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ABSTRACT

Automatic Speech Recognition (ASR), as the assistance of
speech communication between pilots and air-traffic controllers,
can significantly reduce the complexity of the task and increase the
reliability of transmitted information. ASR application can lead to a
lower number of incidents caused by misunderstanding and improve
air traffic management (ATM) efficiency. Evidently, high accuracy
predictions, especially, of key information, i.e., callsigns and com-
mands, are required to minimize the risk of errors. We prove that
combining the benefits of ASR and Natural Language Processing
(NLP) methods to make use of surveillance data (i.e. additional
modality) helps to considerably improve the recognition of callsigns
(named entity). In this paper, we investigate a two-step callsign
boosting approach: (1) at the 1% step (ASR), weights of probable
callsign n-grams are reduced in G.fst and/or in the decoding FST
(lattices), (2) at the 2™ step (NLP), callsigns extracted from the im-
proved recognition outputs with Named Entity Recognition (NER)
are correlated with the surveillance data to select the most suitable
one. Boosting callsign n-grams with the combination of ASR and
NLP methods eventually leads up to 53.7% of an absolute, or 60.4%
of a relative, improvement in callsign recognition.

Index Terms— automatic speech recognition, human-computer
interaction, Air-Traffic Control, Air-Surveillance Data, Callsign De-
tection, finite-state transducers

1. INTRODUCTION

Key components of speech communication between pilots and Air-
Traffic Controllers (ATCo), i.e., callsigns, which are used for identi-
fication of aircrafts, and providing commands, demand high recog-
nition accuracies. Callsigns are unique identifiers for aircrafts, of
which the first part is an abbreviation of airline name and the last
part is a flight number that contains a digit combination and may
also incorporate an additional character combination, e.g., TVS84J
(see Table[T). At a certain time point, only few aircrafts are usually
in the radar zone which means only a limited number of callsigns
can be referred to in the ATCo communications. If a recognized
callsign does not match any ‘active’ callsign registered by radar at
the given time point, it means that there is no corresponding aircraft
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Table 1. Callsigns: compressed and extended (airlines designators
are in bold)

Callsign Extended callsign

SWR2689  swiss two six eight nine
RYRIRK  ryanair one romeo kilo
RYRISG  ryanair one sierra golf

in the air space and the automatically recognized command (from
voice communication) is invalid. Therefore, contextual information
coming from the surveillance (radar) data allows adjusting system
predictions that can significantly increase its accuracy.

Although contextual information has been already used in pre-
vious ATC studies [[1-4], or more recently in [SH7]; it has been
never adapted for both ASR and concept extraction outputs simul-
taneously and without a need of any additional knowledge (e.g.,
manual annotation, classes, etc.). This research aims to leverage
the available contextual information by combining ASR and NLP
methods. We believe that ASR and NLP are complementary tasks
rather than separated ones. Whereas ASR exploits speech to pro-
duce a sequence of words, NLP exploits the intrinsic characteristics
in a given snippet of text. ASR normally struggles to model long
sequences, while state-of-the-art NLP systems allow extracting key
information in the whole chunks of text; for instance an entire ATC
utterance. In the proposed approach, we focus on an iterative use
of contextual data, to take advantage of a combination of ASR and
NLP modules. (1) First, boosting the probability of active callsigns
in ASR system (FST-boosting), (2) second, boosting ASR outputs
(NLP-boosting) in order to correct those predicted callsigns, which
are not present in the surveillance data.

The rest of the paper is organised as follows: Section 2 reviews
current approaches on integrating contextual knowledge in ASR for
ATC communications. Section 3 gives a theoretical background
of the proposed ASR-NLP approach to leverage surveillance data.
Then, we present the data and the experiment set up in Section 4.
Finally, we report the results and summarise our observations and
ideas in Section 5 and 6, respectively.

