
 

 

Maîtrise universitaire ès Sciences en science forensique  
Orientation identification physique 

 
 

Mémoire de maîtrise 

De l’utilisation d’images d’empreintes digitales de 
synthèse pour tester les performances d’un système AFIS  

Alessandro Costa 
 
Sous la direction du Professeur Sébastien Marcel  
 
 
Juin 2022 





Alessandro Costa  JUNE 2022 

École des Sciences Criminelles                    
Université de Lausanne 
1015 - Lausanne Dorigny 

Abstract 
An automatic biometric recognition system needs large-scale datasets to be trained and 

benchmarked which involves certain limitations in terms of time, money and privacy. 

Recent developments in the field of Artificial Intelligence (AI) and, more in details, the 

successes achieved by the Generative Adversarial Networks (Goodfellow et al., 2014) in 

the generation of synthetic images offer numerous possibilities trying to solve these 

constraints. In this study, the CFG fully synthetic fingerprint database of Bahmani et al. 

(2021) has been the subject of the experimentations to test the following hypothesis: (1) 

the results derived from the evaluation on generated synthetic fingerprints datasets are 

similar to a real one; (2) the intra- and inter-class variability of a real and a synthetic 

database are similar. Moreover, further works will develop more in detail the hypothesis 

(3), according to which, a fully synthetic fingerprint database could be used to train a 

biometric system (AFIS) instead of using a real fingerprint database. 

Keywords: Fingerprints, Biometrics, Generative Adversarial Networks (GAN), 

Automated Fingerprint Identification System (AFIS), Artificial Intelligence 

Résumé 
Un système de reconnaissance biométrique automatique a besoin de données à grande 

échelle pour pouvoir être entraîné et évalué. Ceci implique certaines limitations en termes 

de temps, d’argent et de confidentialité (privacy). Les récents développements dans le 

domaine de l’Intelligence Artificielle (IA) et, plus en détail, les succès obtenus par les 

Generative Adversarial Networks (Goodfellow et al., 2014) dans la génération d’images 

synthétiques offrent de nombreuses possibilités pour tenter de résoudre ces contraintes. 

Dans cette étude, la base de données CFG d’empreintes digitales entièrement 

synthétiques, de Bahmani et al. (2021) a fait l’objet d’expérimentations afin de tester les 

hypothèses suivantes : (1) les résultats d’évaluation des jeux de données d’empreintes 

digitales synthétiques sont similaires à ceux d’une base de données réelle ; (2) l’intra- et 

inter-variabilité d’une base de données réelle et d’une base de données synthétique est 

similaire de sorte que, (3) une base de données d’empreintes digitales entièrement 

synthétique pourrait être utilisée pour entraîner un système biométrique (AFIS) au lieu 

d’utiliser une base de données d’empreintes digitales réelle.  

Mots clés: Empreintes digitales, Biométrie, Generative Adversarial Networks (GAN), 

Automated Fingerprint Identification System (AFIS), Intelligence Artificielle 
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1. Introduction 

The recent progresses accomplished in the field of Artificial Intelligence (AI) allow to 

create fully synthetic images of many different types. This means that nowadays it is 

possible to generate images of animals, cities, faces, fingerprints, etc. that do not exist 

and could be tricky to be distinguished from the reality. For instance, images (and art) 

could also be created just from a description in natural language (Ramesh et al., 2022). 

Image 1, here below, represents an example of an image generated just from a description, 

using Artificial Intelligence: 

 
Image 1: example of an image created with DALL-E 21 AI system from the description "a close up of a hand palm with 

leaves growing from it" ( Illustration: Ramesh et al., 2022) 

Now, the synthesis of images could also be used to solve one big challenge in the 

biometrics field. In fact, an automatic biometric recognition system needs large-scale 

datasets to be trained and benchmarked. However, to create an accurate dataset, which 

can reach the scale of hundreds of thousands of identities to be used in the field of 

biometrics research is challenging. If the number of resources that needs to be employed 

to collect and sort all pertinent biometrics features costing time and money was the one 

and only limitation, it could have been easily exceeded. However, there are also 

limitations concerning legislations (Colbois, Freitas Pereira, et al., 2021). In fact, as it’s 

explained in their article, the General Data Protection Regulation (GDPR) considers that 

“processing of personal data revealing […] biometric data for the purpose of uniquely 

identifying a natural person, […] shall be prohibited” if the informed consents are not 

obtained from data subjects2.  

 
1 OpenAI DALL-E 2: https://openai.com/dall-e-2/ [accessed online Wednesday 25 May 2022] 

2 European Commission. General data protection regulation - processing of special categories of personal data, 2018. 
https://gdpr-info.eu/art-9-gdpr/. [accessed online Wednesday 25 May 2022] 
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Consequently, the generation of fully synthetic datasets could potentially make the 

collection and distribution of biometrics datasets much easier, not needing the informed 

consent and all other regulations. On the other hand,  Colbois, Freitas Pereira, & al. (2021) 

highlight that the synthetic datasets should satisfy three important requirements (Zhang 

& Jain, 2006) in order to substitute a real one:  

1. Precision: the results obtained from the evaluation of a synthetic biometric 

dataset should be equal to the ones derived from a real biometric dataset. 

2. Universality: the precision requirement should be satisfied for all evaluated 

authentication algorithms. 

3. Privacy: each biometric data in the synthetic dataset should not represent any real 

person. 

In this work, the privacy requirement will be just indirectly discussed as, how you will 

discover more in details later on, an existing fully synthetic fingerprint database was used, 

and this requirement has already been discussed in the correlated article (Bahmani et al., 

2021). 

Moreover, the evaluation of the second requirement (universality) demands much more 

resources in terms of time and costs than are available for this Master’s thesis. We cover 

it partially in this work by considering two authentication algorithms, but it will be more 

extensively addressed in future work. 

As we will see in the next section (1.1. Objectives and key points), the aim of this thesis 

is to evaluate the precision requirement of the synthetic fingerprint dataset, generated in 

the framework of this thesis. The latter, is based on the synthetic fingerprint images issued 

from the study of Bahmani, Plesh, et al. (2021). Subsequently, these fingerprints have 

been warped, thanks to a warping model implemented during the studies of Marco De 

Donno, which are still in progress under the supervision of Prof. Champod of the 

University of Lausanne. For this reason, only the results of the warping model will be 

exposed in this thesis. In fact, it contains confidential data that cannot be published and 

must remain publicly unavailable. 
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1.1. Objectives, hypothesis and key points 

As aforementioned, the aim of this Master thesis will be to study if the evaluation results 

of generated fingerprint datasets are similar to the one from the real dataset (first 

hypothesis). This, observing also if a real and a synthetic database could have similar 

intra- and inter-class distributions (second hypothesis) so that to use a synthetic database 

to train biometric systems (third hypothesis).  To do this, here are the key points that will 

be treated in this thesis: 

- An introduction to the Biometrics basics, where a general description of biometrics 

features and their principles will allow to better understand what will be discussed 

later; 

- A section will be dedicated to the synthesis of images, to approach the Generative 

Adversarial Network (GAN) and understand what it is, how it works and what it is 

possible to do with GAN. In this section there will also be place for a literature review 

with of course some examples of the images that can be generated. After that, we 

will focus on the synthetic fingerprint generator that has been used in the 

framework of this thesis with the goal of understanding how it works and discuss the 

privacy requirement, briefly approached previously; 

- Moreover, as anticipated before a discussion on the synthetic fingerprint 

deformation will also take place. Therefore, the details of the used code cannot be 

given as it contains confidential data; 

- The section dedicated to the practical part of the work will first describe what is an 

Automated Fingerprint Identification System (AFIS), how it works, and which one/s 

has been used for the experimentations. Secondly, we’ll take a look on the AFIS 

performances when using real or synthetic fingerprint datasets, describing the 

methodology and the submission’s protocol; 

- The evaluation results comparison of the AFIS’s performances between the real and 

the synthetic fingerprint with a discussion of the possible benefits and limitations; 

- The conclusion of the thesis, which will consist in a summary of the practical results 

obtained with the evaluation of the achieved goals and the further works that might 

be carried out in the near future. 
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2. Synthetic Fingerprint Images 

2.1. The basics of Biometrics 

To be able to assess the value of a fingerprint datasets as we aim to do in the framework 

of this thesis and to understand how to approach this evaluation, it could be helpful to 

take a moment for perceive the basics of this very vast branch. 

Each of us, just like most of the animals that populate our planet, accomplishes almost 

every day a sort of identity recognition process. For instance, recent studies show that, 

for a dog, just the voice of its owner could be enough to recognize him (Gábor et al., 

2022).  Moreover, humans can recognize each other from their body language and 

physical appearance. 

Therefore, continuous technology improvements in the Computer Science field have 

made the automation of many process possible, including in the biometrics field, which 

aims to automatically identify individuals from their physical, chemical and/or behavioral 

attributes (Jain and Ross, 2008). 

- Physical trait: corresponds to the anatomical human’s features. For instance: 

                
        (a) Fingerprint      (b) Face         (c) Iris         (d) Retina 

    
       (e) Hand Geometry     (f) Veins Patterns 

Image 2: (a) Fingerprint ( Illustration: Jain & Ross, 2008, pg. 4) , (b) Face ( Illustration: Jain & Ross, 2008, 
pg. 4), (c) Iris ( Illustration: Erturk, 2006, pg. 413), (d) Retina ( Illustration: Farzin et al., 2008, pg. 
5), (e) Hand Geometry ( Illustration: Jain & Ross, 2008, pg. 4) , (f) Veins Patterns ( Illustration: Soni 
et al., 2010, pg. 504)  
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- Behavioural trait: refers to the manner in which a person act. This could include: 

         
(a) Gait   (b) Keystroke dynamics         (c) Voice 

 
Image 3: (a) Gait recognition ( Illustration: Rida et al., 2016, pg. 465), (b) Keystroke dynamics (Illustration: 

Morales et al., 2016, pg. 7739), (c) Voice recognition ( Illustration: Jain & Ross, 2008, pg. 4) 

- Chemical trait: relates to the chemical composition of a person. For example: DNA 

and body odour.  

