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Abstract
Parkinson’s disease produces several motor symptoms, includ-
ing different speech impairments that are known as hypokinetic
dysarthria. Symptoms associated to dysarthria affect different
dimensions of speech such as phonation, articulation, prosody,
and intelligibility. Studies in the literature have mainly focused
on the analysis of articulation and prosody because they seem
to be the most prominent symptoms associated to dysarthria
severity. However, phonation impairments also play a signifi-
cant role to evaluate the global speech severity of Parkinson’s
patients. This paper proposes an extensive comparison of dif-
ferent methods to automatically evaluate the severity of specific
phonation impairments in Parkinson’s patients. The considered
models include the computation of perturbation and glottal-
based features, in addition to features extracted from a zero fre-
quency filtered signals. We consider as well end-to-end models
based on 1D CNNs, which are trained to learn features from the
raw speech waveform, reconstructed glottal signals, and zero-
frequency filtered signals. The results indicate that it is possible
to automatically classify between speakers with low versus high
phonation severity due to the presence of dysarthria and at the
same time to evaluate the severity of the phonation impairments
on a continuous scale, posed as a regression problem.
Index Terms: Parkinson’s disease, Phonation, Glottal source
modeling, Zero-frequency filtering

1. Introduction
Parkinson’s disease (PD) is a neurological disorder character-
ized by the progressive loss of dopaminergic neurons in the
midbrain. It affects approximately 10 million people world-
wide, with a doubling of the global burden over the past 25
years because the increase in longevity of people thanks to mod-
ern medicine methods [1]. PD produces different motor and
non-motor symptoms in the patients. Motor symptoms include
tremor, slowed movement, rigidity, bradykinesia, lack of coor-
dination, among others. Approximately 70-90% of PD patients
develop a multidimensional speech impairment called hypoki-
netic dysarthria [2, 3], which manifests itself typically in the
imprecise articulation of consonants and vowels, monoloud-
ness, monopitch, inappropriate silences and rushes of speech,
dysrhythmia, reduced vocal loudness, and harsh or breathy vo-
cal quality. All these symptoms affect the phonation, articu-
lation, prosody, and intelligibility aspects of the speech of PD
patients [4, 5, 6].

Dysarthria severity is usually evaluated with perceptual
scales such as the Frenchay dysarthria assessment [7], or the

Radbound dysarthria assessment [5], which evaluate different
speech dimensions such as phonation, articulation, prosody, res-
onance, among others. Different studies in the literature have
focused on the automation of the evaluation process of these
speech dimensions in order to assess the global dysarthria sever-
ity of patients. Most of those studies have mainly focused
on the automatic analysis of articulation and prosody because
they seem to be the most prominent symptoms associated to
dysarthria severity. Articulation impairments have been mod-
eled with speech features based on the vowel space area [8],
formant frequencies, voiced onset time [9], the energy content
in onset transitions [10], and recent models based on convolu-
tional neural networks (CNNs) [11] and posterior probabilities
of certain phonemic classes [12, 13]. Prosody deficits have been
commonly evaluated with features related to pitch, intensity and
duration [14, 15].

Despite the fact that articulation and prosody are the most
studied speech dimensions in hypokinetic dysarthria, phonation
impairments also play a significant role to evaluate the global
speech severity of PD patients. Phonation symptoms are re-
lated to the stability and periodicity of the vocal fold vibration,
and with difficulties in the process of producing air in the lungs
to make the vocal folds vibrate. Different phonation deficits
appear in PD patients’ speech, including differences in glot-
tal noise compared to healthy speakers, incomplete vocal fold
closure, and vocal folds bowing, which are typically charac-
terized with measures such as noise to harmonics ratio, glot-
tal to noise excitation ratio, and voice turbulent index, among
others [16]. Additional phonation features include perturba-
tion measures such as jitter, shimmer, amplitude perturbation
quotient (APQ), pitch perturbation quotient (PPQ), and nonlin-
ear dynamics measures [17, 18], as well as features extracted
from the reconstruction of the glottal source signal such as the
quasi open quotient, the normalized amplitude quotient, and the
harmonic richness factor [19, 20, 21]. However, it is not clear
whether these traditional features are able to properly character-
ize specific phonatory impairments that appear in the speech of
PD patients because they are usually only considered to classify
PD vs. healthy control (HC) speakers.

