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Abstract—In the context of hybrid HMM/MLP Automatic
Speech Recognition (ASR), this paper describes an investigation
into a new type of stochastic phone space transformation, which
maps “source” phone (or phone HMM state) posterior probabil-
ities (as obtained at the output of a Multilayer Perceptron/MLP)
into “destination” phone (HMM phone state) posterior probabil-
ities. The resulting stochastic matrix transformation can be used
within the same language to automatically adapt to different
phone formats (e.g., IPA) or across languages. Additionally, as
shown here, it can also be applied successfully to non-native
speech recognition. In the same spirit as MLLR adaptation,
or MLP adaptation, the approach proposed here is directly
mapping posterior distributions, and is trained by optimizing on
a small amount of adaptation data a Kullback–Leibler based cost
function, along a modified version of an iterative EM algorithm.

On a non-native English database (HIWIRE), and comparing
with multiple setups (monophone and triphone mapping, MLLR
adaptation) we show that the resulting posterior mapping yields
state-of-the-art results using very limited amounts of adaptation
data in mono-, cross- and multi-lingual setups. We also show
that “universal” phone posteriors, trained on a large amount of
multilingual data, can be transformed to English phone poste-
riors, resulting in an ASR system that significantly outperforms
a system trained on English data only. Finally, we demonstrate
that the proposed approach outperforms alternative data-driven,
as well as a knowledge-based, mapping techniques.

Index Terms—Non-native speech recognition, universal phone
set, multilingual acoustic modeling

I. INTRODUCTION

STATE-of-the-art Automatic Speech Recognition (ASR)
systems typically use phonemes or phones as subword

units. The set of all phonemes that are used to model speech in
a given language is referred to as a phoneme set. The phoneme
set is specific to a language in the sense that two languages
could share some, but usually not all, phonemes. The creation
of a phoneme set and a lexicon needs linguistic expertise
and resources. However, statistical ASR systems usually focus
on particular acoustic realizations of phonemes, with specific
stationarity properties, which are then referred to as phones.
Phones are then modeled by context-dependent or context-
independent HMMs. As a consequence of this, it is often
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difficult to define a phonetic set that is unique to a specific
language, and universally used across different ASR systems.
Whilst most phonetic representations such as SAMPA [1]
and ARPABET [2] can be represented using the International
Phonetic Alphabet (IPA) [3], the underling phonetic lexicons
do not necessarily use the same subset of IPA symbols.

Furthermore, even in the context of well defined phone sets,
training phone HMM models remains a challenging task given
the high pronunciation variability of words (within the same
language), as well as the variability of the acoustic realization
of the “same” phone class, within and between languages, or
in the case of accented speech (often borrowing phone realiza-
tions from two different languages). Several approaches have
already been proposed to tackle this pronunciation variability,
and to automatically adapt (in a supervised, loosely supervised,
or unsupervised manner) phone HMM state emission proba-
bilities from one (source) domain to a (destination) domain,
possibly covering accented speech. As further discussed in
Section II, those approaches include, among others, Prob-
abilistic Phone Mapping (PPM) [4], Probabilistic Acoustic
Mapping (PAM) [5], Maximum Likelihood Linear Regression
(MLLR) [6], [7], Maximum A Posteriori adaptation (MAP) to
non-native ASR [8], [9], linear MLP output or Linear Hidden
Network (LHN) transformation [10].

In this paper, we propose an alternative approach, tackling
some of the issues related to the acoustic modeling and
multi/cross-lingual adaptation of phones, specifically crafted
for HMM/MLP systems, and working directly with posterior
distributions. More specifically, the phone variability problem
is addressed here in the context of challenging non-native
speech recognition tasks, where we also encounter phone set
mismatch problems, as well as multi- and cross-lingual phone
transformation requirements. The approach investigated here
is indeed applied to non-native (English) speech recognition,
adapting generic phone class sets initially trained on a large
amount of English data, and adapted on a small amount of
“destination” data to recognize accented speech (in different
languages).

In such a context, and in addition to phone variability
briefly discussed above, the approach proposed here can also
handle (intra/inter-task, as well as intra/inter-lingual) phone set
mismatches, and comparisons will be reported against conven-
tional “manual” phone mapping (based on minimum linguistic
expertise). Indeed, lexical resources that are distributed along
with the databases can differ greatly, depending upon the defi-
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nition and number of phones, as well as the notation adopted.
One way to handle such problems is to select one notation and
have a large lexicon that covers all the possible words. Since
spoken language continuously evolves, new words need to be
added regularly. An alternate solution is to perform a one-
to-one mapping between the phone symbols. Such mappings
are usually manually defined or derived in a data-driven way.
However, a one-to-one mapping between different notations
may not always exist. Also, as already reported by Sim [5] on
an inter-lingual task and shown later in Section V for intra-
and inter-lingual tasks, even if such a mapping exists, it could
be detrimental to the system. The reason for this is partly
related to acoustic modeling. We suppose that there exists
an acoustic space that contains all acoustic observations that
are involved in the human speech production process. During
acoustic modeling, a specific phone set implicitly partitions
this acoustic space into subspaces, each associated with a
particular phone class. Of course, two different phone sets
can partition the same acoustic space differently, which will
not be taken into account during one-to-one mapping.

Finally, we decided to focus the present work, and evaluate
the proposed approach, in the context of accented (English)
speech recognition, and see how multilingual data can be most
effectively exploited in this context. Indeed, cross-lingual ASR
studies often mainly focus on the recognition of speech from
native speakers, while effectively recognizing speech from
both native and non-native speakers is still recognized as a
major challenge. Usually, pronunciation lexicons are created
by only taking into account how native speakers pronounce
the words. Even then, it is known that acoustic realizations of
the same phone exhibit high variability, thus, a considerable
amount of data is necessary to properly train the models.
Modeling variability of the acoustic realizations becomes even
more challenging if we have to deal with non-native and
accented speech. The main reason is the influence of the native
language on the target language sound pronunciation [11].

In previous work [12], we boosted non-native ASR perfor-
mance by transforming multilingual class probabilities con-
ditioned on the acoustics into monolingual class probability
estimates of a target language. More specifically, we first
created a universal set, by merging phones that share the same
IPA symbol, and then trained universal acoustic models with
data from five European languages. Given an entirely new
target database, along with the lexical resources, the relation
between the universal phone classes and the target phone set
was learned by using a Kullback–Leibler divergence based
HMM. The learned relation can be seen as a data-driven
soft mapping between two sets that takes the acoustics into
account. During recognition, the resulting stochastic mapping
was then exploited to transform the conditional posterior
probabilities of the universal phone classes into estimates of
posterior probabilities of the phones belonging to the target
database.

After a discussion of related work by others (Section II),
we generalize the initial work [12] and cast it into a more
rigorous theoretical framework in Section III. The training
and recognition algorithms are derived in Section IV. The
paper then explores mono-, cross- and multi-lingual stochastic
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Fig. 1. Given a source language and a destination language, two different sets
of phone classes cover the same acoustic space differently. Xs(k) and Xd(`)
are acoustic subspaces associated with phone class sk and d` respectively.

transformations, and compares them with manual mapping
and data-driven hard mapping (Sections V and VI). Results
on a standard multi-lingual/accented database show that the
proposed approach significantly outperforms manual and data-
driven hard mappings. Furthermore, the experimental studies
reveal that the transformed universal emission probabilities
yield significant improvement compared to all other systems.

In Section VII, we then discuss the relationship between
the proposed approach and related work such as PAM [5],
MLLR [6], [7], LHN [10], semi-continuous hidden Markov
models [13], or the estimation of language-independent acous-
tic models as presented by Schultz and Waibel [14] in more
detail.