2. CONTEXTUAL INFORMATION FOR CALLSIGN
DETECTION

Contextual data on the ASR level can be integrated by modifying
weights of target n-grams in the grammar or/and in the ASR decod-
ing lattices, e.g. by mean of generalised composition of baseline



LM and Weighted Finite State Transducers (WFSTs) with the target
contextual n-grams [8H10]. A similar approach has been recently
adopted in the ATC domain [5,|6] and proved to offer a significant
gain in callsign recognition. A list of callsigns to be boosted is reg-
ularly changing and needs to be updated dynamically per each utter-
ance. Thus, weights of callsign n-grams are dynamically modified
in the WFST. The first of the methods is lattice rescoring, where
the weights are adjusted on the word recognition lattices from the
first pass decoding. In the other method, weights are dynamically
modified directly in the grammar (G.fst), which allows having target
n-grams boosted before the decoding is performed [6]]. For our ex-
periments, we will adopt the lattice rescoring approach to leverage
the performance on the ASR side.

Besides the ASR performance, contextual information for
ATC has been also used to improve concept extraction [1H4].
Schmidt et al. [1] applied a Context-Free Grammar (CFG)-based
LM limiting the search space according to the contextual data.
Shore et al. [2] and Oualil et al. [3,/4] build a CFG-based concept
extractor with all semantic concepts of ATC embedded in XML
annotation tags. In [2f], after decoding, the lattice hypotheses are
rescored by incorporating an additional knowledge source compo-
nent to the cost function. The knowledge-based rescoring penalises
hypotheses that are invalid in the context, e.g., callsigns not regis-
tered in the air space. In [3]], to overcome the problem of variability
of ATCO commands, the weighted Levenshtein distance is applied
to find the closest match between an ASR hypothesis and generated
context word sequences. [4] combines methods from [2,|3] adding
more contextual constraints from data with temporal information.
Although these methods help to considerably increase the recogni-
tion accuracy, their limitation is that it deals only with concepts and
callsigns which are annotated and included into the grammar. Those
n-grams that do not appear in the grammar can not be extracted and
evaluated. Finally, Helmke et al. [[11]] recently proposed a machine
learning algorithm for command extraction from the ASR hypothe-
sized outputs with the use of keywords. This model achieves good
results and it is the second alternative approach to our methods.

3. METHODS

We focus on the combination of ASR and NLP methods and inves-
tigate two-steps approach for callsigns extraction. As a callsign is a
sequence of words, using contextual information to improve recog-
nition of callsigns is a task of boosting n-grams. The contextual data
comes from radar in a compressed form, i.e., standardized phraseol-
ogy format of International Civil Aviation Organization (ICAO) [12]
(see Fig. [). To introduce the contextual knowledge into the ASR
system, all callsigns need to be expanded to word sequences (Ta-
ble[I). The compressed form often allows more than one possible
realisation in the ATCos’ speech: For example, DLHSKX can be
expanded as ‘hansa five kilo x-ray’ or ‘lufthansa five kilo x-ray’, etc.
As we can not say which particular expansion is true for an uttered
callsign, it is important to take all expansion variants into account.

3.1. Integration of contextual knowledge into ASR system

In a standard hybrid-based ASR system, the different knowledge
sources are represented as WFST's, which are combined by the ‘com-
position’ operator together in the final decoding graph [[13]]. Informa-
tion from additional knowledge sources can be also integrated into a
system by means of composition.

Our first integration of contextual knowledge into ASR is done
on the LM level (G-extension). The idea is to boost callsign n-grams

AL78 ACA854 AFR6735 BEEG6BU
CLX79W CLX98G DAL32 DLHG6LY
EIN23W EXS155 EXSY9SLP EXS9DL
EZY6IMT EZY82NY HMDG61 ICE416
RYRIRK RYR3TA RYR4DD RYR4TM
RYR50HD RYR7245 SAS99K STKI9L
STK21GL STK2IM STK31S STK3212

Fig. 1. Callsigns in ICAO format received from radar.

already available in LM, and even more important to add those call-
sign n-grams, which are absent (e.g., >3 words sequences in 3-gram
LM). We build a contextual FST that includes all possible callsigns
from the tower: all callsigns registered by the radar at different time
stamps (from 17K to 280K callsigns to boost in different test sets;
see last column in Table[2). Then, the main G. f st is composed with
the contextual G _biased. f st and the result of composition is used
in the final decoding HC LG graph.

