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Abstract—Semantic segmentation is a well-addressed topic in
the computer vision literature, but the design of fast and accurate
video processing networks remains challenging. In addition, to
run on embedded hardware, computer vision models often have
to make compromises on accuracy to run at the required speed,
so that a latency/accuracy trade-off is usually at the heart of these
real-time systems’ design. For the specific case of videos, models
have the additional possibility to make use of computations made
for previous frames to mitigate the accuracy loss while being
real-time.

In this work, we propose to tackle the task of fast future
video segmentation prediction through the use of convolutional
layers with time-dependent channel masking. This technique
only updates a chosen subset of the feature maps at each time-
step, bringing simultaneously less computation and latency, and
allowing the network to leverage previously computed features.
We apply this technique to several fast architectures and exper-
imentally confirm its benefits for the future prediction subtask.

I. INTRODUCTION

As a central task in computer vision, image semantic
segmentation is now a mature topic for which there exist very
performant convolutional, and transformer networks. However,
the more specific video semantic segmentation task has been
less addressed, while many applications involving embedded
systems that run real-time would benefit from it, such as
autonomous driving or computer assisted surgery systems.

Tackling a complex real-time task often comes with a
latency/accuracy trade-off, where one usually loses some
accuracy to match the real-time requirement. Yet, properly
leveraging the inherent sequential nature of videos may allow
substantial time gain by reusing previous computation while
also bringing relevant insight from past frames, as did [1], [2]
which run parts of the network conditionally to how much
change there was from the previous frame. In our setting, we
find information from past frames to be particularly relevant
when predicting the segmentation of a future frame.

In this work, we propose to leverage computation from
previous frames and to reduce FLOPs by using channel-
wise masked convolutions. These convolutions process a full
input as standard convolutions but compute only a subset of
their output channels at a given time-step, following a pre-
defined masking schedule. Previous works proposed to reduce
computation by dropping part of the image [3] depending on

what changed [4], we propose instead to drop part of the
convolution kernel.

While the gain in FLOPs is quite evident as there are strictly
fewer computation operations, the latency gain is not. This is
because our proposed masked convolutions perform two tensor
indexing operations, while these can be very time-consuming
on GPU hardware and could offset the time saved in the
convolutions. Therefore, care has to be taken when designing
the channel mask so that the whole model still has lower
latency.

Our proposed convolution design is specifically relevant for
future prediction tasks dealing with a stream of correlated
inputs, such as video streams. It indeed allows every convolu-
tional layer to have access to part of the previous timestep’s
output to make its prediction.

We apply this simple idea to existing segmentation networks
to save FLOPs and wall-clock time. Particularly, it limits the
performance drop for future prediction compared to original
networks which have just been “slimmed” to run faster, but
that cannot leverage the sequential nature of videos. We also
apply channel-wise masked convolutions to slimmed networks
to take advantage of both techniques.

Our contributions are:
• We introduce a time-dependent channel-wise masking

scheme for convolutional layers (section II).
• We apply our technique to three segmentation networks,

and we adapt the training and evaluation procedure (sec-
tion III).

• We perform several experiments using these layers to
show their benefits and limits (section IV) and make our
full code available1.

II. METHOD

This section motivates our main idea and describes our
proposed convolutional layer and its masking scheme.

A. Idea

Our goal is to speed up video segmentation networks. As we
specifically deal with videos, consecutive frames are alike and
lead to similar computed features. We propose leveraging this
temporal correlation by only updating a subset of the output

1https://github.com/theevann/fast-cwm-segmentation



channels of convolutions at each time-step and re-using the
features of the previous frame for the rest of the channels that
are not computed.

We introduce a “channel-wise masked” convolution (sec-
tion II-B) that works like a normal one but uses a binary mask
to select which output channels to compute. This convolution
has lower FLOPs by design, but we find that we have to put
constraints on the masks (section II-C) to also have lower
latency. Additionally, we choose to use a predefined finite set
of masks and define a generator that will create these masks
(section II-D).

Our proposed channel-wise masked (CWM) convolutions
can be used in place of the normal ones in any convolutional
model to make it faster. We will denote a model using CWM
convolutions a CWM-model.

B. Masked convolutional layers

A channel-wise masked (CWM) convolution is a convolu-
tional layer that uses a binary mask at each forward pass to
select which output channels are computed. In practice, this
boils down to indexing the kernel tensor with the mask before
performing the computation. The result of this convolution is
then combined with the previous time-step’s result by simply
replacing the older features with fresh ones depending on the
mask, as can be seen below on fig. 1.