This paper proposes a comparison of a set of models to
evaluate specific phonation symptoms related to the breathing
capabilities of PD patients. The considered models include per-
turbation and glottal features such as the previously described,
in addition to features extracted from signals obtained from a
zero frequency filtering (ZFF) method [22], proposed originally
to characterize glottal closure instants (GCIs). The considered
methods also include the use of raw waveform CNNs [23, 24],



which are designed to extract features from the speech wave-
forms, reconstructed glottal waves, and ZFF signals. To the best
of our knowledge, this is the first study that performs a compar-
ison regarding different methods to evaluate specific phonation
impairments that appear in PD patients’ speech.

The paper is organized as follows. Sections 2 and 3 present
the methods and the data. Sections 4 and 5 present the results
and conclusion, respectively.

2. Methods
The phonatory impairments in PD patients are evaluated using
different feature extraction strategies, which are computed from
raw speech, reconstructed glottal waves, and ZFF signals.

2.1. Glottal source reconstruction
We considered two different methods to reconstruct the glottal
source signals. The first one being the classical Iterative and/or
Adaptive Inverse Filtering (IAIF) [25], which is based on linear
prediction (LP) filters that are computed in a two stage proce-
dure. This method is based on an iterative refinement of both
the vocal tract and the glottal components. The glottal exci-
tation is obtained by cancelling the effects of the vocal tract
and lip radiation by inverse filtering. The second method is the
glottal closure/opening instant estimation forward-backward al-
gorithm (GEFBA) [26], which is based on detecting instants of
significant excitation (epochs) for high resolution glottal activ-
ity detection. GEFBA estimates the instants of glottal closures
for determining the boundaries of glottal activity by assuming
that two consecutive voiced regions differ by a distance greater
than twice the maximum pitch period.

2.2. ZFF
ZFF is designed for epoch extraction, and aims to remove all
the influence from the vocal tract system in the speech wave-
form. The core idea of ZFF is to exploit the fact that glottal
closure produces an excitation similar to an impulse [27]. This
information is present in all the frequencies, including 0 Hz. To
obtain the information present at 0 Hz, the speech waveform is
filtered through a cascade of two 0 Hz resonators followed by a
trend removal operation. By passing the signal through the res-
onators, the effect of vocal tract resonance is minimized. The
ZFF signal oscillates at local fundamental frequency, and the
negative to positive zero crossings gives epoch locations.

Figure 1 shows the difference between the raw speech
waveform, the IAIF and GEFBA methods used to reconstruct
the glottal signal, and the ZFF signal. These four signals are
used to evaluate the phonation impairments that appear in PD
patients.

2.3. Perturbation features
Perturbation features are used to model abnormal patterns in the
vocal fold vibrations. Perturbation features are extracted from
the raw speech waveforms and from the ZFF signals. The fea-
ture set includes seven descriptors: (1-2) Jitter and shimmer to
describe temporal perturbations in the fundamental frequency
and amplitude of the speech signal, respectively [17]. (3) APQ,
which aims to measure the long-term variability of the peak-
to-peak amplitude of the speech signal, by using a smoothing
factor of 11 voiced periods. (4) PPQ to measure the long-term
variability of the fundamental frequency, with a smoothing fac-
tor of five periods. (5-6) The first and second derivatives of
the fundamental frequency contour, and (7) the log-energy as a
measure of loudness. Four statistical functionals are calculated
per descriptor (mean, standard deviation, skewness, and kurto-
sis), forming a 28–dimensional feature vector per utterance.
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Figure 1: Different signals extracted from the phonation of a
sustained vowel /ah/, and considered to evaluate the phonation
impairments from PD patients. Blue dots indicate the detected
GCIs.

