depends on place, social context, stress level, and
activity load. Food eaten at the school cafeteria and places around campus often have lower quality and variety than food
prepared at home. Junk and fatty food are widely available to students, which sometimes fosters unhealthy eating behaviors.
"Nutritious things are generally more expensive, and take longer to cook. Therefore, we choose to eat fast food." (Female 22 yo)
“The time we dedicate to preparing our food, we want to live at a very fast pace, and we prioritize spending time on social
networks. If we spent some of that time preparing our food, we would consume a much smaller amount of fast food.” (Male 24 yo)

Places
and
Times

Participants mainly eat at home and the school cafeteria. Some prepare their food at home and take it to school, and others go to
restaurants or cheap kitchens near school. Eating schedules are mainly determined by study/work load. However, some students
only eat when they find the opportunity to do so, or have free time (they have no defined schedules). In general, reported times
for breakfast, lunch and dinner are between 6:00 a.m. to 12:00 p.m., 1:00 p.m. to 6:00 p.m. and 9:00 p.m. 00 to 00:00, resp.
“I eat when I have free time” (Female, 21 yo)
"I mainly eat at the university cafeteria or places around. I sometimes eat at home" (Male 22 yo)
“I prepare breakfast and dinner, and my mother cooks lunch for me” (Female 20 yo)

(1) GEN-RATIO: we re-trained all the models for feature groups G1 to G5 including the four features, for both
temporal windows, using the approach presented in Section 8.1, and tested using the data from aforementioned
11 participants.

(2) PERS-RATIO: we re-trained all the personal models for feature groups G1-G5 for 11 participants, for both
temporal windows, using the approach presented in Section 8.3.1 by including the four additional features that
capture their temporal evolution.
As shown in Figure 13, results suggest that using these four features increased the accuracies for all four

model-feature combinations (GEN-RATIO L10, GEN-RATIO ALL, PERS-RATIO L10, PERS-RATIO ALL) with
accuracies in the range 0.1% to 3.9%. In addition, for the feature prev_level, for groups overeating and undereating,
we obtained a Cohen’s-d of 0.30, which suggests that this feature is informative of overeating vs. undereating
episodes. Moreover, the three ratios had Cohen’s-d values between 0.12 and 0.16, that are less than small effect
size. In summary, the model performance can be increased by using features that consider the longitudinal aspects
of data.

9 DISCUSSION

9.1 Feedback from Participants
We start this section by summarizing some of the feedback obtained from the study participants (semi-structured
interviews, focus group, and questionnaire) in Table 7.

9.2 Passive Smartphone Sensing for Characterizing Food Consumption Levels
Results presented in prior sections confirm that our hypothesis regarding food consumption levels and passive
sensing features (Section 4.1) is valid. Most smartphones are capable of both continuous sensing (feature groups
APP and SCR) and interaction sensing (feature groups such as ACC, BAT, TIME, LOC) for behavioral modeling.
Obviously, these sensing modalities do not directly capture the food type or internal aspects that nutrition and
behavioral science researchers have linked to food consumption levels in the past. However, in Section 8.1, we
showed the potential of using passive smartphone sensing to infer food consumption level. What these modalities
sense is not the food type or psychological aspects, but the physical activity levels and smartphone usage behavior.
Given that physical activity levels have been linked to stress and mood in prior mobile sensing literature [90, 106],
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we believe these passive sensing modalities contain contextual information that could directly relate to food
consumption behavior, and that is the reason why inferring food consumption levels with an accuracy of 83.49%
using passive smartphone sensing and time related features was feasible. This is one of the first studies in this
direction, and there are plenty of opportunities to explore eating as a holistic event as we did here. Given that
computer vision researchers are focused on identifying food intake types and levels using images of the food
portion (as discussed in Section 3), we could expect food consumption self-reports to get automated in future
mobile food diaries. However, considering that eating is a holistic event driven by many factors, further research
to determine food consumption behavior could enable advanced mobile food diaries that do no solely depend on
user input to generate recommendations and interventions.

9.3 Further Informative Features Regarding Food Consumption Levels.
We acknowledge that the features we generated from passive modalities are simple and easier to interpret when
associated with eating episodes. However, there is ample opportunity to build upon these findings, and develop
novel features that could discriminate food consumption levels with higher accuracies. For example, in this study,
all the accelerometer features are single dimensional and we did not use linear acceleration or 2D resultant
acceleration features due to some limitations in the data collection process (not having data from gyroscope to
match accelerometer traces so that gravity biases could be removed [19, 48]). Moreover, when considering app
usage behavior, the features we used only determined whether a particular app was used or not during the time
window of the eating episode. However, advanced research could be done to determine usage times of each app
during eating episodes, hence obtaining a comprehensive understanding regarding app usage behavior related to
eating. Moreover, using a low-power API such as Google Activity Recognition API to detect activity types could
generate new features that might be beneficial in characterizing eating events.