II. RELATED WORK

Standard ASR systems typically make use of phonemes as
subword units. A phoneme is defined as the smallest sound
unit of a language that discriminates between a minimal word
pair [15, p. 310].

Humans are able to produce a large variety of acoustic
sounds which linguists have categorized into segments called
phones. Phones are not necessarily the smallest units to
describe sounds but they represent a base set that can be
used to describe most languages [15]. Those phone (phonetic)
segments are also more stationary, hence more amenable to
statistical modeling. We assume in this paper that all phones
across speakers and languages, share a common acoustic
space X (e.g., the acoustic space that could be “theoretically”
covered by a human articulatory system). Of course, no single
language makes use of all phones, and most languages only
partially cover X .

Therefore, as visualized in Figure 1, we assume here that
for two different languages two different sets of phone classes
partition the same acoustic space differently, and we define:
• A source set consisting of S phone classes sk, k =

1, . . . , S
• A target (destination) set consisting of D phone classes
d`, ` = 1, . . . , D
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The phone classes can for example be phonemes as defined by
linguists or context-dependent states that are usually used in
state-of-the-art ASR systems. The assumption of a common
acoustic space X is reasonable and usually underpins the
approaches based on the pooling/adaptation of acoustic models
from multiple languages [16].

Rottland and Rigoll [17] presented the tied posteriors ap-
proach, which considers the special case where the S source
classes are context-independent monophones and the target
classes are context-dependent triphones, both from the same
language. In the present work, we focus on stochastic trans-
formations in general, especially across languages. Further-
more, as we will describe later, we estimate the stochastic
transformation matrix differently by directly using phone
class posteriors instead of converting them to likelihoods and
applying the maximum likelihood adaptation.

Schultz and Waibel [14] proposed an HMM-based method
to estimate language-independent acoustic models. In a con-
ventional HMM/GMM framework, each state is modeled with
a mixture of Gaussian distributions. If the IPA symbol set
of two context dependent states from different languages
is the same, the training data of all involved languages is
then used for the estimation of the Gaussian components
(means and variances). The mixture weights, however, are
trained for each language individually. Hence, the approach
involves a transformation in the sense that each (multilingual)
universal phone class has a pool of S Gaussians. The universal
phone class model is then transformed to a language specific
model by estimating language dependent weights. Our work
focuses on hybrid HMM/MLP systems and not on standard
HMM/GMM systems, but we will show later that the proposed
method is closely related to conventional Gaussian mixture
based semi-continuous HMM systems.

Sim and Li [4] proposed (explicit) one-to-one Probabilistic
Phone Mapping (PPM) that makes use of explicit phonetic
reference transcriptions (in the form of target classes) and
outputs of a phone recognizer that uses source classes. As a
result, PPM maps each target class to the most similar source
class.

Sim [5] extended PPM to Probabilistic Acoustic Mapping
(PAM) for hybrid HMM/MLP ASR systems that allows im-
plicit transformation of source posteriors into target posteriors.
The approach proposed here is similar in spirit to PAM. Both
approaches are based on posterior space transformations and
we compare them in detail in Section VII. Our approach is
crafted into a principled theoretical formalism, allowing for
EM/Viterbi-like iterative training to optimize a global KL-
criterion, which is shown to be more appropriate to posterior
features on the investigated non-native English database (see
Section VII).

Similarly to PAM, hidden feature transformation [10] can be
used to improve non-native ASR. More specifically, in a hybrid
HMM/MLP framework, a linear transformation is applied to
the activation of an internal layer of the MLP. The trans-
formation is performed with a linear hidden network (LHN)
which is trained with the standard MLP error back-propagation
algorithm. However, since a hidden layer is adapted, LHN is
bound to a fixed phoneme set.

Various studies applied acoustic model transformations to
non-native ASR in the form of conventional adaptation tech-
niques such as MLLR [6], [7] or MAP [8], [9]. More recently,
combining acoustic model transformation and pronunciation
modeling for non-native ASR was also investigated [18]. For
acoustic model transformation, MAP and model re-estimation
were evaluated and combined with pronunciation modeling
that was based on phonetic rule extraction. For each sentence
of the a non-native database, the canonical transcription was
compared to the transcription given by a phonetic recognizer.
However, if the mother tongue of the (non-native) speaker
was unknown, MAP and model re-estimation alone performed
better than in combination with pronunciation modeling.

In this study, we investigate a new approach to map condi-
tional phone class probabilities from a source set to a target set,
given acoustic observations. In general, we consider the source
and target phone class sets to be defined in different languages
(although the similar idea of stochastic mapping could also be
applied to two different sets of the same language). It is evident
that sets of phone classes of foreign languages have a different
coverage of the acoustic space X . In the experimental section,
we will see that two different phone class sets of the same
language also provide different coverage of X . We will also
compare our method to standard adaptation techniques on the
HIWIRE database (non-native English).

III. STOCHASTIC PHONE SPACE TRANSFORMATION

In the context of hybrid HMM/MLP recognizers, stochastic
phone space transformation can be formulated as follows.
Given an MLP (of parameters ΘS ) trained to estimate source
phone class posterior probabilities conditioned on acoustic
observations, we aim to perform ASR on a target database
that makes use of a target phone class set. Of course, the
“source” MLP ΘS could also have been trained on a mixture
of languages to make it more amenable to cross-language
adaptation/training.

Mapping source phone class posteriors into target phone
class posteriors then requires the training of a stochastic matrix
of parameters ΘM instead of an MLP, which, together with
the fixed ΘS will parameterize target phone class posterior
distributions used as emission probabilities in the HMM/MLP
recognizer. During the training of ΘM , we thus assume to
have access to a limited amount of target language training
data x = {x1, . . . , xT }, which is not labeled in terms of
source phone classes but only in terms of target phone
classes. Furthermore, we assume that no target phone class
segmentation is available (i.e., we can associate a target phone
class sequence with x, but we have no labeling for every xt).
The proposed approach will exploit a target HMM where the
states (hidden variables) are associated with the target phone
class sequence (with posterior distributions resulting from the
stochastic mapping of the source posteriors).

A. Definitions

Given an acoustic sequence x = {x1, . . . , xt, . . . , xT }
drawn from the acoustic space, where xt is an acoustic feature
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vector containing for example perceptual linear prediction co-
efficients. We aim to estimate the target phone class posterior
probabilities P (d`t|xt), given:

1) The source MLP posteriors P (skt |xt,Θ), simply esti-
mated by presenting xt (possibly together with some
temporal context) at the input of the MLP ΘS , and

2) the conditional target posterior P (d`t|skt , xt,Θ), condi-
tional on the current input xt and latent variable skt
denoting the specific (hidden) HMM source state sk

visited at time t.

Indeed, we can formulate the problem of estimating target
phone class posteriors conditioned on the acoustic observation
xt at time t, the parameters ΘM of the target HMM, and the
parameters ΘS of the source MLP as follows:

P (d`t|xt,Θ) =

S∑
k=1

P (d`t|skt , xt,Θ)P (skt |xt,Θ) (1)

=

S∑
k=1

P (d`|sk,ΘM )P (skt |xt,ΘS) (2)

where Θ = {ΘS ,ΘM}, and where we have made the follow-
ing assumptions:

• The conditional probability P (d`t|skt , xt,Θ) can be seen
as a similarity measure between a source class sk and a
target class d`. It can thus be assumed time invariant and
independent of the acoustic observation xt at time t.

• The source phone class posteriors P (skt |xt,Θ) are ob-
tained with the MLP1 that was previously trained on
an independent, frame-level labeled, database that may
contain speech of the same language, a different lan-
guage, or from multiple languages. Since frame-level
labeling is available for the source database, the source
phone class posterior probability estimates are considered
independent of ΘM .

During recognition (see Section IV-B), the target phone
class posterior estimates P (d`t|xt,Θ) can be used to perform
ASR on the target database.