Moreover, a biometric trait, may this be physical, behavioral or chemical should meet the 

seven attributes that, Jain et al. (1999), identified to determine “the suitability of a […] 

trait to be used in a biometric application” (Jain and Ross, 2008) which are the following: 

(1) Universality, (2) Uniqueness, (3) Permanence, (4) Measurability, (5) Per-formance, 

(6) Acceptability, (7) Circumvention (the imitation of the trait using artifacts should not 

be easy) (Jain et al., 1999, quoted in  Jain & Ross, 2008). Hence, if we apply these 

attributes to the main subject of this thesis, fingerprints are admissible as part of the 

physical biometric characteristics. This means that they can be used to prove someone’s 

identity through different applications (i.e., commercial, government, forensic 

applications), and as such it is considered a personal data (GDPR). 

Previously, in the first section of this document (1. Introduction), the subject of privacy 

has been briefly mentioned and it’s important to identify which of these privacy issues 

could be, as it is critical today as it was in the past (Davies, 1994; quoted in Jain & Ross, 

2008). More precisely forging attacks, like spoofing (Rebera et al., 2014), could be carried 

out, putting the identity and sensitive information (i.e., medical and health conditions) of 

peoples at risk of abuse or unintended use (Marcel et al., 2014).  

Finally, in the framework of this thesis it could also be useful to know how the biometrics 

features can be employed. Generally a biometric system is used to acquire the desired 

trait and extract features from it (Jain and Ross, 2008). Afterwards, the pattern recognition 

system operates the comparison between the acquired trait’s features and the stored ones 

(Jain and Ross, 2008).  
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Moreover, depending on the application, the comparison can be performed in two 

different modes (Jain and Ross, 2008):  

- Verification mode: the individual claims an identity (i.e., via a smart card, password, 

etc.) and submits the required biometric trait to the system which compares it with 

the (previously) stored features corresponding to the claimed identity (Jain and Ross, 

2008). It consists in a one-to-one comparison and a typical example question: “Does 

the presented iris features belong to the claimed identity?”.   

- Identification mode: consists in a one-to-many comparison between the probe (i.e., 

the presented biometric trait) and multiples references (i.e., the enrolled features in 

the database). The aim of the identification mode is to determine who a person is.  

In both the verification and identification mode, the biometric system will tell how close 

the probe and the reference features are, by the score. Most of the times the score is a 

measure of the similarity between two features, so, the higher the score, the more closely 

the features match. After that, a decision-making process needs to be performed to 

determine the threshold where, if the score is grater or equal, it is a Match, and, if it is 

smaller, it is a No Match. This process is often quite tricky and requires a trade-off 

between the possibility of accepting impostor users and the possibility of rejecting 

genuine users because of the multiple factors that can affect an individual biometric trait 

(i.e., sensing conditions, alteration of the characteristic, ambient conditions, interaction 

with the sensor) (Jain et al., 2008). Furthermore, in their chapter, Jain & Ross (2008) 

clarify how the performances of biometric system can be evaluating observing the False 

Match Rate (FMR) and the False Non-Match Rate (FNMR). The first one (FMR) tells the 

percentage of the times where the biometric system concludes the comparison as a match, 

but the features come from two different identities. On the other side, the FNMR tells the 

percentage of times where the system concludes the comparison as a non-match, but the 

features come from the same identity (Jain and Ross, 2008). 

In conclusion, as said before, this section only briefly presents the basics of biometrics. 

Later in this document certain important notions (i.e., operations of a biometric systems, 

performances, etc.) will be extended and discussed. 
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2.2. Generative Adversarial Network (GAN) for images synthesis 

Recent progress in the field of artificial intelligence (AI) has made machine learning more 

and more popular. This particular field was defined for the first time in 1959 by Arthur 

Samuel as “the field of study that gives computers the ability to learn without being 

explicitly programmed” (Samuel, 1959) and, for instance, nowadays it can be used “[…] 

to identify objects in images, transcribe speech into text […]” and so on (LeCun et al., 

2015). 

Hence, deep learning, which is a branch of machine learning (Chassagnon et al., 2020) 

refers to a network of neurons organized in multiple successive layers, each one 

performing simple operations and sending the results to others neurons (LeCun et al., 

2015). This allows to model very elaborated functions using millions of parameters, with 

great results. Essentially, deep learning can be: generative (i.e., where the aim is the 

synthesis of an image), discriminative (i.e., where the aim is the classification of an 

image) or hybrid, which combines the generative and the discriminative architectures 

(Kim et al., 2018). 

Goodfellow et al., (2014) advanced a hybrid deep learning architecture: Generative 

Adversarial Network. In this framework, the generative and the discriminative 

architectures are in competition and they are both trained at the same time (Kim et al., 

2018). To take an example, it can be considered that in a particular application the aim of 

the discriminator (D) is to correctly recognize if a face image is real or fake, and, on the 

other hand, the generator (G) aims to deceive the discriminator. Therefore, the generator 

(G) is trained thanks to the feedback of the discriminator (i.e., if D classified the synthetic 

face image as “Fake”, G would try to synthetize a more realistic face image) and the 

discriminator learns from weather or not the classification was correct (figure 3).  

Image 4: typical architecture of Generative Adversarial Network (GAN) (Illustration: Kim et al., 2018) 
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GAN’s technology has been subject of many studies and research during the last years 

and has also been applied in various fields of the biometrics, mostly in face recognition, 

where impressive results are being achieved. One of the main challenges over the past 

few years regards the synthesis process not being trivial to synthetize more images of the 

same identity. For instance, concerning real faces datasets it is possible to take several 

pictures of the same person, from different angles, with different illumination and 

expressions. Thus, as shown in Image 5,  Colbois et al. (2021) recent studies demonstrate 

that it is possible to identify the parameters responsible of the angle, illumination and 

expression and change them in order to generate intra-class variability (different images 

of the same identity) with satisfying results. 

However, in the next section we will 

focus on the synthesis of fingerprint 

images, which is the main subject of 

the thesis, and it will be shown that 

even if the general process of 

generating synthetic fingerprint and 

face images it is very similar, some 

differences were observed between 

the two field’s state-of-the-art.  

2.2.1. Synthetic fingerprint generators 
As discussed in the introduction of this document, establishing a large fingerprint 

database that can be used to evaluate a fingerprint recognition system could involve high 

costs in terms of money and time, as well as certain privacy’s related risks (Maltoni, 

2009). Therefore, the synthesis of fingerprint has a quite long history and the GANs 

architectures, which represent the current state-of-the-art in the synthesis of images, 

became popular just in the last decade (Goodfellow et al., 2014). As a matter of fact, 

Cappelli, Maio and Maltoni (2000a, b, 2004) (quoted by Maltoni, 2009), developed a 

software (SFinGe) which allows the automatic generation of a “large database of 

fingerprints […]” (Maltoni, 2009).  

 

 

Image 5: Same synthetic identity with variation of expression  
(first row), pose (second row) and illumination (third 
row). The image top left (red contour) represent 
reference. Illustration from: Colbois et al., 2021 
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Essentially, to generate synthetic fingerprints, SFinGe execute the three steps of a typical 

fingerprint features extractor, but in a different order: from a fingerprint area, a frequency 

image and an orientation image produce a binary ridge pattern image (Maltoni, 2009). 

Afterwards the obtained images are rendered more realistic by “adding fingerprint-

specific noise” (Maltoni, 2009) and by changing parameters such as a displacement, 

rotation, noise, etc., it is possible to synthetize more impressions of the same fingerprint 

identity (intra-class variability). 

Now, as it has been discussed previously, Generative Adversarial Networks does not 

require labelling and annotating data thanks to its unsupervised learning nature and can 

generate a high number of high-quality synthetic data looking more and more realistic3. 

Moreover, the reason why the focus of this thesis is on GANs is that deep learning models 

have a more flexible generation process than mathematical ones (i.e., SFinGe). In other 

terms, SFinGE (mathematical model) generates a synthetic fingerprint from a given set 

of three maps (fingerprint area, frequency map and directional map) while the input of a 

GAN based model is a random noise (Riazi et al., 2020). 

Since Goodfellow et al. (2014) designed this machine-learning architecture, the synthesis 

of fingerprint images gained in popularity. As a consequence, many researchers tried to 

implement their algorithms based on GANs with always greater results in terms of quality 

and realism during the years. Roy et al. (2017) generated synthetic fingerprint templates 

that can be used to authenticate an impostor as a genuine user. 

This particular research motivated Bontrager et al. (2018) to design a model able to 

generate fingerprint images (instead of fingerprint templates) similar to real fingerprint: 

DeepMasterPrints.  To do this, Bontrager et al. (2018) generated fingerprint images using 

WGAN algorithm, where, during the training of the Discriminator, the distance between 

the real and the generated distribution are measured by the Wasserstein distance function 

instead of the Jensen-Shannon divergence metric, increasing the stability of the training 

(Arjovsky et al., 2017).  

 
3 Analytics Vidhya: Generative Adversarial Networks | GANs for Image Data : https://www.analyticsvidhya.com 
/blog/2021/03/why-are-generative-adversarial-networksgans-so-famous-and-how-will-gans-be-in-the-future/ 
[accessed online Tuesday 7 June 2022] 
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Minaee & Abdolrashidi (2018) proposed a deep convolutional GAN (DC-GAN) 

architecture trained with two fingerprint databases (FVC 2006 Fingerprint Database4 and 

PolyU Fingerprint Databases). As they explain in their paper, the lines composing a 

fingerprint image form a connected component that GAN can learn better, thanks to the 

term added to the loss function of the proposed DC-GAN architecture (Minaee and 

Abdolrashidi, 2018). 