This design implies that we have to save the output of every
convolution for the next time step. At the very first time-step
though, there is no previous output to use, so we perform a
full convolution without masking. We noticed this is effective
to properly initialize the saved outputs.

C. Constraints on binary masks

Depending on the time-step, our masked convolutions per-
form different computations. All input channels are still used,
but each time-step sees a different group of convolution’s
output channels computed, specified through the use of binary
masks. However, improper design of these masks can lead to
a significant latency increase, and we therefore have to put
constraints on their structure and generation.

Pre-defined While these masks could be chosen online,
our initial experiments showed that doing so comes with a
significant increase in processing time without accuracy gain.
Therefore, for the rest of the paper, we only use a chosen
number of pre-defined masks picked ahead of time. The masks
are used sequentially, and once all masks are exhausted we
restart from the first mask.

Same number of channels When two masks have a
different number of active channels, CWM convolutions using
those masks also have different latency. Since our main goal
is to reduce maximum latency, we need each time-step to have
a similar computation time, so we have to activate the same
number of channels in every mask.

Contiguous Dealing with latency is deceptively complex,
especially when working with GPU hardware. In particular,
non-contiguous tensor indexing on GPUs can be quite slow,
and in our case, two indexing operations are required first
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Fig. 1: Operations performed in a channel-wise masked con-
volution. The active channels in the mask are greyed. The
crossed circle is a masked select. The blank circle represents
the interlacing of the current and previous output following the
mask indexing information represented by the dashed line.

to extract the convolution kernel and then to copy the result
into the previous output. While this aspect may seem to be a
detail, we empirically observed that it matters significantly. In
fact, using non-contiguous masks in some initial experiments
increased the latency up to 15% of its initial value. Therefore,
to realize the wall clock benefits of using fewer convolutional
kernels (via masking), we enforce the masks to be contiguous.

D. Mask generation

The mask generation process has to respect the constraints
mentioned above and creates a set of masks that are contiguous
and have the same number of active channels. We delegate the
generation process to a “generator” object that creates the set
of masks and, given a time-step, returns the corresponding
mask.

In the rest of the paper, we will use a specific generator
called bi-step generator (BG) that creates only two different
masks for two different time-steps. The first mask has a
proportion of channels activated from the start, while the
second mask has the same proportion of channels activated
from the end. This proportion is at least equal to 50%, and
can be higher, which creates an overlap that corresponds to
channels that are always activated. Using contiguous masks in
this manner makes it possible for some channels to be activated
at every step while others will be activated at every other step.

We will denote this type of mask generator using the
notation ρ-BG, where ρ ∈ [0, 1] is a ratio that corresponds
to the proportion of always active channels, as shown in fig 2.



Fig. 2: Masks provided for the 4 first time-steps in a bi-step
generator (BG) for a convolution with C output channels.
Active channels are greyed. There are only two distinct masks
used every other step. The central part which is always active
has ρ× C channels. The generator is denoted ρ-BG.

Therefore, a 1-BG will make two full-ones masks (all channels
always active), and a 0-BG will make two half-full masks (no
commonly active channel).

This bi-step generator design is interesting for two reasons.
First, it keeps features relatively “up to date” as any output
channels is recomputed at least every other step. Second, the
kernel weights used every other step can learn to distinguish
recent from old input channels. Other generators with more
steps and masks can be used, but respecting the constraints
greatly reduces the set of usable masks. In the supplementary,
we compared performance between a bi-step generator and a
random contiguous mask generator.

III. EXPERIMENTAL SETUP AND MODELS

A. Dataset

The Cityscapes dataset [5] is one of the few dense pixel-
level scene semantic segmentation datasets. We picked it as
it provides a high number of video sequences and not only
isolated frames. Each sequence contains 30 frames, and the
20th frame is annotated with fine pixel-level class labels for
19 object categories. In total, it contains 2975 training, 500
validation and 1525 testing video sequences.

During training, we use image crops of 700 × 700. We
perform standard image augmentations with random horizontal
flip, random scaling from 0.75 to 1.5, and random Gaussian
blur. We apply the same augmentation to all images in a
sequence.

Our focus is on future segmentation prediction, i.e., net-
works are trained to predict a segmentation at T + 1 from
an image at time T . As we use Cityscapes, we take the 19th

frame of the sequence as input, and the network is trained
to predict the 20th frame segmentation (for which we have
ground-truth).