Since the states of the target HMM (parameterized by ΘM ,
in addition to the fixed ΘS coming from the source training)
will be associated with the target phone class sequence, we
can only estimate P (d`|sk,ΘM ) from the source posteriors
P (sk|d`,ΘM ). Applying Bayes’ rule to P (d`|sk,ΘM ) in (2)
yields:

P (d`t|xt,Θ) =
S∑
k=1

P (sk|d`,ΘM )P (d`|ΘM )∑D
`=1 P (sk|d`,ΘM )P (d`|ΘM )

P (skt |xt,ΘS) (3)

Given P (skt |xt,ΘS), the estimation of P (d`t|xt,Θ) thus re-
quires us to estimate the conditional probability P (sk|d`,ΘM )
and the prior probability P (d`|ΘM ).
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Fig. 2. The target HMM structure is “left-to-right” and obtained from the
target phone class transcriptions. Each state is parametrized by a categorical
distribution Q` of dimensionality S and emits posterior features Pt. The
transition probabilities aij are also parameters of the HMM, but are fixed to
constant values of 0.5 (except for a01 = 1).

B. Estimation of the conditional probability P (sk|d`,ΘM )

Estimation of P (sk|d`,ΘM ) will be performed through an
iterative Viterbi segmentation-optimization training procedure.
As illustrated in Figure 2, this requires that we first forward
pass all the training data x through the source MLP ΘS to
obtain P (s|xt,ΘS),∀t ∈ 1, . . . , T , as:

Pt = P (s|xt,ΘS) =

P (s1t |xt,ΘS)
...

P (sSt |xt,ΘS)

 =

Pt,1...
Pt,S


We then use Pt, with t = 1, . . . , T , as observed feature vectors
for the target HMM, alongside with the target phone class
transcriptions, to train the HMM parameters ΘM .

In the simplest case, the target HMM uses one state per
target class d` in a left-to-right structure, which is obtained
from the destination phone class transcriptions. In Figure 2,
e.g., we consider an utterance that can be transcribed as /d1/
/d2/ /d3/. In this illustrative case, the associated HMM has five
states including non-emitting start and end states. However,
the presented algorithm is not limited to such simple HMM
structures, but allows more complex ones such as using three
states per phone class. For the ease of notation, and without
loss of generality, we limit ourselves to the simplest case (one
state per phone class) in the following derivations.

Each target HMM state d`, with ` ∈ {1, . . . , D} (D
being the number of HMM states), is thus parametrized by

1The MLP takes a temporal context of c preceding and following frames
into account (we usually set c = 4). However, for the ease of notation, we
just write P (skt |xt,Θ).
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a categorical distribution Q`.

Q` = P (s|d`,ΘM ) =

P (s1|d`,ΘM )
...

P (sS |d`,ΘM )

 =

Q
`
1

...
Q`S


A categorical distribution is a multinomial distribution where
only one sample is drawn. The dimensionality of Q` is S, the
total number of source classes.

Of course, transition probabilities aij , to go from state i to
state j, should also be parameters of the target HMM, ΘM =
{Q`, aij}. However, we fixed them to constant values of 0.5
(except for a01 = 1), as is usually done in hybrid HMM/MLP
systems.

Since the observed feature vectors Pt are posterior estimates
and the HMM references Q` categorical distributions, it is
reasonable to use the Kullback–Leibler divergence between
those two as local scores, i.e.:

d(Pt, Q
`) =

S∑
k=1

P (skt |xt,ΘS) log

[
P (skt |xt,ΘS)

P (sk|d`,ΘM )

]
(4)

The local score d(Pt, Q
`) is not symmetric and we discuss the

choice of d(Pt, Q
`) as opposed to d(Q`, Pt) in Section VII.

The resulting HMM is referred to as KL-HMM [19], which
can be trained with a Viterbi optimization algorithm as pre-
sented in Section IV.

C. Estimation of the prior probability P (d`|ΘM )

The trained HMM can be used to assign each xt with an
acoustic subspace Xd(`), as presented in Section IV-A1. Prior
probabilities P (d`|ΘM ) can thus be estimated as the relative
count of acoustic vector observations xi that are associated
with Xd(`), i.e.:

P (d`|ΘM ) =
|{xi|xi ∈ Xd(l)}|∑D
j=1 |{xi|xi ∈ Xd(j)}|

(5)

where the operator |.| stands for the cardinality of a set.

IV. IMPLEMENTATION

The categorical distributions Q` can be learned using an
iterative Viterbi segmentation-optimization scheme. The cost
function can be defined by integrating the local score, given
in (4), over time t and states `, resulting in

F(P,Q) =

T∑
t=1

D∑
l=1

d(Pt, Q
`)δ`t (6)

where the Kronecker delta δ`t , defined as:

δ`t =

{
1, if xt ∈ Xd(`)
0, if xt /∈ Xd(`)

with Xd(`) being the acoustic subspace that corresponds to a
target class d`.

A. Training
As illustrated in Algorithm 1 below, the training consists

of iteratively minimizing the cost function in (6) in the
Q` space (optimization step) and δ`t space (segmentation
step) respectively. The segmentation is obtained by Viterbi
forced alignment (Section IV-A1). We run the algorithm until
convergence. Of course, convergence can easily be proved
since at every segmentation and re-estimation step the same
cost function is minimized, respectively in the Q` space (re-
segmentation) and δ`t (re-estimation).

Algorithm 1 HMM Training
Step 0: Initialization of Q`k
for all ` ∈ {1, . . . , D} and k ∈ {1, . . . , S} do

Q`k =


1
S , if d` /∈ Source set Φ

1− (S − 1)ε, if d` ∈ Φ and sk = d`

ε, if d` ∈ Φ but sk 6= d`

ε being small, but positive
end for
Step 1: Segmentation:
Given Pt ∀ t, perform forced alignment to assign each xt
to one Xd(`) such that F(P,Q) is minimized.
Step 2: Optimization:
for all ` ∈ {1, . . . , D} do

Given Pt∗ ∀ t∗ such that xt∗ ∈ Xd(`), use (9) to estimate
Q`.

end for
Iterate step 1 and 2 until convergence

1) Segmentation: To associate each xt with one of the
acoustic subspaces Xd(`), (and as a consequence Pt to Q`)
the HMM aligns the source phone class posterior probability
Pt with the states by minimizing F(P,Q), given in (6).

2) Optimization: Each Pt is used to update a particular
categorical distribution Q`.

To minimize F(P,Q) subject to the constraint that∑S
k=1Q

`
k = 1, we introduce the Lagrange multiplier λ and

take the partial derivative of the resulting function with respect
to each variable Q`k and set it to zero:

∂

∂Q`k
F(Pt, Q

`) + λ

(
S∑
k=1

Q`k − 1

)
= 0 (7)

Solving (7) yields:

−
∑
∀t∗

P (skt∗ |xt∗ ,ΘS)

P (sk|d`,ΘM )
+ λ = 0

where the sum extends over all t∗ such that xt∗ ∈ Xd(`).
Hence:

P (sk|d`,ΘM ) =
1

λ

∑
∀t∗

P (skt∗ |xt∗ ,ΘS)

The sum to one constraint
∑S
k=1Q

`
k = 1 guarantees:

S∑
k=1

P (sk|d`,ΘM ) =

S∑
k=1

1

λ

∑
∀t∗

P (skt∗ |xt∗ ,ΘS) = 1 (8)
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Solving (8) for λ yields:

λ =
∑
∀t∗

S∑
k=1

P (skt∗ |xt∗ ,ΘS) =
∑
∀t∗

1 = |{xi|xi ∈ Xd(`)}|

We thus obtain:

P (sk|d`,ΘM ) =
1

|{xi|xi ∈ Xd(`)}|
∑
∀t∗

P (skt∗ |xt∗ ,ΘS) (9)

3) Initialization: For initialization, we may make use of
prior knowledge as described below. However, experiments
have shown that uniform initialization will usually yield sim-
ilar results, although with slower convergence.