2.4. Glottal features
Glottal features are computed over the reconstructed glottal sig-
nals using the IAIF and the GEFBA methods. Glottal features
are focused on specific parts of the glottal cycle such as the
opening and closing phases. The proposed feature vector com-
prises nine descriptors: (1) the temporal variability between
consecutive GCIs, (2-3) the average and variance of the Open
Quotient (OQ), which is the ratio of the duration of the opening
phase and the duration of the glottal cycle. (4-5) the average and
variance of the Normalized Amplitude Quotient (NAQ), which is
defined as the ratio of the maximum of the glottal flow and the
minimum of its derivative. (6-7) the average and variance of
H1H2, which is the difference between the first two harmonics
of the glottal flow signal. Finally (8-9) are average and variance
of the Harmonic Richness Factor (HRF), which is the ratio of
the sum of the harmonics amplitude and the amplitude of the
fundamental frequency. These features are computed for every
glottal cycle in segments with 200 ms length in order to measure
short-term perturbations of the glottal flow. Finally, similar to
the perturbation features, four statistical functionals are calcu-
lated per descriptor (mean, standard deviation, skewness, and
kurtosis), forming a 36–dimensional feature vector per utter-
ance. The source code to extract the IAIF-based glottal signals
and to compute the perturbation and glottal features is available
online for the research community via the DisVoice toolkit1.

2.5. Raw waveform CNNs
Raw-waveform CNNs directly model raw signals by applying
1D filters on the raw waveform. From an input window of 1 sec-
ond, the architecture applies four 1D convolutional layers, fol-
lowed by a hidden layer and an output-layer. In order to guide
the learning procedure, the first layer’s filters’ kernel length is
relevant. In previous work we distinguished sub-segmental (fil-
ter length < 1 pitch period) and segmental (filter length > 1
pitch period) filtering, though in this work we only deployed the
sub-segmental filtering (cf. Table 1 in [24]). On raw signals, a
sub-segmental architecture tends to focus on vocal-tract related
information [23], which is not desired in this work. However,
on signals that were filtered to enhance voice-source related
characteristics, a sub-segmental filtering is more suitable [28],
which is why it was consistently considered for this task. As
pointed earlier, we used the same architecture as in [24]. The

1https://github.com/jcvasquezc/DisVoice

https://github.com/jcvasquezc/DisVoice


CNNs were trained using Keras-Tensorflow framework. The
classification task was trained with binary cross-entropy loss
function and a sigmoid function at the output; the regression
task with mean-squared-error loss and a linear output function.
In both cases, the starting learning rate is 1e−3, which is halved
after an epoch in which the validation loss did not reduce. Early
stopping method was used to stop the training.

3. Data
The proposed systems are evaluated on the PC-GITA cor-
pus [29]. The data comprises of utterances from 50 PD pa-
tients and 50 HC subjects, Colombian Spanish native speak-
ers. The participants were asked to pronounce 10 sentences, six
diadochokinetic (DDK) exercises, one text with 36 words, the
sustained phonation of vowels, and a monologue. All patients
were evaluated by a neurologist expert according to the MDS-
UPDRS-III scale [30], and they were recorded in ON state. The
dysarthria severity of the participants was evaluated according
to the m-FDA scale [6], which consists of 13 items and evalu-
ates seven aspects of the speech including breathing, lips move-
ment, palate/velum movement, laryngeal movement, intelligi-
bility, and monotonicity. Each item ranges from 0 to 4 (inte-
ger values), thus the total score ranges from 0 (healthy speech)
to 52 (completely dysarthric). Two items of the m-FDA scale
are related to phonation impairments of the patients and include
breathing duration (BD) and breathing capacity (BC) when par-
ticipants pronounce sustained phonation of vowels and DDK
tasks. The ratings of such items are used to evaluate the pro-
posed models. We consider as well the global m-FDA breath-
ing impairment score, which combines information about BD
and BC (it ranges from 0 to 8). For this study, we only con-
sidered data from the phonations of sustained vowels and DDK
tasks, which were the recordings used by the phoniatrician to
label the phonation severity of the participants. Table 1 shows
clinical and demographic information from the participants of
this study.

Table 1: Demographic information from the participants in this
study. BD: breathing duration, BC: breathing capacity.

PD (n=50) HC (n=50) PD vs. HC F vs. M

Sex (F/M) 25/25 25/25 – –
Age 61.0 (9.3) 61.0 (9.4) 0.49a 0.29
Years since diagnosis 10.6 (9.1) – – –
MDS-UPDRS-III 37.7 (18.1) – – –
MDS-UPDRS-speech 1.3 (0.8) – – –
Total m-FDA 28.8 (8.3) 8.5 (7.4) �0.005a 0.28a

m-FDA-BD 2.6 (1.0) 1.0 (0.9) �0.005a 0.21a

m-FDA-BD (high/low) 37/13 8/42 �0.005b 0.71b

m-FDA-BC 2.5 (0.9) 0.7 (0.7) �0.005a 0.25a

m-FDA-BC (high/low) 37/13 2/48 �0.005b 0.12b

m-FDA breath 5.1 (1.7) 1.7 (1.4) �0.005a 0.18a

m-FDA breath (high/low) 40/10 8/42 �0.005b 0.84b

ap-values calculated using Mann-Whitney U tests
bp-values calculated using Chi-squared tests