Furthermore, to the best of my knowledge, Mistry et al. (2020) generated the largest 

synthetic fingerprint image dataset consisting of 100 millions synthetic fingerprints. To 

do that, they used an Improved-WGAN (I-WGAN) architecture initialized by the outputs 

of the Convolutional Autoencoder. As shown by Image 7 (d), the visual quality of the 

synthetic rolled fingerprints seems fine, unlike the synthetic plain fingerprint images, 

seeming to have very wavy ridges. However, the evaluation results shown in their study 

demonstrate that the proposed database raised the bar in terms of realism and quantity. 

In parallel, during the same year, (Fahim and Jung, 2020) presented a different GAN 

architecture for fingerprint generation able to speed-up the synthesis process and to 

generate “[…] whole and cropped fingerprint patches with 128 by 128 and 256 by 256” 

(Fahim and Jung, 2020). 

For their part, Riazi et al. (2020) developed a two-phases method (SYNFI) with which 

they first generate a low-quality fingerprint image form a random latent variable (GAN 

model) and then use a Super-Resolution (SR)5 model in order to add realism to the image 

and turn it into an high-quality one. SYNFI was developed to meet real fingerprint 

expectations, which (Riazi et al., 2020) summarized essentially in four goals: (1) the 

features used for AFIS should be preserved, i.e., ridge structure and minutiae. (2) It 

generates full-finger images, (3) that should be indistinguishable from real fingerprints 

impressions and (4) the system should do this automatically (Riazi et al., 2020).  

 

 
4  University of Bologna FVC 2006; Fingerprint Verification Competition: http://bias.csr.unibo.it/fvc2006/data 
bases.asp [accessed online Tuesday 7 June 2022] 

5 Wikipedia, Super Resolution Imaging: https://en.wikipedia.org/wiki/Super-resolution_imaging [accessed online 
Tuesday 8 June 2022] 
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Moreover, they computationally tested the realism of the generated fingerprints by using 

different classifiers and concluded that the best one that was used “could distinguish 

synthetic fingerprints from real ones only 0.43% better than a random guess” (Riazi et 

al., 2020) which demonstrate that they met the fixed goals of their research. 

With the aim of generate a fully synthetic 512 x 512 pixels at 500 dpi, plain impression 

fingerprint images dataset at scale, (Bahmani et al., 2021) took a step forward in this field 

and worked on the Clarkson Fingerprint Generator (CFG). With this model, the authors 

from the Clarkson University (Potsdam, NY, USA) and from Precise Biometrics 

(Potsdam, NY, USA) improved the quality of fingerprint images based on previous 

models and demonstrated that the generated fingerprints did not disclose the identity of 

the real fingerprint utilized for the training of the CFG model. In addition, they made the 

pre-trained Clarkson Fingerprint Generator model publicly available as well as the 

synthetic fingerprint dataset6 generated by them with the CFG model7. As we discussed 

in the previous section, and as it will be discussed more in detail later, one of the biggest 

challenges in working with Generative Adversarial Networks is that it is not trivial to 

implement a method capable of synthetize more images of a same identity.  

As a matter of fact, contrary to the mathematical method SFinGe (Cappelli et al., 2002), 

the proposed StyleGAN-based Clarkson Fingerprint Generator (Bahmani et al., 2021) 

only generate a single illustration for each identity. For this reason, with the current 

version of their publicly available dataset, only inter-class variability analysis are possible 

while intra-class variability distribution cannot be evaluated. 

On the other hand, the current state-of-the-art in synthetic fingerprint generation is 

PrintsGAN (Engelsma et al., 2022), which overcame several limitations of previous 

works in this field: most of them lack quality in terms of realism or, as previously shown, 

they cannot create intra-class variability for a same given identity (Engelsma et al., 2022).  

 
6 Clarkson Fingerprint Generator (CFG) dataset - 50k Synthetically Generated Fingerprints: 
https://drive.google.com/file/d/1KQUjnol9JjYQtx6D0eVN6mfUs91eWcS3/view?usp=sharing [Downloaded online 
Thursday 10.03.2022 by IDIAP – non-commercial license]. Contact: Bahmank@Clarkson.edu 
7 Clarkson Fingerprint Generator (CFG): https://github.com/keivanB/Clarkson_Finger_Gen [accessed last time 
Tuesday 8 June 2022] 
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The proposed method, PrintsGAN (Engelsma et al., 2022), is also based on Generative 

Adversarial Networks, but, thanks to the combined style transfer and warping module, it 

made it possible to synthetize fingerprint images with a high realism quality.  

Furthermore, it also provides intra-class variability, in terms of distortion, moisture and 

pressure, since the method can generate a considerable number of images of the same 

finger identity.  Finally, Engelsma et al. (2022), as well as (Bahmani et al., 2021), 

demonstrated the fact that no synthetic fingerprint reveal the identity of the real 

fingerprint identity used to train their deep-learning architecture. PrintsGAN generation 

process essentially requires three steps, summarized in Image 6 here belove. 

 
Image 6: Scheme of the three steps required by PrintsGAN architecture. 1) MasterPrint generation; (2) 

Warping and Cropping operations; (3) Textural details addition. (Engelsma et al., 2022) 

First, form a random noise a fingerprint identity is synthetized. The generated MasterPrint 

is warped and cropped to generate intra-class variability. Even more intra-variability is 

added by the last step that consists in adding texture to the image. Moreover, in order to 

demonstrate that the method can generate high-quality 512 x 512 pixels, rolled 

fingerprints providing high realism (in terms of minutiae quantity, type and quality 

distributions) and that it can emulate real fingerprint intra- and inter-class variability, they 

performed several experiments (Engelsma et al., 2022). 
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(a)        (b)           (c)          (d) 

 
(e)        (f)           (g)          (h) 

Image 7: Example of synthetic fingerprint issued form the related previous works discussed in this section: (a) SFinGe 
model (Cappelli et al., 2002), (b) DeepMasterPrints (Bontrager et al., 2018), (c) Finger-GAN (Minaee and 
Abdolrashidi, 2018), (d) Fingerprint Synthesis (Mistry et al., 2020), (e) Large scale FP generator (Fahim 
and Jung, 2020), (f) SYNFI (Riazi et al., 2020), (g) Clarkson Fingerprint Generator (Bahmani et al., 2021), 
(h) PrintsGAN (Engelsma et al., 2022) 

Image 7 here above shows an example of synthetic fingerprint for every study discussed 

in this section concerning the synthesis of fingerprint images. Based on the examples 

shown above, the synthetic fingerprints from (a) to (f) show considerable gaps in terms 

of realism quality. In fact, it is possible to see that certain features like minutiae quantity 

and distribution as well as ridge density and shape lack realism. Moreover, it seems that 

the resolution of (b) and (c) is not optimal for the aim of this thesis. However, as 

previously stated, (Bahmani et al., 2021) reached great results in terms of fingerprint 

quality (g) with their Clarkson Fingerprint Generator, still not implementing a method 

to generate intra-class variability. Finally, fingerprint images (h) represent an example of 

what PrintsGAN, (Engelsma et al., 2022) can generate, thus affirming itself the current 

state-of-the-art in synthetic fingerprint generation.8 

  

 
8 The considerations made about realism quality are made form a personal point of view and it has not been 
validated. A crowdsourcing experiment should be performed like (Engelsma et al., 2022) have done during their 
research. This will allow to have solid and scientific results to base the considerations. 

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. Example images taken from prior fingerprint synthesis algorithms; (a) [20], (b) [21], (c) [22], (d) [23], (e) [24], (f) [25], (g) [26], (h) [27], (i) [28],
(j) [29], (k) [30], (l) [31]. Existing synthesis algorithms are limited by a lack of realism (domain gap between real and synthetic fingerprints), e.g.,
(a-i). GAN based synthesis methods generate more realistic fingerprints e.g., (j-l), however, they are not able to generate multiple impressions
for a given fingerprint (they only generate unique fingerprints). Our proposed PrintsGAN generates more realistic fingerprints than the baselines
(via a crowd-source evaluation) and is also capable of generating multiple impressions per finger. This enables us to train a CNN on top of our
synthetically generated fingerprints to learn a discriminative fingerprint representation for fingerprint matching.

More recent approaches to fingerprint synthesis aim to
alleviate the shortcomings of some of the “handcrafted”
approaches by utilizing Generative Adversarial Networks
(GANs) to learn the mapping from random noise to syn-
thetic fingerprints without introducing some of the afore-
mentioned assumptions. This has significantly improved the
realism of synthetic fingerprints (Figure 3), however, it has
introduced new limitations including:

• Many GAN based approaches focus on synthesizing
small patches of fingerprints rather than full finger-
prints to stabilize the training of the GAN.

• The GANs are only capable of generating unique
fingerprints. None of the existing GAN methods can
generate multiple, full fingerprint impressions for a
given fingerprint or model the intra-class variations.

• A lack of training data results in some of the GAN
based methods producing fingerprints which are
even more dissimilar from real fingerprints than the

‘hand-crafted” approaches are capable of synthesiz-
ing.

• GANs are naively utilized off-the-shelf without con-
sideration of any fingerprint domain knowledge
which can aid in improving the realism of the syn-
thetic fingerprints.

Like previous learning based synthesis methods [23],
[24], [25], [26], [27], [28], [29], [30], [31], PrintsGAN also
utilizes several GANs to generate synthetic fingerprints
which are more realistic than their handcrafted counterparts
(Figure 4). However, PrintsGAN makes several key changes
to the existing learning based synthesis pipeline in order to
rectify their shortcomings. First, PrintsGAN utilizes domain
knowledge during the synthesis process in a manner in
which existing GAN based methods do not. Rather than
naively learning a mapping directly from a random noise to
a fingerprint via a single GAN, PrintsGAN breaks the syn-
thesis process out into a series of steps each of which aims to
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Figure 5: Examples of fingerprint images (512 ⇥ 512 @ 500 dpi) synthesized by our approach. The top row corresponds to
synthetic rolled prints while the bottom row shows synthetic plain fingerprints.