B. Networks

For our experiments, we apply our channel-wise masked
(CWM) convolution to three different networks. We replace
every convolution layer with its CWM counterpart, except for
the very first and very last convolution, as well as convolutions
used for skip connection (when block’s input and output have
different sizes). We use:

• SwiftNet [6], a performant light-weight network for real-
time segmentation, with a ResNet-18 [7] backbone. We
train it using the Adam optimizer with default parameters.
We use an initial learning rate of 4e − 5 and a weight
decay of 1e−5, along with a cosine annealing lr-schedule
with ηmin = 1e− 6.

• SFNet [8], the state-of-the-art for real-time segmentation
network on Cityscapes, with a ResNet-18 backbone. We
train it using the SGD optimizer with a momentum of
0.9, an initial learning rate of 5e− 3 and a weight decay
of 5e−4. We use a poly lr-schedule with a power of 0.9.

• DeepLab V3+ [9], an accurate deep segmentation net-
work, with a ResNet-18 backbone. We train it using
the SGD optimizer with a momentum of 0.9, an initial
learning rate of 5e− 2 and a weight decay of 5e− 4. We
use a poly lr-schedule with a power of 3.

All hyperparameters mentioned above are taken from re-
spective papers, and we train all networks for 500 epochs with
batch-size 6. However, we lower original learning rates since
we initialize models with pretrained weights from original
networks trained to predict the segmentation of the current
input.

Unless otherwise specified, we use a ρ-BG (defined in II-D)
as mask generator in our experiments. Specifically, we conduct
most of our experiments using two generators: 0-BG and 0.25-
BG.

C. Slimming networks

Replacing convolutions with their CWM version reduces
FLOPs and latency, but hurts accuracy. To assess the advantage
in using CWM convolutions, we use as baseline the original
network, which has been slimmed in the way presented in
[10].

This technique consists in thinning a network uniformly
at each layer by choosing a width multiplier α ∈ (0, 1]
and multiplying the number of input and output channels in
every convolution by α. Original networks are slimmed ahead
of time and then trained normally. Such slimming reduces
the FLOPs, the latency, and the number of parameters, and
hence allows comparing slimmed-network - our baseline - and
CWM-network performance at the same computational cost.

In addition, we note that slimming is a simple comple-
mentary approach to our method to trade off computation
for performance. Therefore, our main experiments combine
the two techniques, using the four width-multipliers α ∈
{0.5, 0.65, 0.8, 1}.

D. Evaluation

As specified in section II-B, our CWM models perform
normal (full) convolutions at the first time step. Therefore,
we expect the model’s behavior in the first few steps to be
slightly different from its steady-state’s behavior, i.e. after the
model has processed multiple images.

To have a correct estimation of the model’s steady-state per-
formance, we introduce Asymptotic Behavior Testing (ABT),
which consists in feeding the model with inputs from T − k



up to T − 1, with k high enough for the network to run in
steady-state. In our case, we use the highest possible value
k = 19 permitted by this dataset. Note that ABT is equivalent
to a normal evaluation for original models, which do not use
the sequential nature of the inputs.

Moreover, our CWM models have a different behavior every
other step. Thus, to have a fair estimation of its expected
asymptotic performance, we average the mIoU obtained with
ABT using k = 19 and k = 18 in all experiments.

The performance metric used in all our experiments is
the mean Intersection over Union (mIoU), computed on
Cityscapes’ validation set. All timing measurements are done
on a GTX1080 GPU.

E. Training details

Length of the input sequence As for evaluation, we also
train our model with a sequence of images starting at offset
j, which practically means that we feed the model with
inputs from T − j to T − 1, and use the final prediction
for optimization. We experimentally set this offset to j = 9
for our main experiment (section IV-A) and unless otherwise
specified we use j = 7 for our additional experiments, a trade-
off between training time and testing performance.

Bi-sequence training Since our models have a different
behavior every other step, we propose training our models with
two input sequences starting at consecutive offsets. Concretely,
for each image sequence, we first process and perform an
optimization step with the subsequence {T − j . . . T − 1},
and then again with the subsequence {T − j + 1 . . . T − 1}.

IV. RESULTS

In this section, we first evaluate the performance of CWM
models compared to original models for future segmentation
prediction. Then, we study the relevance and influence of
various design choices and hyperparameters. In all experi-
ments, we compute the mIoU with asymptotic behavior testing
(presented in III-D) on Cityscapes’ validation set. We mostly
included here plots of wall-clock times, additional plots of
FLOPs are in Appendix.