The m-FDA labels for BD and BC are converted into
high/low scores based on a threshold (median value of the
scores assigned to the patients). Those subjects with scores
lower than two are assigned with low phonation severity. Con-
versely, subjects with the item higher or equal to two are la-
beled as patients with high phonation impairments. Hence, we
decided to solve either a regression problem on the full range
of the m-FDA sub-scores or a classification problem to evaluate
low vs. high phonation impairment. The distribution between
PD and HC subjects and the assigned m-FDA labels are gender-

balanced (all p-values> 0.05) and age-balanced (Spearman’s
correlation between age and m-FDA scores are lower than 0.2
with all p-values> 0.05). Hence, the influence produced by
demographic data in our problem can be discarded.

4. Experiments and Results
The extracted perturbation and glottal features were used to
train a support vector machine (SVM) classifier with a Gaus-
sian kernel. The model is validated following a nested 10-fold
speaker independent stratified cross-validation strategy. The
hyper-parameters C and γ were optimized in a randomized-
search strategy [31] based on the development set accuracy.
Similarly, the raw waveform CNNs were validated on the same
10-fold cross-validation strategy so that the results are compa-
rable. All systems are trained to solve either the classification
problem (low vs. high phonation impairments) or the regression
problem (severity of the phonation impairment). All systems
are applied to the three problems described in Section 3, namely
breathing duration, breathing capacity, and global breathing im-
pairment. The latter being the combination of the breathing du-
ration and capacity scores.

The results obtained classifying high vs. low phonation im-
pairments are shown in Table 2. In general, the best results are
observed using perturbation features computed either from the
raw speech waveform or from the ZFF signals. Regarding the
two methods for glottal source estimation, higher accuracies are
observed with the glottal signals computed using the GEFBA
method. The accuracies obtained with the raw waveform CNNs
are not as high as expected. However, note that moderate results
are observed when the CNNs are trained with the ZFF signals.

Table 2: Results classifying the different low vs. high phonation
impairments in PD patients.

Signal Features ACC [%] F-score SENS [%] SPEC [%]

m-FDA Breathing duration

Raw Perturbation 78 0.779 80 76
Raw CNN 65 0.521 47 80
IAIF Glottal 71 0.703 62 78
IAIF CNN 60 0.289 26 89
GEFBA Glottal 76 0.752 64 85
GEFBA CNN 56 0.370 44 66
ZFF Perturbation 79 0.786 73 84
ZFF CNN 70 0.577 56 83

m-FDA Breathing capacity

Raw Perturbation 84 0.830 77 89
Raw CNN 65 0.437 35 83
IAIF Glottal 65 0.627 51 74
IAIF CNN 43 0.344 54 40
GEFBA Glottal 72 0.714 74 70
GEFBA CNN 44 0.194 29 54
ZFF Perturbation 80 0.793 79 80
ZFF CNN 69 0.425 37 89

m-FDA Global Breathing impairments

Raw Perturbation 76 0.758 69 83
Raw CNN 56 0.534 56 55
IAIF Glottal 60 0.592 48 71
IAIF CNN 54 0.542 77 32
GEFBA Glottal 71 0.708 65 77
GEFBA CNN 49 0.476 57 43
ZFF Perturbation 76 0.760 77 75
ZFF CNN 66 0.555 52 79

The accuracy to assess breathing duration ranges from 56
to 79% depending on the considered method. The highest accu-
racy is obtained with the computation of perturbation features



over the ZFF signals. Similar accuracies are observed with the
raw speech waveform. The highest accuracy for the breathing
capacity (84%) is obtained as well with the perturbation fea-
tures, but in this case computed upon the raw speech waveform,
followed by the perturbation features computed upon the ZFF
signals. Finally, the accuracy for the assessment of the global
breathing impairments ranges from 54 to 76%. Similar accura-
cies are observed with the perturbation features computed upon
the raw speech waveform and the ZFF signals.