4.1. Fingerprint Realism

To evaluate the similarity of synthetic fingerprints to real
fingerprints, we used the fingerprint datasets enumerated in
Table 2. In particular, we compare real plain-prints to syn-
thetic plain-prints and real rolled-prints to synthetic rolled-
prints.

Metrics: Four template-level and three block-level
comparison indicators used for this evaluation are taken
from [19], including, minutiae count - template and block,
direction - template and block, convex hull area, spatial dis-
tributions (minutiae spatial distributions represented as a 2D
minutiae histogram [30, 18]), and block minutiae quality.
In addition, we utilize the NFIQ 2.0 [42] quality scores
distribution. Minutiae points (necessary to compute these
metrics) were extracted using state-of-the-art COTS SDKs:
VeriFinger v11.0 [12] and Innovatrics v.7.6.0.627 [3].
Statistical Test: We use the Kolmogorv-Smirnov test [26]

to compute the difference between the distributions of each
of the aforementioned metrics extracted from a set of real
fingerprints (benchmark distribution), and synthetic finger-
prints (comparison distribution). A low test statistic value
indicates high similarity between real fingerprints and the
synthetic fingerprints. We compared each synthetic finger-
print dataset with three real fingerprint datasets on all the
above-mentioned metrics and calculated the average KS test
statistic from the three comparisons.
Realism Results: Figure 6 shows the KS test statistics be-

tween our synthetic rolled and plain prints and real rolled
and plain prints as well as the comparison with state-of-
the-art methods for plain-print synthesis - SFinGe v5.0 [10]
(21.1mm⇥28.4mm acquisition area, 500 DPI resolution,

416⇥560 image dimensions, natural class distribution), and
rolled-print synthesis [17]. We note that our synthetic plain-
prints are more similar to real plain-prints on 7 out of
the total 8 indicators than state-of-the-art synthetic plain-
prints [10]. Similarly, our synthetic rolled-prints are more
similar to real rolled-prints than state-of-the-art synthetic
rolled-prints [18] on 7 out of the 8 indicators.

4.2. Fingerprint Uniqueness

4.2.1 Imposter Scores Distribution

To determine the diversity of our synthetic fingerprints (in
terms of identity), we first computed 500K imposter scores
using Verifinger in conjunction with our synthetic rolled-
prints and also the synthetic rolled-prints from [18] (Fig-
ure 7). We note that the mean (3.47) and standard devia-
tion (2.13) of the imposter scores computed when using our
synthetic rolled-prints are both lower than the mean (3.48)
and standard deviation of (2.18) of the imposter scores com-
puted with synthetic rolled-prints from [18]. We also note a
higher peak in the imposter distribution from our synthetic
rolled-prints at lower similarity values (Figure 7). This in-
dicates that our addition of an identity loss has helped guide
our synthetic rolled-prints to be more unique.

4.2.2 DeepPrint Search Against 1 Million

We also demonstrate uniqueness by conducting large-scale
search experiments. More uniqueness in the gallery leads to
a lower search accuracy. First, we obtain an “upper-bound”
on search performance using NIST SD4 [8] in conjunction
with 10 different subsets of 1 million synthetic rolled-prints

M. A.-N. I. Fahim, H. Y. Jung: Lightweight GAN Network for Large Scale Fingerprint Generation

FIGURE 3. The performance of the loss functions, as mentioned in table 2, is present here. Our whole training
period is consists of 9000 epochs. Binary Cross entropy + Total Variation loss function seems superior
compared to other loss functions but shows inconsistency in training. From figure (b, d, f, h), Sigmoidal
cross-entropy, and Huber Loss + loss augmentation was unable to produce meaningful structure over the whole
training period. Hinge Loss + loss augmentation is somewhat successful in the first half of the training, and
later it degrades the performance of the GAN.

TABLE 4. Summary of the proposed network’s properties.

FIGURE 4. a) Images from Finger GAN [14]. b) Images from deep MasterPrints [13]. c)
256 ⇥ 256 patches from the proposed study. d) 128 ⇥ 128 patches from the proposed study.
By visual inspection, ridges are clearer and sharper in the images from this study.

for 128 ⇥ 128 and 256 ⇥ 256 images. We also produced
these images without spectral normalization. For this pur-
pose, we used the LivDet fingerprint dataset [27], [45]–[48].
Images in this dataset come with five different scanners.
We used images from the Greenbit scanner, which contains

1000 real fingerprints. We applied rotation, translation, and
flipping for data augmentation.

Figure 4 shows the output from [13], [14] and the proposed
study. Images produced by [14] are blurry compared to those
from the other two studies. From figure 4, we can easily
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Fig. 3. Quality comparison between real and synthetic fingerprint samples. Top row: NIST dataset real fingerprint samples. Middle row: Synthetic fingerprints
generated by DeepMasterPrint [4]. Bottom row: Synthetic fingerprints generated by SYNFI (this work).

Pre-processing Dataset. We use the nfseq tool provided
by the NIST Biometric Image Software (NBIS) package
to pre-process the real fingerprint dataset. As illustrated in
Figure 2, this tool enables us to detect the precise boundary
of the fingerprint and remove the unnecessary parts around the
fingerprint itself. This step is crucial to enhance the quality of
the images that are produced in both Phase 1 and Phase 2.

Architectures. The generator and critic components of Phase
1 have similar architecture but in a reversed order. The
generator starts with a noise vector of size 100. Then the vector
goes through a series of fractionally-strided convolutions in
which the number of channels is reduced while the image
size is increased, both by a factor of two. In the critic model,
the intermediate layers are regular convolution layers.

The SR model has a more complex architecture. In the
beginning, there is a convolutional layer followed by a series of
23 basic blocks. In the end, there are two upsampling and two
convolution layers. Each basic block consists of three residual
sub-blocks where each sub-block has five convolutional layers.
The convolutional layers have 64 channels with a kernel size
of 3. The activation function in RRDB is a leaky ReLU with a
slope of 0.2 in the negative part. The output of the SR model
is a 256⇥256 image with one channel (a gray-scale image).

Synthetic Samples and Qualitative Comparison. Figure 3
shows a set of samples of (i) real fingerprints in the NIST
dataset, (ii) synthetic fingerprints generated by DeepMaster-
Prints [4], state-of-the-art DL-based method, and (iii) synthetic
samples generated by our system. As can be seen from this
figure, the output of SYNFI is significantly more realistic
compared to the prior art. Moreover, our methodology can
generate a full impression of fingerprints as opposed to the
partial fingerprints generated by DeepMasterPrints. The right-
most column shows a magnified view of the details of the
impressions, which shows the quality of the produced samples

in SYNFI. Next, we provide extensive experimental results to
quantitatively compare SYNFI samples with real fingerprints.

Indistinguishability and Quantitative Comparison. As we
briefly discussed before, one of the most important character-
istics of synthetic fingerprints is their indistinguishability from
the real samples. Otherwise, not only synthetic samples cannot
improve the quality and performance of authentication systems
during development time, but also they cannot improve the
security of storage systems for fingerprints as they can easily
be distinguished and separated.

Figure 3 shows that the synthetic fingerprints generated by
our system are visually very similar to the baseline NIST
dataset of real fingerprints. However, to quantify how distin-
guishable synthetic fingerprints are from real ones, we perform
the following analysis. We partition the subjects in the NIST
dataset into training and test samples with 2200 and 500
subjects, respectively. Similarly, we create two disjoint sets
of synthetic fingerprints, one for the training phase and one
for the test phase. In order to minimize the classifier’s bias,
we put an equal number of real and synthetic fingerprints in
the test dataset.

We train six different machine learning models: a Logistic
Regression (LR) model, a Support Vector Machine (SVM)
with linear kernel, a Random Forest with 10 estimators, and
three different Deep Neural Network (DNN) models with four,
five, and eight layers. The training process is formalized as
a binary classification problem in which real fingerprints are
labeled as zero, and synthetic samples are labeled as one. After
training the six ML models, we evaluate them on an unseen
test set consisting of real and synthetic samples.

The performance of these binary classifiers are reported in
Table I using three standard metrics: Accuracy (ACC) which
reflects the percentage of correct answers by the classifier,
False Positive Rate (FPR) which is defined as the ratio

C F G can generate high fidelity plain fingerprint with
realistic shape and boundaries at 512 ⇥ 512 pixels and
does not suffer the mode collapse and quality issues
associated with previously proposed IW G A N-based
fingerprint generators [9, 10]. When compared to the
model used in [8], the multi-resolution fingerprint syn-
thesis model can be trained using a smaller dataset and
without computationally expensive pre-training steps.

• We compare quality metric distributions to assess di-
versity of the synthetic fingerprints and their similarity
to bonafide fingerprints. We also match every synthetic
fingerprint to every bonafide fingerprint to ensure that
the synthetic fingerprints do not reveal the real identi-
ties.

• We utilized a C N N-based Presentation A ttack Detec-
tion (PA D) model to evaluate fingerprints generated us-
ing the C F G. This process reaffirms the high fidelity of
the samples generated using the C F G.

• We make the pre-trained C F G model and the syntheti-
cally generated fingerprints publicly available. To the
best of our knowledge, the C F G is the first publicly
available G A N-based fingerprint synthesis model.