If the source and target classes are both phonemes and the
IPA symbol of the destination class d` is not present in the
source set, Q` is initialized uniformly. If the IPA symbol of d`

and sk are same however, all the components of Q` are set to a
small positive value ε except for the corresponding component
Q`k which is set to 1 − (S − 1)ε. Since the cost function
involves the computation of the KL divergence between Pt
and Q`, given in (4), we need to ensure that Q` does not
contain zeros.

B. Recognition

Given an acoustic test sequence x = {x1, . . . , xT }, we first
use the source MLP ΘS to estimate the source posteriors
Pt = P (s|xt,ΘS). Then, we use the above described target
HMM (see Figure 2) for decoding, using reference posterior
vectors Q` as HMM parameters and KL-distances between P
and Q as local scores. Such a KL-based HMM is often referred
to as KL-HMM [19]. More specifically, this is equivalent to
performing a standard Viterbi decoding with the following
local distance, ∆t,`, between source posterior Pt and reference
posterior Q`.

∆t,` =

S∑
k=1

log

[
Pt,k
Q`k

]
Pt,k (10)

This recognition technique involves an implicit stochastic
phone space transformation depending on Q` and Pt.

V. EXPERIMENTAL SETUP

We study the proposed approach by applying it to non-
native speech recognition. We start with the hypothesis that
the stochastic phone space transformation is beneficial for non-
native and accented speech because we can train the source
MLP (ΘS ) with large amounts of (multilingual) data and then
handle the variability in pronunciations with relatively small
amounts of data by learning the transformation parameters
ΘM . Therefore, we estimate source phone class posteriors
on databases that contain native speech of five different lan-
guages. We estimate language specific phone class posteriors
as well as universal phone class posteriors that are trained on
the data of all five languages. The non-native target database
uses a different phonetic lexicon, thus the estimated phone
class posteriors need to be transformed. We first describe the
estimation of the source posteriors along with the databases
that are used and then we describe the non-native target

System Source set S TRN data DEV acc.
MLP-EN SAMPA English 45 12.4 h 58.8%
MLP-ES SAMPA Spanish 32 11.5 h 73.2%
MLP-IT SAMPA Italian 52 11.5 h 68.6%
MLP-SF SAMPA French 42 13.5 h 65.5%
MLP-SZ SAMPA German 59 14.1 h 60.4%
MLP-sUNI Universal 117 12.7 h 52.0%
MLP-UNI Universal 117 63.0 h 57.5%
MLP-AE ARPABET English 38 2.4 h 58.2%

TABLE I
OVERVIEW OVER THE SEVEN DIFFERENT PHONE CLASS POSTERIOR
ESTIMATORS. THE TOTAL AMOUNT OF TRAINING DATA, THE FRAME

ACCURACY ON THE DEVELOPMENT DATA, AS WELL AS THE SOURCE SET
INCLUDING THE NUMBER OF CLASSES (S) ARE GIVEN.

database as well as the phone class posterior transformation.
For the sake of comparison, we also describe a system only
trained on non-native speech at the end of the section.

A. Source posteriors

We consider six different source sets, five monolingual
phone sets and a universal phone class set. To estimate the
source posteriors P (skt |xt,ΘS), we investigate seven different
MLP-based posterior estimators (trained with QuickNet soft-
ware [20]), one for each monolingual phone set and, for the
purpose of comparison, two for the universal phone class set.

To train the seven posterior estimators, we used record-
ings from SpeechDat(II) in five different languages. The
SpeechDat(II) databases contain native speech and are gender-
balanced, dialect-balanced according to the dialect distribution
in a language region and age-balanced. The databases were
recorded over the telephone at 8 kHz and are subdivided into
different corpora. We only used Corpus S, that contains ten
read sentences per speaker. For the MLP training, we split
the databases into training (1500 speakers), development (150
speakers) and testing (350 speakers) sets, according to the
procedure described in [21].

The training data were used to train five monolingual MLPs
on British English (MLP EN), Spanish (MLP ES), Italian
(MLP IT), Swiss French (MLP SF) and Swiss German (MLP
SZ) respectively. Two MLPs were trained to estimate universal
phone class posteriors. Since all the SpeechDat(II) dictionaries
use SAMPA symbols, we merged phonemes that share the
same SAMPA symbol across languages to build the universal
phone class set. MLP UNI (universal MLP) was trained on
all the data and MLP sUNI (small universal MLP) used only
one fifth of the data (randomly chosen, to match the average
amount of training data available to the monolingual MLPs).

All the MLPs were trained from 39 Mel-Frequency Percep-
tual Linear Prediction (MF-PLP) features (C0−C12+∆+∆∆)
in a nine frame temporal context (four preceding and following
frames), extracted with HTK [22], as input. The number of
parameters in each MLP was set to 10% of the number of
available training frames. Table I summarizes all systems and
also shows the frame accuracies on the development data.
MLP-AE will be presented in Section V-C.
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B. Target posteriors

To study the proposed approach, we used the HIWIRE [8]
database. HIWIRE is a non-native English speech corpus that
contains English utterances pronounced by natives of France
(31 speakers), Greece (20 speakers), Italy (20 speakers) and
Spain (10 speakers). The utterances contain spoken pilot orders
made up of 133 words and the database also provides a
grammar with a perplexity of 14.9. The dictionary is in CMU
format and makes use of 38 ARPABET phonemes. HIWIRE
consists of 100 recordings per speaker, of which the first 50
utterances are commonly defined to serve as adaptation data
and the second 50 utterances as testing data.

Since HIWIRE was recorded at 16 kHz, the recordings were
down-sampled to 8 kHz to match the recording conditions of
the SpeechDat(II) data. Then, the same MF-PLP feature anal-
ysis was applied and passed through each of the seven MLPs
(MLP-EN, MLP-ES, MLP-IT, MLP-SF, MLP-SZ, MLP-sUNI
and MLP-UNI) to estimate source posteriors P (s|xt,ΘS).

To perform recognition on the HIWIRE adaptation set, we
estimated P (sk|d`,ΘM ) on the adaptation data. For the ease
of notation we limited ourselves to one state per phone class
in Section III. For the experiments however, we used three
states per class.

We tuned the word insertion penalty on the adaptation data
and then used the test set for evaluation.

C. Training on non-native data

For the sake of comparison, system MLP-AE was trained
on the HIWIRE adaptation set, i.e. an MLP was directly
trained on the HIWIRE data set to estimate target phone
class posteriors P (d`t|xt). Therefore system MLP-AE does not
involve an HMM-based transformation. During MLP training,
90% of the adaptation data was used for training and the
remaining 10% for validation.

The training of an MLP requires frame-based alignments.
However, no alignments were available for HIWIRE. There-
fore, we performed forced alignment. Since we did not have
acoustic models for the target classes, we used the best
performing transformed models (MLP-UNI) for the alignment.
System MLP-AE is a standard hybrid system and therefore
also uses the forced alignment to estimate prior probabilities.

VI. RESULTS

We investigated all the systems described in Table I.
For the significance tests, we used the bootstrap estimation
method [23] and a confidence interval of 95%.

A. Native English training data

First, we considered phone space transformations within the
target language and compared the performance of MLP-EN,
trained on native English data, to studies from other researches
on the HIWIRE database and to system MLP-AE which was
trained on 2.4 hours of non-native English.