The second integration of contextual information (lattice rescor-
ing) is done per utterance on top of the decoding lattices which
allows flexible adaptation to new-coming contextual information
avoiding changing the main decoding graph (HCLG) (for more
details check [6]]). Weights in lattices are rescored according to
the surveillance data: for each test utterance, an F'ST biased to
callsigns n-grams registered at the time stamp when an utterance is
created and composed with lattices created in the first pass:

Lattices’ = Lattices o biasing_FST (€))]

Weights updated in the composition are used for final predictions.

3.2. Integration of contextual knowledge on ASR transcripts

Our approach for integrating contextual knowledge on ASR tran-
scripts (e.g., 1-best hypothesis) is based on a two-step pipeline. Each
step conveys an independent module.

3.2.1. Named Entity Recognition (NER) module

ATC communications carry rich information such as callsigns, com-
mands, values and units; they can be seen as ‘named entities’. We
propose a NLP-based system to extract such information from ASR
transcripts. We defined callsigns, commands, units, values, greetings
OR the rest (e.g., ‘None’ class) as tags for the NER task, as depicted
in Figure [2] First, we downloaded a BERT [14] model pre-trained
as masked language model from Huggingface [15]] and fine-tuned it
on NER task with 12k sentences (~12 hours of speech), where each
word has a tag. Then, we developed a data augmentation pipeline
in order to increase the amount of training data: 1M samples from
12k sentences. The pipeline has four actions that modifies the train-
ing sample: add, delete, swap, or move the callsign across the ut-
terance -sentence-. Delete and move actions, remove and keep the
same callsigns, respectively; add and swap generate a sentence with
anew callsign picked randomly from a callsign list. The callsign list
is pre-defined by a user, which makes the approach easy to deploy in
out-of-domain data (i.e., callsigns from different airports/countries).

3.2.2. Re-ranking module based on Levenshtein distance

The BERT-based system for NER allows us to extract the callsign
from a given transcript or ASR 1-best hypotheses. Recognition of
this entity is crucial where a single error produced by the ASR sys-
tem affects the whole entity (normally composed of three to eight
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Fig. 2. BERT-based model (Huggingface) fine-tuned on NER task.

words). Additionally, speakers regularly shorten callsigns in the con-
versation making it impossible for an ASR system to generate the
full entity (e.g., ‘three nine two papa’ instead of ‘austrian three nine
two papa’, ‘six lima yankee’ instead of ‘hansa six lima yankee’).
One way to overcome this issue is to re-rank entities extracted by
the BERT-based NER system with the surveillance data. The output
of an NER system is a list of tags that match words or sequences of
words in an input utterance. As our only available source of contex-
tual knowledge are callsigns registered at a certain time and location,
we extract callsigns with the NER system and discard other entities.
Correspondingly, each utterance has a list of callsigns expanded into
word sequences (shown in Table[T). As input, the re-ranking module
takes (i) a callsign extracted by the NER system and (ii) an expanded
list of callsigns. The re-ranking module compares a given n-gram se-
quence against a list of possible n-grams, and finds the closest match
from the list of surveillance data based on the weighted Levenshtein
distance. We skip the re-ranking in case the NER system outputs a
‘NO_CALLSIGN’ flag (no callsign recognized).

4. DATA AND EXPERIMENTAL SETUP

4.1. Data

For the callsign boosting experiments, we use four test sets; all of
them have utterances both with and without callsigns (see Table @)

LiveATC: the first test set is from the LiveATCE| data recorded
from publicly accessible VHF radio channels, which includes both
pilots and ATCo speech and, therefore, is of rather low quality (i.e.,
low SNR often below 10dB) [[16].

MALORCA: Prague and Vienna test sets are mainly of good
quality (i.e., telephone quality speech with SNR usually above 20dB)
data from the MALORCA project [[17, 18E| which includes only
ATCo speech. The recognition accuracy of the baseline model are
already high above the one reached on VHF LiveATC data (see Ta-
ble[3). The data was collected from the Prague and Vienna airports
and, thus, forms two separate sets correspondingly.