The results about the continuous evaluation of the phona-
tion impairments of the participants using a regression approach
are presented in Table 3 for the three addressed problems. The
results are presented in terms of Pearson’s correlation coeffi-
cient (r), Spearman’s correlation coefficient (ρ), and mean ab-
solute error (MAE). Strong correlations are obtained for the
three addressed problems, especially using the perturbation fea-
tures computed upon the raw speech waveforms and the ZFF
signals. Similar to the classification results, the correlations
observed with the raw waveform CNNs are not as high as ex-
pected; however, this can be explained by the little amount of
data and the reduced variability of the labels to solve the regres-
sion problems. In addition, the results observed with the glottal
signals estimated with the GEFBA method outperformed the
ones obtained with the glottal signals estimated with the classic
IAIF algorithm. Particularly, the best result is observed for the
assessment of the global motor performance (ρ=0.741) proba-
bly because this is the scale with more variability in the labels
(it ranges from 0 to 8), as compared to the breathing duration
and breathing capacity, which only range from 0 to 4.

Table 3: Results evaluating the severity of the different phona-
tion impairments in PD patients.

Signal Features r ρ MAE

m-FDA Breathing duration

Raw Perturbation 0.659 0.662 0.86
Raw CNN 0.379 0.427 1.12
IAIF Glottal 0.436 0.444 1.00
IAIF CNN 0.016 -0.034 1.46
GEFBA Glottal 0.426 0.457 1.00
GEFBA CNN 0.214 0.182 1.43
ZFF Perturbation 0.591 0.603 1.00
ZFF CNN 0.075 0.076 1.86

m-FDA Breathing capacity

Raw Perturbation 0.660 0.659 0.86
Raw CNN 0.354 0.315 1.31
IAIF Glottal 0.308 0.429 1.00
IAIF CNN 0.003 -0.039 1.44
GEFBA Glottal 0.460 0.510 1.00
GEFBA CNN -0.121 -0.109 1.45
ZFF Perturbation 0.659 0.683 0.89
ZFF CNN 0.125 0.102 1.67

m-FDA Global Breathing impairments

Raw Perturbation 0.732 0.741 1.40
Raw CNN 0.352 0.341 1.27
IAIF Glottal 0.129 0.474 2.00
IAIF CNN 0.065 0.098 1.58
GEFBA Glottal 0.528 0.620 1.91
GEFBA CNN -0.029 0.024 1.34
ZFF Perturbation 0.673 0.714 1.54
ZFF CNN 0.260 0.250 1.62

Figure 2 shows in more detail the best results obtained eval-
uating the global breathing impairments of the participants. The

predictions are obtained using perturbation features computed
over the raw speech waveform.
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Figure 2: Best result obtained evaluating the severity of the
phonation impairments of PD patients using perturbation fea-
tures computed over the raw speech waveform.

5. Conclusion
This paper addressed the evaluation of the severity of differ-
ent phonation impairments that appear in PD patients due to
the presence of hypokinetic dysarthria. An extensive compar-
ison among classical and novel methods is performed in order
to accurately estimate the level of phonatory impairments in the
patients. The considered methods include the computation of
pertubation and glottal-based features, and the use of raw wave-
form CNNs that extract features directly from the raw signals.
The described methods are applied over different signals, in-
cluding the raw speech waveform, two versions of the glottal
source signal, and the signals obtained after the application of
a ZFF. Overall, utterance-level functionals of perturbation fea-
tures give more robust estimates of the addressed problems.

The results indicate that it is possible to discriminate be-
tween low vs. high phonatory impairments with accuracies
ranging from 76 to 84%. The most accurate results were ob-
served with the use of perturbation features computed upon the
raw speech waveform and the ZFF signals. The continuous
evaluation of the phonation impairments of the participants was
posed as a regression problem, where strong correlations were
observed (ρ up to 0.741), using perturbation features computed
over the raw speech waveforms. The results obtained using the
raw waveform CNNs do not match that performance, probably
because of the reduced amount of data and the low variability of
the labels. Our future work aims at transferring the knowledge
from this study into the assessment of phonation impairments
in other diseases that affect the phonatory system of the patients
such as different laryngeal pathologies, other neurodegenerative
diseases, COVID-19 patients, among others.
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