As shown in Table II, system Seguera [8], supplied with
the database, is a standard HMM/GMM ASR system [24]
that uses Mel-Frequency Cepstral Coefficients with Cepstral

System Source Database Decoding Adapt TST
Seguera TIMIT GMM/HMM no 91.4
Gemello 16 Microphone 16 kHz Hybrid no 90.5
Gemello 8 Telephone 8 kHz Hybrid no 88.4
MLP-AE HIWIRE Hybrid no 92.8
MLP-EN SpechDat(II) EN KL-HMM yes 95.0

TABLE II
WORD ACCURACIES ON ALL THE HIWIRE TEST DATA (TST). THE

SYSTEM Seguera WAS PRESENTED IN [8] AND THE SYSTEMS Gemmello
IN [10]. MLP-AE USED ONLY THE HIWIRE ADAPTATION SET DURING
TRAINING AND MLP-EN USES CONVERTED PHONE CLASS POSTERIORS

TRAINED ON ENGLISH SPEECHDAT(II) DATA.

System Identical IPA symbols Percentage
MLP-EN 31 82
MLP-ES 22 58
MLP-IT 24 63
MLP-SF 24 63
MLP-SZ 24 63

TABLE III
NUMBER AND PERCENTAGE OF ENGLISH HIWIRE PHONES THAT ARE

COVERED BY THE PHONETIC LEXICONS DEFINED BY VARIOUS
SPEECHDAT(II) DATABASES IN THE CASE WHERE AN ONE-TO-ONE IPA

MAPPING IS PERFORMED.

Mean Subtraction and was trained on the TIMIT database
that contains read American English speech, recorded at 16
kHz. The systems Gemello [10] are hybrid systems, trained
on TIMIT, WSJ0-1 and vehic1us-ch0 (Gemello 16), and LDC
Macrophone and SpeechDat Mobile (Gemello 8). MLP-AE is
a hybrid system, that only used the adaptation set, i.e. the MLP
was trained on HIWIRE data. MLP-EN was trained on British
English SpeechDat(II) data, recorded at 8 kHz, as described
in Section V. All systems were evaluated on the same test set
so results should be comparable. We hypothesized that system
MLP-EN would perform best.

Even though training and evaluating a system on 8 kHz
data instead of 16 kHz data is penalizing the performance, as
reported in [10] and also shown in Table II, system MLP-EN
still performs best. This confirms that the proposed method
can successfully exploit the adaptation data and outperform a
system only trained on native English data, as well as a system
only trained on low amount of non-native speech data.

B. Native non-English training data

We also explored cross-lingual phone space transforma-
tions and compared the performance of MLP-ES, MLP-IT,
MLP-SF and MLP-SZ on the HIWIRE data. Intuitively, we
hypothesized MLP-SF to perform better on French accented
data, MLP-ES to perform better on Spanish accents and so
on. Additionally, for the sake of comparison, we did not
train a system on Greek data (to keep one unseen non-native
accent data set for testing). However, we trained a system
on Swiss German (MLP-SZ), a non-native accent that is not
present in the test data. The resulting monolingual phone class
posteriors, trained on different SpeechDat(II) databases, were
then converted to 114 English states (38 phones used in the
HIWIRE lexicon, each modeled with three states).
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System Decoding FR GR IT SP TST
MLP-ES

KL-HMM

92.6 95.1 92.4 93.6 93.3
MLP-IT 93.6 96.1 93.9 93.4 94.2
MLP-SF 93.8 92.7 91.7 92.1 92.8
MLP-SZ 93.6 95.2 92.4 92.9 93.6

TABLE IV
WORD ACCURACIES OF THE CONVERTED PHONE CLASS POSTERIORS

TRAINED ON SPEECHDAT(II) DATA FROM DIFFERENT LANGUAGES (SEE
TABLE I). BEST RESULTS OF EACH COLUMN ARE MARKED BOLD; ITALIC

NUMBERS POINT TO RESULTS THAT ARE NOT SIGNIFICANTLY WORSE.

Table III shows the number of HIWIRE phone classes that
are covered if identical IPA symbols are merged. On average,
about 60% of the HIWIRE phone classes are covered by the
foreign-languages (compared to 80% for the phonetical lexicon
defined by the English SpeechDat(II) database). Therefore,
we expected the cross-lingual systems to perform worse than
MLP-EN.

Results are presented in Table IV. The best result of each
accent is marked bold. Italic numbers point to results that are
not significantly worse than the best result.

As expected, MLP-SF performs best on French non-native
speech, MLP-IT performs best on Italian non-native speech
and MLP-ES performs best on Spanish non-native speech.
The Swiss German models do not perform best on any of
the accents.

System MLP-IT has the best average performance but, as
hypothesized, the performance is significantly worse compared
to system MLP-EN. Interestingly, Raab et al. [25] also eval-
uated native German, Italian, Spanish and French models on
HIWIRE data. The performance they reported is lower than
what we report here, but Italian still outperformed all other
models.

Even though all the systems presented in Table IV perform
significantly worse than system MLP-EN, the performance is
satisfactory compared to the case when no adaptation data is
used (No adapt in Table II) and when only adaptation data is
used (MLP-AE in Table II).

C. Multilingual training data

In this section, we present results from multilingual phone
space transformations, i.e. MLP-UNI and MLP-sUNI, and
compare them to MLP-EN. MLP-EN and MLP-sUNI were
trained on similar amounts of data. However, we expect MLP-
sUNI to perform better than MLP-EN because it was trained
on data from multiple languages. Furthermore, we hypothesize
that MLP-UNI performs better than MLP-sUNI and MLP-EN
because it was trained on large amounts of multilingual data.

Table V confirms both hypotheses and shows that the
proposed approach can be used to transform robust universal
phone class posteriors to monolingual phone class posteriors
and improve ASR performance on non-native speech.

D. Many-to-one and one-to-one mapping

We hypothesize that one-to-one mappings between phoneti-
cal lexicons defined by different databases do not exist and ex-
pect the stochastic phone space transformation to outperform

System Decoding FR GR IT SP TST
MLP-EN

KL-HMM
94.9 96.2 93.8 95.0 95.0

MLP-sUNI 95.9 96.4 95.3 93.8 95.6
MLP-UNI 97.0 97.9 96.1 96.4 96.9

TABLE V
WORD ACCURACIES OF THE CONVERTED PHONE CLASS POSTERIORS

TRAINED ON SPEECHDAT(II) DATA. MLP-EN WAS TRAINED ON ENGLISH
DATA ONLY, MLP-SUNI ON A SIMILAR AMOUNT OF MULTILINGUAL DATA

AND MLP-UNI ON FIVE TIMES MORE MULTILINGUAL DATA.

manual phone mappings as well as automatically determined
one-to-one mappings. To investigate this hypothesis, we study
the following transformations:
• Cross-lingual phone space transformations
• Multi-lingual phone space transformations

We define a cross-lingual phone transformation to be a trans-
formation from a monolingual phone set (English, Italian,
Spanish, Swiss French or Swiss German) to the target ARPA-
BET English phone set. A Multi-lingual phone space trans-
formation is a transformation where the source set consists of
multilingual phone classes and the target set is the ARPABET
English phone set. In both cases, we model each ARPABET
phone with one HMM state (in the sections above we used
three states per phone). In this section, we only use one state
per phone because we will compare the approach to manual
and hard mappings. Their application is not obvious if there
are several states per phone.

We propose in (2) to estimate P (dlt|x,Θ) from the posterior
estimates P (skt |xt,ΘS) of all source phones sk (soft decision).
Alternatively, we also perform a one-to-one mapping and take
a hard decision. i.e. just consider the most similar source
phone. We assume that the optimal one-to-one mapping is a
knowledge-driven manual mapping, i.e. mapping each target
phone to the source class that shares the same IPA symbol.
For each target phone without a matching source class, we
manually selected the most similar one according to the IPA
chart. For the sake of simplicity, we only applied the manual
mapping strategy to MLP-EN, MLP-UNI and MLP-sUNI
(most of the HIWIRE phones can be found in the English
phone set and the universal phone class set). For information,
the manual mapping is given at the end of the paper in
Table XI. Bold entries highlight unmatched source and target
symbols.