2. CLARKSON FINGERPRINT GENERATOR

In this work, we utilize multi-resolution training for fin-
gerprint synthesis [13]. Multi-resolution G A N models start
the training process by training both the Generator (G) and
D iscriminator (D) at lower spatial resolutions and progres-
sively increasing (growing) the spatial resolution throughout
the training. Progressive growth-based G A Ns are capable
of effectively capturing high-frequency components of the
training data and producing high-fidelity and realistic human
faces [13]. The main known limitation of the progressive
growth approach is the generator’s strong location prefer-
ence for details. This issue has led to artifacts in generating
high-resolution faces across different poses [14]. However,
fingerprint recognition systems operate at a relatively fixed
scale and do not suffer from the pose, illumination, and ex-
pression variations associated with face images. A s a result,
we believe this architecture alleviates the problems observed
in the previous IW G A N-based fingerprint synthesis mod-
els while introducing a minimal amount of artifacts to the
synthesized fingerprints. To the best of our knowledge, the
C F G is the first fingerprint synthesis model that leverages
multi-resolution and progressive growth training.

3. TRAINING AND EVALUATION

The C F G utilizes StyleG A N architecture [13]. The model is
trained from scratch using 72,000, 512⇥ 512 pixels bonafide
fingerprints from 250 unique identities, captured using a

Fig. 1. E xamples of generated fingerprint images by the pro-
posed approach (512⇥ 512 pixels at 500 dpi)

Crossmatch Guardian scanner (D B-1). The C F G is trained in
an unsupervised manner, i.e. we did not provide the model
with unique identity labels. The bonafide fingerprints are
processed at 8 resolutions from 4⇥ 4 up to 512⇥ 512 pixels
during progressive training. Subsequently, we utilized the
C F G to generate 50,000 synthetically generated 512 ⇥ 512
plain impression fingerprints (D B-2). Note that the synthetic
fingerprints are generated without any truncation to represent
the full range of the C F G [13].

Previous work on fingerprint synthesis relied on Frechet
Inception D istance (F ID) [9] and Structural SIM ilarity (SSIM)
[10] measures to respectively evaluate the quality and diver-
sity of the generated samples. In the test, the C F G achieved
F ID of 24 which is considerably better than the F ID of
70 reported by F inger-G A N [9]. We calculated F ID using
the 50,000 fingerprints. Unfortunately, the use of in-house
datasets and proprietary code limits our ability to compare
F ID with previous fingerprint synthesis models. A lso, since
F ID utilizes an inception network trained on ImageNet [15],
it is best suited for evaluating generators of natural images
rather then biometric images. Consequently, we utilize the
B O Z O RT H3 minutiae-based fingerprint matcher [16] to eval-
uate the uniqueness of the synthetically generated fingerprints
through their imposter distribution [8] and expand upon pre-
vious works by evaluating the quality and diversity of the
synthetic fingerprints through fingerprint metrics. We evalu-
ated the quality of the fingerprints using N IST N F IQ 2.0 [17]
and utilized the N IST N B IS software [16] to evaluate and
compare the minutiae configuration of the training (D B-1)
and synthetic (D B-2) fingerprints. A dditionally, we leveraged
the work of O lsen et al. to extract features based on ridge-
valley signature [18]. To accurately estimate the ridge-valley
features, each fingerprint is decomposed into overlapping
blocks of 32⇥ 32 pixels and we averaged the results over the
15 patches with lowest standard deviation in terms of ridge
valley uniformity (highest quality).

A dditionally we evaluate the synthetic fingerprints through
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Fig. 5. An example of a synthetic fingerprint identity, with five different impressions, generated by PrintsGAN. The top row shows the binary Master-
Print with various warpings and croppings. The bottom row shows each of those Master-Print warps after a textural rendering.

TPS warping module and cropping GAN DW (EW (IID)) to
produce a warped Master-Print Iw. Finally, Iw is passed to
a renderer RD(RE(Iw)) along with a texture noise vector
ztexture 2 R128 to impart textural details to the final
fingerprint Ir . Thus, by selecting different zID, we can
generate many unique fingerprints. Likewise, by fixing zID,
and selecting different zdistort and ztexture, we can generate
different impressions of the same fingerprint. Each of these
steps are elaborated upon in the subsections below.

3.1 Master-Print Synthesis

The first step in the synthesis process requires learning
a mapping from zID 2 R512 to a binary Master-Print
IID 2 {0, 1}256⇥256. To perform this mapping, we uti-
lize the BigGAN architecture [48] due to its demonstrated
ability to produce a large variety of images (we want our
fingerprint identities to be unique). The goal of the BigGAN
generator is to generate a synthetic binary fingerprint. The
discriminator must then try to distinguish between the syn-
thetic binary fingerprint and a real binary fingerprint taken
from an operational fingerprint database. More formally, the
GAN is trained in accordance with the classic adversarial
loss:

Ladv(GI , D) = Ex [logD(x)] + Ez [log(1�D(GI(z)))] (1)

where x is a binary fingerprint extracted from a real finger-
print.

For training the generator GI and the discriminator D in
Equation 1, we utilize 282K unique fingerprints taken from
the MSP longitudinal database used in [12] and [3]. Prior to
training, we extract binary fingerprint images from each of
the 282K “raw (grayscale) fingerprint images”. To do this,
we utilized a commercial fingerprint SDK (Verifinger v12
SDK) to first extract binary images from a subset of 10K raw
fingerprint images. Then, we train an auto-encoder to learn
the mapping from a raw fingerprint to a binary fingerprint
using these 10K ground-truth binary fingerprints. More

Fig. 6. A rolled fingerprint from [12] is binarized via our trained grayscale
fingerprint-to-binary auto-encoder.

formally, given a raw fingerprint Iraw, we use an auto-
encoder R(.) to learn a mapping from Iraw to a ground-
truth binarized fingerprint Ibinary via an L-2 loss function5:

Lrecon = |R(Iraw)� Ibinary|22 (2)

We note that we could directly use the commercial SDK
to extract binary images from all 282K raw images, however,
we specifically train R(.) for this task for the following rea-
sons. First, the commercial SDK is relatively slow, whereas
R enables us to quickly extract binary images for the full
282K database rather quickly, but more importantly, R(.) is
a differentiable binarization method and we intend to use it
later on in a subsequent step as part of a loss function. An
example of the binarization of R(.) can be seen in Figure 6.

3.2 Warping and Cropping
After training GID, we are able to generate binary Master-
Prints. Each generated Master-Print comprises a new iden-
tity. The next step after generating each Master-Print is to

5. We also experimented with using a cross-entropy loss for this task
since the output is a 0, 1 image, however, in practice, we found that the
L-2 loss converged much more quickly and smoothly.
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In conclusion, it is also important to specify that there are also other similar works, which 

tried to create a model to generate synthetic fingerprints and are not covered by this 

document, i.e., Zhao et al. (2012), (Johnson et al., 2013), (Attia et al., 2019), (Cao and 

Jain, 2018), (Wyzykowski et al., 2020). However, in their study, Engelsma et al. (2022) 

classified these works in a similar way to those shown throughout this document (Table 

1): 

Method (Ref.) Image Size Nb. of Images Open Source Open Data 

SFinGe (Cappelli et al., 
2002) Variable 100k per 24h 

No Yes, some of 
them (FVC) 

DeepMasterPrints 
(Bontrager et al., 2018) 128 x 128 Not found Not official 

code found 
Not official 
Data found 

Finger-GAN (Minaee and 
Abdolrashidi, 2018) 512 x 512 Not found Not official 

code found 
Not official 
Data found 

Fingerprint Synthesis 
(Mistry et al., 2020) 512 x 512 100 million Not official 

code found 
Not official 
Data found 

Large scale FP generator 
(Fahim and Jung, 2020) 

128 x 128 
or 

256 x 256 
Not found  No No 

SYNFI (Riazi et al., 2020) 256 x 256 Not found Yes9 No 

CFG (Bahmani et al., 
2021) 512 x 512 50k Yes Yes 

PrintsGAN (Engelsma et 
al., 2022) 512 x 512 525k No No 

Table 1: Summary of the GAN-based models discussed previously during this study 

This section (2.2.1.) provided a general overview of the previous related works in the 

field of synthetic fingerprint generation by also comparing and discussing the obtained 

results and the current state-of-the-art. In the next section, the practical part will be 

introduced, by initially considering which fingerprint generator system was chosen in the 

framework of this thesis, why and how it works in detail and what can be done to 

overcome the limitations of this generator. 

  

 
9 SYNFI code : https://github.com/MohammadChavosh/synthetic-fingerprint-generation [accessed last time Tuesday 
21 June 2022] 
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2.3. Synthetic fingerprint generator of choice 

First, it is important to remember that in the aim of this work is not to create a new GAN-

based fingerprint generator model. In fact, doing this would require more time than 

allowed for conducting this study. For this reason, it was decided to choose one of the 

existing synthetic fingerprint generators, to conduct experiments on them to reach the set 

goal, which is to determine if the evaluation results of generated fingerprint datasets are 

similar to the ones from the real dataset (§ 1.1. Objectives and key points). 

Since, as shown in the previous section (§ 2.2.1 Synthetic fingerprint generators), 

PrintsGAN (Engelsma et al., 2022) is the current state-of-the-art model in fingerprint 

generation, it was initially the model of choice for developing the practical part of this 

study. Furthermore, based on their abstract they “plan to release […] database of synthetic 

fingerprints to the public” (Engelsma et al., 2022).  However, after contacting the authors 

of the research, it was been possible to obtain neither the generated database of the 

synthetic fingerprints issued from PrintsGAN, nor the code developed by them to 

eventually recreate another synthetic database.  

Hence, since it is impossible to use PrintsGAN database and/or code, it was decided to 

utilize Clarkson Fingerprint Generator model (Bahmani et al., 2021), which was made 

publicly available as well as the synthetic fingerprint dataset10 generated by them with 

the CFG model11.  As previously stated, CFG provides fully synthetic 512 x 512 pixels 

at 500 dpi, plain impression fingerprint images, each of which represent a different 

identity form the used training real fingerprint dataset. 