9.4 Accounting for Diversity
The eating behavior of people in different countries vary depending on a plethora of factors such the culture,
type of food they consume, concurrent activities while eating, and how they perceive events such as eating
[36, 62, 127]. Hence, it is important to clarify that the results from the deployment of our application in Mexico
are exploratory and not representative of the food consumption behavior of people from other regions. Moreover,
if other aspects apart from food are considered, there are already known differences with regard to factors such as
sociability [84, 99], activity levels [18, 45], and phone usage [68, 85] in different countries, and these aspects could
get reflected in smartphone sensing datasets. For example, a study regarding sociability of university students
in Mexico and USA showed that Mexican students perceived themselves to be less sociable compared to how
Americans perceived themselves, although in reality Mexicans were more sociable [92]. Moreover, results show
that Americans socialize more in private environments or by interacting through social media. On the other
hand, Mexican students preferred to be more social in-person with people who are around them [92]. A similar
trend was visible in our results as depicted in Section 7.2, where social was the feature with highest t-statistic
and effect size among all features used in the analysis. Hence, we could expect differences in passive sensing
data obtained from students in these two countries. It is fundamental to consider human diversity in smartphone
sensing studies, and we believe more studies should integrate these diversity aspects in the future. Hence, future
research could look into deploying mobile food diaries with sensing capabilities in diverse user groups based on
ethnicity, culture, and geographic regions. In our opinion, the goal of such studies is to build models for mobile
food diaries that generalize well enough to cater and adapt to diverse user populations. Even though our study is
focused on college students of a Latin American country, we believe that this is a first step in this direction.
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9.5 Limitations and Future Directions
Similar to other prior mobile sensing in-the-wild deployments [16, 24, 103, 106], we used feature level fusion
techniques in the inference task except for G6. However, other decision level fusion techniques could be explored
in future work for similar mobile sensing datasets. Further, this study used data from college students in Mexico.
Even though the features we used did not contain country-specific details, studies similar to this could be
carried out among diverse user groups within Mexico and also in other countries to determine the validity and
applicability of our approach to user groups of diverse age and occupations. Moreover, we prepared the base
dataset (in Section 5) assuming that individual eating episodes are mutually exclusive (similar to prior studies
regarding mobile app deployments in-the-wild [24, 67, 90, 103, 106]). By making this assumption, we created a
general dataset for the worst-case scenario where no temporal relationship between eating events for a given
individual is assumed, hence avoiding any personalization effect due to considering longitudinal features from
the same individual. However, in Section 8.3.2, we show how some basic longitudinal features can be used to
personalize inferences, hence leading to higher accuracies for food consumption level inferences. We believe it is
best to examine these longitudinal aspects in depth, in a separate study that explicitly focuses on these aspects.

Similar to other in the real-life app deployment, it becomes challenging to verify all the self-reports given by
participants [24, 67, 103, 106]. For example, in our study, even if photos of food types were captured, it is difficult
to verify other self-reports such as sociability, concurrent activities, mood, and stress. While we used different
techniques to monitor the completion of food intake reports in line with prior work [24, 103], we believe that
these are challenges that are common, specially during real-life field experiments where subjective reporting is
used to collect ground truth labels. As future work, an interesting question relates to possible gender differences
in mobile food diaries. Prior literature has suggested gender differences in food choice [134], activity levels [14],
app usage [61], and different factors that we discovered in this study to be affecting food consumption level.
Moreover, the number of participants in our study was 84, which is reasonable given the recent food studies in
smartphone sensing by Seto et. al. [107] (12) and Biel et. al. [24] (122). We collected data from participants for a
longer time span compared to Biel et al. (10 days) and Seto et al. (6 days). Further, many other recent smartphone
sensing studies with app deployments had participants of the range 50 - 100 [16, 30, 42, 133]. Based on this,
we believe that the total number of events we captured through the study is enough to reasonably answer the
research questions we addressed here. Future work could investigate larger sample sizes, which could allow
to study issues of generality and personalization in more depth. Finally, even though our analysis contained
multiple comparisons, we did not use Bonferroni correction for p-values [128]. Hence, these values should be
interpreted with caution.

10 CONCLUSION
In this study, we examined the eating behavior of 84 college students using a dataset consisting of smartphone
sensing data and self-reports. We demonstrated that behavioral mobile sensing and self-report features of college
students around eating events can be used to infer self-reported food consumption levels. We achieved an accuracy
of 87.81% for the 3-class food consumption level inference task, showing the potential of passive sensing together
with self-reports in future mobile food diaries. Further, we show that an accuracy of 83.49% can be achieved
for the same classification task by only using passive sensing data and time of eating events, in an envisaged
simplified mobile food diary usage scenario. This performance suggests that smartphone sensing opens the
possibility to detect self-perceived food consumption levels in future mobile health applications, which would
need to be validated further with larger and more diverse user populations.
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