The results of the manual mapping experiments are given in
Table VI. Compared to the soft decision, the performance loss
is about 10% absolute. In all three cases, there are more source
classes than target phones. Therefore, some source posteriors
are just discarded. Obviously, that is a suboptimal solution and
causes a degradation.

Similarly to PPM [4], we also applied a data-driven one-to-
one mapping, yielding:

P (dlt|xt,Θ) = P (sk
∗

t |xt,ΘS) (11)

where the sum in (2) has been replaced by a max operator
and where k∗ = argmaxk P (dl|sk,ΘM ). Consequently, if the
number of source classes (S) and the number of target phones
(D) are different, we can distinguish:
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System Soft Hard Manual
MLP-EN 93.3 82.1 83.2
MLP-ES 88.4 68.8 -
MLP-IT 90.7 60.7 -
MLP-SF 88.3 65.5 -
MLP-SZ 89.5 65.6 -
MLP-sUNI 94.3 69.4 81.2
MLP-UNI 96.0 61.7 87.2

TABLE VI
WORD ACCURACIES. COMPARISON OF SOFT AND HARD DECISION. HARD

DECISION CAN BE SEEN AS A DATA-DRIVEN MAPPING. MANUAL
(KNOWLEDGE-DRIVEN) MAPPING IS ALSO EVALUATED FOR SOME

SYSTEMS (SEE TABLE XI FOR MORE DETAILS).

• D < S: some source posteriors are discarded
• D > S: multiple target phones are mapped to the same

source class
Both scenarios are suboptimal for decoding. Table VI shows
that the soft decision always performs substantially better than
the data-driven hard mapping on the HIWIRE test set. The
performance loss of the data-driven mapping is less important
if the transformation is applied within the same language.
If the transformation is cross- or multi-lingually applied, the
performance loss is more important. Earlier studies on cross-
lingual transformations also compared hard mapping (PPM)
to soft mapping (PAM) and reported similar degradation (20%
absolute increase in phone error rate) [5]. If the source and
target set differ more, then the source posteriors estimated on
the target data (MLP forward pass) tend to be ambiguous.
Therefore, the distributions P (dl|sk,ΘM ) tend to be more
ambiguous as well and miss-mappings can happen more easily.
Furthermore, in case of hard mappings, all the probability mass
assigned to under-represented classes other than the dominant
one is lost.

Interestingly, we also note here that the performance of
MLP-UNI is worse than the performance of MLP-sUNI. This
may result from the fact that larger MLPs (like MLP-UNI) will
be more “discriminant”, yielding much lower probabilities to
rare phone classes such as nn, pp, bb, tt, dd (see Table XI in
the appendix). In those cases, the denominator of (3) tends
to dominate the nominator. As a result, those rare phones
will be more often used for the hard mapping. A comparison
of the hard mappings of MLP-UNI and MLP-sUNI shown
in Table XI confirms that the mappings mostly differ for
consonants like n, p, b, t, d.

E. Small amount of training data

The number of parameters that need to be estimated for the
stochastic transformation is relatively small. In our case, the
size of the stochastic mapping matrix is S ×D, S being the
number of source classes and D the number of target states, i.e.
117 x 114. Hence, we expect the proposed approach to perform
well even for very small amounts of data. To confirm that
hypothesis, we continuously decreased the amount of available
data, by considering fewer utterances per speaker as seen in
Table VII. For these experiments, we always used system
MLP-UNI because it performed best in previous experiments.

Amount of data [min] Considered Utterances
149 Utterances 1-50
90 Utterances 1-30
32 Utterances 1-10
16 Utterances 5-9
10 Utterances 3,5,7

3 Manually selected
2 Manually selected

TABLE VII
UTTERANCE CHOICE TO SIMULATE LOW AMOUNT OF DATA.

To have at least one acoustic sample for each target class,
we could not consider all speakers anymore for datasets of less
than ten minutes duration. For the creation of the dataset of
2 minutes and 40 seconds, we took the list of files of the 30-
minutes dataset and manually selected the utterances required
to cover the whole target set. A more sophisticated manual
selection resulted in a dataset of 1 minute and 40 seconds.
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Fig. 3. Word accuracies for different amount of training data. MLP-UNI was
implemented with context-independent (monophone) and context-dependent
(triphone) phone mapping. As a reference point, speaker-dependent MLLR
results, as reported in [8], are also given in the Figure. It is however important
to keep in mind that they come from a different implementation.

We first evaluated monophone state mapping as we have
done until now. Figure 3 demonstrates the efficiency of the
proposed approach through excellent performance in the case
of limited amounts of training data. However, it also shows that
we are not able to take full advantage of the model in case of
larger (typically more than 30 minutes) amounts of training
data. Indeed, as already discussed at the beginning of this
section, the investigated approach has a number of parameters
equal to the size of the stochastic mapping matrix. However,
it is always possible to increase the number of parameters by
increasing the number of target states. As described in the
next section, one possibility to increase the number of target
states is to use context-dependent triphones instead of context-
independent monophones.

F. Triphone Targets
The proposed approach is not limited to context-

independent target phone classes, therefore we also inves-
tigate context-dependent target triphones. As seed models
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for the context-dependent target states, we used the context-
independent model of the center phone. For state tying, we
applied a decision tree clustering [26] re-formulated as dictated
by the KL criterion [27].

To avoid over-fitting, the stopping criterion is usually
based on a combination of minimum cluster occupancy and
minimum increase in log-likelihood threshold. To tune the
thresholds, we took the first 30 utterances of each speaker
as training set, and used utterances 31-50 of each speaker as
development set. We then used the same thresholds for all our
experiments.

As expected, Figure 3 shows that the MLP-UNI system
benefits from the increased number of target states.

VII. RELATION TO SIMILAR APPROACHES

We have shown that multilingually trained systems outper-
form systems trained on native English speech if we have to
deal with non-native English speech during recognition. Fur-
thermore, results revealed that very small amounts of data are
sufficient to train the stochastic phone space transformation.
In this section, we now discuss the local score given in (4)
and show the relationship with PAM, LHN, MLLR and semi-
continuous HMM systems. We also relate our approach to
language-independent acoustic models presented by Schultz
and Waibel [14].

A. Semi-continuous HMM

Kullback and Leibler introduced the term discrimination
information [28], [29] which is often referred to as Kullback-
Leibler distance2, as defined by Cover and Thomas [30]. Since
the Kullback-Leibler distance is not symmetric, Aradilla [31]
used different variants of KL-based local scores for the KL-
HMM framework. Given the posterior feature at time t, Pt,
and the HMM state distribution of state `, Q`, the following
local scores have been proposed:

dKL = d(Q`, Pt) =

S∑
k=1

Q`k log

[
Q`k
Pt,k

]
(12)

dRKL = d(Pt, Q
`) =

S∑
k=1

Pt,k log

[
Pt,k
Q`k

]
(13)

dSKL =
1

2
dKL +

1

2
dRKL (14)

where Pt,k = P (skt |xt,ΘS) and Q`k = P (sk|d`,ΘM ).
The local score dSKL is the divergence of Kullback and
Leibler [28]. Different local scores, result in different estimates
for P (sk|d`,ΘM ) [31]:

P (sk|d`,ΘM ) =


1
C

[∏
∀t∗ P (skt∗ |xt∗ ,ΘS)

] 1
λ for dKL

1
λ

∑
∀t∗ P (skt∗ |xt∗ ,ΘS) for dRKL

No closed form solution for dSKL

where λ = |{xi|xi ∈ Xd(`)}| and C acts as a normalization
constant.