More in detail, Clarkson Fingerprint Generator is the first model based on StyleGAN 

architecture (Karras et al., 2019) and was trained in an unsupervised manner using a 

dataset composed by 72’000 real fingerprint images (512 x 512 pixels) captured form 250 

unique identities using a fingerprint scanner: Crossmatch Guardian scanner (Bahmani et 

al., 2021). Thereafter, the CFG has been utilized to generate a 50’000 fully synthetic 

fingerprint database which is publicly available10.  

 
10 Clarkson Fingerprint Generator (CFG) dataset - 50k Synthetically Generated Fingerprints: 
https://drive.google.com/file/d/1KQUjnol9JjYQtx6D0eVN6mfUs91eWcS3/view?usp=sharing [Downloaded online 
Thursday 10.03.2022 by IDIAP – non-commercial license]. Contact: Bahmank@Clarkson.edu 
11 Clarkson Fingerprint Generator (CFG): https://github.com/keivanB/Clarkson_Finger_Gen [accessed last time online 
Tuesday 8 June 2022] 
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The evaluation of generated fingerprint database essentially relies on two measures: 

- Fréchet Inception Distance12 (FID): is a more consistent metric than the Inception 

Score and it is considered the standard to evaluate the quality of Generative 

Adversarial Networks. Introduced by Heusel et al. (2018), it has the advantage of 

using real images distribution and compare it to the synthetic samples distribution. 

The lower the FID, the more similar the distributions of real and generated images 

(Heusel et al., 2018); 

- Structural Similarity13 (SSIM): is an objective index utilized to evaluate perceptual 

quality measures of an image based on the degradation of structural information 

(Wang et al., 2004). 

In the framework of their research, Bahmani et al. (2021) evaluated the quality of their 

generated dataset only with Fréchet Inception Distance (FID) and achieved a result of 24 

for this specific metric. Hence, it is possible to state that this corresponds to a considerable 

improvement over the results obtained by Finger-GAN model (Minaee and Abdolrashidi, 

2018) which achieved FID of 70. However, only a few models considered FID to evaluate 

the quality of their synthetic fingerprint images distribution, and, because of this, it was 

possible to directly compare them on the base of this metric. Anyway, the main reason 

why other researches did not provide a Fréchet Inception Distance could be that it works 

better for natural images then biometric ones (Huang et al., 2006). 

Therefore, Bahmani et al. (2021) also evaluated the privacy requirement (Zhang and Jain, 

2006) throughout the impostor distribution of the synthetic fingerprint images, by 

submitting them to BOZORTH3 fingerprint matcher (Watson et al., 2007). Finally, other 

quality evaluation tests were performed. The results from NIST NFIQ 2.0 (Tabassi et al., 

2021) utilization allow to state that the quality of the generated fingerprint with CFG is 

satisfying.  

 

 

 
12 Wikipedia, Fréchet inception distance: https://en.wikipedia.org/wiki/Fréchet_inception_distance [accessed online 
Thursday 9 June 2022] 

13 Wikipedia, Structural similarity: https://en.wikipedia.org/wiki/Structural_similarity [accessed online Thursday 09 
June 2022] 
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On the other hand, NIST NBIS software (Watson et al., 2007) supports the thesis that the 

minutiae configuration is similar to the one observed on real fingerprints. Image 8, here 

belove, represents some examples of synthetic fingerprint images taken from the publicly 

available database14 generated with the Clarkson Fingerprint Generator (Bahmani et al., 

2021) in comparison with real fingerprint images. These latter are taken from the database 

“DB1_B” originally used by the participants of the 2004 Fingerprint Verification 

Competition and now freely available online15.  

     
(a)     (b)     (c) 

     
(d)     (e)     (f) 

Image 8: examples of synthetic fingerprint images taken from the synthetic database generated by the CFG model (a, 
b and c) (Bahmani et al., 2021) and the publicly available DB1_B16 form the Fingerprint Verification 
Competition 2004 (FVC2004) (Maltoni, 2009). 

In conclusion, all the reasons listed in this section made it possible to choose the CFG 

(Bahmani et al., 2021) Style-GAN-based (Karras et al., 2019) model for the execution of 

the practical part of the work. The next section will be dedicated to the distortion model 

used to overcome the intra-class variability issue previously discussed. 

 
14 Clarkson Fingerprint Generator (CFG) dataset - 50k Synthetically Generated Fingerprints: 
https://drive.google.com/file/d/1KQUjnol9JjYQtx6D0eVN6mfUs91eWcS3/view?usp=sharing [Downloaded online 
Thursday 10.03.2022 by IDIAP – non-commercial license]. Contact: Bahmank@Clarkson.edu 

15 Fingerprint Verification Competition 2004 (FVC 2004): http://bias.csr.unibo.it/fvc2004/download.asp [accessed 
online last time Friday 10 June 2022] 

16 Real fingerprint database DB1_B from the FVC2004004: http://bias.csr.unibo.it/fvc2004/Downloads/DB1_B.zip 
[accessed online last time Friday 10 June 2022] 
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2.4. Synthetic fingerprint deformation 

As pointed out several times in this work, as well as in the study of (Engelsma et al., 

2022), one of the main limitations of the Clarkson Fingerprint Generator (Bahmani et 

al., 2021) and, more generally, of most of the GAN-based models, is that it cannot provide 

more than one illustration for fingerprint identity. This causes a lack of intra-class 

variability, not allowing to evaluate and compare the intra-class distribution of synthetic 

fingerprints to the real fingerprint one. For this reason, during this work, it has been 

decided to apply deformations to the fingerprint images issued by the CFG model. 

As a matter of fact, it is indeed rare that fingerprints of the same identity are left with an 

identical pressure or angle. Moreover, it is also possible that a fingerprint is left from a 

slip on the surface, or the finger twisted during the deposition. However, all this factors 

can cause fingerprint deformations (Maceo, 2009), and, thus, enlarges the intra-class 

variability.  

Now, warping the fingerprint images in an automated way is a non-trivial operation and, 

for this, it is necessary to thank Marco De Donno and Prof. Christophe Champod who 

provided me with the distortion model they are working on, and, on which they are 

writing an article. This model is based on the study of Bookstein (1989) where the subject 

were the “Principal Warps: Thin-Plate Splines and Decomposition of Deformations” 

(Bookstein, 1989) and is an implementation of the Thin-Plate Splines (TPS) theory from 

the aforementioned article. However, since (1) they are writing an article on the distortion 

model which also (2) contains confidential data, it was decided not to provide precise 

details and this will remain a more general discourse on how the model works. 

First of all, the warping parameters must be within a certain range, so that the results can 

be consistent with the deformations observed in the real world. To do this, couples of real 

fingerprint minutiae configurations have been observed in order to obtain realistic 

parameters of deformations, and this precisely explains where the confidentiality of this 

model come from. Once the parameters are calculated, it is possible to call a function 

(implemented by Marco De Donno) where the inputs are the image that has to be warped, 

and the deformation parameters previously calculated. The result is a new fingerprint 

impression (warped) of the same fingerprint identity. 
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Image 9 provides some examples of the results of the application of the deformation 

model, supplied by Marco De Donno and Prof. Christophe Champod, on some synthetic 

fingerprint images taken from the CFG database17. 

     
(a1)     (a2)     (a3) 

     
(b1)     (b2)     (b3) 

Image 9: example of two different fingerprint from the synthetic CFG database (a1, b1) warped two times (a2, a3 and 
b2, b3) with the TPS deformation model provided by Marco De Donno and Prof. Christophe Champod. 
Images a1, a2, a3 represent three different illustrations of the same fingerprint identity, as well as b1, b2, b3. 

The provided deformation model could also allow to directly perform the warping 

functions on the extracted minutiae of the fingerprints. However, it was preferred to 

deform the fingerprint images rather than those features (1) because not all fingerprint 

recognition systems uses minutiae for their operations (Bontrager et al., 2018) and (2) for 

providing a more complete experience (extraction and rather than only comparison). 

Moreover, to the best of my knowledge, this deformation model, based on TPS, is similar 

to the one implemented in PrintsGAN (Engelsma et al., 2022), but, on the other hand, 

they performed deformations into the Generation process in such a way that the model 

could also be trained to provide deformations of higher quality (Engelsma et al., 2022). 

The next section will be devoted to the methodological part, the results and discussion of 

the conducted experiences. 

 
17 Clarkson Fingerprint Generator (CFG) dataset - 50k Synthetically Generated Fingerprints: 
https://drive.google.com/file/d/1KQUjnol9JjYQtx6D0eVN6mfUs91eWcS3/view?usp=sharing [Downloaded online 
Thursday 10.03.2022 by IDIAP – non-commercial license]. Contact: Bahmank@Clarkson.edu 
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3. Synthetic Fingerprint images to test AFIS 

3.1. Methodology aspects 

This section, which introduces the practical part of the thesis, summarizes the 

methodological aspects of the research. In fact, it could be helpful to know what was done 

in the framework of this study to reach the fixed objectives, allowing, in this way, anyone 

else to have a critical look at this work. 

First of all, the literature research carried out thanks to the resources provided for UNIL 

students18 and the frequent meetings with the director of the thesis, Prof. Marcel, allowed 

the identification of the steps needed to achieve the fixed goals. 

Thereafter, as previously mentioned (§2.3. Synthetic fingerprint generator of choice), 

Clarkson Fingerprint Generator (Bahmani et al., 2021) database19 was chosen to perform 

the practical experimentations. It contains 50’000 synthetic fingerprints images generated 

with CFG model and it is publicly available. Subsequently, these images were warped 

using the TPS deformation model provided by Marco De Donno et Prof. Christophe 

Champod (§2.4. Synthetic fingerprint deformation).  