A. Future segmentation prediction

In figure 3, we compare baseline models to our CWM
versions of those with generators ρ-BG for ρ ∈ {0, 0.25}. Each
connected line corresponds to a model for which the trade-off
between computation and accuracy is controlled by changing
the width multipliers α ∈ {0.5, 0.65, 0.8, 1} (section III-C).

For every line, the rightmost points correspond to the un-
slimmed version of the model. On all figures, un-slimmed
0.25-BG models not only use as expected less time and flops,
but also have a higher mIoU than base models. This is likely
because the layers of our CWM-models have access to part
of previous feature maps. Having access to both previous and
current features allows to more accurately estimate speeds and
predict the future position of a moving object.

As we slim more and more with a lower α, the number of
active channels per time-step gets too small to make proper

predictions. This is especially true for SwiftNet and SFNet
that are already both very optimized networks. With these
models, we see that using CWM convolutions is better than
using original ones when networks are slightly slimmed. In
particular, using un-slimmed CWM models with 0.25-BG
decreases wall-clock by 15% and FLOPs by 35% for the same
mIoU. When slimming these networks more, we then get quite
comparable performances as using CWM convolutions.

For DeepLab, using CWM convolutions leads to much more
competitive results. In particular, we see that a slimmed model
using a 0.25-BG can reach a similar mIoU as the base model
with a decrease of 45% wall-clock and 60% FLOPs. Moreover,
the un-slimmed 0.25-BG model (rightmost red dot) has about
2% higher mIoU than the base model while being 15% faster.

Generally, we can see that using CWM-convolutions is a
better way to accelerate a model than a simple slimming.
These results demonstrate a real potential for CWM convo-
lutions to speed up future prediction networks.

B. Controlling the speed/accuracy trade-off

When using bi-step generators ρ-BG, the higher the value
of ρ, the greater the number of channels processed at each
time step and the longer the processing time. In fig. 4, we
plot the mIoU of CWM-SwiftNet with different generators ρ-
BG, for ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We use a fixed training
offset j = 9.

This plot highlights that the parameter ρ allows controlling
the trade-off between speed and accuracy, which is a desired
and practical feature of our CWM models.

C. Evaluation Offset

For evaluating our model performance, we use Asymptotic
Behavior Testing (ABT), as explained in section III-D. We
remind that ABT consists in feeding the model with inputs
from T−k to T−1 before evaluating. We additionally average
the mIoU obtained with two consecutive k.

Figure 5 plots our CWM-SwiftNet’s mIoU depending on
the number of frames k it has processed, for all k ∈ [3 . . 19],
and confirms the relevance of ABT and the averaging.

Indeed, for low k values, the model is not in steady-state,
and as k increases, the model performance stabilizes, which
is a strong argument for ABT. In addition, the oscillation
observed for higher k is coherent with the use of bi-step
generators that creates two masks used every other step and
validates the need for averaging the mIoU computed with two
consecutive k.

D. Training Offset

In CWM models, the output prediction depends on the
current input frame and previous computations, which is
why we have introduced ABT, an evaluation procedure that
evaluates the model’s steady-state performance. Therefore, it
seems relevant to train the network when it operates in steady-
state. To do so, we feed the model with j inputs from T − j
to T − 1, as explained in section III-E.

In this experiment, we plot the mIoU reached by models
as a function of the number of frames j used in training. The
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Fig. 3: mIoU for three different models with and without CWM convolutions. Baseline is the original model, 0-BG and 0.25-
BG are our CWM versions of the model using bi-step generators defined in section II-D. Each line corresponds to a model
for which the speed/accuracy trade-off is modulated with the width multipliers α ∈ {0.5, 0.65, 0.8, 1} to slim the network
(section III-C). Our un-slimmed models using 0.25-BG, corresponding to rightmost red points, all have a better mIoU and a
lower latency than original models.
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Fig. 4: mIoU of CWM-SwiftNet trained with different bi-step
generators. Each dot represents a CWM-SwiftNet model using
a ρ-BG for ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. While fig. 3 picks two
values for ρ and varies the width-multiplier α, here we set
α = 1 and vary ρ. We see that ρ allows to modulate the
trade-off between speed and accuracy.

models used are 2 CWM-SwiftNet models with different mask
generators 0-BG and 0.25-BG. The results in fig. 6 suggest
that good steady-state performances start around j = 7 and
are best around j = 9, which is why we used this last value
in our main experiments. However, we restrain from using a
higher j, which increases training time and does not bring
higher mIoU.
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Fig. 5: mIoU of CWM-SwiftNet as a function of the number
of frames k the network has seen. Horizontal dashed lines are
values taken as the final mIoU of each network. The vertical
dashed line marks the number of frames that networks have
been trained with. We see that steady-state is reached after
about 9 frames for 0.25-BG and 12 frames for 0-BG. The
oscillation for higher k is due to the two alternating masks of
bi-step generators.