NATS: a data set collected under HAAWAII projeclEl with the
data coming from London approach (airport). This data is relatively

I'Streaming audio platform that gathers VHF aircraft communications

2From the ‘standard’ MALORCA test sets [[18] only utterances with the
available surveillance information are selected.

3https://www.haawaii.de/wp/

Table 2. Test sets (callsigns (csgn) per utterance (utt) — median of
callsigns per utterance in the surveillance data)

N of utt Csgn

Test set with  w/o  per Min All csgns
acsgn utt

Live ATC 581 29 28 40 280K

Malorca Prague 784 88 5 82 17K

Malorca Vienna 877 38 19 65 59K

NATS 794 73 50 50 168K

high-quality, similar to MALORCA.

The data sets are used differently in training ASR and NER mod-
els. The ASR train data includes Malorca sets but not Live ATC and
NATS. The data for fine-tuning the NER system contains LiveATC
data but neither Malorca, nor NATS sets.

4.2. ASR model

For training the baseline acoustic model, as well as for the decoding
and rescoring experiments, we used the Kaldi framework [19]. The
system follows the standard Kaldi recipe, which uses MFCC and i-
vectors features. The standard chain training is based on Lattice-free
MMI (LF-MMI) [20]], which includes 3-fold speed perturbation and
one third frame sub-sampling.

The acoustic model is a CNN-TDNNF trained on approximately
1200 hours of ATC labeled augmented data [[16,21]]. First, the train-
ing databases (195 hourﬂ) were augmented by adding noises that
match Live ATC audio channel (one batch between 5-10 dB and other
10-20dB SNR). Afterwards, we applied speed perturbation, obtain-
ing almost 1200 hours of training data. The model was further im-
proved with 700 hours of semi-supervised data collected in Live ATC
for different airports from Europe [17]. The LM is 3-gram trained
on the same data as the acoustic model with an additional textual
data from additional public resources such as airlines names, air-
ports, ICAO alphabet and way-points in Europe.

4.3. Evaluation

Since this paper focuses on improving callsign detection, we eval-
uate the proposed methods by calculating the accuracy of callsign
extraction. For the evaluation we use ICAO format, which is the
target form to display on the screen of ATCo and pilots, and we
have only two outcomes: ICAO is recognized ‘correctly’ VS ‘in-
correctly’. In the previous studies [5,/6]], the accuracy of callsign
recognition is evaluated with matching the ground truth callsign n-
grams to the ones in utterances. This approach, however, does not
correspond to the real situation, when ground truth callsigns are not
available. In our experiments, we do not only do speech recognition
but proceed with callsign extraction, we evaluate the performance
directly on the extracted entities. In addition, the use of the ICAO
format helps to avoid issues with variability of pronunciation within
a callsign: the full form of callsign is extracted automatically but a
speaker says a shorten version, which is then outputted by the ASR,
as well as recorded in the ground truth transcriptions (see example
above[3.2.2). All experiments share the same ASR and BERT-based
NER systems, as well as the ICAO extractor module; thus, the per-
formances are only impacted by the proposed boosting techniques.

4The ATCO?2 test set is publicly available in https://www.atco2.
org/data
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Table 3. Results of callsign extraction with ASR boosting (ASR-B) and post-boosting (NLP-B): the accuracy of callsign recognition (%) is

calculated for the callsigns in ICAO format (see Section {.3)

Method Test sets (callsign recognition accuracy)
LiveATC Prague Vienna NATS
ASR output Callsign extraction (baseline) 42.8 64.4 48.4 35.2
Lattice rescoring ~ G-extension ~ NLP-boosting
v - - 53.1 66.9 59.6 37.1
- v - 444 64.3 49.2 34.8
v v - 52.8 66.9 52.1 36.8
- - v 88.4 95.0 86.0 87.0
v - v 88.5 94.8 84.3 88.9
- v v 87.7 95.0 85.6 88.2
v v v 88.0 94.7 84.0 88.0
Ground Truth Callsign extraction (oracle) 89.7 72.2 59.6 67.4
+ NLP-Boosting 89.3 95.4 87.0 94.0
ASR WER (without boosting) 324 34 9.2 24.4
5. RESULTS