2Although usually referred to as a divergence rather than a distance since
it is not a metric.

The standard Viterbi algorithm for semi-continuous HMM
systems [13] maximizes the likelihood p(x|Ω), where x is a
sequence of acoustic feature vectors and Ω are the parameters
of the HMM. We consider a semi-continuous HMM similar to
the HMM described in Section III build up from D state emis-
sion probability density functions d`, ` = {1, . . . , D}. Those
distributions are usually assumed to be Gaussian mixtures and
we assume to have a pool of S Gaussians sk, k = {1, . . . , S}.
Each distribution is a linearly weighted combination of these S
Gaussians. As shown in Appendix A, estimating the weights of
the Gaussian mixtures along a maximum likelihood criterion is
then equivalent to estimating P (sk|d`,ΘM ) if dRKL is used.

B. Probabilistic Acoustic Mapping (PAM)

PAM, introduced by Sim [5, Section IV.C], estimates the
target phone class probability P (dlt|xt) as follows:

P (d`t|xt) =
1

Z
exp

[ S∑
k=1

W (`, k) logP (skt |xt) + b(`)
]

(15)

where Z acts as a normalization factor. W and b are the weight
matrix and the bias vector of an MLP, respectively. H(.) being
the entropy and W ` the weights associated with the lth output,
(15) can be rewritten:

P (d`t|xt) =
exp

[
−H(W `, Pt) + b(`)

]
∑D
j=1 exp

[
−H(W j , Pt) + b(j)

] (16)

If the MLP is trained with the cross entropy criterion, the local
score dPAM that is minimized can be written as:

dPAM = − log[P (d`t|xt)] ∝
[
H(W `, Pt)− b(`)

]
(17)

We can rewrite (13) and (12) in terms of the entropy

dRKL = H(Q`, Pt)−H(Pt, Pt) (18)

dKL = H(Q`, Pt)−H(Q`, Q`) (19)

Hence, dKL and dPAM are closely related and H(Q`, Q`) in
dKL acts as a target dependent bias. For dRKL however, the
bias is source dependent (Pt).

In the following, we summarize the differences between
our approach, with dRKL as local score, and PAM. Ta-
ble VIII shows how these differences affect the word accuracy
(WACC).
• Cost function: dRKL performs better than dKL, which

performs similar to dPAM .
• Embedded re-alignment: both, PAM and the proposed

approach allow to benefit from re-alignment. In the case
of PAM, a re-alignment requires the MLP to be retrained.
As seen in Table VIII, PAM with re-alignment yields a
better performance than PAM without re-alignment.

• Context-dependent models: in theory, both approaches
can benefit from context-dependent models. In practice
however, due to data sparsity, usually state tying is
required. We developed an algorithm to perform state
tying at the KL-HMM state level [27]. In the case of
PAM, it is not obvious how to tie MLP outputs to train a
context-dependent recognizer on limited amounts of data.
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System Score Re-align Linear Context WACC
KL-mono dKL embedded yes no 96.7%
KL-tri dKL embedded yes yes 97.6%
PAM dPAM no yes no 96.2%
PAM dPAM yes yes no 96.9%
PAM dPAM no no no 97.1%
PAM dPAM yes no no 97.4%
RKL-mono dRKL embedded yes no 96.9%
RKL-tri dRKL embedded yes yes 98.1%

TABLE VIII
WORD ACCURACIES (WACC) ON THE TEST DATA OF THE HIWIRE DATA
SET. FOR ALL THE EXPERIMENTS ALL THE ADAPTATION DATA WAS USED
FOR TRAINING. THE KL-HMM SYSTEMS USE MLP-UNI AS A FEATURE

EXTRACTOR. LINEAR PAM CONSISTS OF A TWO-LAYER MLP AND
NON-LINEAR PAM OF A THREE-LAYER MLP AS DESCRIBED IN [5].

Note that the optimal number of hidden units for the non-
linear PAM approach was 800-900 in [5]. To evaluate whether
more hidden units yield a better performance, we doubled the
amount of hidden units and found a marginal improvement.
Therefore, we report the performance of the latter config-
uration in Table VIII. We also investigated more than one
re-alignment iteration for PAM, but did not observe further
improvement.

C. Linear Hidden Network (LHN)
Another MLP-based adaptation approach performs a hidden

feature transformation with an LHN [10]. The LHN is applied
to the activations of the internal layer and can be trained using
the standard back-propagation algorithm while keeping frozen
the weights of the original network. Once the LHN is trained,
it is combined with the original (unadapted) weights:

Wa = WLHN ×WORIG

ba = bLHN ×WORIG + bORIG

where Wa and ba are the weights and the bias of the adapted
layer, WORIG and bORIG are the weight and bias of the layer
following the LHN in the original unadapted network, and
WLHN and bLHN are the weight and the biases of the linear
hidden network.

Our approach differs from LHN in all the points already
listed at the end of Section VII-B. Additionally, LHN is
bound to a given and fixed phoneme set. Based on hidden
layer adaptation, it is not obvious how to apply phone space
transformations. To use an already trained original MLP, it
needs to be trained from aligned data that makes use of the
same phoneme set (targets) than the adaptation data.

Gemello et al. [10] used LHN to adapt an MLP, previously
trained on native English, to the HIWIRE data. They inves-
tigated speaker-based adaptation (one LHN per speaker) and
data-based adaptation (one LHN for all data). As shown in
Table IX, the data-based LHN results in similar performance
than the triphone MLP-UNI system (RKL-tri). For the speaker-
based LHN adaptation, they adapted and tested for each
speaker separately. Not every speaker pronounced each phone
in the first 50 utterances (adaptation set). Therefore, we were
not able to investigate the triphone MLP-UNI system on a per-
speaker basis. However, a context-independent system (RKL-
mono) can still be trained if there is no data for some target

System Adaptation MLP trained on WACC
LHN Speaker-based English 16 kHz 95.4 %
LHN Data-based English 16 kHz 98.2 %
RKL-mono Speaker-based Multilingual 8 kHz 96.1 %
RKL-tri Data-based Multilingual 8 kHz 98.1 %

TABLE IX
COMPARISON OF WORD ACCURACIES (WACC) ON THE TEST DATA OF THE

HIWIRE DATA SET. AS AN ADDITIONAL REFERENCE POINT, WE SHOW
THE LHN RESULTS REPORTED IN [10]. HOWEVER, THE RESULTS ARE

ONLY CONDITIONALLY COMPARABLE SINCE THE PROPOSED APPROACH
(RKL-MONO AND RKL-TRI) WAS TRAINED ON 8KHZ MULTILINGUAL

DATA (MLP-UNI), AND THE LHN SYSTEMS ON 16 KHZ ENGLISH DATA.

System Seed trained on MLP kHz WACC
MLLR TIMIT - 16 97.3%
MLLR SpeechDat(II) English - 8 95.7%
MLLR SpeechDat(II) multilingual - 8 95.7%
RKL-tri SpeechDat(II) English MLP-EN 8 97.2%
RKL-tri SpeechDat(II) multilingual MLP-UNI 8 98.1%

TABLE X
WORD ACCURACIES (WACC) ON THE TEST DATA OF THE HIWIRE DATA
SET. FOR ALL THE EXPERIMENTS ALL THE ADAPTATION DATA WAS USED

FOR TRAINING. RESULTS ON TIMIT WERE REPORTED IN [8]. FOR THE
KL-HMM SYSTEMS, WE ALSO LIST THE MLP THAT WAS USED AS A

FEATURE EXTRACTOR.

classes. RKL-mono outperforms the speaker-based LHN. Note
that the results in Table IX are only given as a reference point
since the proposed approach was trained on 8kHz multilingual
data, and LHN on 16 kHz English data.