E. Bi-sequence training

All experiments so far have used the “bi-sequence training”
presented in III-E. Table I explores other multi-sequence
training setups with SwiftNet. In particular, it studies the single
sequence training where a sequence is only used once with
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Starting offset of sequences mIoU (%)

T – 7 62.8
T – 7, T – 6 65.3
T – 7, T – 6, T – 5 64.1
T – 7, T – 6, T – 5, T – 4 64.3

TABLE I: mIoU of a CWM-SwiftNet 0.25-BG with different
multi-sequence setup. The first column represents starting
offset of sequences. For instance, “T − 7, T − 6” is the usual
bi-sequence training, where one input sequence is used twice
to optimize the model. It is used first as the subsequence
[T −7 . . . T −1], then as the subsequence [T −6 . . . T −1].
We see that bi-sequence is better than single sequence, and
that using more sequences does not help.

starting offset T − j, with j = 7 in this experiment. We also
trained using 3 and 4 sequences.

The results are shown in table I, and it appears that
bi-sequence training is better than single sequence training
(+2.5%). Moreover, using additional offset sequences does not
seem to improve the final mIoU, which motivates our choice
of bi-sequence training for our other experiments.

F. Ablation on CWM convolutions position

When altering a network to use our CWM convolutions, we
specified in section III-B that we do not replace the very first
convolution in the stem and those used in skip connections.

In table II, we study the performance in configurations
where we use CWM convolutions instead of normal ones in
the stem layer or in skip connections. The model is a CWM-
SwiftNet using a 0.25-BG. This table confirms that we should
use normal convolutions in the stem and skip connections as
it brings substantial mIoU increase.

V. RELATED WORKS

Semantic segmentation, just as the rest of the computer
vision literature, was shaken to the core by the success of
deep-learning. The seminal work [11] introduced fully con-
volutional networks for segmentation, and several important
methods followed, proposing to use decoder networks [12],

Stem Skip mIoU (%)

CWM CWM 63.3
CWM Standard 64

Standard CWM 65
Standard Standard 65.3

TABLE II: Ablation experiment on CWM convolutions in
the stem and skip connections of SwiftNet. CWM indicates
a CWM convolution, Standard indicates normal convolution.
This confirms that we should use normal convolutions in the
stem and skip connections.

[13], spatial pyramidal pooling [14], [15], dilated convolutions
[16], [17], and current best performing models are now mainly
transformer based networks [18]–[22].

One of the main limitation with current deep segmentation
methods is the long inference time, and numerous works have
addressed this [6], [8], [23]–[33]. These improvements allow
carefully designed networks to run real-time, but any real-time
network should be built as a future prediction network [34].

On the future segmentation forecasting task, different ap-
proaches exist. Direct semantic forecasting introduced by [35]
directly predicts the future segmentation map from past ones
[36]–[39]. Flow based forecasting [40]–[44] uses optical flow
computed from past frames to warp past segmentation into
future ones. Feature level forecasting predicts future interme-
diate features from past ones [45]–[47]. Our technique stands
at the intersection of direct and feature level forecasting as it
indirectly predicts future features.

One could note that our training with masked convolution
kernels resemble that of slimmable networks [48], [49] which
perform a different sort of channel-wise masking with varying
contiguous masks, although these masks are not designed nor
appropriate for future video segmentation.

Our idea also echoes the fast TDNet [28] method. When
TDNet uses a different small sub-network at each time-step
and combines features extracted from several past inputs, our
CWM models uses different small convolution masks at each
time-step and replace part of the past features with new ones.

VI. CONCLUSION

In this paper, we have tackled the problem of fast prediction
of video segmentation through the use of a new convolutional
layer, that relies on the frames’ temporal coherence. Our sim-
ple design of this layer simultaneously reduces computation
and gives access to features computed in previous steps, which
speeds up and improves future segmentation prediction.

Our proposed CWM layer is not restricted to segmentation
networks, and can be applied to any task involving prediction
from a correlated input sequence. Moreover, the ρ param-
eter of bi-step generators ρ-BG allows modulation of the
speed/accuracy trade-off.

Experimentally, our proposed CWM-models achieve the
same mIoU while performing fewer FLOPs, and taking lesser
wall clock time than the original models in most cases. Better
yet, un-slimmed CWM-models even achieve higher mIoU than
the originals.
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