More specifically, for every synthetic fingerprint from the synthetic CFG-database, five 

random deformations were performed. This leads to obtaining six fingerprint impressions 

for every fingerprint identity for a total of 300’000 fingerprint images of 50’000 different 

identities. 

Unfortunately, not all deformations led to satisfactory results: a considerable number of 

warped fingerprint images have been found to be completely blank (with no exploitable 

information) or not realistic (deformation was too strong and decreased realism). To solve 

this, it was decided to manually select 5’050 fingerprint images of 1’010 fingerprint 

identities, out of the 250’000 images produced by the TPS deformation model. More 

information about the synthetic databases will be lately provided in the next subsection 

(§3.1.1 Comparison Protocol).  

 
18 Ezproxy; selection of electronic resources of the EPFL Library: http://bib-ezproxy.epfl.ch/ [accessed last time 13 
June 2022] 

19 Clarkson Fingerprint Generator (CFG) dataset - 50k Synthetically Generated Fingerprints: 
https://drive.google.com/file/d/1KQUjnol9JjYQtx6D0eVN6mfUs91eWcS3/view?usp=sharing [Downloaded online 
Thursday 10.03.2022 by IDIAP – non-commercial license]. Contact: Bahmank@Clarkson.edu 
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The third database (DB3_B) contains 320 fingerprint images of 40 different identities. 

This is the result of a merge of four fingerprint databases (DB1_B to DB4_B) freely 

available at the following link: http://bias.csr.unibo.it/fvc2004/download.asp. These 

databases were originally made available for the participants of the 2004 Fingerprint 

Verification Competition (FVC2004)20 and it is important to know that DB4_B contains 

80 synthetic fingerprint generated by SFinGe (Cappelli et al., 2002) but were considered 

as real fingerprints. More details about FVC2004 databases are available on 

http://bias.csr.unibo.it/fvc2004/databases.asp (scanners, participants, collecting method, 

etc.). 

As the aim is to study if the evaluation results of generated fingerprint datasets are similar 

to the one from the real dataset, an Automated Fingerprint Identification System (AFIS)21 

had to be chosen. The very first intention was to use such a system from the “Ecole de 

Sciences Criminelles” of the University of Lausanne, but, unfortunately, it was not 

possible. For this reason, it has been decided to use the packages from NIST’s open-

source Biometric Image Software (NBIS)22 implemented in IDIAP by Vedrana Krivokuća 

Hahn into “lab-fingerprint” code. The latter was modified to adapt it to the needs of this 

thesis. It is essentially a Python source-code running on the web-based environment 

Jupyter Notebook23. Moreover, due to some python’s packages update, it was necessary 

to use a specific Miniconda24 environment to use previous versions of some python’s 

packages (details provided by Annexe A).Essentially this AFIS performs two different 

operations: (1) feature extraction of the fingerprint with the package NIBIS “MINDTCT” 

(2) fingerprint comparison (minutiae level) with “BOZORTH3” (Watson et al., 2007). 

Finally, the following sub-section will provide the comparison protocol, to explain in 

detail how the fingerprint images were submitted to the AFIS.  

 
20 Fingerprint Verification Competition 2004 (FVC 2004): http://bias.csr.unibo.it/fvc2004/download.asp [accessed 
online last time 10 June 2022] 

21 Wikipedia: Automated Fingerprint Identification System: https://en.wikipedia.org/wiki/Automated_fingerprint_ 
identification [accessed last time 13 June 2022] 

22 NBIS packages available at: https://www.nist.gov/itl/iad/image-group/products-and-services/image-group-open-
source-server-nigos#Releases [accessed online last time 13 June 2022] 

23 Jupyter Notebook: https://jupyter.org [accessed last time 13 June 2022] 

24 Conda environments: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html 
[accessed last time 13 June 2022] 
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3.1.1. Comparison Protocol 

To recapitulate, for this important step (fingerprint features comparison) three different 

databases were used. Two of them (DB1_B and DB2_B) contains synthetic (and warped) 

fingerprint. The third database (DB3_B) only presents real fingerprints25.  

DB_1 and DB_2 contain 3’030 synthetic fingerprint images each. For every synthetic 

identity (1’010 in DB1_B + DB2_B) 5 different deformations were executed, which 

means that there are 6 different images of the same fingerprint identity: five of them (ex. 

1_2.tif, 1_3.tif, 1_4.tif, 1_5.tif, 1_6.tif) are obtained after a warping process of the same 

synthetic fingerprint (ex. 1_1.tif). In conclusion 6’060 synthetic fingerprint images of 

1010 different identities were equally split between DB1_B and DB2_B.  

On the other hand, DB3_B contains 320 fingerprint images of 40 different identities (8 

impression for every fingerprint identity), as discussed previously in section 3.1. Finally, 

it is also important to specify that the same image does not appear in two different 

databases, but only in one of them. Hence, to be able to evaluate the AFIS performances, 

a number of genuine and impostor fingerprint comparisons were conducted in three 

steps: DEV_SET, EVAL_SET_1 and EVAL_SET_2. 

- DEV_SET: contains the images from the first synthetic fingerprint database DB1_B. 

This step was used to calculate the threshold (q) which better minimize both the 

False Match Rate (FMR) and the False Non-Match Rate (FNMR). The references are 

all the fingerprints with samples IDs 1 (i.e., 1_1, 2_1, 3_1, … 505_1). The probes are 

all the fingerprints with sample IDs 2, 3, 4, 5 and 6 (i.e., 1_2, 1_3, 2_4, 3_5, … 

505_6). Image 10 below show the described arrangement. 

Image 10: arrangement of the DEV_SET used to calculate the threshold (q). 
 

 
25 It contains 80 synthetic fingerprint generated by SFinGe (Cappelli et al., 2002) but have been considered as real 
fingerprints. 
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- EVAL_SET_1: it contains the images from the second synthetic fingerprint database 

DB2_B. These comparisons allow to observe the intra- and inter-class variability 

distributions and evaluate the error rates using the threshold q obtained from the 

previous step on a synthetic fingerprint dataset. 

The arrangement of the fingerprints is very similar to the “DEV_SET” one, as it is 

shown by the Image 11 here below: 

Image 11: EVAL_SET_1 arrangement; used to evaluate the results on a synthetic fingerprint dataset 

 

- EVAL_SET_2: contains the images from the third fingerprint database DB3_B. 

These comparisons will be performed using the threshold q obtained from the first 

step and will allow to observe the intra- and inter- variability distribution and evaluate 

the error rates using the threshold q obtained from the previous step on a real 

fingerprint dataset. This dataset is a little different from the others two previously 

observed. Here, the references are all the fingerprints with samples IDs 1 (i.e., 101_1, 

102_1, 103_1, … 140_1). The probes are all the fingerprints with sample IDs 2, 3, 4, 

5 and 6 (i.e., 101_2, 101_3, 102_4, 103_5, … 140_6). Image 12 shows this 

arrangement. 

Image 12: EVAL_SET_1 arrangement; used to evaluate the results on a real fingerprint dataset 
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In conclusion, regarding the various types of comparisons: a genuine comparison is made 

between two fingerprint impressions of the same fingerprint identity, while an impostor 

comparison is a comparison between two fingerprint images of two different fingerprint 

identities. To provide an easier understanding of the number of the performed 

comparison, the following Table 2 summarizes them. 

 Genuine Comparisons Impostor Comparisons 

DEV SET 2’525 (= 5 x 505) 1’272’600 (= 505 x [2’525 - 5]) 

EVAL SET 1 2’525 (= 5 x 505) 1’272’600 (= 505 x [2’525 - 5]) 

EVAL SET 226 280 (= 7 x 40) 10’920 (= 40 x [280 -7]) 

Table 2: Number of the performed comparisons for both genuine and impostor type, and for each comparison SET. 

The next section will provide the results obtained by following the described 

methodology aspects. Moreover, it will also cover a discussion of the results, with a 

critical overview of the benefits and the limits of the experimentations. 

  

 
26 The features extraction of a certain number of fingerprint images of the DB3_B did not work correctly. In fact, 
fingerprint 131_1 (DB_3) failed to enroll while 5 other images (134_7, 134_4, 136_8, 137_6 and 137_5) failed to 
acquire. This caused a total of 4% invalid both genuine and impostor comparisons. Details will be discussed in §3.2. 
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3.2. Results and discussion 

In section 2.1. “The basics of Biometrics” it was briefly mentioned how a biometric 

system can be evaluated (Jain et al., 2008). As many of the existent AFIS, the output of 

the comparator system “BOZORTH3” is a similarity score. Essentially, it is a number 

that tells how similar the compared fingerprints are, so, the higher the score, the more 

closely the compared features match. This score must be interpreted through a decision-

making process to determine the threshold q where, if the score is grater or equal, it is a 

Match, and, if it is smaller, it is a No Match. Now, the False Match Rate (FMR) and the 

False Non-Match Rate (FNMR) (Jain and Ross, 2008) are closely linked to the 

determination of the threshold q, which strictly depends on the biometric system 

application. For instance, if the system should have a very low possibility of accepting 

impostor users (FMR ~ 0), increasing this way the possibility of rejecting a genuine user 

(high FNMR), then a higher threshold q should be used and vice-versa. 

In the present case, considering that no special applications of the system were envisaged, 

it was decided to use as the threshold q, the score (threshold q) where the two error rates 

(FMR, FNMR) are approximately equal. This point is known as the Equal Error Rate 

(EER) and can be obtained in two steps: (1) calculate the FMR and FNMR at every 

possible value of the match threshold q and (2) plot the two error rates (FMR, FNMR) 

versus the threshold q. The intersection of the two curves gives an approximation of the 

EER. Image 13 shows the obtained curves of the FMR and FNMR of the DEV_SET, used 

to determinate the threshold q (at the EER).  