D. Maximum Likelihood Linear Regression (MLLR)

MLLR has been widely used to perform acoustic model
adaptation for HMM/GMM based recognizers. Seguera et
al. [8] also applied conventional MLLR speaker adaptation
with HTK to adapt models trained on TIMIT to the HIWIRE
database.

To give another reference point, we applied the manual
mappings given in Table XI to perform speaker-based MLLR
with HTK as described in [8] and adapt the SpeechDat(II)
English and multilingual seed models to HIWIRE.

It can be seen in Table X that the multilingual data does
not improve the word accuracy on HIWIRE if MLLR is used.
We attribute the performance difference between MLLR on
TIMIT and SpeechDat(II) English to the different nature of the
data such as sampling frequency, microphone, and background
noise. Recall that we have already seen a similar degradation
if 8 kHz telephone data is used instead of 16 kHz microphone
data (Table II and reported by Gemello et al. [10]).

E. Language-independent acoustic models

We can compare our work to the estimation of language-
independent acoustic models, as presented by Schultz and
Waibel [14]. In this HMM-based method, they propose to es-
timate language-independent acoustic models, the probability
p(xt|si) to emit xt in a context-dependent state si is modeled
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by a mixture of Gaussians:

p(xt|si) =

S∑
k=1

csikN (xt|µsi,k,Σsi,k)

Given two context dependent states si and sj from different
languages, the Gaussian components µ and Σ are shared across
languages if the IPA symbol of si and sj are the same, and
the training data of all involved languages is used for the
estimation of the Gaussian components. The mixture weights
however, are trained for each language individually.

csi 6= csj , ∀i 6= j

µsi,k = µsj ,k , ∀i, j : ipa(si) = ipa(sj)

Σsi,k = Σsj ,k , ∀i, j : ipa(si) = ipa(sj)

Hence, the above approach uses a pool of S Gaussians for
each universal phone class. In that case, language specific
phone class models are then obtained by estimating language
dependent weights (similarity measures between universal
classes and mono-lingual phones).

To compare the language-independent acoustic modeling
approach to our method, we can convert the universal phone
class posteriors of system MLP-UNI to any language. Thus,
the proposed system can be seen as a discriminative approach
of estimating language-independent acoustic models.

VIII. CONCLUSION

In the specific context of accented speech recognition,
involving high phone acoustic variability and phone set mis-
matches between (multilingual) phone sets, we proposed and
evaluated an alternative posterior-based stochastic phone space
transformation approach.

The proposed approach adapts a stochastic mapping matrix,
the elements of which can be trained in the context of an EM
or Viterbi like algorithm on small amounts of multi- and cross-
lingual adaptation data. The resulting algorithm iteratively
optimizes a principled KL-based function, which is believed
to be more amenable to posterior distributions (and does not
need to turn posteriors into scaled likelihood estimates).

The resulting system has been shown to be able to efficiently
exploit multi- and cross-lingual adaptation data, using a par-
simonious number of parameters while also being particularly
well suited in the case of phone set mismatch. This conclusion
is further supported by additional evidence and theoretical
and experimental comparisons with similar approaches such
as PAM, LHN and MLLR.

On the HIWIRE dataset, we successfully applied the phone
space transformation in mono-, cross- and multi-lingual setups
and demonstrated that the proposed approach fundamentally
outperforms other data-driven transformations, as well as a
knowledge-based mapping technique. Ten minutes of data
along with word transcriptions were sufficient to successfully
convert multilingual source phone class posterior probabili-
ties given acoustic observations, to monolingual target phone
class posterior probabilities. The multilingually trained system
significantly outperforms a monolingual (English) system on
non-native English ASR.

We have now started investigating how the proposed phone
space transformation can exploit larger datasets, while also
exploring its potential applications to improve ASR for under-
resourced languages.

APPENDIX A
The standard Viterbi algorithm for semi-continuous HMM

systems [13] maximizes the likelihood p(x|Ω), where x is a
sequence of acoustic feature vectors and Ω are the parameters
of the HMM. To compare semi-continuous HMMs to the pro-
posed approach, we consider a semi-continuous HMM similar
to the HMM described in Section III build up from D state
emission probability density functions d`, ` = {1, . . . , D}. In
standard ASR systems, those distributions are usually assumed
to be Gaussian mixtures. Here, we assume to have a pool of S
Gaussians sk, k = {1, . . . , S}. Each distribution is a linearly
weighted combination of these S Gaussians. We thus assume
the following probabilistic model:

p(xt|Ω, d`) =

S∑
k=1

c`kpk(xt|Ωk) (20)

where p(xt|Ω, d`) stands for the likelihood of an acoustic
observation xt, given the state d` and the parameters Ω =
{c`k,Ωk}, where Ωk = {µk,Σk}, with µk being the mean
and Σk the variance of the Gaussian sk. We assume that Ωk
is given ∀k and only c`k needs to be estimated. Thus, the
maximum likelihood solution consists of:
• Segmentation: assigning acoustic observations xt to one

of the states modeled with the mixture distribution d`,
i.e. assign xt to an acoustic subspace Xd(`),

• Optimization: given a segmentation, optimize c`k by max-
imizing (20) for each distribution d`

The well-known maximum likelihood solution for c`k (see, e.g.,
Bilmes [32]) is given by:

c`k =
1

|{xi|xi ∈ Xd(`)}|
∑

∀xt∗∈Xd(`)

p(sk|xt∗ ,Ωk) (21)

Exploiting (21) and (9), saying:

P (sk|d`,ΘM ) =
1

|{xi|xi ∈ Xd(`)}|
∑
∀t∗

P (skt∗ |xt∗ ,ΘS)

where the sum extends over all t∗ such that xt∗ ∈ Xd(`), it
thus follows that estimating c`k along a maximum likelihood
criterion is equivalent to estimating P (sk|d`,ΘM ) if the
reversed KL-divergnce dRKL, proposed in Section III, is used.

In that particular context, our approach is then similar
to semi-continuous HMM systems [13]. In contrast to the
generatively trained models, usually used in semi-continuous
HMM systems, we use discriminatively trained MLPs to
estimate phone class posterior probabilities.
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APPENDIX B
PHONEME MAPPINGS

HIWIRE UNI EN
man hard (UNI) hard (sUNI) man hard (EN)

m m m m m m
n n nn n n n
N N N N N N
p p pp p p p
b b bb b b b
t t tt t t t
d d dd d d d
k k k k k k
g g g g g g
f f f f f f
v v v v v v
T T pf pf T T
D D D D D D
s s ss ss s s
z z dz Z z z
S S SS SS S S
h h h h h h
ô ô ô ô ô ô
j j jj L j j
l l ll ll l l
w w w w w w
tS tS tS tS tS tS
dZ dZ dZ dZ dZ dZ
i i i: i: i: i:
u u u: u: u: u:
I I I I I i:
E E e@ e@ e e@
3~ 3: œ œ 3: 3:
2 2 ẽ a:5 2 A:
O O o:5 O5 O: O:
æ æ æ æ æ æ
A A a: a: A: A:
eI eI e: e: eI eI
oU @U o: o: @U O:
OI OI OI OI OI OI
aU aU aU aU aU aU
aI aI aI aI aI aI

TABLE XI
KNOWLEDGE DRIVEN (MANUAL MAPPING) AND DATA-DRIVEN (HARD

DECISION MAPPING) OF THE DESTINATION PHONEMES (HIWIRE) TO THE
ENGLISH (EN) AND UNIVERSAL (UNI) SOURCE PHONEMES

(SPEECHDAT). BOLD SYMBOLS ARE DIFFERENT FROM THE DESTINATION
PHONEME SYMBOL. ALL SYMBOLS ARE IN IPA FORMAT.

the European Community’s Seventh Framework Programme
(FP7/2007-2013) grant agreement 213845 (the EMIME
project: www.emime.org).
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