As a baseline we use callsign extraction done directly on the outputs
of our ASR system. Then, we apply the proposed boosting tech-
niques (G-extension, lattice rescoring, NLP-boosting) in different
combinations to see how they can benefit from each other. In Ta-
ble[3] the results of the experiments are presented on four different
test sets with accuracy of callsign (ICAO) recognition. Overall, the
proposed metrics help to improve the baseline accuracy from 30.6%
to 53.7% absolutely, or from 32.1% to 60.4% relatively (for the test
sets Prague and NATS correspondingly; when the NATS set gets the
highest improvement being the out-of-domain data). The best results
are always achieved with the use of NLP-boosting. For LiveATC
and NATS sets, the out-of-domain sets in the ASR training, the best
performance is achieved with the combination of NLP-boosting and
ASR-boosting (lattice rescoring) methods.

At the same time, the G-extension has a contradicting effect. It
helps to improve results comparing to the baseline for the Live ATC
and Vienna sets, yet, its combination with lattice rescoring achieves
worse accuracy than lattice rescoring alone. The possible drawback
of the G-extension method is that a very high number of available
callsigns are boosted in LM F'ST (see last column 2). It can intro-
duce confusion when combining with the lattice rescoring boosting
method, which focuses on only current callsigns. On the other hand,
it does not need any modifications during the decoding and serves as
a general domain adaptation. Thus, G-extension can be used to im-
prove the outputs when other methods are not available, otherwise,
can be skipped. The number of callsigns used to boost the ASR
outputs may also have the degradation effect on the performance of
the lattice rescoring approach. Although in this case, the number of
callsigns did not exceed 50, we investigated its impact. The test sets
have different numbers of boosted n-grams, from 5 to 50 (see Ta-
ble[T), but even with 50 boosted callsigns the recognition accuracy
goes considerably up comparing to the baseline.

Along with the evaluation of boosting methods on the ASR out-
puts, we provide the ‘oracle’ results, when callsigns are extracted on
the ground truth transcriptions (2™ line in Table . This comparison
allows estimating the impact of the proposed methods to the callsign
extraction improvement, when no ground truth information is avail-
able. Even if the ‘oracle’ scores always stay better, the accuracy
achieved with our systems shows close and comparable results. No

Table 4. Examples of improved callsign recognition (bold part)
Baseline (incorrect ICAO) Boosted (correct ICAO)

wizz air four one six (WZZ416)
easy three delta (EZY3D)

iceair four one six (ICE416)
fraction eight eight three

delta (NJE883D)
serbia one nine lima (ASL19L)  stobart one nine lima
(STK19L)

improvement with NLP-boosting on the ground truth transcription
for LiveATC test set can be explained by already high accuracy of
callsign extraction, as LiveATC data was used to fine-tune the NER.

Tablefd]gives examples of improvement where airline names and
callsigns are detected correctly comparing to the baseline predic-
tions. Our methods demonstrate consistent results for data of dif-
ferent quality. The level of noise in the recordings of Live ATC and
Malorca test sets is very different, as well as WERSs achieved by their
baseline ASR systems (the last line in Table@ [6]). Nevertheless, we
see considerable improvement for all test sets and the general ten-
dency stays the same. The main advantage of the proposed approach
comparing to the others is its simplicity and flexibility. The NER-
system can be fine-tuned to different data sets that makes it easy to
adapt to new out-of-domain data. Moreover, it is also suitable for the
online implementation.

6. CONCLUSION

We investigated a two-step approach of integrating contextual radar
data in order to dynamically improve the recognition of callsigns per
utterance. We demonstrated that the best result is achieved with the
NLP-boosting and with the combination of NLP-boosting and lattice
rescoring methods on all test sets of different recording quality with
the significant improvement, i.e., from 32.1% to 60.4% of relative
improvement on callsign recognition accuracy across the evaluated
data sets. Introduction of contextual information considerably im-
proves recognition of callsigns and, thus, recognition of ATCo mes-
sages in general. As a noisy environment leading to lower recog-
nition accuracy is often a reality in pilot-ATCo communication, the
proposed methods and their combination will definitely benefit the
recognition of the key information in ATCo speech.
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