Image 13: plot of the error rate as a function of the threshold for the evaluation of the EER of the fully synthetic 
DEV_SET (DB1_B). Red curve correspond to the FMR, green to the FNMR as a function of the threshold.  
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The plot represented on Image 13 shows the error rate as a function of the given threshold, 

and the red curve represents the False Match Rate (FMR) while the green one indicates 

the False Non-Match Rate (FNMR). As denoted by on the plot, the two error curves of 

the DEV_SET (DB1_B) intersect at an Equal Error Rate of 0.0598 at threshold q = 19.5. 

Therefore, as discussed in §3.1.1. “Comparison Protocol”, it corresponds to the score         

(q = 19.5), used for the EVAL_SET_1 and EVAL_SET_2 evaluation to assess whether 

or not the comparison is a Match (comparison score ≥ 20) or a Non-Match (comparison 

score ≤ 19). 

Applying the threshold (q = 19.5), obtained by the DEV_SET, to the EVAL_SET_1 and 

EVAL_SET_2 made it possible to evaluate the performances of the biometric system in 

an operational context, where a certain number of references are enrolled and it has to 

decide whether or not the probe matches the reference, based on the threshold q of 19.5. 

The obtained results of the error rate evaluation suggest that the performances are similar, 

and are summarized in the Table 3: 

 FMR  
(q = 19.5) 

FNMR  
(q = 19.5) 

EVAL_SET_1 0.0572 (5.72%) 0.1983 (19.83%) 

EVAL_SET_2 0.0428 (4.28%) 0.1500 (15.00%) 

Table 3: False Match Rate (FMR) and False Non-Match Rate (FNMR) obtained for the two Evaluation datasets 
EVAL_SET_1 and EVAL_SET_2 at a threshold of 19.5. 

Moreover, another method allowing the visualization of the performances of the 

biometric system is represented by the comparison of the Receiver Operating 

Characteristics (ROC) graphs (Fawcett, 2006), shown on the following Image 14: 

Image 14: comparison of the ROC curves (1-FNMR as a function of FMR) obtained from the four different datasets: 
in red the performances of the DEV_SET, in green the ones of the EVAL_SET_1 and blue the EVAL_SET_2. 
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Both the results observed in Table 3 (FMR and FNMR at q = 19.5) and the ROC curves 

comparison (Image 14) suggest that the performances of the two evaluation datasets are 

similar. In fact, the ROC graphs suggest that the performances of the real fingerprint 

dataset EVAL_SET_2 (in blue) are slightly better than the ones observed for the 

EVAL_SET_1. This hypothesis finds also support with the error rates obtained at a 

threshold of 19.5, determined with the synthetic dataset DEV_SET (DB1_B). 

Furthermore, we also present histograms of the resulting score distribution (Image 15: a1, 

b1 and c1) for the three datasets. Additionally, to take a closer look to the zone of interest, 

the logarithm in base 10 of the scores was calculated to plot more detailed histograms 

(Image 15: a2, b2 and c2), with the red line representing the logarithm of the threshold. 

(a1)             (a2)       

(b1)             (b2)            

(c1)             (c2) 
Image 15:  histograms of the score distribution (a1, b1, c1) and of the log(score) distribution (a2, c2, b2) for the three 

evaluated datasets DEV_SET (a1, a2), EVAL_SET_1 (b1, b2) and EVAL_SET_3 (c1, c2). 
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Image 15 provides a comparison of the different histograms of the score and the 

log(score) distribution of the three given datasets. The comparison shows an overall 

similarity of the distributions throughout the three datasets and, this way, it supports the 

hypothesis that the intra-class and the inter-class variability of the synthetic database is 

similar to the one of the given real databases. The resulting distribution of the genuine 

scores (in blue on the Image 15) suggests that the intra-variability of a synthetic database 

is similar to the one observed in a real database. In the same way, the distribution of the 

impostor scores (in orange on the Image 15) suggests that the inter-class variability 

generated by the employed model is comparable to the variation of fingerprint identity 

observed in a real fingerprint database.   

However, the (c2) histogram (EVAL_SET_2) of Image 15 presents a not-negligible 

density of genuine (in blue) and impostor (in orange) comparisons resulting in null score 

(score = 0). Further investigations on these data showed that the features extraction of a 

certain number of fingerprint images of the DB3_B did not work correctly. Indeed, taking 

a closer look to the extracted feature files permitted to understand that, for seven 

fingerprint images, no minutiae were extracted during this step. More in detail, fingerprint 

131_1, contained in DB3_B, failed to enroll while 5 other images (134_7, 134_4, 136_8, 

137_6 and 137_5) failed to acquire, causing a total of 4% invalid both genuine and 

impostor comparisons. It is important to clarify, that this issue was considered for the 

calculation of the error rates previously discussed. If it had been the case, the error rates 

of the EVAL_SET_2 would have probably been slightly lower than calculated and would 

have produced more accurate results.  

Another limitation of the presented experimentations is that, unlike the PrintGAN model 

(Engelsma et al., 2022), the TPS-warping model is not integrated directly into the GAN-

based model, so that the distortion of the fingerprint cannot be trained. For this reason, a 

considerable number of warped images could not be used for the experimentations, while 

the ones composing DB1_B and DB2_B were manually selected, thus increasing the risk 

of human errors and biases. The integration of a warping function into the GAN 

architecture, as well as the consideration of the invalid comparisons could be the subject 

of further works.  
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Finally, the experimental results support all three initial hypotheses. In fact, that the first 

hypothesis, according to which the evaluation results of generated fingerprint datasets 

(DB1_B and DB2_B) are similar to the ones from the real dataset (DB3_B), is supported 

by the error rates (Table 3) and the ROC curves comparison (Image 14).  

The results of the score distributions shown on Image 15, supports the second formulated 

hypothesis, according to which the intra- and inter-class variability of the real and the 

synthetic datasets are similar. 

In conclusion, the whole methodology and the set of results obtained during practical 

experimentations eventually support the third hypothesis, according to which a fully 

synthetic fingerprint database could be used to train a biometric system (AFIS) instead of 

using a real fingerprint database, which involves limitations in terms of quantity, time, 

money, and privacy. Further works will allow this hypothesis to be developed in details. 
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4. Conclusions 

An automatic biometric recogniser needs large-scale datasets in order to be trained and 

benchmarked which involves certain limitations in terms of time, money and privacy. 

Recent developments in the field of Artificial Intelligence (AI) and, more in detail, the 

successes achieved by the Generative Adversarial Networks (Goodfellow et al., 2014) in 

the generation of synthetic images offer numerous possibilities to try to solve these 

constraints. 

In the context of this study, a fully synthetic and publicly available fingerprint database 

(Bahmani et al., 2021) has been the subject of the experimentations. To solve the issue of 

the intra-variability (not provided by the Clarkson Fingerprint Generator (Bahmani et 

al., 2021)) the synthetic fingerprints images were warped with a TPS-deformation model 

(provided by Marco De Donno and Prof. Champod). Although, unlike the PrintsGAN 

model, which represent the current state-of-the-art in fingerprint images generation 

(Engelsma et al., 2022), the warping function was implemented in the GAN architecture, 

making it impossible to be trained. 

However, three new different fingerprint datasets were created. The DEV_SET, 

containing 3’030 synthetic fingerprint images of 505 different identities, was used to 

calculate a threshold of 19.5 to be applied to the others for the evaluation of the 

performances of a synthetic (EVAL_SET_1) and a real (EVAL_SET_2) datasets. 

Finally, the experimental results support all three initial hypotheses. In fact, that the first 

hypothesis, according to which the evaluation results of generated fingerprint datasets 

(DB1_B and DB2_B) are similar to the ones from the real dataset (DB3_B), is supported 

by the error rates (Table 3) and the ROC curves comparison (Image 14).  

The results of the score distributions shown on Image 15, supports the second formulated 

hypothesis, according to which the intra- and inter-class variability of the real and the 

synthetic datasets are similar. 

In conclusion, the whole methodology and the set of results obtained during practical 

experimentations eventually support the third hypothesis, according to which a fully 

synthetic fingerprint database could be used to train a biometric system (AFIS) instead of 

using a real fingerprint database, which involves limitations in terms of time, money, and 

privacy. Further works will allow this hypothesis to be developed more in detail.  
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7. Annexes 
A. Miniconda Environment 

The same conda environment can be created using a Python3 environment and installing 

the following packages summarized in Table 4: 

Package Version 

jupyter 1.0.0 

matplotlib 3.5.1 

numpy 1.19.2 

pandas 1.3.5 

Pillow 9.0.1 

pip 21.2.2 

scipy 1.1.0 

Table 4: Conda environnement's packages 

More information on how to create a conda environment can be found on the following 

link: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environmen 

ts.html [accessed 13 June 2022] 
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B. Data location 

 All data used for this work have been submitted, including the used codes, the source 

version of this document (Word) and a README.md file providing information about 

the code. The location of these files is summarized in the following Table 5: 

Table 5: Data Location 

 

Data Location 

Readme.md https://gitlab.idiap.ch/alcosta/costa_memoire/-/blob/master/README.md  

Costa_mémoire.docx https://gitlab.idiap.ch/alcosta/costa_memoire/-
/blob/master/Costa_Mémoire.docx  

Codes https://gitlab.idiap.ch/alcosta/costa_memoire/-
/tree/master/Costa_Mémoire_Code  

Images https://gitlab.idiap.ch/alcosta/costa_memoire/-
/tree/master/Costa_Mémoire_Images  

DB1_B, DB2_B, DB3_B 
(databases) /idiap/project/biometricscenter/students/alcosta/costa_mémoire/databases 

Scores /idiap/project/biometricscenter/students/alcosta/costa_mémoire/scores 

Results (extraction, 
comparison) /idiap/project/biometricscenter/students/alcosta/costa_mémoire/results 

Fingerprint Recognition 
Lab /idiap/project/biometricscenter/students/alcosta/lab-fingerprint-recognition 


